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Abstract

Since Kydland and Prescott (1977) and Barro and Gordon (1983), most studies of the
problem of the inflation bias associated with discretionary monetary policy have assumed
a quadratic loss function. We depart from the conventional linear-quadratic approach to
the problem in favor of a projection method approach. We investigate the size of the in-
flation bias that arises in a microfounded nonlinear environment with Calvo price setting.
The inflation bias is found to lie between 1% and 6% for a reasonable range of param-
eter values, when the bias is defined as the steady-state deviation of the discretionary
inflation rate from the optimal inflation rate under commitment.
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1. Introduction

Since Kydland and Prescott (1977) initiated the literature of rules versus discretion,
improvement upon discretionary equilibria by reducing inflation bias has long been a
research theme in policy circles as well as academia, including Barro and Gordon (1983),
Clarida, Gali and Gertler (1999), M. King (1997) and Woodford (2003). In most of the
existing papers on the inflation bias, the one-period loss function assigned to the central
bank is quadratic in inflation and the level of output relative to its target. It is well
known that Rotemberg and Woodford (1997) and Benigno and Woodford (2006) have
provided a microfoundation for the use of such a loss function by showing that this simple
quadratic function can be derived as the second-order approximation to the non-linear
social welfare function in a Calvo model.

However, as discussed in Woodford (2003), such a derivation does not hold under
discretion unless the steady-state level of output under flexible prices is sufficiently close
to its efficient level; these papers approximate the model around the deterministic steady

1The authors appreciate comments by Andrew Levin, Edward Nelson, David Lopez-Salido, Victor
Rios-Rull, Alex Wolman, and participants at 2008 SCE Conference, as well as encouragements from
Mike Woodford. The views in this paper are solely the responsibility of the authors and should not be
interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or any other
person associated with the Federal Reserve System.
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state with zero inflation, but the optimal allocation under discretion leads to an unknown
positive inflation under monopolistic distortion. In light of this observation, this paper
does not follow the conventional linear-quadratic approach to studying the inflation bias
induced by discretion. Instead, we use a projection method to analyze the inflation
bias in a microfounded non-linear model with a Calvo price-setting environment. In our
model, since the optimal inflation rate under commitment is zero, the inflation bias is
defined as the (optimal) discretionary inflation rate. To do so, we characterize a set of
conditions for the optimal allocation under discretion without any approximations. We
then use Chebyshev polynomials to approximate policy functions that link inflation and
output to a set of state variables, thereby converting optimization conditions into a set
of non-linear equations for the coefficients of Chebyshev polynomials. The results on
inflation bias based on the global projection method are compared with those based on
the linear-quadratic approximation method.

We would like to note that perturbation methods can be modified and used to analyze
this problem. For example, Dotsey and Hornstein (2003) and Klein, Krusell and Rios-Rull
(2008) have employed a perturbation method, with an iterative procedure to compute
numerical solutions: Dotsey and Hornstein (2003) solve an optimal discretion problem
with an iteration of the linear-quadratic approximation, while Klein, Krusell and Rios-
Rull (2008) apply a perturbation procedure to a nonlinear Generalized Euler Equation.
These methods can be used to compute the optimal inflation rate at a deterministic
steady state. But we have chosen to use the projection method since this method can
conveniently be extended to a stochastic setting with technology shocks.

Our paper is not the only one to analyze the discretionary equilibrium in a nonlinear
Calvo model. Wolman and Van Zandweghe (2008) use a fixed-point algorithm to solve for
the optimal policy instrument and investigate whether multiple Markov Perfect Equilibria
can arise in the Calvo model—as compared to the results of King and Wolman (2004)
for the Taylor pricing contract. In addition, Adam and Billi (2007) work on optimal
discretion in a model that is linear in every aspect except for the zero lower bound for
the nominal interest rate.

The rest of this paper is organized as follows. In section 2, we describe a discretionary
equilibrium in the Calvo (1983) pricing model where the planner is not allowed to make
any commitment about his or her future behavior. Section 3 contains numerical results
based on the projection method. In section 4, we conclude.

2. Economic Structure and Discretionary Equilibrium

This section describes the economic structure in our model and the discretionary
equilibrium of the planner’s problem.

2.1. Economic Structure
The economy is populated by households and firms.

2.1.1. Households
At period 0, the preference ordering of the representative household is summarized
by
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where C} denotes consumption, H; denotes hours worked. The parameter 3 denotes the
time-discount factor, o measures the degree of relative risk aversion, x controls the labor
supply elasticity, and v plays the role of fixing the steady-state level for labor. Households
purchase differentiated goods in retail markets and combine them into a single composite
good using the Dixit-Stiglitz aggregator, and utils of households depend upon the amount
of the composite good. The demand curve for each good z can be derived from the
following cost-minimization problem:
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where P,(z) represents the nominal price of good z and Cy(z) is its demand. The first-
order condition for this cost-minimization problem yields the demand curve for firm z:

Ci(z) = (]Dt(z)) o (3)

The parameter € represents the elasticity of demand, and the aggregate price level P, is

P, = (/01 Pl (2) dz) - . (4)

The household’s dynamic budget constraint at period ¢ is given by
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where By is the nominal payoff at period ¢ 4+ 1 of the bond-portfolio held at period t,
W, is nominal wage, and Z; is the real dividend income, T; is the real lump-sum tax, and
Tw denotes a constant employment tax rate (or subsidy when negative) that is applied
to labor income. In addition, Q¢ 41 is the stochastic discount factor used for computing
the real value at period t of one unit of the consumption good at period ¢ + 1. Hence,
if R; represents the risk-free nominal (gross) rate of interest at period ¢, the absence of
arbitrage in equilibrium leads to
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The representative household maximizes (1) subject to the flow budget constraints
(5) in each period. The first-order conditions are given by
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and substitution of (8) into (6) yields the consumption Euler equation:
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2.1.2. Firms
Each firm produces a differentiated good z using a constant returns to scale produc-

tion function:
Yi(2) = AeHy (2), (10)

where Y;(z) is the output of firm z, and H;(z) denotes the hours hired by the firm and
A; is an exogenous aggregate productivity shock at period ¢. Firms set prices as in the
sticky price model of Calvo (1983). Specifically, each period a fraction of firms (1 — «)
are allowed to change prices, whereas the other fraction, «, keeps prices the same. Let
P} be the new price charged by a firm resetting its price. Then, resetting firms choose a
new optimal price in order to maximize the following expected discounted sum of profits:

= Py 14 Pr\ ¢
ZakEt Qt,t+k <(1 - TP) - as ) < : ) Yitr
k=0

Pk AvriPryr ) \ Petr
where 7p denotes the amount of proportional revenue tax (or subsidy when negative).
Differentiating this expression with respect to P;* gives rise to the first-order condition:
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Furthermore, the Calvo type staggering transforms equation (4) into

1
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Next, we will show that the profit maximization condition (12) can be rewritten
in a recursive way. In order to see this, note that substituting (8) into (12) and then
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It is now useful to define two variables, F; and S, as follows.
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We then have the following recursive representations of the two variables F; and S;:
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with two terminal conditions,
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where II; = P;/P,_1. We now substitute the definitions of F; and S; specified above in
(15) into the profit maximization condition (14), to yield
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In addition, substituting equation (18) into (13) leads to
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We have thus expressed the profit maximization condition (14) and the price level defi-
nition (13) in terms of F; and S; with their intertemporal evolution equations (16) and
(17).

2.1.8. Social Resource Constraint

In any model with staggered price setting, relative prices can differ across firms.
Furthermore, if firms have different relative prices, there are distortions that create a
wedge between the aggregate output measured in terms of production factor inputs and
the aggregate demand measured in terms of the composite goods. In order to see the
relative price distortions, let us aggregate individual outputs:

1 —€
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where H; = fol H,(2)dz. By defining a measure of relative price distortion as

A, = /01 (lzﬁj)) e (20)

the aggregate production function can be written as follows:

In order to obtain a law of motion for the measure of relative price distortion described
above, note that the Calvo-type staggering allows one to rewrite the measure of relative
price distortions specified in equation (20) as
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Then, substituting (13) into (22), one can derive an expression for how the measure of
relative price distortions evolves over time:
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Finally, the aggregate market clearing condition is given by
}/t = Ct7 (24)

so the social resource constraint in period ¢ is therefore given by

A
Kth = C,. (25)

2.2. The Planner’s Problem under Discretion

In this section, following Woodford (2003), we interpret a planner’s problem without
commitment as an optimal planning problem. In his book (p. 465), the optimal allocation
under discretion is defined as “a procedure under which at each time that an action
is to be taken, the central bank evaluates the economy’s current state and hence its
possible future paths from now on, and chooses the optimal current actions in the light
of this analysis, with no advance commitment about future actions, except that they will
similarly be the ones that seem best in whatever state may be reached in the future.”

Before proceeding, it is worth discussing implementability constraints, which restrict
the feasible allocations of the social planner. First, the household budget constraint is
not included as a constraint for the optimal allocation problem because of the lump-
sum tax. Second, the size of the employment subsidy rate determines whether the profit
maximization condition is binding or not as an implementability constraint in the optimal
allocation problem.

In order to gain some insights about the role of the employment subsidy, we describe
the equilibrium conditions for the flexible price model and then compare them with
those for the first-best equilibrium. Since o = 0 corresponds to the flexible-price model,
it follows from (12) that the profit maximization condition for the flexible-price model

turns out to be
Wi

Py~ (L—7p) (1 —€e ') A (26)

where Wy, and Py; are the nominal wage rate and the price level in the flexible price
model. Combining (7) with (26), we can see that the relationship between MRS and
MPL in the flexible price model is given by

vOF HY, = (1 - ®)A, (27)

where Cf; and Hy; denote consumption and labor input in the flexible-price model
and ® measures the overall distortion in the steady-state output level as a result of
taxes/subsidies and market power:

d=1-(1—-7p)(L—7w)(1—€1).
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We can see from (27) that when we set ® = 0, the flexible price model can achieve the
efficient level of output—which would be attained at the perfectly competitive equilib-
rium.

We now characterize the planner’s problem under discretion, which is similar to the
setup of Adam and Billi (2007) except for their imposition of the zero lower bound and
our more disaggregated nonlinear constraints. The government at period 0 chooses a set
of decision rules for { Cy, Hy, Fy, S, II, Ay }72, in order to maximize

clm7—1 oH}X
Vi (A1, Ay) = max{ tl — 7 _f_ ., + BE; [Vig1 (A¢, Apgr)] ¢ s (28)
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Here, the absence of commitment leads us to express the values of period ¢ + 1 of
the planner’s choice variables in terms of the values at period ¢ + 1 of state vari-
ables such as Ft+1(At+1,At+1), St+1(At+1,At+1), and Ht+1(At+1,At+1); that iS, fu-
ture variables are taken as given by the planner, instead of chosen optimally as un-
der commitment. In addition, we allow for the possibility that the value function on
the right-hand side differs from that on the left-hand side while the system is away
from a stationary equilibrium.? The same principle is applied to the notation of func-
tions Ft+1(At+1,At+1), St+1(At+1,At+1)7 Ht+1(At+1,At+1) so that we do not record
F(Api1, A1), S(A¢g1, Aet1), and TI(Ay41, Ai1). In our numerical implementation of
the projection method, however, we employ the assumption that functional forms of these
functions are invariant over time.

3. Projection Methods and Numerical Results

This section starts with a description of a projection method to obtain numerical
solutions for the discretionary equilibrium. We will also present our numerical results
regarding the size of optimal inflation under discretion that are compared with those
from a linear-quadratic approximation analysis (e.g. Woodford, 2003).

2The characterization of optimal policy conditions and our application of the projection method are
described in the appendix.
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3.1. Projection Method with Homotopy Procedure: A Nontechnical Guide

We employ a projection method to compute numerical solutions that approximate
the nonlinear dynamic system of implementablity conditions of the planner’s problem
and its first-order conditions. In order to deal with a feature of the generalized Euler
equation that future variables should be expressed as functions of current variables,
we approximate policy functions by a set of Chebyshev polynomials because functional
forms of derivatives of Chebyshev polynomials are analytically known. We also adopt a
homotopy procedure to improve on our initial guesses for the nonlinear solution. Our use
of a homotopy procedure is motivated by our finding that in the course of obtaining valid
solutions over the relevant range of state variables, it was important to have flexibility
in setting and readjusting the range of these variables.?

In our computation, we begin by characterizing the full set of dynamic equilibrium
conditions in a non-linear state-space representation. In order to do this, we define a new
function I' in order to collect the policy functions of endogenous variables as follows:

[(st) = D(A(st),1(s¢), C(st), F(st), H(st), S(st), p1(8¢), p2(8t), P3(8t), dalst), d5(st))

where the realized values at period t of these functions are determined by the following
state at period t: st:[At,lAt]/. Here, functions (¢1(st), ¢2(st), d3(st), ¢a(st) and
¢5(s¢)) represent Lagrange multipliers of 5 constraints of the planner’s problem (29)—
(33). Given the specification of the function T, the equilibrium conditions lead to a
system of equations satisfying M (I'()) = 0 where M(I'()) = 0 represents our system of 11
equations: equations (29)—(33) and (36)—(41) for endogenous variables. We also assume
that the logarithm of the aggregate productivity disturbance follows an AR(1) process:

ar = par—1 + 0y,

where a; = log A; and the mean-zero Gaussian white noise, 6, is identically and inde-
pendently distributed over time.

Turning to the solution method, we adopt a projection method to approximate the
functions. Furthermore, since we allow for random technology shocks, we express each of
the functions, I';, as a linear combination of an outer product of orthogonal polynomials
in A;_1 and A;:

ki ko
DAt A) = D0 ujningn (Bi1, Ar)

Jj1=0 j2

3Judd (1998) provides an exposition about homotopy continuation methods as a part of his discussion
on numerical solutions to nonlinear equations. The idea behind continuation methods is to examine and
solve a series of problems, beginning with a problem for which we know the solution and ending with
the problem of interest. The reason why a continuation method is of our interest is that we can obtain
an analytic solution for the discretionary equilibrium in the Calvo pricing model when fiscal policy
eliminates the distortion associated with monopolistic competition in retail goods markets. We then
take this case as a problem whose solution is known. With this known solution as a starting point, we
can solve a series of problems until we reach solution under our target parameter values. In addition,
our procedure is comparable to a linear homotopy among his examples. A description of our use of the
homotopy method can be found in the appendix.



where @;, ;,(Ai_1, As) express the value at period ¢ of the product of jith order Cheby-
shev polynomial for A; and jpth order Chebyshev polynomial for 4;.# We then use a
collocation method to determine the coeflicient 15, ;,. In particular, we employ Newton’s
method to find y;,;, such that N(T'(A;_1, A);) = 0 at each point (A;_1, A;); of Cheby-
shev nodes {(A;—1, Ay)}HY, with the use of Gauss-Hermite integration for computing
the expected values of future variables.

3.2. Some Implementation Issues

Initially, we investigated adapting existing code for solving the problem. We have
located freely available FORTRAN code from Judd (1992) and MATLAB code from
Gapen and Cosimano (2005). We found that the code was very useful for benchmarking
and validation but difficult to modify to solve our particular problem.

For the problem at hand, we have found that—to obtain convergence for a given
degree of approximation—it is important to start with a narrow range of values of A;_1
in the definition of the Chebyshev polynomials, and then gradually extend the range.
Thus, our code systematically adjusts the range of Chebyshev polynomials from narrow
to wide, for a given set of parameters and a given degree of approximation.

We have implemented the projection method software in Java. The object oriented
nature of Java and the availability of the open-source Eclipse IDE (Geer, 2005) for Java
greatly facilitated developing the software.® Furthermore, because of the notoriously
slow “for” loops in MATLAB, the Java code runs much faster than it would have if
we had used generic MATLAB routines.® The Java code can run on both Linux and
Windows machines. We currently use Mathematica as a user-interface to the Java Code.
Both JBENDGE and JMulTi are based on the JStatCom which provides a standardized
application interface which we hope to adopt in the future.”

There are a number of improvements in the code that could be addressed in the
future. We envision developing a generic open source tool, but currently the code depends
on Mathematica; we would like to develop a Dynare interface. The program uses a
simple operator overloading while it would be preferable to use more efficient automatic
differentiation techniques.

3.3. Numerical Results
To determine the optimal inflation rate under discretion, we must assign numerical
values to the parameters. Although we experimented with many different values, the

4Chebyshev polynomials are a sequence of orthogonal polynomials important in approximation theory.
The Chebyshev nodes are the roots of the Chebyshev polynomials. Chebyshev polynomial approxima-
tions that interpolate at the Chebyshev nodes provide an approximation that is close to the polynomial
of the best approximation to a continuous function under the maximum norm.

5Unlike traditional approaches to developing software, an Integrated Development Environment (IDE)
brings all of the programmers tools into one convenient place. In the past, programmers had to edit
files, save the files out, run the compiler, then the linker, build the application then run it through a
debugger. Today’s IDEs bring editor, compiler, linker and debugger into one place to increase program-
mer productivity. MATLAB also provides an object oriented capability, but object creation and method
invocation are much slower for object oriented MATLAB than for Java.

SMATLAB code consisting of vector-based operations can be faster than Java code, but it would be
difficult to construct a set of programs implementing a projection method that relies solely on these
types of operations.

"For more information on JBENDGE and JMulTi, see Winschel (2008) and Liitkepohl and Kriitzig
(2004), respectively.
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Figure 1: Phase diagram for relative price distortion
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Note: This figure expresses the current level of relative price distortion as a function of its lagged level in
order to demonstrate how the measure of the relative price distortion distortion converges to its steady-state
level.

benchmark parameter values are taken from Yun (2005). For example, we assumed that
utility is logarithmic in consumption (0 = 1) and quadratic in labor (y = 1). We also
set € = 11, @ = 0.75, and § = 0.99. We depart from Yun (2005) along one dimension:
there is no subsidy nullifying the monopolistic distortion so the degree of monopolistic
distortion is kept at ® = ¢! in the benchmark. Table 1 summarizes our benchmark
parameter values.

Using this benchmark specification, we solve the model via a projection method
contemplating values for the relative price distortion in the range of (1,1.2). Figure 1
illustrates the solution of this discretionary equilibrium. The solid line represents the
values of A; as a function of A;_y, shown for a narrow range of (1,1.02) to focus on
the area around the steady state. This line crosses the 45-degree line (dotted) at around
1.0026, which is the steady-state value for the dispersion measure. At this steady state,
the value of II is about 1.0054 (dashed line). In terms of the annualized rate for net
inflation, this steady-state inflation rate corresponds to 2.2%.3

Since the results in Figure 1 are based on a global solution method, it would be in-
structive to provide some measure of error in the approximation. As a heuristic measure,

8We define the annualized inflation rate in percent as 100 x (1:[4 - 1).
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Table 1: Calibration of Parameters

Parameter Value Definition

o 1 Relative risk-aversion coefficient

X 1 Inverse of labor supply elasticity

I6] 0.99  Time-discount factor

€ 11 Demand elasticity

« 0.75  Probability of fixing prices in each period

P 0.091 Degree of distortion

p 0.95 AR(1) coefficient of the logarithm of labor productivity
op 0.01  Standard deviation of technology shock

we compare two ways of computing the relative price distortion. One is the approximate
solution for the distortion as reported in Figure 1, and the other is the right-hand side of
(32) with inflation set to the values reported in this figure. We then compute the relative
difference between these two ways of computing the size of relative price distortion. Over
the full collocation range of distortion, (1,1.2), the maximum percentage difference is on
the order of 1078,

It is widely known that the size of the inflation bias depends on the degree of monop-
olistic competition, since imperfect competition makes equilibrium flexible-price output
lower than the socially efficient output. In our benchmark specification used in Fig-
ure 1, the elasticity of substitution (¢) determines how monopolistically competitive the
economy is, and the size of distortion (®) is equal to its reciprocal. Figure 2 shows the
size of inflation bias changes as we change the markup by varying e. Our benchmark of
€ = 11 corresponds to the markup of 1.1. As we decrease ¢, the markup and inflation
bias increase. When we choose € = 4, the markup is 1.33, and the inflation bias is about
6% annually.

To bring out how other parameters affect the size of the inflation bias, we do some
comparative statics with the model as shown in Table 2. First, according to the results
based on the projection method using our benchmark parameter values, increasing «
increases the inflation bias for values of « below 0.85. Increasing a decreases steady

11



Figure 2: Impact of monopolistic distortion on the inflation bias
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Note: The monopolistic distortion means the markup of firms at the deterministic steady-state with zero
inflation rate. This figure depicts how changes in the size of the monopolistic distortion in retail goods
market affects on the inflation bias.

state inflation for values of a above 0.85.% Second, the smaller the curvature parameters
(o and ), the bigger the inflation bias. When the utility function moves closer to being
linear in consumption and labor, the size of the inflation bias increases significantly.

8.4. Comparison with the Linear-Quadratic Approximations
We now compare our results with those from the conventional linear-quadratic ap-
proach (e.g. Woodford, 2003). The inflation bias expression that emerges from this

approach is
KA d
- 4
! ((1—6)A+m2>a+x’ 349

where kK = (1 —a) (1 —af3) (6 + x) /o and A = k/e. This formula produces an inflation
bias of 1.6% per annum, under our benchmark calibration including the size of monopo-
listic competition.!® Compared to the size of the inflation bias based on the projection

9We thank Alex Wolman for pointing out this non-monotonicity.

10Monopolistic competition is an indispensable feature in our steady-state analysis of the inflation bias.
Even without this deterministic inflation bias, there is a difference between discretion and commitment
in a stochastic environment that can arise in the absence of monopolistic competition. This stabilization
bias has been studied in a recent paper by Sdderstrom et al. (2005). In such a model, the deterministic
steady state is close to the efficient equilibrium, so linear-quadratic approximations would be valid.
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Figure 3: Impact of total distortion on the inflation bias
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Note: The “total distortion” refers to the wedge between the marginal rate of substitution between con-
sumption and leisure and the marginal product of labor at the steady-state with zero inflation rate. This
figure depicts the dependence of the inflation bias on the size of the total steady-state distortion, & = 0
corresponding to the absence of distortion.

method (2.2%), the linear-quadratic approach underestimates the inflation bias by about
a third.

Figure 3 depicts how much the linear-approximation underestimates the inflation bias
as we alter the value of ® by varying the value of 7y or 7p. Note that the range of ® in
this figure covers our benchmark parametrization of ® = 0.091. The solid line represents
the size of inflation bias under our projection method. The magnitude of the inflation bias
increases faster than linearly with respect to the amount of monopolistic distortion. The
dashed line represents the level of inflation bias under the linear-quadratic approximation
and becomes tangent to the solid line as ® gets close to 0. The difference between the
two lines increases as monopolistic distortion moves the economy farther away from the
efficient outcome.

Finally, we compare the results of the sensitivity analysis that are obtained from the
two approaches. In particular, equation (34) implies that since the discount factor is close
to unity, we can approximate the inflation bias under the linear-quadratic approach by
using @ ~ ®/ [¢ (6 + x)]. According to this formula, the inflation bias is inversely related
to o, x, and € (given the size of the total distortion), while the bias is approximately
proportional to the size of monopolistic distortion (given the size of the markup). These
predictions of the linear-quadratic approach on the sensitivity analysis are confirmed
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by numerical results in the final column of Table 2. Furthermore, as noted earlier,
the nonlinear projection method indicates that the smaller the curvature parameters
(o and ), the bigger the inflation bias. The linear-quadratic and nonlinear projection
approaches therefore appear to produce a similar relationship between parameter values
and the size of the inflation bias. Based on these numerical results, one might argue that
the simplicity and transparency of the linear-quadratic approach would be very helpful in
relating the size of the inflation bias to the values for the parameters, though the linear-
quadratic approach underestimates the size of inflation bias. But it should be noted that
such an interpretation could potentially be misleading. For example, when the discount
factor is less than unity, the expression for 7 indicates that an increase in o would imply
a decrease in 7. However, according to the results based on the projection method using
our benchmark parameter values, the size of inflation bias is not a monotone function of
.

4. Conclusion

We have demonstrated how a projection method can be used to compute the inflation
bias in a full nonlinear version of the Calvo model. The annual inflation bias is between
1% and 6% under plausible parameter values.

In a recent paper, Schmitt-Grohe and Uribe (2009) report that the optimal inflation
rate under commitment predicted by leading theories of monetary nonneutrality ranges
from minus the real rate of interest to numbers insignificantly above zero. They also
argue that the zero bound on nominal interest rates does not represent an impediment
to setting inflation targets near or below zero. Meanwhile, our results indicate that the
optimal inflation rate turns out to be substantially higher than zero in the absence of
commitment.

In particular, we expect that the larger the “degree” of commitment, the smaller
the size of the inflation bias. It would thus be interesting to see how the change in the
“degree” of discretion affects the size of the inflation bias. In this vein, the format of
Debortoli and Nunes (2007) provides an interesting starting point because they have
modelled an imperfect commitment setting in which there is a continuum of loose com-
mitment possibilities ranging from full commitment to full discretion.'! In addition, we
note that it would be possible to use the same projection method to analyze the effects
of loose commitment on the inflation bias.

1 Schaumburg and Tambalotti (2007) also discussed intermediate cases between discretion and com-
mitment using a linear-quadratic model.
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Table 2: Sensitivity Analysis

Parameter Values Numerical Results
«@ o X € Price Nonlinear LQ
Distortion  Solution Solution
0.5 1 1 11 1.001 1.004 1.004
! 0.75 1 1 11 1.003 1.005 1.004
0.95 1 1 11 1.093 1.003 1.003
0.75 0.16 1 11 1.048 1.016 1.007
o 0.75 1 1 11 1.003 1.005 1.004
0.75 ) 1 11 1.001 1.003 1.001
0.75 1 0.25 11 1.027 1.013 1.008
X 0.75 1 1 11 1.003 1.005 1.004
0.75 1 4.75 11 1.001 1.002 1.001
€ 0.75 1 1 11 1.003 1.005 1.004
0.75 1 1 21 1.001 1.001 1.001

Note: The last two columns represent quarterly (gross) inflation for each set of parameter values. Specifically,
the nonlinear solution corresponds to IT and the linear-quadratic solution represents (1 + 7). In addition,
the price distortion measures A, where A denotes the steady-state level of the relative price distortion. The
sensitivity analysis for € is carried out by setting the value of ® at its benchmark.
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Appendices

This appendix provides additional detail about the model specification and our solution
technique. Section Appendix A presents a full description of the Lagrangian of the gov-
ernment’s planning problem when the planner cannot make commitment about his or
her future behavior. Section Appendix B provides additional detail about our implemen-
tation of the residual function for the projection method. Section Appendix C describes
how we use homotopy methods to obtain solutions.

Appendix A. Lagrangian

In the presence of technology shocks, the Lagrangian of this problem can be written

as
Cl77—1 oH™X
£ = tl_o- _ 1_iX +/6Et [V(AthtJrl)}
_Ath
+ou A - Ct]
[ AH
—¢oy |(1 = 7p) (t, + BB [L(At, Avr)] — Fy
I ACy
[0 (1 = 7p) HITX
— ¢3¢ ((1—§>))Att + aBE [M (Ay, Ary1)] — S
1— Héfl ﬁ
+¢4t (1 - a) (O[t> + aH;Atfl — At
l—«a
[ /1l
—¢s¢ | F} 1—a — 5
— o
where auxiliary functions L (A, Ai11) and M (A¢, Apy1) are defined as
L(AyApr) = I Fiy, (A1)
M Ay, Ar) = 15 Seqr (A.2)

An noted earlier, the absence of commitment leads us to express the values of period
t + 1 of the planner’s choice variables in terms of the values at period ¢ 4+ 1 of state
variables such as Ft+1(At+1,At+1), St+1(At+1aAt+1); and Ht+1(At+1,At+1). In order
to simplify the characterization of the first-order conditions of the planner’s problem, we
introduce two new functions L (A4, A1) and M (A4, A¢11) as composite functions of
Fip1(Avyr; Arra), Ser1(Atgr, Apr), and Mgy (Agyr, Agyr) respectively.

Having described the optimal policy problem under discretion, the first-order condi-
tions can be summarized as follows:

A H
1 + Jﬁ(ﬁgt = gbltCt", (A3)
VACY HY + Aydar + (ig))%tot HY = ¢1.A4:CY (A4)
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_ e—1
P2t = Pst (1OA_[> , (A.5)

a
P3¢ = —Pst, (A.6)
1 — oIl 1\ 77 11—\ 7T
€ ((1;) - HtAt1> Pae =T ( 1 703 ) Fi¢st, (A7)
AH, vH}TX
ﬁ(b% ¢3tw Gar + aBEL T 41 (A, Ap1) Pagya] =
Ath

d1i——5— + aBE; [ L1 (A, A1) + ¢ Ma (Ay, Aryr)], (A8)

where ¢1¢, Por, d3t, dar, and @5 are Lagrange multipliers for (29), (30), (31), (32), and
(33) respectively, and 7p is assumed to be zero for simplicity.

Appendix B. Projection Method with Collocation

We will approximate 11 policy functions by using Chebyshev polynomials as follows:

k1 ko
At 17at Z Zw313290]1]2 At 17at) i:CaHaA,H7S7F7¢17¢2a¢37¢47¢5

J1=1j2=1

where the function ¢ is defined as

2(A_Amin) —1)TJ 71(2(a—amin) _1)

Amax - Amin Gmax — Gmin

©jrga (Ap—1,a1) = Ty 1 (

Here T;(x) denotes jth order Chebyshev polynomials. In this appendix, we use the
logarithm of labor productivity as an argument of policy functions.

Having determined functional forms of approximate policy functions, we will deter-
mine a nonlinear system of equations for weights of 11 approximate policy functions.
Specifically we use 11 equilibrium conditions to define 11 residual functions as follows.
Each equilibrium condition generates a residual function as can be seen below:

exp(a¢)l'm(st)

Ry = Ta(s0) —Tc(st)
Ry =Tc(s)" ™7 4 aBE[L(s¢41)] — Tr(se)
Ry = VTR0 |5 (0 (5140)] - Tss0)

. et <
M)ﬂ —al'n(s)"Ar

Ry = Tas) = (1 - ) (— 22

Looln(s)™ o b

Rs = T'r(s¢)(

11—«
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Rg = 0ly,(s¢) = Tc(s:)7Tg, (s

( st) +1
Ry =T, (st) exp(ar) + vTo(s0) " Tr(s:)*(Ta(st) + Ty (s1)

) = Le(se)Lg, (s¢) explar)

1—alg(sy) !

Rg =Ty, (st) — (1_(1 F¢5 (st)

Ry = F¢>3 (St) + F¢5 (St)
1—()¢1"1‘[($1)176 ﬁ
Rip= e (T) - FH(St)FA(5t> Ly, (5t>

41 <%) ot T (s¢)Cg, (51)

11— 11—«

To(s)t™7 v(1 Tr(sy)ttx
Riy = T§ESTTy, (s0) + Doy (50) 2 — Do (s0)

+aBE; [Tr(si+1) T, (si41)] = Loy (s:)Te(st) — Talse)
—aBEy Ly, (s¢) L1 (se41) + gy (50) Mi (s141)]

where ¢ = %i‘g, functions L(s;) and M(s;) are defined as L(s) = I'n(s)Tr(s;) and
M(s) =Tn(s¢)T's(s:). Hence, the partial derivatives of these two functions with respect
to A; can be written as

Li(st) = (e = )Tr(s:) 2T (54)0Tm(s¢) + T (5¢) 1T p(s4)

Mi(se) = elni(se) ™ Ts(s¢)0Tm(s¢) + Tri(se) O s (s:)

The derivatives of policy functions OI'r(s:), OT'r(st) and OT'g(s:) can be derived as
follows:

k1 k2

Z Z 2“)]1]2 ' Tj{l—l(Z(A __Aglin') . 1)Tj2_1( 2((1 - amin) - 1)

m m1 Gmax — Gmin
J1=1j2=1

for II, F, and S and where T]{ﬁl(x) denotes the derivative of the jth order Chebyshev
polynomials. The derivatives of the Chebyshev polynomials are easy to compute using
the following relation:

Ti(z) = j Uj—1(2)

for j =1, --+, oo and sequences of two polynomials {T;(z)}32, and {U;(z)}52, are
recursively defined as

Uj+1 (.’L‘) 2$Uj(l‘) — Uj,l(a?) Ul(x) =2z UQ(CL‘) =1
Tjsi(z) = aTj(x) = Tja(z) Ti(z)=z To(z) =1

We now move onto the characterization of the integrals appearing in the residual
functions. Fortunately, the expectation operator only involves three terms.

afBEy[L(st41)]
aBE[M (st+1)]
aBE; [y, (se) L1 (se+1) + Ty (s6) My (5e41)]
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It is assumed in the paper that the technology shock follows a normal distribution with
mean zero and standard deviation gy. Hence, we standardize the shock by using 6, =
o9z where z; ~ N(0, 1). The integral of an expression involving our approximated policy
functions I(A, a, W, z) is then approximated using the following finite sum

k.

/ I(A,a,W,z)eXp(\éz)dz = ZI(A,CL,W, V2z)my
- =1

where m; and z; are Gauss-Hermite quadrature weights and points and W is the set that
includes all weights of 11 approximate policy functions. Given this approximation of the
integrals, conditional expectations of functions L(s;4+1) and M(s¢11) can be written as

k. k=
EM(s141)] = Y M(A, a, W, V2z)mu; Ey[L(si41)] = Y L(A, a, W, V2z)my
=1 =1

where functions M (s,w, z) and L(s,w, z) are defined as

M(37w7 Z) = FH(FA(Aa a)7 Pa + Z)FF(FA(Aa a)7 APq + Z)

L(s,w,z) =Tnla(A,a),ap,+ 2)Ts(Ta(A,a),ap, + 2)

We will consider collocation. Under orthogonal collocation, we choose k;, x k;, zeros
of ¢j,j,(A,a) and then substitute them into residual functions. Since all of 11 residual
functions should become zero for each point of (Aj,,a;,), it means that R(A;,aj,)
= 011x1 holds where (A;,,a;,) represents a collocation point among k;, x kj, zeros of
©jj» (A, a) and R(Aj,,a;,) represents a vector function that contain residual functions:

R(Ajlﬁajé) = [Rl (Ajl ’ a‘jz)a e Rll(Ajlvah)],'

In addition, the set of zeros of Chebyshev polynomials can be written as follows.

Ajl = (Zjl + 1)H + Amin; Aj, = (ij + l)w + Gmin
. . . . (2‘]'171)71' . . (2]‘271)7‘1’
where z;, and z;, are defined as z;, = cos(~=3;—=) and z;, = cos(~*3;~"). As a result,

we have a nonlinear system of equations for weights of approximate policy functions. We
then use Newton’s method in order to find a numerical solution to this nonlinear system
of equation.

Finally we discuss how we choose ranges of the aggregate productivity and the relative
price distortion. Following Judd (1992), the maximum of log productivity is set equal
to the long-run value of a that would occur if § = 204 for all t: amax = 209/(1 — p).12
The minimum of log productivity is the negative of maximum of log productivity. The
minimum value of the relative price distortion is 1. However, it is hard to make an
appropriate choice of the maximum of the relative price distortion. In particular, this
issue is closely related to our application of homotopy method that will be explained in
the next section.

12Judd actually used 3¢, but, for our benchmark parameter settings, the use of a smaller range had
no impact on the results.
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Appendix C. Projection Method with Homotopy Procedure

In the course of developing our model, we created routines for several heuristics for
solving the nonlinear-equation system determining the collocation-polynomial weights.
This section characterizes these heuristics using the homotopy formalism described in
Judd (1998).

To summarize the basic idea, we begin by solving the model for a set of parameters
that makes the model easy to solve. We use this solution to facilitate the solution of
a “nearby” model that has parameters set closer to the parameter settings that we are
really interested in. We repeat this process, solving a sequence of similar models en route
to solving the model with our benchmark parametrization.

It might prove useful, in general, to use information provided by perturbation solu-
tions as a basis for initial weights for the collocating polynomials. However, in our model
we found the following heuristics easily implementable and capable of reliably producing
accurate approximations with the appropriate dynamic properties. Although we did not
do so, in the general case it seems likely to be worthwhile to investigate how to reli-
ably exploit high order perturbation solutions to provide initial weights for projection
calculations.

There are two distinct phases in this solution process. In the first phase, we solve the
model using Oth order polynomials, i.e. constant functions varying the parameters from
the easy values to the benchmark values.'® This phase employs the parameter homotopy
described in Algorithm 1 below.'*

In the second phase, we increase the order of the Chebyshev polynomials. Prior to
this phase, we are collocating with constant functions, and the range of the Chebyshev
polynomials plays no role. In the second phase, the specific range of the Chebyshev
polynomials can have a dramatic effect on the solvability of the system. Fortunately,
experience with our model supports the following conjecture:

Conjecture 1 Let Mg correspond to a basis consisting entirely of Oth order Chebyshev
polynomials. Suppose we can solve the Oth order problem so that there exists W such
that

Wg :N(/A\(St,T,I,MO),WS)
then
3’)/ >0>W* :N<A(St7TaI<7)aM)?WS) # 0
|

Thus, when the Chebyshev polynomial domain is small enough, the nonlinear system
we must solve is similar to the system for W,. As a result, Newton’s method will
also converge for the problem with higher order polynomials when the domain of the

13In our model, since setting 7p = 0, Ty = ﬁ leads to a non-distorted steady state with A =11 =1
this parametrization is easy to solve.

14We also use parameter homotopy to generate graphs of the steady state values of variable vis a vis
parameters.
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Chebyshev polynomials is small enough. Consequently, when necessary, we can employ
a homotopy on the range to extend the range from a small range to the full range.
Although, in practice, the algorithms rarely solve the problem on such a small domain,
the existence of such a domain guarantees that the algorithms will terminate. We have
automated this heuristic using the algorithms described in Algorithm 2 below.

We express a projection method using the function f\(st, Y,I,M) where s; is the
state at period ¢, T is the set of parameters, I is the set of ranges for the Chebyshev
polynomials, and M is the set of orders for the Chebyshev polynomials. We use Newton’s
method to update the Chebyshev polynomials’ weights in the following way:

N(A(s2 T, 1, M) W) = { Wiy1, if Newton method converges;

0, if Newton method fails

where A represents an application of Newton’s method and W; is a set of weights.
We now describe the two types of homotopy. In the case of the range homotopy, we
predetermine a set of ranges of the Chebyshev polynomials. For example, we use a tensor
product of finite number of bounded and closed intervals: I = [l1,u1] ® -+ ® [, U]
where m represents the number of state variables and each interval specifies the minimum
and maximum of a state variable. In order to implement the range homotopy, we define
a nested range for each range [li, uy] by using a parameter ~:

I + ug

lk;uk] for k=1,---,m

(s s un]) = [l + (1 =) supg — (1=1)
where u(v, [lg, ug]) denotes the nested range for each interval [ly, ug]. Hence, we have a
new set of ranges of the Chebyshev polynomials: I(v) = u([l1,u1]) @ <+ @ p([lm, Um])-

As a result, a particular Newton method step can be described as follows:

N Wii1, if Newton method converges;
N(A(se, X, 1(7), M), Wi, v) = { 0, ™ if Newton method fails.

In applying a homotopy, we seek a Wy and a sequence {7, }2_, such that there is no
failure of Newton’s method for each value of {7,})_,. Thus, any algorithm applying a
homotopy method must implement strategies for adjusting the value of v when Newton’s
method fails. In our code, we choose a recursive updating rule for the value of 7. For
example, suppose that we failed the Newton’s method at v = =,,. In this case, we shrink
the value of ,, by setting a new value of ,, as follows: 7. = v 7Y, where . denotes the
new trial value of 7, 70 is the old trial value of v at the last round of Newton’s method
and v is a shrink factor that is a positive constant between 0 and 1. If the Newton’s
method does not fail, we use the current value of +,, as a new value of 7,. The following
pseudo-code characterizes algorithms that work for our model.
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Algorithm 1 Parameter Homotopy Procedures

1: procedure MOVELOWERENDTOUPPER(N (A(sy, -, Z, M), W), T*, {To,W})
2: Q = true

3 T .= TO

4: W =W,

5: while @ do

6 {T, W} := FindBetter Params(N (A(s¢, -, Z, M), W), T* {T,W})
7 if T = T* then

8 Q@ := false

9 end if

10: end while

11: end procedure

1: procedure FINDBETTERPARAMS(N (A (s, -, Z, M), -), T*,{Yo,, Wo})
2 ve(0,1)

3 v:i=1

4 Q@ := true

5: while @ do

6 W .= N (A(s¢, n(v, Yo, Ti), Z, M), W)

7 if W* = () then

8
9

Y=V XY
: else
10: Q := false
11: end if
12: end while

13 return({n(y, Yo, T.), W*}))
14: end procedure
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Algorithm 2 Range Homotopy Procedures

1: procedure WIDENRANGETOFULL(N (A(s¢, T,Z(+), M), Wp))

2 Q := true

3 W =W,

4 while @ do

5: {v, W} := FindWider Range(N (A(s, -, T, M), W), a*, W)
6: if v:=1 then

7 Q := false

8 end if

9 end while

10: end procedure

1: procedure FINDWIDERRANGE(N (A(sy, T, Z(-), M), Wy))
2 ve (0,1)

3 v:=1

4 Q :=true

5: while @ do

6 W+ = N(A(se, T, Z(v), M), W)

7 if W* =0 then

8
9

Y=V Xy
: else
10: Q := false
11: end if
12: end while

13: return(y, W*}))
14: end procedure

24



