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Abstract

We explicitly solve for the aggregate asset pricing quantities of a general equilibrium
Lucas endowment economy inhabited by two agents with habit formation preferences. Pref-
erences are modeled either as internal or external habits. We allow for agents’ heterogeneity
in relative risk aversion and habit strength. Equilibrium quantities, such as equity premium,
equity volatility, Sharpe ratio, interest rate volatility, and asset holdings are computed using
a recently developed algorithm of Dumas and Lyasoff (2011). The algorithm is refined to
capture time-nonseparability induced by habit. We obtain that internal habits provide for
a considerable improvement in obtaining aggregate asset pricing quantities consistent with
historically observed magnitudes as opposed to “catching up with Joneses” preferences.

JEL Classification: C68, D58, D91, E21, E44, G11, G12

Keywords: asset pricing, consumption-based asset pricing models, external habit, internal

habit, heterogeneity, time-nonseparability, general equilibrium, recursive solution

2



1 Introduction

The objective of this paper is to study the effect of habit heterogeneity on aggregate asset

prices in a general equilibrium economy with two agents, which are heterogeneous with respect

to their coefficients of relative risk aversion and habit preferences. Habit preferences are defined

as external or internal habit formation. We consider a complete financial market where traded

securities are a risky stock and a short-term discount bond. We study the effect of heterogeneity

in habits on aggregate asset prices, namely, interest rate volatility, equity premium, equity return

volatility, and Sharpe ratio.

There are two building blocks in our model, agents’ heterogeneity and habit formation. On

one hand, habit formation models became increasingly successful and important in explaining a

number of dynamic asset pricing facts, such as the equity premium puzzle, (see, e.g. Constan-

tinides (1990), Campbell and Cochrane (1999), and Abel (1990), (1999)), as well as macroe-

conomic facts, such as output persistence, savings and growth, and response of consumption

to monetary shocks (see, e.g., Boldrin, Christiano, and Fisher (2001), Carroll, Overland, and

Weil (2000), and Fuhrer (2000)). However, different studies use different habit formation mod-

els without much guidance from the theory or empirical work about which preferences should

be used. Although there are some empirical studies that explore whether different types of

habit matter for matching conditional moment restrictions implied by the asset pricing theory

(Chen and Ludvigson (2009), Grishchenko (2010), Dai and Grishchenko (2005)), the literature

on computing explicit asset prices under different types of habits is virtually non-existent. In

this paper we fill this gap.

On the other hand, various studies in the last decade have shown that heterogeneity among

agents should be an important feature of the consumption-based equilibrium model. Hetero-

geneity can be modeled either with respect to preferences in a time-separable setting (see, e.g.,

Dumas (1989), Wang (1996), Bhamra and Uppal (2010)), idiosyncratic consumption and labor

income risk (see, e.g., Constantinides and Duffie (1996), Brav, Constantinides, and Geczy (2002),

Jacobs and Wang (2004), Malloy, Moskowitz, and Vissing-Jørgensen (2009), Grishchenko and

Rossi (2011)), beliefs (see, e.g., Detemple and Murthy (1994), Xiong and Yan (2010)). Some

studies solve models where heterogeneity (usually in risk aversion) is introduced in the models

with habit formation (see, e.g. Chan and Kogan (2002), Guvenen (2005), Pijoan-Mas (2007),
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Xiouros and Zapatero (2010), Ehling and Heyerdahl-Larson (2010)). These studies consider

only “catching up with Joneses” preferences, either multiplicative or additive. However, no one

to date has explored the heterogeneity with respect to internal habit preferences. In the current

study we fill this gap and model these two effects simultaneously. To our knowledge, our paper

is the first to solve for equilibrium asset prices in the model that allow for (i) different type of

habit in the preferences: namely, either external habit formation model (also known as “Catch-

ing up with Joneses”) or internal habit formation; and (ii) heterogeneity in habit preferences’

parameters between two agents. Namely, we ask the following two questions:

Q1: Do internal habit (IH) formation models and their external counterparts (EH) obtain the

same aggregate asset prices?

Q2: Does heterogeneity with respect to parameters in the habit process helps to obtain aggre-

gate asset pricing quantities consistent with historically observed asset prices?

The difference between two habit types, namely external habit and internal habit prefer-

ences, lies in the effect that current consumption has on future habit. Abel (1990), Gali (1994),

and Campbell and Cochrane (1999) were among the first to study models with external habit

formation and their implications for asset pricing (see also Bekaert, Engstrom, and Grenadier

(2010), Wachter (2006), Menzly, Santos, and Veronezi (2004)).1 In these models past consump-

tion enters into the habit process but has no effect on current consumption choice; that is, habit

formation is an externality. On the other hand, Abel (1990), Ryder and Heal (1973), Dunn and

Singleton (1986), Sundaresan (1989), Constantinides (1990), and Detemple and Zapatero (1991)

study habit persistence, or internal habit formation, where past consumption choice enters into

the habit process and affects current and future consumption choices. As a result, these two

types of habits produce different pricing kernels and, consequently, lead to different asset pricing

implications.

Empirical studies related to habit persistence are rather limited. Up to date, most of the

habit formation models have been set and then calibrated to historical data to examine how well

they fit unconditional and conditional moments of asset returns. Empirical exceptions in the lit-
1Although the term “external habit” is widely accepted after it was first used by Campbell and Cochrane

(1999), the intellectual lineage of this type of preference specification can be traced to the “catching up with the
Joneses” specification of Abel (1990) and “keeping up with the Joneses” specification of Gali (1994).
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erature represent Ferson and Constantinides (1991), Heaton (1995), Dunn and Singleton (1986),

and Dynan (2000). Ferson and Constantinides (1991), for example, find empirical support for

a one-lag internal habit in quarterly consumption data, while Heaton (1995) finds evidence for

a multi-lag habit in the same data. On contrary, Dynan (2000) uses annual household food

consumption data and finds no evidence for habit formation. Recently, Chen and Ludvigson

(2009) and Grishchenko (2010) show, using quarterly consumption data and different economet-

ric methods that preferences with internal habit formation are more consistent with observed

aggregate asset prices than preferences with external habit. Korniotis (2010) finds support for

external habit in annual consumption state-level data. Our approach is different from all papers

mentioned above because we do not treat aggregate prices as given but explicitly compute them.

Although methods involving calibration, simulation, and econometric estimation of habit

formation models present a step forward in learning about habit specification properties con-

sistent with equilibrium prices, an ultimate solution for the equilibrium prices in the presence

of various types of time-nonseparability is missing. Our paper fills this gap. Moreover, we

contribute to the literature on heterogeneity in asset pricing by modeling agents’ heterogeneity

and habit formation in the fundamentally new way: the agents in our model differ with re-

spect to the habit formation process, which might incorporate either internal or external habit

specifications.

The general equilibrium quantities in a discrete time, finite horizon economy are determined

by a recently developed recursive backward scheme in the paper of Dumas and Lyasoff (2011).

The crucial features of their algorithm (designed for time-separable preferences) that permits one

to work only backwards in time instead of being stuck with a usual backward-forward procedure,

are the time shift of the budget equation and the choice of the endogenous state variable (grid).2

With time-nonseparable preferences the problem is much more severe, since the pricing kernel

at time t is affected by the whole future consumption stream. For our purposes, we are able

to generalize their procedure to capture time-nonseparable preferences when allowing for one

lag in the habit formation process. Our paper represents one of the first attempts that apply

and extend the powerful algorithm of Dumas-Lyasoff to study various asset pricing questions.

The Buss, Uppal, and Vilkov (2011) paper is another example of the application of the Dumas-
2The procedure is called backward-forward in time since consumption at time t enters the pricing kernel at

time t and at t− 1.
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Lyasoff framework where the authors solve for asset pricing quantities in the general equilibrium

set up with transaction costs and recursive utility.

There are several findings that emerge in our study. First, we answer the Q1 question

positively, finding that internal habits present a considerable improvement over external habits.

The reason is that the pricing kernel at every point in time is non-trivially affected by the

consumption decisions made in the previous period, feature that is absent in the external habit

formation models. Second, we match the equity premium, volatility of the stock market, and

Sharpe ratio with the coefficient of relative risk aversion equal to 5 and internal habit strength

parameter of a representative agent equal to 0.4. Third, we find that a combination of risk

aversion coefficients 7 and 4 and habit coefficients 0.3 and 0.5 is able to match historically

observed equity premium, volatility, and Sharpe ratio. The undesirable feature of our stylized

model is that the model produces too high interest rate and interest rate volatility. However,

we focus in our paper is on quantifying the difference between internal and external habits and

do not attempt to resolve simultaneously both equity premium and risk-free rate puzzles. The

answer to the Q2 question is negative. We do not find that heterogeneity in habit preferences

produces substantially different results than a representative agent framework with habits. This

result is possibly due to the complete market setting that we aim to relax in future research.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3

describes the solution method, Section 4 reports results, and Section 5 concludes.

2 The Model

2.1 Information structure

We consider a Lucas (1978)-type exchange economy on the finite time span, discrete time space,

T = {0, 1, ..., T}, and discrete state space. Uncertainty is represented by a filtered probability

space (Ω,F , P,F), where F = {Ft}t∈T (FT = Ω) represents the information flow or the tree

structure, respectively, on which a one-dimensional Binomial process D is defined.
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2.2 Agents’ endowments and preferences

The economy is populated by two agents (or, two types of agents). At time t, agent i maximizes

his life-time expected utility Ui,t, i = 1, 2:

Ui,t = E




T∑

j=0

βjui(ci,t+j , xi,t+j)|Ft


 , (1)

where ci,t and xi,t are individual consumption and habit levels.3 We consider internal and

external habit formation preferences in the additive form, where intratemporal utility is written

over the difference between consumption and habit.4 Constantinides (1990) studies internal

habit formation preferences, Campbell and Cochrane (1999) - external habit model.5 We also

present a case of time-separable CRRA preferences, which is our benchmark case. In all settings

below the risk aversion coefficient γi and the habit parameters are agent-specific. We assume

that the time discount factor β is the same for both agents. Next, we specify the intratemporal

utility specifications and their associated marginal rates of substitution:

CRRA time-separable case. Intratemporal utility function for agent i is given by:

ui,t =
c1−γi
i,t − 1
1− γi

, γi > 0. (2)

Then marginal rate of substitution of agent i at time t is:

MRS1
t,t+1 = β

(
ci,t+1

ci,t

)−γi

. (3)

In all other cases intratemporal utility is defined over surplus consumption zi,t:

ui,t =
z1−γi
i,t − 1
1− γi

, γi > 0, i = 1, 2. (4)

A surplus consumption is zi,t = ci,t − xi,t, where xi,t is the habit function, that can take two

forms, external or internal:
3As a general rule throughout the paper, lower-case letters stand for individual quantities, while upper-case

letters - for aggregate quantities.
4Multiplicative habit function is introduced by Abel (1990).
5Abel (1990) studies both internal and external habits in the multiplicative setting, while Constantinides and

Campbell and Cochrane use additive habits.
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Definition 1. Habit preference is called external if a habit function x1,t+1 is defined as a

function of per-capita consumption:

xi,t+1 = biCt, 0 < bi < 1, i = 1, 2, (5)

where per-capita consumption is defined as Ct = 1
2(c1,t + c2,t).

Unlike an economy with a continuum of investors, neither of the “little” c is infinitesimally small

with respect to Ct as our economy is populated by two agents. Nevertheless, in this setting we

treat Ct as a pure externality, because the sum of individual consumptions equals the aggregate

endowment (dividend) process, which is exogenous.6

Definition 2. Habit preference is called internal if a habit function xi,t+1 is defined as a function

of the agent’s specific past consumption:

xi,t+1 = bici,t, 0 < bi < 1, i = 1, 2. (6)

In both cases bi denotes the habit strength.

When habit preferences follow Definition 1, the marginal utility of consumption and pricing

kernel are given by:

MUCi,t = (ci,t − xi,t)−γi ≡ z−γi
i,t , i = 1, 2 (7)

and

MRSi
t,t+1 = β

(
ci,t+1 − xi,t+1

ci,t − xi,t

)−γi

≡ β

(
zi,t+1

zi,t

)−γi

, i = 1, 2. (8)

When habit preferences follow Definition 2, marginal utility of consumption and marginal rate

of substitution are given by:

MUCi,t = Et

[
z−γi
i,t × ∂zi,t

∂ci,t
+ βz−γi

i,t+1 ×
∂zi,t+1

∂ci,t

]
= Et

[
z−γi
i,t − βbz−γi

i,t+1

]
, i = 1, 2 (9)

and

MRSi
t,t+1 = β

MUCi,t+1

MUCi,t
, i = 1, 2. (10)

6The aggregate dividend process is specified in Section 2.3.

6



In all our models the marginal rate of substitution is identical to the pricing kernel.7 We allow

for two sources of heterogeneity in the model: a relative risk aversion coefficient γ and a habit

parameter b.8 We need to explore the main driving force of heterogeneity in the model solution.

In sum, we consider three models: benchmark CRRA model and two habit models: external

and internal habits in the additive framework.

2.3 Description of the market

The economy is a standard Lucas (1978)-type economy. There is one risky asset, which produces

a stream of dividends {Dt}0≤t≤T , D0 > 0, in the form of a single perishable consumption good.

The dividend dynamics is captured by a simple binomial process:

Dt = D0u
t−kdk, (11)

where k, t ∈ [0, T ], 0 ≤ k ≤ t. In the tradition of Cox, Ross, and Rubinstein (1979) we denote

the nodes s = u, d for “up” and “down” as the two successor nodes of a given node ξ at time

t.9 The stock St, ST = 0, is a claim on dividends, defined in (11). Additionally, there exists a

locally risk-free (short-term) bond Bt at 0 ≤ t ≤ T − 1:

Bt =
1

1 + rt
, (12)

where rt is a one-period interest rate.

2.4 Equilibrium conditions

In this section we describe the equilibrium conditions and outline the solution algorithm. Denote

ci,t,s and Fi,t,s consumption and exiting wealth for agent i at time t in state s, respectively; St,s

and Dt,s - price and dividend of the risky asset at time t in state s, respectively; rt,s - an interest

rate at time t and state s. Following Dumas and Lyasoff (2011), we define exiting wealth of
7In some cases, e.g., when frictions are included in the asset pricing models, the marginal rate of substitution

might differ from the pricing kernel. This is, for example, the case in the presence of portfolio constraints and/or
transaction costs.

8It is possible to introduce heterogeneity in the time-discount factor, initial endowment and initial habit.
9u = exp(σ∆t), σ > 0, and d = 1/u. The drift of the process enters the probabilities, i.e. p = 1

2
+

1
2

µ−1/2σ2

σ

√
∆t. As the dividend process correspond to the aggregate consumption process we set µ = 0.0183, σ =

0.0357, as estimated by Mehra and Prescott (1985).
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agent i as Fi,t = θi,tSt + αi,tBt.10 In addition, we write the flow budget constraint and the

kernel conditions at time t + 1, consistent with Dumas and Lyasoff’s crucial time shift.

Flow budget constraints:

c1,t+1,u + F1,t+1,u = θ1,t × (St+1,u + Dt+1,u) + α1,t × 1, 0 ≤ t ≤ T − 1

c1,t+1,d + F1,t+1,d = θ1,t × (St+1,d + Dt+1,d) + α1,t × 1, 0 ≤ t ≤ T − 1.

(13)

The initial budget constraint is used to solve for time 0 consumption c1,0:

c1,0 + F1,0 = ω1 × (S0 + D0) + ψ1, (14)

where ω1 ∈ [0, 1] and ω2 = 1−ω1 together with ψ1 ∈ (−∞,∞) and ψ2 = −ψ1 denote the initial

endowment (prior to time 0) of both agents in the stock and in the riskless asset, respectively.11

The right-hand side of (13) is the entering wealth, which is used for consumption and a new

portfolio composition on the left-hand side. We obtain the second agent’s budget equation via

the aggregate resource constraint (16), given below.

Kernel conditions: Agents agree on prices of traded assets, implying the following kernel

conditions:12

∑

s=1,2

psMRS1
t,t+1,s(St+1,s + Dt+1,s) =

∑

s=1,2

psMRS2
t,t+1,s(St+1,s + Dt+1,s),

∑

s=1,2

psMRS1
t,t+1,s =

∑

s=1,2

psMRS2
t,t+1,s.

(15)

The systems (13) and (15) are subject to terminal conditions at time T : ST = 0 for the stock

price and Fi,T = 0, i = 1, 2 for exiting wealth .

Aggregate resource constraint: An aggregate resource constraint holds at any point in time
10Where a state subscript s is omitted, it is meant that the equation holds for both states.
11 For the purposes of this paper, ψi = 0, i = 1, 2.
12Note, that in a complete market agents even agree on the pricing kernel, nevertheless we solve for equilibrium

using the kernel conditions, such that the algorithm can be taken over to solve for incomplete market equilibria.
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t, 0 ≤ t ≤ T − 1, and each state:

c1,t+1,u + c2,t+1,u = Dt+1,u,

c1,t+1,d + c2,t+1,d = Dt+1,d.

(16)

At time 0 the aggregate resource constraint is:

c1,0 + c2,0 = D0. (17)

Market clearing conditions: for 0 ≤ t ≤ T − 1 markets have to clear - while the stock is

in positive net supply, the short-term bond is in zero net supply. We normalize the number of

shares of the risky asset in the economy to be in unit net supply, such that the terms portfolio

holdings and weights are equivalent:

θ1,t + θ2,t = 1,

α1,t + α2,t = 0.

(18)

where θi,t and αi,t, i = 1, 2, are agent i’s portfolio holdings in a risky asset St and a short-term

bond Bt, respectively. We solve for the decision variables θ1,t, α1,t, c1,t+1,u and c1,t+1,d using the

system of four equations (13) and (15), aggregate resource constraint (16), and market clearing

conditions (18).

At every point in time T \{T} and every node Dumas and Lyasoff (2011) solve the system

of equations for time-separable preferences and find stock and bond prices St and Bt, and

the exiting wealth of the first agent, F1,t = θ1,tSt + α1,tBt, for every value on the grid c1,t ∈
(0, Dt). The next section provides more details on the interpolation and the backward induction

procedure in case of time-nonseparable utility, induced by habit.

3 Solution method

In this section we outline the Dumas and Lyasoff (2011) algorithm, compare it with other al-

gorithms and discuss our modification which captures time-nonseparability, induced by habit.

While attempts to solve heterogeneous agents models with external habit (Chan and Kogan
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(2002), Xiouros and Zapatero (2010), Ehling and Heyerdahl-Larson (2010) and Heyerdahl-

Larsen (2010) among others) have already been successful, this paper is the first attempt to

solve a model with heterogeneity in the habit formation process, especially internal habit. In

order to understand the advantage of the Dumas-Lyasoff algorithm over the “traditional” ap-

proach and the global method we start with a review of both methods. We then describe

the refinement of the Dumas-Lyasoff algorithm necessary for the model solutions with time-

nonseparable preferences.

3.1 Global method

Global solution for the equilibrium results from all equilibrium conditions (kernel, budget,

aggregate resource) for all points in time and all nodes being stacked together into one system

of equations. Equilibrium consumption, portfolio holdings, and asset prices are the resulting

(unique) solution (for given initial endowments), when the system converges.

The global system delivers reliable solutions for models with power preferences, with solu-

tions being quite insensitive to starting values. However, it is not the case for time-nonseparable

preferences. Theoretically, the global method is not limited to time-nonseparability in the util-

ity function, in general, or the number of lags in the habit process, in particular. However,

due to path dependency of the optimal consumption process, induced by habit formation, the

corresponding consumption tree is not recombining. The resulting system incorporates a large

number of equations and decision variables, such that the solution becomes sensitive to proper

starting values.

The solution for a power utility model can be used as a starting value for a model with slightly

increased habit strength and/or curvature parameter. Repeated use of such a procedure delivers

a solution for fixed risk-aversion and habit strength parameters (γ1, γ2, φ1, φ2). Unfortunately

our tests have shown that this technique is not powerful enough to solve a model with internal

habit formation and an economy’s life time of more than T = 5, even with tiny steps. The

reason is that the number of equations grows exponentially on a non-recombining tree.13

Further, one often requires to plot equilibrium values against initial consumption share. The

Dumas-Lyasoff algorithm provides these functions as an implicit outcome of the solution process,
13See Dumas and Lyasoff (2011) for a more rigorous discussion on this topic.
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while one would need repeatedly to rerun the global method for various values of consumption

share between zero and one. In view of the procedure for the iteration of proper starting values,

this can be very time-consuming.

3.2 “Traditional” recursive approach

“Traditional” recursive approach can be viewed as an alternative to a global solution method.

With this method, it is possible to solve a model recursively, state by state and period by period.

The advantage is that the system of equation has a low dimensionality and, thus, is less sensitive

to a choice of starting values. Further, it is possible to exploit the recombining structure of the

exogenous state variable. The system of equations is given through kernel conditions, a budget

equation, and an aggregate resource constraint (which is necessary to determine consumption

of agent 2) associated with the node ξ at time t:14

c1,t + θ1,tSt + α1,tBt = θ1,t−1(St + δt) + α1,t−1. (19)

Decision variables here are time-t consumption and portfolio weights. One could a priori think

of using the entering wealth (RHS of (19)) as a grid variable. But this choice is not very helpful

because it is not clear how to set an upper bound for the wealth variable (see Aiyagari (1994)

for a discussion). Longstaff (2009) addresses this problem by choosing “entering” portfolio

weights as endogenous state variables. However, lower and upper bounds of portfolio weights

are only known under short-sale and borrowing constraints or when it is possible to argue that

short-selling will not occur in equilibrium and the riskless security is absent, as in Longstaff

(2009).15 Choosing portfolio weights as endogenous state variables would result in an N(L−1)-

dimensional grid in an economy with L agents and N assets. A further curse of dimensionality

will arise from time-(t − 1) individual consumption for a one-lag internal habit, resulting in a

three-dimensional grid with N = 2 and L = 2.

In general, a “traditional” method presents a backward-forward scheme, which is its most

severe drawback, besides the difficulty of choosing appropriate endogenous state variables. The
14We suppress the dependence on the state to avoid cluttering of subscripts in this expositional setting.
15 Krussel and Smith (1998), Storesletten, Telmer, and Yaron (2007) and Gomes and Michaelides (2008))

include forecasting functions in their system of equations, also called the parameterized expectations approach
(PEA).
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reason is that at time t one solves for consumption c1,t, which also enters the pricing kernel

at time t − 1. However, using an idea of Dumas and Lyasoff (2011) for passing interpolated

functions over to the next backward step, it is possible to avoid the forward step by interpolating

time-t consumption on the grid of wealth/entering portfolio weights and pass it over to time

(t − 1). With internal habit, additionally time-(t + 1) consumption should be interpolated on

the grid and passed over to the next backward step.

3.3 Dumas-Lyasoff algorithm

Dumas and Lyasoff (2011) modify the “traditional” approach, by replacing the budget equation

at time t with budget equations of all successor nodes of the state (t, ξ). As in the “traditional”

method one solves for (θt, αt), but instead of solving for time-t consumption, one solves for the

future consumption plans cs
t+1, s = u, d. The idea behind this regrouping is that the portfolio

holdings (θt, αt) finance the future consumption plan cs
t+1, s = u, d. The remaining unknown in

the system is time-t consumption, which forms the grid and has well-defined bounds provided

by the aggregate resource constraint. This implies that in a market with N assets and L agents

the grid has a dimension of L − 1.1617 In our case the system of equations is 4-dimensional

(L = 2, N = 2), whereas the grid for power-, recursive-, and external habit preferences is one

dimensional.

Buss, Uppal, and Vilkov (2011) propose an extension of the Dumas-Lyasoff method to

capture time-nonseparability induced by Epstein-Zin preferences and transaction costs.18 In

the next section we show how to incorporate in the algorithm time-nonseparable preferences

induced either by external or internal additive habits. The same algorithm can be also applied

to multiplicative habit preferences.
16This discussion does not apply to models, where trading restrictions are imposed exogenously (Longstaff

(2009), Wu (2011)) or where it might become optimal not to trade endogenously (see, e.g., Buss, Uppal, and
Vilkov (2011) and Buss and Dumas (2011)).

17At any point in time, any state, and every grid value the system of non-linear equations is (2(L−1)+N(L−
1)) = (L − 1)(N + 2)-dimensional. For a trinomial (quadrinomial) tree the “2” should be replaced through “3”
(“4”).

18See also Buss and Dumas (2011) and Buss (2011).
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3.4 Time-nonseparable preferences

Consider a binomial tree that has t + 1 nodes at time t. Pricing kernel dependence on past

consumption arises from introducing a one-lag habit in the utility function. Two paths lead

to (t − 1)−intermediate nodes at time t, partially breaking down recombinicity and yielding

2 + 2(t − 1) = 2t nodes. Nevertheless, for external habit one only has to care about path

dependency because habit is modeled as per-capita consumption, which is given on the tree.

However, for internal habit agent’s individual consumption forms the habit process, xi,t =

bici,t−1, and enters the algorithm as another endogenous state variable.

External habit. The pricing kernels for agents 1 and 2 for external habit preferences given in

Definition 1 are:

MRS1
t,t+1 = β

(
c1,t+1−b1Ct

c1,t−b1Ct−1

)−γ1

MRS2
t,t+1 = β

(
Dt+1−c1,t+1−b2Ct

Dt−c1,t−b2Ct−1

)−γ2

, 0 ≤ t ≤ T − 1,

(20)

where initial habit is defined as Xi,−1 = biC−1 ≡ bi/2, i = 1, 2. At any 0 ≤ t ≤ T−1, any node ξ

and every grid value c1,t ∈ (0, Dξ
t ) the system of equations (13) and (15) is solved for (θ1,t, α1,t)

and (cu
1,t+1, c

d
1,t+1). Consequently, because we know future consumption realizations, we can

compute the asset prices (St, Bt) and the exiting wealth F1,t = θ1,tSt + α1,tBt. Afterwards

St and F1,t are interpolated on c1,t and used in the next backward step. At time t − 1 the

grid is formed by c1,t−1 ∈ (0, Dξ
t−1) for some generic node ξ. For every grid value a unique

consumption stream in the upper and lower descendant node is computed, such that the new

domain becomes c1,t−1 and one gets rid of the dependence on c1,t. Note, that due to the

appearance of Ct−1 = (c1,t−1 + c2,t−1)/2 = Dt−1/2 in the pricing kernel, the problem becomes

path-dependent, giving rise to additional states at each point in time. The best and the worst

state at any point in time can be entered by one path, while the intermediate nodes can be

entered by two paths. Additionally, it is possible to tighten the domain of the grid a priori by

combining the denominators of the pricing kernel, such that c1,t ∈ (b1Ct−1, Dt − b2Ct−1) and

combining the numerators it holds for the decision variables that cs
1,t+1 ∈ (b1Ct, D

s
t+1 − b2Ct),

s = u, d.19

19Campbell and Cochrane (1999) ensure positivity of surplus consumption by constructing a stochastic process
for the log surplus consumption ratio.
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Internal habit. Internal habit preferences are defined in (2) and the pricing kernels for 0 ≤
t ≤ T − 1 read

MRS1
t,t+1 = β

(c1,t+1−b1c1,t)−γ1−βb1Et+1[(c1,t+2−b1c1,t+1)−γ1 ]
(c1,t−b1c1,t−1)−γ1−βb1Et[(c1,t+1−b1c1,t)−γ1 ]

MRS2
t,t+1 = β

(c2,t+1−b2c2,t)−γ2−βb2Et+1[(c2,t+2−b2c2,t+1)−γ2 ]
(c2,t−b2c2,t−1)−γ2−βb2Et[(c2,t+1−b2c2,t)−γ2 ] ,

(21)

where c2,t+τ = Dt+τ − c1,t+τ , τ = −1, 0, 1, 2.

As pricing kernels in (21) indicate, past consumption c1,t−1 enters as an additional en-

dogenous state variable with domain c1,t−1 ∈ (0, Dt−1), as opposed to a simple external-

ity in the external habit case. For the same reasons as above the second grid-dimension is

c1,t ∈ (b1c1,t−1, Dt − b2(Dt−1 − c1,t−1)). Unfortunately, these bounds are not tight enough,

because they only guarantee positive surplus consumption but not the positivity of marginal

utility and of the pricing kernel. So, for a given c1,t−1 we search for the c1,t–grid, such that

the marginal utility and the pricing kernel of each agent remain positive. Since this grid is

endogenous and its size is different for every c1,t−1, a feasibility area (shown on Figure 1) over

which we have to interpolate is not rectangular but is a set of scattered data points.

For interpolation we use the method of Renka and Cline (1984), which allows to interpolate

over arbitrarily distributed points on the plane. In addition to the stock price and exiting

wealth, as for time-separable preferences, next period consumption cs
1,t+1 is interpolated on

the specified two-dimensional grid to be used in the next backward step. The bounds of these

decision variables can be tightened a priori as follows: cs
1,t+1 ∈ (b1c1,t, D

s
t+1 − b2(Dt − c1,t)),

s = u, d.

There are two reasons why interpolation over an endogenous feasibility area is preferred to

interpolation over a rectangular grid

{c1,t−1, c1,t} ∈ (0, Dt)× (b1c1,t−1, Dt − b2(Dt−1 − c1,t−1)).

First, our numerical results show that at the grid points outside the feasibility area (either

below the upward slopping dotted blue line or above the downward slopping dotted blue line)

one of the agents has a negative pricing kernel leading to a negative price, while the other

agent still sets a positive price. Because agents do not agree on prices of traded assets, two

14



Figure 1: Feasibility area for a generic node

This figure represents the two-dimensional grid for a generic node, where the first grid dimension
is c1,t−1 ∈ (0, Dt−1). To exclude negative surplus consumption the second grid dimension is
c1,t ∈ (b1c1,t−1, Dt−b2(Dt−1−c1,t−1)). The area bounded by blue dots represents the feasibility
area, where agents agree on prices. For each c1,t−1 this area is found from inside, starting at the
bold bullets and moving up- and downwards, until the boundary (negative prices) is reached.

equilibrium conditions (kernel conditions for bond and stock) are not satisfied, implying that no

equilibrium can arise outside the feasibility area. Second, because equilibrium conditions cannot

be satisfied, the solver keeps on running as long as the termination conditions are reached. Thus,

computational time increases significantly, especially with a large number of such grid points.

4 Results

In this section we discuss the asset pricing implications of internal and external habit mod-

els outlined in Section 2. Table 1 provides calibration of the economy and utility function

parameters used in the model solution.

Aggregate asset returns are computed as follows. At each time period between t and t + 1

and at each generic node ξ (at time t) with successive nodes s = u, d (at time t+1) we compute
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a realized equity return Rs
t,t+1 and a one period risk-free rate rξ

t :

Rs
t,t+1 =

Ss
t+1+Ds

t+1−St

St
,

rξ
t = 1

Bξ
t

− 1.
(22)

Average equity return µR and average interest rate µr are given by:

µR = puRu
t,t+1 + pdR

d
t,t+1,

µr = puru
t+1 + pdr

d
t+1,

(23)

and volatilities of equity return σR and interest rate σr are given by:

σR =
(
pu(Ru

t,t+1 − µR)2 + pd(Rd
t,t+1 − µR)2

) 1
2 ,

σr =
(
pu(ru

t+1 − µr)2 + pd(rd
t+1 − µr)2

) 1
2 .

(24)

We define equity premium as:

EP = µR − rξ
t , (25)

and Sharpe ratio as:

SR =
EP

σR
. (26)

For each model specification we present the interest rate volatility, equity premium, volatility of

equity return, Sharpe ratio, stock and bond holdings for agent 1 at time 0. Time-zero values are

representative for the whole equilibrium and do not differ from averaged values over all paths.

All numbers are annualized. We report these results as functions of risk aversion parameters γ1

and γ2 of the two agents. We report results for T = 6 (following Dumas and Lyasoff) and for

T = 20 to verify that our results are not driven by the time horizon issue. We provide historical

asset prices in Table 2 as point of comparison to our model solutions.
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4.1 Representative agent economy

Table 3 presents the model solution for a representative agent economy20 who has habit for-

mation preferences with various degrees of habit strength b = 0, 0.3, and 0.5. Naturally, the

CRRA case is represented by the first row of the results in Panels A and B. We also vary risk

aversion parameter γ = 2, 5, 7. For each risk aversion parameter we report two sets of results,

for internal habit (labeled IH) and external habit (labeled EH). Panels A and B present results

for T = 6 and T = 20, respectively. We find that internal habits have better ability to match

asset prices with reasonable γ coefficients at all levels of b. For an example, γ = 5 and b = 0.3

an internal habit provides the equity premium equal to 3.14% per year while under external

habit it is 2.24%. As Table 2 shows, equity premium has been close to 8% historically. The

equity volatility in the IH case is lower than historical too (11.29% vs. 15.06%), but overall this

combination results in a reasonable Sharpe ratio of 0.28. At the same time, the model produces

a well-known risk-free rate puzzle, the demonstration of the unrealistically high volatility of the

interest rates compared with observed levels. For instance, γ = 5 and b = 0.3 speciation pro-

duces the volatility of the risk-free rate equal to 10.2%! With a higher risk aversion γ = 7 and

b = 0.5 we definitely “over-shoot” the equity premium magnitudes, but we keep these results to

compare with the ones of a heterogeneous agents’ economy. It is difficult to say what would be

a correct level of habit strength in this setting. Constantinides (1990) estimates that b = 0.82

is consistent with the historical first moments of the aggregate asset returns. Grishchenko

(2010) estimates are slightly lower, around 0.7. However, both authors use an assumption of

an infinitely-lived agent with habit. Here, our time horizon is finite. We rerun the code for a

longer time horizon T = 20 and show that our results are essentially the same (compare Panels

A and Panel B in Table 3).

4.2 Economy with two agents

In this section we discuss results in the economy populated by two agents with various degrees

of risk aversion and/or habit strength parameters. For each of Tables 4 through 9 we provide

solutions for the following pairs of γ1 and γ2: (4,2), (7,2), (7,4), and (5,5). As before, we vary
20For a one agent economy the asset pricing quantities can be computed by pure backward induction on the

tree, because the aggregate resource constraint, Ct = Dt determines the pricing kernel. Further, aggregate
consumption coincides with aggregate per-capita consumption.
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the habit strength parameters of both agents to be 0, 0.3, and 0.5. So, we have 9 combinations

of habit strength parameters and 4 combinations of risk aversion parameters. For each such

combination, we compute prices both for internal (IH) and external (EH) habit types.

4.2.1 Equity premium

The first observation from Table 4 is that one definitely needs some sort of nonseparability in

the preferences for both agents. When either one or two agents have CRRA utility function,

the model is unable to fit an equity premium at any reasonable level of risk aversion.

Second, the first combination of the risk aversion coefficients (γ1, γ2) = (4, 2) shows that it is

not feasible to match equity premium for any combination of reported habit strength parameters

(b1, b2). For example, when b1 = b2 = 0.5, IH produces 4.53% for the equity premium, while

EH - 1.87%. For a longer horizon (T = 20, Panel B) IH and EH produce 5.06% and 2.03%,

respectively. When we move to (7, 2) combination for risk aversion, the equity premium is

closer to observed, but still low: IH gives 6.22% and 7.27% for T = 6 and 20, respectively. It is

interesting to note that internal habit has a higher effect on raising the equity premium in the

longer term (T = 20), than external habit does: in the IH case, equity premium increases by

more than 1%, while in the EH case, the equity premium increases by 47 basis points. It is to be

expected since internal habit has impact on future consumption choices by construction whereas

external habit represents a mere externality. This relationship is true for every combination of

risk aversion coefficients. Eventually, the combination of γ coefficients (7,4) and internal habit

match the equity premium when habit strength parameters are set to b1 = 0.3 and b2 = 0.5.

At the same parameters, external habit produces only 4% equity premium. Overall, our results

suggest that external habit would match the same moments with much higher levels of habit

strength coefficients than internal habit, which seems to be unreasonable given the empirical

evidence.21 In sum, we conclude that internal habit is a more promising type of nonseparability

than external one for matching the equity premium.
21Grishchenko (2010) estimates the long-run mean of habit process to be around 0.67. However, it is difficult

to say what habit strength is particularly judgemental when applied to the case of heterogeneous agents. We
are able to solve the model for arbitrary high habit strength in the case of external habit, but in the internal
habit case, when both agents have high habit strength the feasibility area becomes evanescent, either leading to
numerical problems or requiring very fine step size of the grid.
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4.2.2 Equity volatility and Sharpe ratio

Table 5 reports the results for equity volatility solutions defined in Eq. (24). As in Table 4,

Panel A shows that equity volatility increases with the habit strength of one or both agents and

also with the risk aversion parameters. For an example, internal habit obtains σR = 16.89%

for γ1 = 4, γ2 = 2 with habit strength b1 = b2 = 0.5, and σR = 19.41% for γ1 = 7, γ2 = 2 and

the same habit parameters. (γ1, γ2) = (7, 4) combination matches the equity volatility (15.18%

vs. 15.06% observed) for b1 = 0.5 and b2 = 0.4. At the same time, external habit specification

results in a considerably lower equity volatility. We observe similar solutions when we increase

our horizon to T = 20.

Equity volatility and equity premium solutions lead to the results in the Sharpe ratio con-

sistent with the above results. Thus, for a combination of risk aversion parameters of 4 and 2

and equal habit strength parameters (γ1, γ2, b1, b2) = (4, 2, 0.5, 0.5) we obtain a Sharpe ra-

tio of 26.85% for internal habit and 18.16% for external habit. A combination of parameters

(γ1, γ2, b1, b2) = (7, 2, 0.3, 0.5) and internal habit obtains a similar Sharpe ratio of 26.26%,

while external habit produces a Sharpe ratio of 19.78% for this combination. We conclude that

this pattern is monotonic with respect to either increasing risk aversion parameter or increasing

habit strength. Also, external habits fare much worse in terms of matching aggregate moments

than internal habits do.

4.2.3 Interest rate volatility

The interest rate volatility reported in Table 7 manifests the “achillean heel” present in many

asset pricing models. While internal habit stochastic discount factor is more volatile than ex-

ternal one, this has a spillover effect on the interest rate volatility. Thus, interest rate volatility

is much higher in the internal habit case than in the external habit, both of them are unreason-

ably high. Only specifications with mild enough habit parameters produce reasonable levels of

the interest rate volatility, but these levels are not enough to match other moments, like equity

premium. The example is the parameter combination (γ1, γ2, b1, b2) = (4, 2, 0, 0.3), in which

case internal habit produces interest rate volatility 2.17%, while external habit - 1.67%.
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4.2.4 Stock holdings

Table 8 reports stock holdings θ1,0 (in shares of unity) results for agent 1. Three findings

emerge here. First, for a fixed level of risk aversion, the amount of risky holdings moderately

increases, but remains at a less than 50% level if the agent 1 has higher risk version than

agent 2. Thus Panel A shows that for (γ1, γ2) = (4, 2) and a fixed habit strength of agent 2

b2 = 0.3 the amount of risky holdings increases from 0.41 to 0.44 as habit strength of agent 1

increases from 0 to 0.5 in internal habit case. We obtain a similar effect for external habit case.

Second, if we increase risk aversion of the agent 1 from 4 to 7, the amount of risky holdings is

lower overall, but it still increases with habit strength from 0.37 to 0.40. Third, increased risk

aversion parameter of agent 2 (the combination of (γ1, γ2) = (7, 4)), then the risky holdings

of agent 1 increase compared with those of (4,2), because agent 2 becomes relatively more risk

averse and gives up a share of his consumption holdings to a agent 1. Again, this dynamics

is very similar across internal and external habit cases. Also, Table 8 presents the case when

two agents have identical risk attitude (γ1, γ2) = (5, 5) but might have different habit strength

parameters. When b2 > b1 we obtain that the risky asset share of agent 1 is higher than that

of agent 2. Higher habit strength agents chose lower risky asset share in equilibrium because

their current consumption choice has a higher effect on future consumption (in the internal

case) and so they aim to reduce exposure to risky assets and maintain (or increase) the level

of consumption. Still, in this particular case, when the risk aversion parameters are the same,

this effect is rather mild: agent 1 has only 2% higher risky asset share than agent 2. Naturally,

when both agents have the same risk aversion and same habit parameters, they share the risks

equally and the economy becomes identical to a representative agent economy. The results are

similar for T = 20.

4.2.5 Bond holdings

Table 9 reports the bond holdings α1,0 of agent 1. First, as a habit strength parameter b1

increases, agent 1 decreases his bond holdings α1,0, which is a result of his increasing stock

holdings θ1,0. Since agent 1 is restricted in funds, he chooses to lend lower amount to agent 2

because he invests more in risk assets as shown in Table 8 and discussed in Section 4.2.4. This

effect is slightly lower under EH specification. Second, as the risk aversion of agent 1 increases
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from 4 to 7, and the risk aversion of agent 2 stays unchanged, agent 1 reduces his exposure to

stocks (θ1,0 is lower) and invests more into bonds (α1,0 is higher). Thus, for (b1, b2) = (0.3, 0.5)

combination we obtain that bond holdings of agent 1 increase from 0.23 to 0.33 under IH

specification. This effect is similar for EH preferences and this combination of habit strength

parameters. It is interesting that as we move to the case when agent 2 has a risk aversion of

4 (instead of 2), the bond holdings of agent 1 drop significantly (the stock holdings of agent 1

increase at the same time). External habit specification produces a similar picture. Panel B

reports the results for T = 20 case. When both risk aversion and habit strength of the agents

are the same, we obtain a representative agent case and, naturally, obtain that bond holdings

are zero, because bonds are in a zero net supply when we aggregate.

The qualitative description of the results is similar in Panel B (T = 20), but the magnitude

of these numbers is different. Consider the combination (γ1, γ2, b1, b2) = (4, 2, 0, 0.3). Agent

1’s bond holdings are 1.41 while his stock holdings are 0.41. In this case agent 2 holds more than

a half of the stock than agent 1. To survive in the longer period (T = 20 instead of T = 6) he

needs to borrow from agent 1: θ2,0 < 1 because bond holdings are in the zero net supply. This

effect is more or less severe but the overall level of debt holdings is higher in the longer-horizon

economy.

When agents do not differ with respect to risk aversion (γ1 = γ2 = 5), the effect of habits on

bond holdings can be seen more clearly. If b1 < b2 then agent 1 can afford to invest relatively

more in the stock market because his current consumption choice has a lesser effect on future

consumption. Indeed, his share of stock θ1,0 > 0.5 in this case (see Table 8). To achieve this,

agent 1 borrows from agent 2, which is manifested by α1.0 < 0. This finding is similar for both

shorter- and longer-horizon economies. The bond holdings results are largely unchanged across

internal and external habit specifications.

4.2.6 Habit with Epstein-Zin preferences

In addition to our internal and external habit preferences considered in the intertemporal power

utility setting, we have also solved our model with both types of habits in the Epstein and

Zin (1989) recursive preferences. Epstein and Zin (EZ) utility function differentiates between

relative risk aversion coefficient and the elasticity of intertemporal substitution (EIS). It is
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easy to obtain that the EZ preferences imply the same form of the equity premium, as power

utility. However, recursive preferences have different implications for the solution for the risk-

free rate.22 At the same time Kocherlakota (1990) shows that if consumption growth follows a

random walk process, Epstein-Zin utility converges to power utility and, thus, the EIS coefficient

becomes essentially an inverse of RRA coefficient. Yang (2009) argues that habits can potentially

account for this problem because habit formation generates persistent variations in the surplus

consumption across time. In this setting, even though consumption growth is a random walk

in the model, surplus consumption varies counter-cyclically. As a result, the model with habits

and recursive preferences is not equivalent to power utility.

Our preliminary findings (not reported) indicate that EIS is an important driving force of

the results. For example, a high enough EIS (around 1 and higher) helps to match the interest

rate and interest rate volatility, but significantly decreases other economic variables, e.g., equity

premium, compared to the habit-power utility case. It might be possible, that even with habits

in recursive preferences, one might need some sort of incompleteness to pin down both, equity

premium and risk-free rate puzzles. We leave this for future work a rigorous investigation of

such preferences.

5 Conclusion

In this paper, we study the effect of alternative types of time-nonseparability (habit formation)

on asset prices in a general equilibrium Lucas endowment economy with two heterogeneous

agents with respect to their habit preferences and coefficients of relative risk aversion. We

study asset pricing implications in a complete market setting and explore the improvement

of introducing heterogeneity in habit formation over the representative agent framework. We

also compute explicitly stock and bond holdings of two agents. We model nonseparability

in preferences either as internal or external habits. We look how the model fares in terms of

matching first and second moments of aggregate asset prices, namely, equity premium, volatility

of equity return, Sharpe ratio, and interest rate volatility. Equilibrium quantities are determined

by a recently developed algorithm of Dumas and Lyasoff (2011), which is refined to capture

time-nonseparability.
22See, e.g., Chapter 14 in Pennacchi (2008) book.
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There are several findings that emerge in our study. First, we answer question 1 set forth in

the introduction of the paper positively by concluding that internal habit is a more promising

type of nonseparability than external one. Second, we match the equity premium, volatility

of the stock market, and Sharpe ratio with the coefficient of relative risk aversion equal to 5

and internal habit strength parameter of a representative agent equal to 0.4. Third, in the case

when two agents differ with respect to risk aversion and habit strength parameters we find that

a combination of risk aversion coefficients 7 and 4 and habit coefficients 0.3 and 0.5 is able to

match historically observed equity premium, volatility, and Sharpe ratio. Fourth, in our stylized

set up, we still face the risk-free rate puzzle, as neither of our specifications is able to match

equity premium and interest rate volatility simultaneously. However, the purpose of the current

study is not to explain both puzzles simultaneously, but to demonstrate that internal habit is

preferred over external habit preferences in terms of matching some important moments with

more reasonable coefficients of risk aversion and habit. Last but not the least, the answer to the

second question is negative. In the current set up we did not find that habit heterogeneity helps

with regard to replicating major features of the aggregate stock market. A possible explanation

is that we considered our model in the complete market setting. A natural extension of this

work is to consider our model with habits in an incomplete market set up with some frictions

such as transaction costs, borrowing constraints, or other kinds of limited market participation.

This represents the venue for our future research.
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Table 1: Parametrization

This table presents the parametrization of the economy and utility-related (free)
parameters.

Parameter Description Value

Economy parameterization:

T Economy’s Life-time 6, 20

∆ Time step 1

D0 Initial dividend 1

µ Drift of diffusion 0.0183

σ Volatility of diffusion 0.0357

ωj Initial stock endowment 0.5

φj Initial bond endowment 0

Preferences’ parameters:

β Time discount factor 0.999

γj RRA parameter 2, 4, 5, 7

bj Habit strength 0.1, 0.3, 0.5

xj,0 Initial habit (internal or external) 0.5bj

Table 2: Historical Asset Prices

This table reports historically observed equity premium, equity volatility, Sharpe
ratio, and interest rate volatility. Real returns are measured annual, units are
percent per year. The S&P500 premium is computed as the difference between
the return on the S&P500 index and 30-day T-bill rate. The Sharpe ratio is
computed as the mean of S&P500 premium divided by its standard deviation. A
sample period is 1948 to 1996.

Asset Mean S.D.

Treasury bills 0.76 1.72

S&P500 8.68 15.06

S&P500 Premium 7.92 14.84

Sharpe ratio 0.27
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Table 3: Asset Pricing with a Representative Agent

This table presents time 0 solutions for the asset pricing quantities equity premium, equity return volatility,
Sharpe ratio and volatility of the interest rate. The agent can either form internal or external habit with a
relative risk aversion (RRA) coefficient γ and habit strength b. Panel A(B) presents the solutions for the
economy with time horizon T = 6(T = 20). Time discount factor β = 0.999. All numbers reported are in
absolute values.

b γ = 2 γ = 5 γ = 7

IH EH IH EH IH EH

Panel A: T = 6

Equity premium

0 0.0020 0.0056 0.0082

0.3 0.0066 0.0050 0.0314 0.0224 0.0588 0.0412

0.5 0.0263 0.0111 0.1521 0.0599 0.3086 0.1166

Equity volatility

0 0.0316 0.0331 0.0339

0.3 0.0634 0.0540 0.1129 0.0904 0.1462 0.1150

0.5 0.1337 0.0839 0.2907 0.1669 0.4107 0.2239

Sharpe ratio

0 0.0642 0.1682 0.2421

0.3 0.1048 0.0930 0.2781 0.2475 0.4020 0.3585

0.5 0.1966 0.1327 0.5231 0.3587 0.7513 0.5208

Interest rate volatility

0 0.0000 0.0000 0.0000

0.3 0.0393 0.0279 0.1020 0.0736 0.1451 0.1057

0.5 0.1282 0.0663 0.3294 0.1768 0.4621 0.2529

Panel B: T = 20

Equity premium

0 0.0020 0.0056 0.0082

0.3 0.0071 0.0053 0.0341 0.0242 0.0640 0.0450

0.5 0.0285 0.0121 0.1664 0.0663 0.3378 0.1294

Equity volatility

0 0.0316 0.0331 0.0339

0.3 0.0674 0.0571 0.1225 0.0980 0.1593 0.1254

0.5 0.1450 0.0911 0.3182 0.1848 0.4495 0.2485

Sharpe ratio

0 0.0642 0.1682 0.2421

0.3 0.1048 0.0930 0.2781 0.2475 0.4020 0.3585

0.5 0.1966 0.1327 0.5231 0.3587 0.7513 0.5208

Interest rate volatility

0 0.0000 0.0000 0.0000

0.3 0.0393 0.0279 0.1020 0.0736 0.1451 0.1057

0.5 0.1282 0.0663 0.3294 0.1768 0.4621 0.2529
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Table 4: Equity Premium

This table presents time 0 solutions for the equity premium for the economy with two agents which differ
by habit preference type (internal or external) and/or level of their relative risk aversion (RRA) coefficients.
b1(b2) denotes the habit strength of the first(second) agent, γ1(γ2) denotes the RRA coefficient of the
first(second) agent. Panels A and B present solutions for the economy with time horizon T = 6 and T = 20,
respectively. Time discount factor β = 0.999, initial endowments are equal for two agents: ω1 = ω2 = 0.5.
All numbers reported are in absolute values.

b1 b2 γ1 = 4, γ2 = 2 γ1 = 7, γ2 = 2 γ1 = 7, γ2 = 4 γ1 = 5, γ2 = 5

IH EH IH EH IH EH IH EH

Panel A: T = 6

0 0 0.0028 0.0034 0.0058 0.0056

0.3 0.0060 0.0050 0.0094 0.0069 0.0156 0.0127 0.0118 0.0114

0.5 0.0107 0.0079 0.0207 0.0120 0.0294 0.0218 0.0190 0.0178

0.3 0 0.0039 0.0043 0.0043 0.0051 0.0098 0.0110 0.0118 0.0114

0.3 0.0107 0.0079 0.0142 0.0104 0.0327 0.0233 0.0314 0.0224

0.5 0.0246 0.0131 0.0403 0.0188 0.0780 0.0408 0.0602 0.0358

0.5 0 0.0048 0.0056 0.0053 0.0065 0.0159 0.0160 0.0190 0.0178

0.3 0.0154 0.0108 0.0181 0.0135 0.0516 0.0344 0.0602 0.0358

0.5 0.0453 0.0187 0.0622 0.0253 0.1589 0.0625 0.1521 0.0599

Panel B: T = 20

0 0 0.0029 0.0038 0.0059 0.0056

0.3 0.0065 0.0054 0.0109 0.0080 0.0171 0.0138 0.0127 0.0120

0.5 0.0119 0.0086 0.0245 0.0143 0.0330 0.0240 0.0189 0.0192

0.3 0 0.0042 0.0046 0.0049 0.0058 0.0107 0.0118 0.0127 0.0120

0.3 0.0118 0.0087 0.0166 0.0121 0.0361 0.0257 0.0341 0.0242

0.5 0.0272 0.0146 0.0469 0.0224 0.0867 0.0455 0.0662 0.0393

0.5 0 0.0053 0.0061 0.0106 0.0073 0.0127 0.0174 0.0189 0.0192

0.3 0.0174 0.0120 0.0212 0.0157 0.0575 0.0383 0.0662 0.0393

0.5 0.0506 0.0210 0.0727 0.0300 0.1761 0.0702 0.1664 0.0663
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Table 5: Equity Volatility

This table presents time 0 solutions for the equity volatility for the economy with two agents which differ
by habit preference type (internal or external) and/or level of their relative risk aversion (RRA) coefficients.
b1(b2) denotes the habit strength of the first(second) agent, γ1(γ2) denotes the RRA coefficient of the
first(second) agent. Panel A(B) presents the solutions for the economy with time horizon T = 6(T = 20).
Time discount factor β = 0.999, initial endowments are equal for two agents: ω1 = ω2 = 0.5. All numbers
reported are in absolute values.

b1 b2 γ1 = 4, γ2 = 2 γ1 = 7, γ2 = 2 γ1 = 7, γ2 = 4 γ1 = 5, γ2 = 5

IH EH IH EH IH EH IH EH

Panel A: T = 6

0 0 0.0323 0.0333 0.0335 0.0331

0.3 0.0529 0.0457 0.0650 0.0502 0.0700 0.0590 0.0580 0.0567

0.5 0.0742 0.0591 0.1049 0.0686 0.1057 0.0839 0.0800 0.0776

0.3 0 0.0399 0.0439 0.0386 0.0462 0.0501 0.0563 0.0580 0.0567

0.3 0.0751 0.0626 0.0838 0.0691 0.1151 0.0920 0.1129 0.0904

0.5 0.1208 0.0823 0.1535 0.0952 0.1958 0.1291 0.1681 0.1222

0.5 0 0.0449 0.0532 0.0457 0.0559 0.0750 0.0748 0.0800 0.0776

0.3 0.0923 0.0767 0.0959 0.0837 0.1518 0.1204 0.1681 0.1222

0.5 0.1689 0.1029 0.1941 0.1168 0.2968 0.1702 0.2907 0.1669

Panel B: T = 20

0 0 0.0332 0.0362 0.0343 0.0331

0.3 0.0571 0.0487 0.0742 0.0567 0.0768 0.0634 0.0620 0.0598

0.5 0.0828 0.0641 0.1233 0.0789 0.1189 0.0917 0.0829 0.0835

0.3 0 0.0424 0.0464 0.0425 0.0507 0.0538 0.0602 0.0620 0.0598

0.3 0.0818 0.0680 0.0945 0.0781 0.1261 0.1010 0.1225 0.0980

0.5 0.1333 0.0908 0.1756 0.1095 0.2175 0.1432 0.1847 0.1341

0.5 0 0.0486 0.0569 0.0320 0.0613 0.0579 0.0812 0.0829 0.0835

0.3 0.1019 0.0841 0.1082 0.0944 0.1674 0.1332 0.1847 0.1341

0.5 0.1864 0.1144 0.2198 0.1339 0.3272 0.1900 0.3182 0.1848

30



Table 6: Sharpe Ratio

This table presents time 0 solutions for the Sharpe ratio for the economy with two agents which differ by habit
preference type (internal or external) and/or level of their relative risk aversion (RRA) coefficients. b1(b2)
denotes the habit strength of the first(second) agent, γ1(γ2) denotes the RRA coefficient of the first(second)
agent. Panel A(B) presents the solutions for the economy with time horizon T = 6(T = 20). Time discount
factor β = 0.999, initial endowments are equal for two agents: ω1 = ω2 = 0.5. All numbers reported are in
absolute values.

b1 b2 γ1 = 4, γ2 = 2 γ1 = 7, γ2 = 2 γ1 = 7, γ2 = 4 γ1 = 5, γ2 = 5

IH EH IH EH IH EH IH EH

Panel A: T = 6

0 0 0.0870 0.1032 0.1720 0.1682

0.3 0.1137 0.1099 0.1440 0.1368 0.2227 0.2161 0.2038 0.2004

0.5 0.1435 0.1332 0.1974 0.1744 0.2780 0.2603 0.2376 0.2296

0.3 0 0.0978 0.0972 0.1115 0.1109 0.1966 0.1949 0.2038 0.2004

0.3 0.1427 0.1267 0.1699 0.1507 0.2846 0.2533 0.2781 0.2475

0.5 0.2033 0.1586 0.2626 0.1978 0.3985 0.3157 0.3581 0.2932

0.5 0 0.1064 0.1054 0.1155 0.1166 0.2127 0.2138 0.2376 0.2296

0.3 0.1671 0.1410 0.1883 0.1617 0.3398 0.2858 0.3581 0.2932

0.5 0.2685 0.1816 0.3204 0.2170 0.5353 0.3672 0.5231 0.3587

Panel B: T = 20

0 0 0.0880 0.1064 0.1729 0.1682

0.3 0.1142 0.1113 0.1468 0.1417 0.2230 0.2173 0.2040 0.2004

0.5 0.1435 0.1348 0.1989 0.1810 0.2775 0.2617 0.2284 0.2296

0.3 0 0.0996 0.0982 0.1156 0.1138 0.1985 0.1958 0.2040 0.2004

0.3 0.1444 0.1281 0.1753 0.1555 0.2861 0.2547 0.2781 0.2475

0.5 0.2038 0.1606 0.2672 0.2049 0.3985 0.3175 0.3585 0.2932

0.5 0 0.1095 0.1063 0.3312 0.1192 0.2186 0.2147 0.2284 0.2296

0.3 0.1707 0.1425 0.1960 0.1661 0.3436 0.2873 0.3585 0.2932

0.5 0.2716 0.1838 0.3307 0.2241 0.5382 0.3692 0.5231 0.3587
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Table 7: Interest Rate Volatility

This table presents time 0 solutions for the interest volatility for the economy with two agents which differ
by habit preference type (internal or external) and/or level of their relative risk aversion (RRA) coefficients.
b1(b2) denotes the habit strength of the first(second) agent, γ1(γ2) denotes the RRA coefficient of the
first(second) agent. Panel A(B) presents the solutions for the economy with time horizon T = 6(T = 20).
Time discount factor β = 0.999, initial endowments are equal for two agents: ω1 = ω2 = 0.5. All numbers
reported are in absolute values.

b1 b2 γ1 = 4, γ2 = 2 γ1 = 7, γ2 = 2 γ1 = 7, γ2 = 4 γ1 = 5, γ2 = 5

IH EH IH EH IH EH IH EH

Panel A: T = 6

0 0 0.0001 0.0005 0.0002 0.0000

0.3 0.0217 0.0167 0.0347 0.0211 0.0397 0.0324 0.0267 0.0299

0.5 0.0371 0.0334 0.0674 0.0442 0.0663 0.0646 0.0405 0.0570

0.3 0 0.0082 0.0147 0.0064 0.0170 0.0179 0.0292 0.0267 0.0299

0.3 0.0534 0.0381 0.0637 0.0457 0.1044 0.0755 0.1020 0.0736

0.5 0.1064 0.0635 0.1463 0.0795 0.2006 0.1248 0.1678 0.1160

0.5 0 0.0112 0.0264 0.0111 0.0294 0.0253 0.0532 0.0405 0.0570

0.3 0.0737 0.0565 0.0785 0.0650 0.1486 0.1133 0.1678 0.1160

0.5 0.1738 0.0908 0.2065 0.1086 0.3367 0.1810 0.3294 0.1768

Panel B: T = 20

0 0 0.0001 0.0005 0.0002 0.0000

0.3 0.0214 0.0169 0.0344 0.0219 0.0393 0.0325 0.0268 0.0299

0.5 0.0367 0.0339 0.0667 0.0459 0.0664 0.0650 0.0406 0.0570

0.3 0 0.0087 0.0149 0.0069 0.0175 0.0185 0.0294 0.0268 0.0299

0.3 0.0540 0.0386 0.0657 0.0471 0.1050 0.0759 0.1020 0.0736

0.5 0.1065 0.0643 0.1487 0.0823 0.2008 0.1255 0.1681 0.1160

0.5 0 0.0111 0.0267 0.0088 0.0301 0.0247 0.0535 0.0406 0.0570

0.3 0.0755 0.0571 0.0816 0.0667 0.1502 0.1139 0.1681 0.1160

0.5 0.1758 0.0919 0.2129 0.1121 0.3384 0.1820 0.3294 0.1768
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Table 8: Stock Holdings

This table presents time 0 solutions for the stock holdings of agent 1 for the economy with two agents
which differ by habit preference type (internal or external) and/or level of their relative risk aversion (RRA)
coefficients. b1(b2) denotes the habit strength of the first(second) agent, γ1(γ2) denotes the RRA coefficient of
the first(second) agent. Panel A(B) presents the solutions for the economy with time horizon T = 6(T = 20).
Time discount factor β = 0.999, initial endowments are equal for two agents: ω1 = ω2 = 0.5. All numbers
reported are in absolute values.

b1 b2 γ1 = 4, γ2 = 2 γ1 = 7, γ2 = 2 γ1 = 7, γ2 = 4 γ1 = 5, γ2 = 5

IH EH IH EH IH EH IH EH

Panel A: T = 6

0 0 0.3362 0.2324 0.3658 0.5000

0.3 0.4097 0.4061 0.3673 0.3419 0.4447 0.4411 0.5124 0.5102

0.5 0.4456 0.4446 0.4219 0.4003 0.4719 0.4709 0.5184 0.5142

0.3 0 0.3543 0.3915 0.2602 0.3395 0.3977 0.4247 0.4876 0.4898

0.3 0.4295 0.4357 0.3935 0.4017 0.4606 0.4624 0.5000 0.5000

0.5 0.4622 0.4609 0.4447 0.4366 0.4812 0.4797 0.5059 0.5046

0.5 0 0.3545 0.4183 0.3213 0.3870 0.4474 0.4461 0.4816 0.4858

0.3 0.4349 0.4504 0.4018 0.4295 0.4646 0.4713 0.4941 0.4954

0.5 0.4686 0.4690 0.4536 0.4538 0.4841 0.4837 0.5000 0.5000

Panel B: T = 20

0 0 0.3402 0.2514 0.3685 0.5000

0.3 0.4088 0.4068 0.3746 0.3552 0.4436 0.4409 0.5055 0.5043

0.5 0.4404 0.4415 0.4234 0.4075 0.4679 0.4676 0.5118 0.5058

0.3 0 0.3723 0.4059 0.2911 0.3614 0.4121 0.4357 0.4945 0.4957

0.3 0.4351 0.4433 0.4045 0.4160 0.4637 0.4669 0.5000 0.5000

0.5 0.4620 0.4637 0.4477 0.4452 0.4805 0.4807 0.5028 0.5019

0.5 0 0.3768 0.4364 0.1095 0.4095 0.3951 0.4589 0.4882 0.4942

0.3 0.4458 0.4611 0.4168 0.4441 0.4702 0.4776 0.4972 0.4981

0.5 0.4714 0.4748 0.4586 0.4631 0.4853 0.4865 0.5000 0.5000
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Table 9: Bond Holdings

This table presents time 0 solutions for the bond holdings of agent 1 for the economy with two agents
which differ by habit preference type (internal or external) and/or level of their relative risk aversion (RRA)
coefficients. b1(b2) denotes the habit strength of the first(second) agent, γ1(γ2) denotes the RRA coefficient of
the first(second) agent. Panel A(B) presents the solutions for the economy with time horizon T = 6(T = 20).
Time discount factor β = 0.999, initial endowments are equal for two agents: ω1 = ω2 = 0.5. All numbers
reported are in absolute values.

b1 b2 γ1 = 4, γ2 = 2 γ1 = 7, γ2 = 2 γ1 = 7, γ2 = 4 γ1 = 5, γ2 = 5

IH EH IH EH IH EH IH EH

Panel A: T = 6

0 0 0.9219 1.4810 0.6931 0.0000

0.3 0.5207 0.5228 0.7573 0.8602 0.2899 0.2997 -0.0671 -0.0520

0.5 0.3181 0.3055 0.4546 0.5328 0.1474 0.1464 -0.1016 -0.0722

0.3 0 0.8380 0.6110 1.3477 0.8932 0.5377 0.3887 0.0671 0.0520

0.3 0.4181 0.3581 0.6193 0.5376 0.2113 0.1909 0.0000 0.0000

0.5 0.2282 0.2154 0.3296 0.3405 0.1012 0.1012 -0.0339 -0.0232

0.5 0 0.8538 0.4606 1.0183 0.6312 0.2873 0.2784 0.1016 0.0722

0.3 0.3971 0.2762 0.5830 0.3877 0.1945 0.1455 0.0339 0.0232

0.5 0.1976 0.1702 0.2847 0.2493 0.0889 0.0815 0.0000 0.0000

Panel B: T = 20

0 0 2.4718 3.6230 1.5285 0.0000

0.3 1.4085 1.4024 1.8131 2.0095 0.6471 0.6640 -0.0639 -0.0492

0.5 0.9066 0.8577 1.0732 1.2199 0.3600 0.3519 -0.1372 -0.0671

0.3 0 1.9919 1.4789 3.0808 2.0828 1.0250 0.7579 0.0639 0.0492

0.3 1.0095 0.8661 1.3929 1.2059 0.4173 0.3759 0.0000 0.0000

0.5 0.5831 0.5387 0.7409 0.7486 0.2185 0.2114 -0.0322 -0.0212

0.5 0 1.9515 1.0116 6.1170 1.3920 1.0430 0.4907 0.1372 0.0671

0.3 0.8555 0.6029 1.2431 0.8255 0.3463 0.2575 0.0322 0.0212

0.5 0.4448 0.3794 0.6024 0.5201 0.1663 0.1495 0.0000 0.0000
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A Appendix - Euler Equation

While Abel (1990) derives the pricing kernel of a time non-separable utility function from an
indifference argument, we utilize the envelope theorem (known as the Benveniste-Scheinkman
formula in Dynamic Programming) to derive the Euler equations and thus the stochastic dis-
count factor from the Bellman Equation, which can be derived from the agents’ optimization
problem (1) and is given through

Vt−1(θt−1, αt−1, Ct−1) ≡ max
θ,α,C

{u(Ct−1, Ct) + βE [Vt(θt, αt, Ct)]} . (A1)

The corresponding budget equation is:

Ct + θtSt + αtBt = θt−1(St + δt) + αt−1, (A2)

and suppressing the index t, where it is clear, the Lagrangian for the specified optimization
problem reads

L(θ, α,C; λ) ≡ u(Ct−1, C) + βE [V (θ, α, C)]
− λ(C + θS + αB − θt−1(S + δ)− αt−1). (A3)

Saving notation and denoting a partial derivative with a subscript the F.O.C. of the Lagrangian
are (skip the budget equation)

βEV1 − λS = 0, (A4)
βEV2 − λB = 0, (A5)

u2 + βEV3 − λ = 0. (A6)

Plugging (A4) and (A5) into (A6) and rearranging, we can express prices in terms of the
(derivatives of the) value function:

S =
βEV1

u2 + βEV3
, (A7)

B =
βEV2

u2 + βEV3
(A8)

Differentiating the Bellman Equation w.r.t. the controls, yields

V1,t−1 = u2
∂C

∂θt−1
+ βEV1

∂θ

∂θt−1
+ βEV2

∂α

∂θt−1
+ βEV3

∂C

∂θt−1
, (A9)

V2,t−1 = u2
∂C

∂αt−1
+ βEV1

∂θ

∂αt−1
+ βEV2

∂α

∂αt−1
+ βEV3

∂C

∂αt−1
, (A10)

V3,t−1 = u1 + u2
∂C

∂Ct−1
+ βEV1

∂θ

∂Ct−1
+ βEV2

∂α

∂Ct−1
+ βEV3

∂C

∂Ct−1
. (A11)
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Plugging (A7) and (A8) into (A9), (A10) and (A11) and using the differentiated budget equation
w.r.t. the right control gives:

V1,t−1 = (u2 + βEV3) (S + δ) (A12)
V2,t−1 = (u2 + βEV3) (A13)
V3,t−1 = u1. (A14)

Shifting (A12), (A13) and (A14) by one point in time ahead and substituting the resulting
equations into (A7) and (A8) gives:

St = Et


β

∂
∂Ct+1

u(Ct, Ct+1) + βEt+1

[
∂

∂Ct+1
u(Ct+1, Ct+2)

]

∂
∂Ct

u(Ct−1, Ct) + βEt

[
∂

∂Ct
u(Ct, Ct+1)

] (St+1 + δt+1)


 , (A15)

Bt = Et


β

∂
∂Ct+1

u(Ct, Ct+1) + βEt+1

[
∂

∂Ct+1
u(Ct+1, Ct+2)

]

∂
∂Ct

u(Ct−1, Ct) + βEt

[
∂

∂Ct
u(Ct, Ct+1)

]

 . (A16)

The pricing kernels of the two agents can be inferred from (A15) or (A16). If u is defined as in
(4), then for t ∈ T \{T} they take the following form:

MRS1
t,t+1 = β1

(c1,t+1−b1c1,t)−γ1−β1b1Et+1[(c1,t+2−b1c1,t+1)−γ1 ]
(c1,t−b1c1,t−1)−γ1−β1b1Et[(c1,t+1−b1c1,t)−γ1 ]

MRS2
t,t+1 = β2

(c2,t+1−b2c2,t)−γ2−β2b2Et+1[(c2,t+2−b2c2,t+1)−γ2 ]
(c2,t−b2c2,t−1)−γ2−β2b2Et[(c2,t+1−b2c2,t)−γ2 ] .

(A17)

where c2,t+τ = Dt+τ − c1,t+τ , τ = −1, 0, 1, 2.
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