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Abstract

This paper proposes a residual based cointegration test with improved power. Based on the idea of

Hansen (1995) and Elliott & Jansson (2003) in the unit root testing case, stationary covariates are used

to improve the power of the residual based Augmented Dickey Fuller (ADF) test. The asymptotic null

distribution contains difficult to estimate nuisance parameters for which there is no obvious method of

estimation, therefore we propose a bootstrap methodology to obtain test critical values. Local-to-unity

asymptotics and Monte Carlo simulations are used to evaluate the power of the test in large and small

samples, respectively. These exercises show that the addition of covariates increases power relative to the

ADF and Johansen tests, and that the power depends on the long-run correlation between the covariates

and the cointegration candidates. The new test is used to test for cointegration between Credit Default

Swap (CDS) and corporate bond spreads for a panel of U.S. firms during the 2007-2009 financial crisis.

The new test finds stronger evidence for cointegration between the two spreads for more firms, relative

to ADF and Johansen tests.
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1 Introduction

Tests for cointegration are important tools for empirical macroeconomics and finance. Residual based tests

for the null of no cointegration, pioneered by Engle & Granger (1987), have the advantages of computa-

tional ease and good small sample size properties. These tests involve running regressions and forming

simple test statistics. However, residual based tests suffer from low power under the alternative hypothesis.

Among other papers, this problem was highlighted by Pesavento (2004), who finds that while residual based

tests have good size in most cases, their power disadvantage relative to system-based cointegration tests is

significant.

The goal of this paper is to construct a more powerful residual based cointegration test. In empirical

analysis, researchers often have data on variables other than the cointegration candidates. For instance,

when testing for Purchasing Power Parity (PPP), time series for GDP and money growth rates are observed

together with exchange rates and prices (see Amara & Papell (2006)). These variables, or covariates, may

be helpful in uncovering cointegration relationships. The idea of this paper is to take advantage of these

covariates in testing for cointegration.

The inclusion of stationary covariates has been shown to improve the power of tests under local-to-unity

alternatives in the univariate setting. Hansen (1995) first proposed a unit root test where the leads and

lags of stationary covariates are included in the inference. Elliott & Jansson (2003) provided point optimal

unit root tests that include stationary covariates in presence of deterministic trends. In the multivariate

setting, Jansson (2004) shows that stationary covariates can be used to increase power of tests with the null

of cointegration. In addition, Seo (1998) shows that covariates significantly improve the power of Johansen

rank tests, while Rahbek & Mosconi (1999) study the asymptotic implications of covariate inclusion.

We add to the work described above by including stationary covariates in the construction of the Aug-

mented Dickey-Full (ADF) cointegration test. Intuitively, when stationary covariates related to the cointe-

gration candidates are included in the residual regression, parameters of the regression are more precisely

estimated, resulting in a more powerful test. The new test is named the Covariate Augmented Dickey-Fuller

(CADF) test. The extent of power improvement depends on the long-run correlations between the sta-

tionary covariates and cointegration candidates. Asymptotic analysis shows that the local-to-unity power

functions of the CADF test depends critically on these long-run correlations. Not surprisingly, when the

covariates and cointegration candidates have zero long-run correlations, the power functions are the same

as those of the ADF test.
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Large sample Monte Carlo simulations are used to illustrate the asymptotic results, revealing two inter-

esting facts. First, the power of ADF test serves as the lower bound for the power of the CADF test, in all

experiments conducted. This means that asymptotically, the CADF test does at least as well as the ADF

test. Second, the power of the CADF test is the highest when the covariates are highly correlated with both

the cointegration error as well as the right hand side variables in the cointegration relationship.

Deriving asymptotic critical values for the CADF test is difficult due to the presence of nuisance param-

eters in the asymptotic null distribution. As pointed out by Elliott & Pesavento (2009), there are no obvious

ways to estimate the nuisance parameters. Therefore, we propose a bootstrap procedure to obtain critical

values in finite samples. Small sample Monte Carlo simulations are conducted to assess the performance of

the bootstrapped CADF tests under various cases of deterministic trends and various correlation scenarios.

They show that the CADF test has reasonable size and good power in finite samples relative to not only

the ADF test, but the Johansen test as well.

In an empirical application of the new test, we investigate whether there are cointegrating relationships

between Credit Default Swap (CDS) spreads and corporate bond spreads, for 24 US firms during the 2007-

2009 financial crisis. Previous work (see, for instance, Blanco et al. (2005), Zhu (2006), De Wit (2006), Levin

et al. (2005), Norden & Weber (2009)) establishes that cointegration between CDS and bond spreads holds

for most firms during benign economic periods. However, it may be the case that traditional cointegration

tests used in these studies cannot as easily detect the same relationships during the recent crisis, due to the

unprecedented levels of market volatility and uncertainty. The CADF test allows us to partially control for

such factors through the use of covariates such as the and VIX index returns and the Libor-OIS spread.

Indeed, the CADF test finds that cointegration between CDS and bond spreads holds for most firms during

the crisis. In comparison, results from the ADF and Johansen tests find cointegration for less firms.

The remainder of the paper will be organized as follows: section 2 describes the model, assumptions,

test statistic, and bootstrap inference. It also contains asymptotic analysis of the power of the CADF test.

Section 3 investigates the power of the CADF test in large and small samples using simulations. Section

4 presents CADF tests for cointegration between CDS and bond spreads during the financial crisis, and

section 5 concludes. The appendix contains mathematical proofs, tables and figures.
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2 The CADF Test and Asymptotics

2.1 Model

Consider the following system:

Yt = µY + τY t+ β′Xt + εt (1)




(1− ρL)εt

∆Xt

Zt


 =




0

µX + τXt

µZ + τZt


+ ξt(ρ) (2)

Where ξt(ρ) is a vector of scalar (1− ρL)εt for ρ ∈ [−1, 1], ∆Xt of dimension n, and Zt of dimension m.

Yt and Xt are the candidates for cointegration. Zt are stationary covariates to be be utilized in the CADF

test.

For brevity and in order to keep notation simple, theoretical work in this paper is based on the case of

no deterministic components, i.e., µX , µY , µZ and τX , τY , τZ are set equal to zero. In section 3, extensive

simulation evidence is presented on the performance of the proposed test when deterministic components

are present.

The hypothesis of interest is

H0 : ρ = 1

HA : |ρ| < 1

Yt and Xt are cointegrated under HA, and β is the cointegrating vector.

Assumptions 1. (Weak Convergence of ξt(ρ))

1. {ξt(ρ)} is a stationary process with zero mean, finite variance and continuous spectral density fξ(λ),

for λ ∈ [0, π].

2. ξ0(ρ) = Op(1).

3. For r ∈ (0, 1] and [Tr] denoting the integer part of Tr, as T → ∞

T−1/2

[Tr]∑

t=1

ξt(ρ) ⇒ Ω1/2W(r)
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Where W(r) a (1 + n + m) × 1 standard vector Brownian motion, partitioned conformably into

(Wε(r),W
′

X(r),W
′

Z(r)), Ω a positive definite long run variance-covariance matrix

Ω ≡




ωεε ω
′

εX ω
′

εZ

ωεX ΩXX ω
′

XZ

ωεZ ωXZ ΩZZ


 ≡ 2πfξ(0)

And ⇒ denotes weak convergence. Furthermore, assume that each element in the sigma-algebra

σ({ξt(ρ)}∞t=1) is independent of W(r).

Assumption 1.3 may be derived from more primitive assumptions (see, for instance, Phillips & Durlauf

(1986), Phillips & Solo (1992), Phillips & Ouliaris (1990)). We impose, rather than derive, assumption 1.3

since it is now a standard result that holds under very general conditions.

We also define an alternative decomposition of Ω that is useful in presenting the asymptotic results that

follow as:

Ω ≡


 ωεε ω

′

εQ

ωεQ ΩQQ




Where ωεQ =
[
ω

′

εX ω
′

εZ

]′
and ΩQQ is the long run variance matrix of Qt ≡

[
∆X

′

t Z
′

t

]′
.

Assumptions 2. (Conditions for Deriving CADF Regression)

1. For δ > 0 and λ ∈ [0, π], fξ(λ) ≥ δIn+m.

2. Define Γ(j) ≡ E(ξt(ρ)ξ
′

t+j(ρ)) and the following matrix norm: for a g×h matrix A, ||A|| = sup{(x′AA′x)1/2 :

x ∈ Rh, (x′x) < 1}. It is required that

∞∑

j=−∞
||Γ(j)|| <∞

3. Define R2
εX ≡ ω−1

εε ω
′

εXΩ−1
XXωεX and R2

εQ ≡ ω−1
εε ω

′

εQΩ
−1
QQωεQ. It is required that R2

εX < 1 and R2
εQ < 1.

Assumption 2.1 bounds the spectral density of ξt(ρ) away from zero, assumption 2.2 is the absolute

summability of ξt(ρ)’s covariance function, guaranteeing limited serial dependence, and assumption 2.3

guarantees that the partial sums of the stationary covariates {Zt} are not cointegrated with either Yt or Xt.

The assumptions are fairly weak as Zt is not required to be a vector autoregression along with (Yt,X
′

t)
′

,
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nor does it have to be weakly exogenous. Furthermore, in the residual based framework distributional as-

sumptions or conditional moment restrictions are not required. For these reasons, the CADF framework is

more flexible than the powerful Johansen rank test of Seo (1998). With assumptions 2.1-2.2, we derive the

CADF regression.

Proposition 1. (CADF Regression)

Suppose data is generated by (1) and (2) and assumptions 1.1, 2.1 and 2.2 are satisfied. Then the following

equation holds

∆εt = θ0εt−1 +
∞∑

j=1

θε,j∆εt−j +
∞∑

j=−∞
θ
′

X,j∆Xt−j +
∞∑

j=−∞
θ
′

Z,jZt−j + ζt (3)

Where {ζt} is a white noise process with E(∆Xtζt+j) = E(Ztζt+j) = 0 for j = 0,±1,±2, ...,
∑∞

j=−∞ ||θX,j|| <
∞,

∑∞
j=−∞ ||θZ,j|| <∞ and

∑∞
j=1 |θε,j| <∞. Moreover, under H0, θ0 = 0.

Proof. Under assumptions 1.1, 2.1 and 2.2,

(1− ρL)εt =

∞∑

j=−∞
π̃

′

X,j∆Xt−j +

∞∑

j=−∞
π̃

′

Z,jZt−j + ηt (4)

With
∑∞

j=−∞ ||π̃X,j|| < ∞ and
∑∞

j=−∞ ||π̃Z,j|| < ∞, {ηt} a stationary process with E(∆Xtηt+j) =

E(Ztηt+j) = 0 for j = 0,±1,±2, ...(see, for instance, Saikkonen (1991), equation (18)). Since {ηt} is

stationary and zero mean, by Wold representation, it is true that φ(L)ηt = ζt for an absolutely summable

lag polynomial φ(L) and white noise process {ζt}. Multiplying φ(L) onto (4) and rearranging to arrive at

(3) with θ0 ≡ φ(1)(ρ − 1). Hence, θ0 = 0 under H0. Since coefficients in both (4) and φ(L) are absolutely

summable, so are the coefficients in (3). Finally, zero correlations between ∆Xt and Zt with ηt in all leads

and lags implies zero correlations between ∆Xt and Zt with ζt in all leads and lags.

Notice that unlike the traditional ADF test, the leads and lags of the covariates, as well as those of ∆Xt,

are included in the CADF regression. Proposition 1 provides the motivation for deriving a test based on a

feasible version of (3).
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2.2 Test Statistic

{εt} is typically not observed unless the cointegrating vector is pre-specified, therefore an estimate of β

is required. We consider the OLS estimate of the cointegrating vector.1 Let β̂ be the estimate of the

cointegrating vector and ε̂t ≡ Yt − β̂
′

Xt be the residuals.2 Noting that ε̂t = εt − (β̂ − β)′Xt, using (4),

similar to the derivation of (3),

∆ε̂t = αε̂t−1 +
∞∑

j=1

πε,j∆ε̂t−j +
∞∑

j=−∞
π

′

X,j∆Xt−j +
∞∑

j=−∞
π

′

Z,jZt−j + (ρ− 1)(β̂ − β)′ψ(L)Xt−1 + vt (5)

Where conditional on β̂ − β, {vt} ≡ {ψ(L)(ηt − (β̂ − β)′∆Xt)} is a stationary white noise process, ψ(L)

and all coefficients in (5) are absolutely summable. Define α ≡ ψ(1)(ρ− 1) and the truncation lag k. With

data, one can run the truncated regression

∆ε̂t = αε̂t−1 +
k∑

j=1

πε,j∆ε̂t−j +
k∑

j=−k

π
′

X,j∆Xt−j +
k∑

j=−k

π
′

Z,jZt−j + vt,k (6)

where

vt,k ≡ (ρ− 1)(β̂ − β)′ψ(L)Xt−1 + ςt,k + vt

ςt,k ≡
∑

j>k

πε,j∆ε̂t−j +
∑

|j|>k

π
′

X,j∆Xt−j +
∑

|j|>k

π
′

Z,jZt−j

A t-statistic to test H0 is computed as

tα̂ ≡ α̂

s.e.(α̂)
(7)

where s.e.(α̂) is the usual standard error for t-statistics. We recommend applying the Bayesian Information

Criterion (BIC) to (6) in order to (jointly) select Zt and k.
3 Monte Carlo simulations in section 3 and the

empirical application in section 4 use BIC to select k. After experimentation with the Akaike Information

Criterion (AIC) and BIC, BIC was preferred as it tends to select more parsimonious lag structures.

1There are many alternatives to the OLS, some are shown to be superior to OLS in terms of efficiency (see, for instance,

Saikkonen 1991). We choose to use OLS since it is most commonly used in practice and simple to work with theoretically.
2Since only {ε̂t} is available (and not {εt}), the coefficients in (3) cannot be identified. However, since the purpose is to test

whether one of the coefficients is zero, identification up to a re-parameterization suffices.
3It is also possible to choose different lead and lag lengths in the regression for ∆ε̂t, ∆Xt and Zt. For theoretical simplicity,

assume k is common for all three.
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2.3 The Bootstrap

The asymptotic null distribution depends on difficult to estimate nuisance parameters (more specifically,

as shown in the next section, R2
εX and R2

εQ). This is closely related to an issue pointed out by Elliott &

Pesavento (2009) regarding the long run correlation parameter between what would be the equivalent of

(1 − ρL)εt and ∆Xt of this paper. The authors on p1832 note that “...in practice, this parameter is not

only unknown, but also, under the null and local alternative, there is no obvious way to obtain a good

estimate of this parameter”. In light of this difficulty, we propose a bootstrap inference instead of relying

on asymptotics. In particular, the bootstrap inference is designed to take into account the following cases

of deterministic trends:

Case 1. µX , µY , µZ and τX , τY , τZ = 0; Yt,Xt and Zt are neither de-meaned nor de-trended prior to

inference.

Case 2. µX , µz and τX , τY , τZ = 0, µY 6= 0; Yt,Xt and Zt are de-meaned prior to inference.

Case 3. τX , τZ = 0, µX , µY , µz, τY 6= 0; Yt,Xt and Zt are de-meaned and de-trended prior to inference.

These three cases are considered in Pesavento(2004, 2007), with case 1 being the case considered in the

theoretical work that follows. Let µ̂X , µ̂Y , µ̂Z and τ̂X , τ̂Y , τ̂Z be OLS estimates of the means and trends.

Following the procedures of Paparoditis & Politis (2003) and Badillo et al. (2010), the bootstrap null

distribution of tα̂ can be constructed by the following steps:

Step 1. If the deterministic trend follows cases 2 or 3, then de-mean, or de-mean and de-trend Yt and

Xt. Estimate β̂ and ε̂t using this data. Run ε̂t = γ̂ + ρ̂ε̂t−1 + ût.
4

Step 2. Choose a positive integer b. Define k = [(T − 1)/b] where [·] is the integer part. Let i0, ..., ik−1

be random i.i.d. draws from the uniform distribution on {1, 2, ..., T − b}. We generate pseudo series

for εt. Set ε̂
∗
1 = ε̂1, and for t = 2, ..., kb + 1,

ε̂∗t = ε̂∗t−1 + ûi[(t−2)/b]+t−[(t−2)/b]b−1

Step 3. Now construct pseudo series for Yt,Xt and Zt that reflect the various cases of deterministic

trends. Specifically, for t = 1, ..., kb + 1,

4The inclusion of the constant term γ follows from the centering procedure in equation (2.1) of Paparoditis & Politis (2003).
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Case 1. ∆X∗
t = ∆Xt − µ̂X − τ̂Xt, Z

∗
t = Zt − µ̂Z − τ̂Zt, and Y

∗
t = β̂

′

X∗
t + ε̂∗t

Case 2. ∆X∗
t = ∆Xt − µ̂X − τ̂Xt, Z

∗
t = Zt − µ̂Z − τ̂Zt, and Y

∗
t = µ̂Y + β̂

′

X∗
t + ε̂∗t

Case 3. ∆X∗
t = ∆Xt − τ̂Xt, Z

∗
t = Zt − τ̂Zt, and Y

∗
t = µ̂Y + τ̂Y t+ β̂

′

X∗
t + ε̂∗t

Step 4. Finally, with pseudo data (Y ∗
t ,X

∗′
t ,Z

∗′
t )

′, de-mean or de-mean and de-trend under the appro-

priate deterministic case, and compute t∗α̂. Repeat steps 1-4 a large number of times to obtain the

bootstrap null distribution for tα̂.

The bootstrap randomly draws blocks (of length b) of ût, and uses it to generate pseudo data for εt under

H0, which is in turn used to generate pseudo data for Yt. In step 3, the deterministic components were

imposed on the variables. While we do not study the theoretical properties of the bootstrap in this paper,

our simulations indicate that bootstrap inference works well. Readers interested in theoretical properties of

the block bootstrap are referred to Paparoditis & Politis (2003) for a formal discussion in the case of unit

root testing.

2.4 Asymptotics

We are interested in the distribution of tα̂ under a local-to-unity version of HA. This section gives precise

statements as to how the distribution for tα̂ is different from the distribution of the ADF test. Following

Phillips (1987), Hansen (1995), and Pesavento (2004), re-define HA so that for some constant c < 0,

HA : ρ = 1 +
c

T
(8)

so that ρ < 1 when T finite but ρ→ 1 as T → ∞. One more assumption is imposed:

Assumptions 3. (Rate of Divergence of k)

The truncation lag k in (6) satisfies k → ∞ as T → ∞, with the bound that T−1/3k → 0.

Assumption 3 allows k to increase with the sample size T in order for (6) to closely approximate (5),

but at a moderate rate so that the dimension of the regressors is reasonable. Ng & Perron (1995) shows in

the unit root testing case, our preferred model selection criterion BIC satisfies assumption 3.

For a symmetric positive definite matrix A, define its Cholesky and inverse Cholesky decompositions as

A
1
2

′

A
1
2 = A and A− 1

2A− 1
2

′

= A−1. Unless otherwise stated, let
∫
B ≡

∫ 1
0 B(r)dr for some vector stochastic

process B(r).
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Define

JεX(r) ≡
√

R2
εX

1−R2
εX

W̃X(r) +Wε(r)

Jc
εX(r) ≡ JεX(r) + c

∫ r

0
exp(c(r − s))JεX(s)ds

where W̃X(r) is a univariate standard Brownian motion, independent of Wε(r) and WZ(r). Also, define

Dc
1 ≡




√
1−R2

εQ

1−R2
εX

∫
Jc
εXdWε

∫
Jc
εXdW

′

X√
1−R2

εQ

1−R2
εX

∫
WXdWε

∫
WXdW

′

X


 Dc

2 ≡




∫
(Jc

εX)2
∫
Jc
εXW

′

X
∫
Jc
εXWX

∫
WXW

′

X




F ≡




1−R2
εQ

1−R2
εX

0

0 In


 Bc ≡

[
1 −

(∫
W

′

XJ
c
εX

)(∫
WXW

′

X

)−1 ]′

Square matrices Dc
1,D

c
2 and F are of dimension n+1, and Bc is an (n+1) vector. Dc

2 and Bc in particular

are common expressions that appear in asymptotics for residual based tests (e.g., Phillips & Solo (1992),

Pesavento (2004)). Lastly, let ωε·X ≡ ωεε(1−R2
εX) and ωε·Q ≡ ωεε(1−R2

εQ).

Lemma 1. Let the data be generated by (1) and (2) and assume that assumptions 1 hold. If (8) is true,

then as T → ∞

1.

β̂ − β ⇒ ω
1/2
ε·XΩ

−1/2
XX

(∫
WXW

′

X

)−1(∫
WXJ

c
εX

)
(9)

2. If in addition assumptions 2 and 3 hold, then

(T − 2k)(α̂ − α) ⇒ ψ(1)Bc′Dc
1B

c

Bc′Dc
2B

c
(10)

(T − 2k)s.e.(α̂) ⇒ ψ(1)(Bc′FBc)1/2

(Bc′Dc
2B

c)1/2

Proof. See appendix.

Proposition 2 is the main result of this paper.

Proposition 2. (Asymptotic local-to-unity Power of CADF Test)

Let the data be generated by (1) and (2) and assume that assumptions 1, 2, and 3 hold. If (8) is true, then

as T → ∞

tα̂ ⇒ Bc′Dc
1B

c

(Bc′Dc
2B

c)1/2(Bc′FBc)1/2
+ c

(Bc′Dc
2B

c)1/2

(Bc′FBc)1/2
(11)
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Proof. Noting that α = ψ(1)(c/T ),

tα̂ =
(T − 2k)(α̂ − α)

(T − 2k)s.e.(α̂)
+ c

ψ(1)(T − 2k)

T (T − 2k)s.e.(α̂)

This together with Lemma 1 proves the proposition.

Thus, the influence of the covariate feeds through R2
εQ, the correlation between (1 − ρ)εt and Qt. To

further understand the role of the covariates, consider the case where the covariates have no long run

correlation with the cointegration candidates. That is, ωεZ and ωXZ = 0. In this case, observe that

R2
εQ = R2

εX . This means that now Dc
1 = D̃c

1, where

D̃c
1 ≡




∫
Jc
εXdWε

∫
Jc
εXdW

′

X
∫
WXdWε

∫
WXdW

′

X




Furthermore, F = In+1, and

tα̂ ⇒ Bc′D̃c
1B

c

(Bc′Dc
2B

c)1/2(Bc′Bc)1/2
+ c

(Bc′Dc
2B

c)1/2

(Bc′Bc)1/2
(12)

This is the corresponding asymptotic distribution of the ADF test as the covariates have no long run

correlations with the cointegration candidates. To the best of our knowledge, (12) is itself a new finding,

since the inclusion of leads and lags of ∆Xt in the ADF regression removes R2
εX from the asymptotic

distribution except where it is embedded in Jc
εX .5

3 Simulations

3.1 Large Sample Power

The local-to-unity asymptotic distribution in proposition 2 can be used to assess large sample power of the

CADF test. We numerically construct the distribution, for c = 0,−5,−10, and -20 using 3,000 samples of

Gaussian innovations. Each sample has the size of 3,000, and the innovations are used in constructing the

functionals present in the right hand side of (6). Power is then calculated, for c = −5,−10 and -20, as the

mass of the distribution to the left of the 5% critical value of the c = 0 distribution.

Note that the test only depends on R2
εX and R2

εQ. Nonetheless, it is more intuitive to express power as

a function of pairwise correlations ωεX , ωεZ , and ωXZ . We set n = m = 1 and all long run variances equal

5Compared to, say, the ADF distribution in Pesavento (2004).

11



to one. As such, R2
εX = ω2

εX and R2
εQ =

ω2
εX−2ωεXωεZωXZ+ω2

εZ

1−ω2
XZ

. Figures 1-3 display the power surfaces across

different values of ωεX , ωεZ , ωXZ and c.

[Insert Figures 1-3 ]

As expected, for a given combination of ωεX , ωεZ , and ωXZ , the power increases monotonically as c

decreases. Comparing the graphs in each of the figures with the top-left graph of that figure, it is also clear

that the power function mimics the shape of R2
εQ, although the exact shape varies. Throughout the figures,

in general the CADF has high power when ωεX and ωεZ are large in magnitude, either with different signs

when ωXZ is positive, or with the same signs when ωXZ is negative. A heuristic interpretation of these

conditions is that power is highest when the covariates Zt convey different information about (1 − ρL)εt

than Xt.

Importantly, the ADF tests (corresponding to the point on the graphs where ωεZ and ωXZ = 0) always

have the lowest power. For instance, when R2
εX = 0 and c = −5 (top-right graph of figure 2), the ADF

test has a power of roughly 20%, while the power of the CADF test could reach 60%. Asymptotically, one

cannot do worse in terms of power by using the CADF test instead of the ADF test.

3.2 Small Sample Size and Power

In this section we study the small sample size and power of the CADF test, and compare the size and power

to those of the ADF and Johansen λmax tests. This exercise is important because it is well known that

residual based tests are typically less powerful than Johansen’s test in small samples. Furthermore, using

these simulations, we study the effects of the presence of deterministic trends.

Pseudo time series of length 200 are generated in the following way: for each ρ ∈ {.8, .9, 1}



(1− ρ)ε∗t

∆X∗
t

Z∗
t


 =




0

µX + τXt

µZ + τZt


+Ω

1
2

′

N(0, I3)

Y ∗
t = µY + τY t+X∗

t + ε∗t

Under case 1, all µ’s and τ ’s were set to zero. Case 2 is the same as case 1 except that µY = 1. Case 3

sets µY = µX = µZ = τY = 1 and τX = τZ = 0. In Ω, the long run variances are set to 1, and we allow

for various combinations of ωεX , ωεZ and ωXZ . We discard the first 100 pseudo data points, leaving a small
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sample size of T = 100. Using pseudo sample (Yt,Xt,Zt), we conduct (after de-meaning or de-meaning and

de-trending under the appropriate case) the bootstrap CADF test with the bootstrap block size set to one6,

along with the ADF and Johansen’s λmax tests using asymptotic critical values. The numer of leads and

lags in both the ADF and CADF tests are chosen by BIC. We record whether or not the tests reject the

null of no cointegration.

Repeating this procedure 2,000 times, the empirical rejection rates are obtained, representing the small

sample power (where ρ = .8, .9) and size (where ρ = 1). Table 1 contains the size and power results.

[Insert Table 1 ]

For the CADF and Johansen tests, power increases with ωεX . On the other hand, the power of the

ADF test decreases with ωεX , and in general becomes significantly lower than the power of the CADF and

Johansen tests.

The power discrepancy between the ADF and CADF test is particularly large when deterministic terms

are present (cases 2 and 3), or when ωεX is large. The ADF test performs well when ωεX = 0, but still fails

to show higher power than the CADF test in all cases other than case 3 when ρ = .9. The low power of the

ADF test in these cases is consistent with previous findings (e.g., Pesavento 2004). In terms of size (i.e.,

when ρ = 1), the ADF test has good size in almost every case, while the CADF test tends to be under-sized

when ωεX is large or under case 3.

The CADF test also compares favorably with the Johansen λmax test (see Johansen (1988) and Johansen

(1991)). It is particularly advantageous under cases 1 and 2 when ωεX = 0 or .5, while the Johansen test

is advantageous under case 3 for ωεX = .9. In all other instances, the powers of the two tests are similar.

The Johansen test tends to be over-sized, particularly under case 3, whereas the CADF test under case 3 is

typically under-sized.

Finally, we observed that there are minor discrepancies in power for CADF test based on different

combinations of (ωεZ , ωXZ), and the best combination differs depending on the deterministic case, ρ, and

ωεX .

6Since there are no serial correlations in the innovations, block length can be small. In the empirical work, a moderate block

size is chosen.
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4 Cointegration between Credit Default Swap and Bond Spreads

The seller of a CDS contract offers insurance to the buyer of protection against default of an underlying

reference entity. In return for protection, the buyer makes regular payments over the life of the contract.

Thus, the CDS “spread”7 is often viewed as the price of the credit risk of the underlying reference entity.

Abstracting from other factors, an investor who holds a corporate bond for a given entity requires the same

premium as the seller of a CDS contract, since both the bond and CDS are exposed to the same default

event of the reference entity. The deviation between the corporate bond spread (accounting for the reference

rate) and the CDS spread is referred to as the CDS-bond basis.

Following previous literature, we use the CDS spread minus the par asset-swap rate to measure the basis

(see Kocic et al. (2000), Houweling & Vorst (2005), Hull et al. (2004), or see Choudhry (2006) for explanation

of alternative measures). Typically, an asset-swap consists of a fixed coupon bond and an interest-rate swap,

where the bond holder pays a fixed coupon and receives a floating spread over LIBOR. It can be thought

of as measuring the difference between the present value of future cash flows of the bond and the market

price of the bond using zero coupon rates (Choudhry 2006).

For no arbitrage conditions to hold, the pricing of credit risk for any underlying entity should be the

same in both markets, ceteris paribus. As noted by Zhu (2006), under the Duffie (1999) pricing framework,

it is possible to replicate a CDS contract synthetically by shorting a maturity matched par fixed coupon

bond on the underlying reference entity, and investing the money in a par fixed risk free note. Therefore,

the CDS premium equals the bond spread over the reference rate, or zero basis under no arbitrage. If there

exists a negative (positive) basis, arbitrage is possible through a negative (positive) basis trade by buying

(shorting) the cash bond and buying protection (selling protection) on the CDS contract.

Previous literature (see, for instance, Blanco et al. (2005), Zhu (2006), De Wit (2006), Levin et al.

(2005), Norden & Weber (2009)) notes the existence of the basis and establish it is stationary (i.e., CDS and

bond spreads are cointegrated) for most firms during benign economic periods. We revisit this cointegration

relationship during the financial crisis, which we define as July 2007 to July 2009. Our conjecture is that

unprecedented levels of volatility, illiquidity, and market uncertainty may impose difficulties for traditional

tests to find cointegration between CDS and bond spreads. The CADF test, on the other hand, may perform

better through the use of covariates to account for some of these factors.

7The conventional word “spread” is somewhat misleading, as CDS spreads are actually not spreads over any reference interest

rate.
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4.1 Covariate Selection

During the financial crisis, evaporation of liquidity in the market caused funding costs to rise (see Fontana

(2010) and Giglio (2010)). This coupled with surging counterparty credit risk and market volatility drove

the basis wider (see Fontana (2010))8 . While it is difficult to construct explicit proxies for liquidity and

counterparty credit risk, our choice of covariates intends to reflect these risk factors.

The first covariate considered is the HFRX Global Hedge Fund Index return (HFRXGL). Hedge funds

and banks comprise the largest CDS market participants (see Anderson (2010)). While banks often use the

CDS market to hedge against loan risk, hedge funds on the other hand are important speculators in the CDS

market, using CDS contracts as tools to engage in credit arbitrage. Hedge funds also hedge convertible bond

positions, and cover their exposures in the CDO market with CDS contracts. It is argued by Brunnermeier

(2009) and Anderson (2010) that hedge funds access to external financing plays an important role in the

liquidity of assets for which they participate in a large share of market transactions. The extent and rate at

which hedge funds can obtain capital is related to their returns (see Boyson et al. (2008)), and consequently

hedge fund performance affects the liquidity of the CDS market. HFRXGL is therefore used as a proxy for

market-wide hedge fund performance.

The second set of covariates is the S&P 500 returns and percentage change VIX. The S&P 500 returns

can be viewed as a proxy of market wide performance as a whole, while the VIX index serves as a measure

of implied market volatility. Counterparty credit risk and liquidity risk are often heightened during periods

of low equity returns and high market volatility. As such, S&P 500 and VIX returns may be driven by the

same factors that affect the CDS-bond basis. We also use the two covariates together in order to see how

the CADF test performs when there is more than one covariate.

The third covariate is the Libor-OIS spread, which is the difference in the three-month libor and the

overnight index swap (OIS) rate. The Libor-OIS spread increases with a perceived rise in bank counterparty

credit risk (see Schwarz (2009)). In contrast to CDS contracts, bonds do not have counterparty credit risk.

Because counterparty risk is a driver of the basis (see Choudhry (2006)), the Libor-OIS spread is chosen as

a covariate.

Finally, daily stock returns for each firm are used as a firm-specific covariate. Drivers of the basis such as

firm credit quality, type of institution, the rate at which a firm can obtain funding, (see Choudhry (2006))

8Interestingly, traders were unable to take full advantage of the widening basis during the crisis, perhaps due to their own

stringent financing or capital constraints.
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and many other factors unique to each firm may not be captured by systematic covariates. As noted by

Aunon-Nerin et al. (2002), declines in stock price are associated with a rise in CDS premium, and should

be considered when assessing credit risk. Therefore, we chose stock returns as a covariate.

4.2 Data

We start with all firms listed in both the Markit Partners CDS and bond data sets between June 2007 and

June 2009. Five year CDS spreads are considered as they are the most actively traded. Quotes selected

from Markit Partners are for CDS spreads referencing Senior Unsecured, USD denominated debt with the

Modified Restructuring (MR) clause. In order to match the remaining maturity of the bond spread to the

five year CDS spreads, a generic bond is constructed for each firm from a pool of outstanding bonds similar

to the methodology of Zhu (2006).

Using Fixed Income Securities Database (FISD), we constrain our analysis to a list of bonds that meet

the following criteria:

• Bonds must not be puttable, callable, convertible, or reverse convertible.

• Bonds must be denominated in USD.

• Bonds must be Senior Unsecured.

• Bonds must be fixed coupon.

For bonds that meet the stated criteria, the daily bond asset-swap rate, the depth of the quote, and

type of quote for each bond is obtained from Markit. For each bond, the depth weighted average of both

TRACE and Composite quotes is calculated. We eliminate all bonds with remaining maturity shorter than

two and a half years or longer than seven years. There are three possible cases in constructing the generic

bond for each firm-day. First, all of the firm’s available bonds have a shorter remaining maturity than 5

years, or all available bonds have a longer remaining maturity than five years. Second, there is only one

bond available. Third, there is at least one bond with maturity shorter than five years and at least one

bond with maturity longer than five year. In the first case, the generic bond is the bond with the maturity

closest to five years. In the second case, the generic bond is the only available bond. In the third case,

the generic bond is the linear interpolation of the closets two bonds on each side of the five year maturity,

following Zhu (2006). Using ADF unit root tests, we ensure that all covariates and cointegration candidates
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are stationary by excluding any firms for which one of these series is non-stationary. The final set of firms

has bonds with no more than 20 consecutive days of missing quotes. Based on this construction, there are

24 firms in our final list, similar in length and the number of firms to previous studies.

Daily data for the S&P 500 index, firm stock price, the VIX index, the Libor-OIS spread, and the

HFRXGL index are obtained from either Bloomberg or Datastream.9 For each firm, the weekly average of

the daily series of bond asset-swap rates, CDS spreads, and each covariate series is calculated. We take the

first difference of the log of each covariate, except for the Libor-OIS spread where we simply take the first

difference.

4.3 Results

Four sets of CADF tests, one for each set of covariates, is performed under deterministic case 1. Critical

values for the CADF test are generated using a 10,000 iteration residual based bootstrap with a block size

of 5 (where b = 5) as described in Section 2.3. To benchmark the CADF tests, we also perform ADF and

Johansen cointegration tests using asymptotic critical values. Results for each test are shown in Table 2.

[Insert Table 2 ]

The Johansen and ADF tests fail to reject the null of no cointegration at the 10% confidence level for 6

and 7 of the 24 firms, respectively. The CADF test using the S&P 500 index and the percentage change in

the VIX fails to reject the null of no cointegration for 3 firms, while the CADF test using firm stock returns

fails to reject to null of no cointegration for 4 of the 24 firms at the 10% confidence level. Covariates choices

of the HFRXGL index and Libor-OIS spread reject the null of no-cointegration for the most firms, with

each failing to reject only 2 firms. Results at the 5% confidence level are qualitatively similar.

Overall, by using covariates the CADF test is able to find more cointegrating relationships than ADF

and Johansen tests during the financial crisis. One possible explanation is that the inclusion of covariates

removes part of the heightened volatility that may otherwise mask the cointegrating relationships. The

strong performance of the CADF test for all sets of covariates is consistent with Anderson (2010), who

concludes that during the crisis, systemic factors and market volatility significantly affected the basis.

9In the case of Enterprise, which is privately held, the S&P500 index is used to proxy its stock price. It should also be noted

Goldman Sachs and Lehman Brothers have substantial, but incomplete bond data available for the entire sample period. These

two firms are included in the final list out of interest.

17



5 Conclusion and Extensions

This paper introduces a residual based cointegration test with better power. Inclusion of stationary co-

variates reduces the noise in the system, providing more precise parameter estimates and higher power

tests. The test and its asymptotic distribution under the local-to-unity alternative are derived under a

simple model and mild assumptions. Due to the dependence of the asymptotic null distribution on hard to

estimate nuisance parameters, we provide a bootstrap framework for obtaining test critical values.

Simulations based on the asymptotic results shows that the CADF test has higher power than the ADF

test. The magnitude of power improvement depends on the long-run correlation between the cointegration

candidates and the stationary covariates. In small samples, Monte Carlo simulations also show that the

CADF test has good size and power properties in comparison to the ADF and Johansen tests, under the

presence of deterministic trends.

The CADF test is used to study the cointegration relationship between CDS and bond spreads for 24

U.S. firms during the financial crisis. Covariates are chosen to proxy various factors that may affect the

CDS-bond basis. The use of covariates allows us to uncover cointegration relationships for more firms than

the Johansen and ADF tests, possibly because the covariates partially control for the heightened levels of

volatility and market uncertainly that may otherwise mask cointegration relationships.

6 Appendix

6.1 Proof of Lemma 1

To prove Lemma 1, some auxiliary results are needed. Define the regressors in the CADF regression as

Wt,k
(2k+1)(n+m)+k+1 vector

≡
[
ε̂t−1 ∆X

′

t+k ... ∆X
′

t−k Z
′

t+k ... Z
′

t−k ∆ε̂t−1 ... ∆ε̂t−k

]′

≡
[
ε̂t−1,W̃

′

t,k

]′

Define τ , a square weight matrix of the same dimension, as

τ ≡ diag
[

T − 2k (T − 2k)
1

2 In ... (T − 2k)
1

2 In (T − 2k)
1

2 Im ... (T − 2k)
1

2 Im (T − 2k)
1

2 ... (T − 2k)
1

2

]

From hereon, unless otherwise stated,
∑

denotes
∑T−k

t=k+1.
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Lemma 2. Let the data be generated by (1) and (2) and assume that assumptions 1, 2, and 3 hold. Define

R̂ ≡ τ−1
(∑

Wt,kW
′

t,k

)
τ−1

R ≡ diag
[
(T − 2k)−2

∑
ε̂2t−1 E

(
W̃t,kW̃

′

t,k

) ]

If (8) is true, then, as T → ∞

1.
√
T
k ||R̂−1 −R−1|| = Op(1).

2. 1√
k
||τ−1

∑
Wt,kvt|| = Op(1).

3. 1√
k
||τ−1

∑
Wt,kςt,k|| = op(1).

4. (ρ− 1)τ−1
∑

Wt,k(β̂ − β)′ψ(L)Xt = op(1).

Proof. Conditional on β̂−β, the proofs of Lemma 3.1 - 3.3 directly follows from Saikkonen (1991), Lemmas

A4 - A6, with the additional integrated piece in each case handled the same way as in his proofs. Assumption

1.3 guarantees that the conditioning on β̂ − β is asymptotically negligible since β̂, a functional of W(r) in

the limit, is asymptotically independent of σ ({ξt(ρ)}∞t=1), which is a super set of the sigma algebra for the

objects R, {Wt,k}, {vt} and {ςt,k}.
To prove Lemma 2.4, note that by definition,

(ρ− 1)τ−1
∑

Wt,k(β̂ − β)′ψ(L)Xt =




c
T (T−2k)

∑
ε̂t−1(β̂ − β)′ψ(L)Xt−1

c
T
√
T−2k

∑
W̃t,k(β̂ − β)′ψ(L)Xt−1




The second partition of the vector is clearly op(1). The first part can be written as

c(β̂ − β)′
∞∑

j=0

ψj

(
1

T (T − 2k)

∑
εt−1Xt−1−j −

1

T (T − 2k)

∑
Xt−1X

′

t−1(β̂ − β)

)

Two standard results under assumptions 1 and 2 are

T−1/2X[Tr] ⇒ Ω
1
2

′

XXWX(r)

T−1/2ε[Tr] ⇒ ω
1/2
ε·XJ

c
εX(r) (13)

see, for instance, Pesavento (2004, 2006, 2007). Using these and the FCLT, for any finite j, as T → ∞,

1

T (T − 2k)

∑
εt−1Xt−1−j −

1

T (T − 2k)

∑
Xt−1X

′

t−1(β̂ − β)

⇒ ω
1/2
ε·XΩ

1
2

′

XX

∫
WXJ

c
εX − Ω

1
2

′

XX

∫
WXW

′

XΩ
1
2
XXω

1/2
ε·XΩ

− 1
2

XX

(∫
WXW

′

X

)−1 (∫
WXJ

c
εX

)

= 0
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This and the fact that |ψj | → 0 as j → ∞ proves the statement.

Lemma 1.1 follows directly from (13) and the fact that β̂ − β = (
∑T

t=1 XtX
′

t)(
∑T

t=1 Xtεt).

To prove the two statements in Lemma 1.2, re-write the CADF regression (6) as ∆ε̂t = Π′
kWt,k + vt,k.

First note that (T − 2k)(α̂ − α) is the first element of

τ(Π̂k −Πk) = (R̂−1 −R−1)
(
τ−1

∑
Wt,kvt,k

)
+R−1

(
τ−1

∑
Wt,kvt,k

)

Decompose the first term on the right hand side in the following way:

(R̂−1 −R−1)
(
τ−1

∑
Wt,kvt,k

)
= (R̂−1 −R−1)

(
τ−1

∑
Wt,kvt

)

+ (R̂−1 −R−1)
(
τ−1

∑
Wt,kςt,k

)

+ (R̂−1 −R−1)
(
τ−1

∑
Wt,k(ρ− 1)(β̂ − β)′ψ(L)Xt−1

)

Using Lemma 2, ||(R̂−1 − R−1)
(
τ−1

∑
Wt,kvt,k

)
|| = Op(k

3/2/
√
T ) + op(k

3/2/
√
T ) + op(1). Assumption 3

further restricts all three terms on the right hand side to be op(1).

Given this, by the diagonality of R−1,

(T − 2k)(α̂ − α) =
(
(T − 2k)−2

∑
ε̂2t−1

)−1 (
(T − 2k)−2

∑
ε̂t−1vt,k

)
+ op(1)

Lemma 2.3-2.4
=

(
(T − 2k)−2

∑
ε̂2t−1

)−1 (
(T − 2k)−2

∑
ε̂t−1vt

)
+ op(1)

Consider the denominator in the last equation:

ω−1
ε·X

(T − 2k)2

∑
ε̂2t−1 =

ω−1
ε·X

(T − 2k)2

[
1 −(β̂ − β)′

]∑

 ε2t−1 εt−1X

′

t

εt−1Xt XtX
′

t




 1

−(β̂ − β)




By Lemma 1.1,

[
1 −(β̂ − β)′

]
⇒ Bc′


 1 0

0 ω
1/2
ε·XΩ

− 1
2

′

XX




This, together with (13), implies that

ω−1
ε·X

(T − 2k)−2

∑
ε̂2t−1 ⇒ Bc′Dc

2B
c (14)

Now consider the numerator
ω−1
ε·X

(T−2k)2
∑
ε̂t−1vt. Conditional on β̂ − β, vt = ψ(L)(ηt − (β̂ − β)′∆Xt) is a

stationary process. Following Phillips & Park (1986), Lemma 2.1(e), ηt has long run variance given by ωε·Q
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and satisfies T−1/2
∑[Tr]

t=1 ηt ⇒ ω
1/2
ε·QWε(r). Using this fact, (13) and CMT,

ω−1
ε·X

(T − 2k)2

∑
ε̂t−1vt =

ω−1
ε·X

(T − 2k)2

[
1 −(β̂ − β)′

]∑

 εt−1ψ(L)ηt εt−1ψ(L)∆X

′

t

Xtψ(L)ηt Xt∆X
′

t




 1

−(β̂ − β)




⇒ ψ(1)Bc′


 ω

−1/2
ε·X ω

1/2
ε·Q

∫
Jc
εXdWε

∫
Jc
εXdW

′

X

ω
−1/2
ε·X ω

1/2
ε·Q

∫
WXdWε

∫
WXdW

′

X


Bc

= ψ(1)Bc′Dc
1B

c

Since ωε·Q/ωε·X = (1 − R2
εQ)/(1 − R2

εX), this proves the asymptotic distribution for (T − 2k)(α̂ − α). For

(T − 2k)s.e.(α̂), since

(T − 2k)s.e.(α̂) =
(
(T − 2k)−1

∑
v̂2t,k

)1/2
(
(T − 2k)2ι′

(∑
Wt,kW

′

t,k

)−1
ι

)1/2

where ι is a (2k + 1)(n + m) + k + 1 vector with one in its first element and zero elsewhere, using the

consistency of Π̂k, Lemma 2, law of large numbers and Lemma 1.1, as k → ∞,

(T − 2k)−1
∑

v̂2t,k = (T − 2k)−1
∑

v2t + op(1)

= (T − 2k)−1
[
1 (β̂ − β)′

]∑
ψ(L)


 η2t ηt∆X

′

t

∆Xtηt ∆Xt∆X
′

t




 1

(β̂ − β)




⇒ ψ2(1)Bc′


 ωε·Q 0

0 ωεXIn


Bc

= ψ2(1)ωε·XB
c′FBc

Since ηt and ∆Xt are uncorrelated at all leads and lags. Finally,

(T − 2k)2ι′
(∑

Wt,kW
′

t,k

)−1
ι = ι′R̂−1ι

Lemma 1.1
=

(
(T − 2k)−2

∑
ε̂2t−1

)−1
+ op(1)

(14)⇒ ω−1
ε·X(Bc′Dc

2B
c)−1

This proves Lemma 1.2.

6.2 Figures and Tables
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Figure 1: Asymptotic Power of CADF test when ωεX = −0.5.
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Figure 2: Asymptotic Power of CADF test when ωεX = 0.
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Figure 3: Asymptotic Power of CADF test when ωεX = 0.5.
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Table 1: Small Sample Simulation Results

Case 1 Case 2 Case 3

ωεX CADF : (ωεZ , ωXZ) ρ = 1 ρ = .9 ρ = .8 ρ = 1 ρ = .9 ρ = .8 ρ = 1 ρ = .9 ρ = .8

0

ADF 5.50% 38.10% 83.60% 5.90% 21.40% 61.60% 4.25% 14.50% 44.20%

Johansen 5.20% 21.70% 61.40% 7.60% 15.60% 45.60% 8.70% 15.30% 35.40%

CADF(.5,.4) 5.55% 53.15% 92.25% 6.35% 43.00% 85.40% 2.60% 12.70% 49.60%

CADF(.2,-.2) 5.85% 46.90% 86.15% 7.50% 36.25% 79.50% 3.85% 12.75% 40.00%

CADF(0,.4) 4.95% 51.25% 90.10% 6.80% 40.15% 83.60% 2.85% 13.75% 47.25%

.5

ADF 5.60% 33.00% 81.45% 4.80% 17.60% 55.40% 4.50% 11.00% 33.90%

Johansen 6.00% 32.90% 78.85% 7.60% 22.60% 63.90% 8.30% 19.70% 50.10%

CADF(.5,.4) 5.20% 57.45% 93.85% 7.15% 40.05% 87.95% 3.75% 15.15% 47.70%

CADF(.2,-.2) 5.65% 63.30% 95.70% 6.90% 47.65% 90.05% 2.60% 14.05% 51.70%

CADF(0,.4) 4.40% 65.35% 95.90% 6.25% 45.75% 91.55% 2.60% 17.15% 57.05%

.9

ADF 5.50% 29.00% 78.20% 5.00% 8.00% 36.80% 4.10% 2.00% 12.10%

Johansen 5.60% 96.30% 100.00% 4.50% 86.10% 99.90% 8.40% 69.10% 99.10%

CADF(.5,.4) 6.40% 95.60% 100.00% 7.80% 74.20% 99.65% 3.90% 22.30% 83.45%

CADF(.2,-.2) 2.55% 98.75% 99.80% 1.30% 87.05% 97.20% 0.30% 32.20% 68.75%

CADF(0,.4) 2.40% 97.95% 98.95% 1.40% 83.65% 93.45% 0.15% 31.10% 60.45%

Note: Details on the simulation setup are described in Section 2.3. Numbers are empirical rejection frequencies from 2,000 Monte

Carlo simulations. Sample size in each simulation is set to 100. Deterministic cases 1, 2, and 3 are as described in Section 2.3 and

this section.
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Table 2: Application Results and Test Statistics

Firm Johansen ADF CADF CADF CADF CADF

λmax (HFRXGL) (S&P500,VIX) (Stock Rtn.) (Libor-OIS)

AIG 23.17∗∗∗ −4.74∗∗∗ −2.32∗ −2.06∗∗ −3.28∗∗ −2.39∗∗

ALL 26.38∗∗∗ −4.26∗∗∗ −4.40∗∗∗ −4.64∗∗∗ −4.36∗∗∗ −3.75∗∗∗

AXP 16.09∗∗∗ −2.67∗ −3.10∗∗∗ −3.55∗∗∗ −3.66∗∗∗ −2.65∗∗

BA 17.52∗∗∗ −4.34∗∗∗ −3.85∗∗∗ −3.82∗∗∗ −4.07∗∗∗ −3.77∗∗∗

CAT 11.70∗∗ −3.04∗∗ −3.13∗∗∗ −2.75∗∗∗ −2.54∗∗ −2.43∗∗

CIT 17.21∗∗∗ −3.83∗∗∗ −2.05∗∗ −2.15∗∗ −2.37∗∗ −2.91∗∗∗

CL 28.47∗∗∗ −4.82∗∗∗ −5.05∗∗∗ −5.05∗∗∗ −5.30∗∗∗ −4.94∗∗∗

DE 15.97∗∗∗ −3.61∗∗∗ −3.67∗∗∗ −3.90∗∗∗ −3.74∗∗∗ −3.21∗∗∗

DOW 15.36∗∗∗ −3.44∗∗∗ −3.86∗∗∗ −3.28∗∗∗ −3.05∗∗∗ −3.37∗∗∗

ED 7.80 −2.42 −2.20∗∗ −2.20∗∗ −2.09∗∗ −1.96∗

ENTERP 7.08 −0.76 −1.74 −1.95 −1.94 −1.29∗

F 20.58∗∗∗ −2.34 −2.91∗∗ −3.53∗∗∗ −3.14∗∗ −2.86∗∗

GE 7.65 −2.73∗ −1.78∗∗ −2.24∗∗ −2.21∗∗ −2.11∗∗

GMAC 21.90∗∗∗ −2.92∗∗ −2.34∗∗ −2.98∗∗ −1.82∗ −2.71∗∗∗

GS 10.48∗ −2.61∗ −2.92∗∗ −2.98∗∗ −2.95∗∗ −2.86∗∗

HSBC 9.68∗ −3.08∗∗ −3.80∗∗∗ −3.23∗∗∗ −1.88∗ −3.01∗∗∗

KEY 16.55∗∗∗ −3.33∗∗ −3.08∗∗ −3.24∗∗∗ −3.00∗∗ −2.71∗∗

KIM 11.85∗∗ −2.14 −3.24∗∗∗ −3.29∗∗∗ −3.09∗∗ −3.17∗∗∗

LEH 4.31 −1.83 −2.15∗ −2.45∗∗ −1.93 −2.16∗

MER 4.80 −2.31 −0.53 −0.94 −1.04 −0.14

NRUC 2.83 −1.54 −1.85∗ −1.24 −0.94 −.67

PRU 26.83∗∗∗ −4.27∗∗∗ −4.74∗∗∗ −4.81∗∗∗ −4.62∗∗∗ −4.65∗∗∗

SEAR 15.96∗∗∗ −3.04∗∗ −3.51∗∗ −3.89∗∗ −3.52∗∗∗ −3.58∗∗∗

WFC 13.22∗∗ -3.41∗∗ −3.20∗∗∗ −3.58∗∗∗ −4.24∗∗∗ −3.69∗∗∗

# Fail to Reject (10%) 6 7 2 3 4 2

# Fail to Reject (5%) 8 10 5 5 6 5

Notes:

1: Numbers presented are test statistics.

2: ***, **, and * correspond to rejections at the 1, 5, and 10 percent confidence levels, respectively.

3: The CADF test is run under deterministic case 1, as described in Section 2.3, with a block size of 5.
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