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Abstract

This paper advances the theory and methodology of signal extraction by introducing asymp-

totic and finite sample formulas for optimal estimators of signals in nonstationary multivari-

ate time series. Previous literature has considered only univariate or stationary models.

However, in current practice and research, econometricians, macroeconomists, and policy-

makers often combine related series - that may have stochastic trends - to attain more

informed assessments of basic signals like underlying inflation and business cycle compo-

nents. Here, we use a very general model structure, of widespread relevance for time series

econometrics, including flexible kinds of nonstationarity and correlation patterns and spe-

cific relationships like cointegration and other common factor forms. First, we develop and

prove the generalization of the well-known Wiener-Kolmogorov formula that maps signal-

noise dynamics into optimal estimators for bi-infinite series. Second, this paper gives the

first explicit treatment of finite-length multivariate time series, providing a new method

for computing signal vectors at any time point, unrelated to Kalman filter techniques; this

opens the door to systematic study of near end-point estimators/filters, by revealing how

they jointly depend on a function of signal location and parameters. As an illustration we

present econometric measures of the trend in total inflation that make optimal use of the

signal content in core inflation.

Keywords. Co-integration; Common Trends; Filters; Multivariate Models; Stochastic Trends;

Unobserved Components.
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discussion. The views expressed on statistical issues are those of the author and not necessarily
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1 Introduction

In many scientific fields, research and analysis make widespread use of a signal extraction para-

digm. Often, interest centers on underlying dynamics (such as trend, non-seasonal, and cyclical

parts or, more generally, systematic movements) of time series also subject to other, less regular

components such as temporary fluctuations. In such cases, the resulting strategy involves the

estimation of signals in the presence of noise. For instance, economists and policy-makers rou-

tinely want to assess major price trends, cycles in industrial and commercial activity, and other

pivotal indicators of economic performance. Typically, the measurement of such signals combines

judgmental elements with precise mathematical approaches.

Here, we concentrate on the latter aspect, with the goal of developing the formal apparatus for

detecting signals in a comprehensive econometric framework, motivated by two basic considera-

tions. First, the signal extraction problems relevant to experience usually involve more than one

variable; at central banks, for instance, staff use a range of available series to monitor prevailing

inflationary conditions. Second, economic data often involve nonstationary movements, with

(possibly close) statistical relationships among the stochastic trends for a set of indicators.

In this paper we generalize the existing theory and methodology of signal extraction to mul-

tivariate nonstationary time series. In particular, we set out analytical descriptions of optimal

estimator structures that emerge from a wide range of signal and noise dynamics, both for asymp-

totic and for finite sample cases. Our results give a firm theoretical basis for the expansion of the

Wiener-Kolmogorov (WK) formula to the nonstationary multivariate framework and provide a

simple and direct method (distinct from the state space approach) for calculating signal estimates

and related quantities, and for studying endpoint effects explicitly. In presenting these formulas,

we also treat the case of co-integrated systems, which, as with other econometric problems, has

special implications for the characteristics of the signal estimators. Previously, many applica-

tions of signal extraction have been undertaken without such a rigorous foundation. Such a basis

unveils properties of signal estimators, and hence allows for a host of developments, such as the

design of new architectures from the collective dynamics for signal and noise vector processes and

the analysis of signal location effects in finite series.

The previous literature in this area, which handles only single series or stationary vector series,

has a long history. For a doubly infinite data process, Wiener (1949) and Whittle (1963) made

substantial early contributions; the corresponding WK formula, which gives the asymptotic form

(for historical, or two-sided smoothing) of the relationship between optimal signal estimation and

the component properties, has become a theoretical benchmark in time series econometrics. The

original WK filters assumed stationary signal and noise vector processes, whose properties entered

directly into the expressions through their autocovariance generating functions (ACGF). With
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awareness about the importance of nonstationarity in time series analysis growing through the

early 1980s, Bell (1984) proved the optimality of an analogous bi-infinite filter for nonstationary

data. However, despite the widespread knowledge of correlated movements among related vari-

ables in macroeconomics and in other disciplines, which has motivated an enormous amount of

research on multivariate time series models over the last several decades, the relevant theory has

not yet been provided for multiple nonstationary series.

Past theoretical work on signal extraction for finite samples has concentrated on single series

(see Bell (2004) and McElroy (2008) and the references therein). Most economic applications

have relied on standard Kalman filtering and smoothing algorithms, for instance the trend-cycle

analyses in Harvey and Trimbur (2003), Azevedo et al. (2006), and Basistha and Startz (2008).

The implied weights on the input series may be computed in each case with an augmentation

of the basic algorithms, as in Koopman and Harvey (2003); yet this method omits closed-form

expressions or explicit information about the functional form of the filters. Bell (1984) introduced

some exact results; subsequently, the compact formulas in McElroy (2008) provided a considerable

simplification, amenable to simple implementation (and possibly other uses, such as analytical

investigation of end-point effects). However, to our knowledge, the finite sample theory has not

yet been presented for multivariate signal-noise processes, whether stationary or nonstationary.

As a primary goal, this paper presents new results on signal estimation in doubly-infinite time

series for multivariate nonstationary models. These expressions capture the basic action — inde-

pendent of signal location and sample size — of the estimators, leading to compact expressions in

the time and frequency domains that give complete descriptions of the operators’ effects. Our

generalization of the WK formula provides a firm mathematical foundation for the construction

of jointly optimal estimators for multiple series, and reveals explicitly how signal extraction ar-

chitectures, having the form of matrix filter expressions, emerge from the collective dynamics of

signal and noise vectors.

We also introduce signal extraction results for finite samples, generalizing the analysis in

McElroy (2008) to multivariate systems including nonstationary1 series. The formulas give a very

general mapping from stochastic signal-noise models to optimal estimators at each point in finite

sample vector series. This reveals the explicit weighting patterns on the observation vectors for

estimation close to the end of the series, which is a crucial problem for generating signals central

to current analysis and economic decision-making. Having such an optimal accounting for the

finite series length seems especially helpful for multiple series; compared to the univariate setup,

in addition to the position effect, we now have collections, or matrices, of time-dependent and

asymmetric filters with complex inter-relationships for each time period. More generally, our

1This encompasses processes that are nonstationary only in second moments after appropriate differencing;

that is, they are nonstationary only in levels and may have heteroskedastic disturbances.
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results incorporate the complete functional dependence of the filter set on parameters, sample

size, and estimate location, so they include the interaction of signal-noise dynamics with distance

to end-point and series length in the formation of the optimal weight vectors. In contrast to

the state space approach, our matrix expressions enable straightforward and direct computation

of multivariate signals, as well as providing additional information, such as the estimation error

covariance across individual signals and across different times. The matrix expressions are also

more widely applicable than the state space smoother, because some processes of interest (e.g.,

long-range dependent processes) cannot be embedded in a state space framework.

Signals of interest typically have an interpretation; for instance, stochastic trends capture

permanent or long-run movements and underpin the nonstationarity found in most economic

time series. The trend components usually dominate the historical evolution of series and prove

crucial for understanding and explaining the major or lasting transitions over an existing sample.

Toward the end-points, they may account for an important part of recent movements, that are

likely to propagate into the new observations that will become available for the present and future

periods. Hence, accurate estimation of stochastic trends often represents a signal extraction

problem of direct interest, giving a pivotal input for assessing patterns in past behavior and for

current analysis and near-term projection.

We apply our theoretical developments on two stochastic trend models widely used in the

literature. Simple dynamic representations are used to demonstrate the combination of nonsta-

tionary and stationary parts, that occurs in many economic time series. For richer models, in

separating trend from noise, the key aspects illustrated by our examples continue to drive the

best signal estimators: the form of nonstationary component, its strength relative to the noise for

each series, and the interactions among series for each component. Of course, the treatment of

stochastic trends, where present, also crucially affects other areas such as measurement of cyclical

or seasonal parts, given the reciprocity of the estimation problem for the various components in

a set of series.

We also address the case of common (or co-integrated) trends, and explore its implications for

signal estimation. Starting with early work such as Engle and Granger (1987), Stock and Watson

(1988), and Johansen (1988), the importance of such co-movements for econometric methodology

has been long established, based on their impact on statistical theory and estimator properties,

along with the evidence for their frequent occurrence found by researchers. While related to VAR-

based formulations, such as Engle and Granger (1987) and Johansen (1988), the common trends

form, as presented in Stock and Watson (1988), allows us to directly handle tightly linked long-

term signals, and is also useful beyond this context. For instance, this formulation makes available

a different class of tests for the integration order of processes, as in Nyblom and Harvey (2000).

Here, we allow for the presence of co-integration in the formulation of our general theorems.
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We present an application of the above models to the measurement of trend inflation with data

on both core and total inflation. Using these time series models as the basis of the signal estimation

ensures consistency with the dynamic properties and cross-relationships of the bivariate inflation.

Our extensions to signal extraction theory allow us to derive the precise estimators of the trend in

total inflation. These results (which differ from trend measurement with a simple reliance on core

alone) quantify the degree of emphasis on core and the corresponding down-weighting of total,

expressed in either the time or frequency domains.

The rest of the paper is arranged as follows. Section 2 develops the generalized WK formula

for a set of nonstationary time series, expressing the optimal multivariate filters in both the

frequency and time domains. Exact signal extraction results for a finite-length dataset are derived

in Section 3. Then Section 4 reviews some major models for multivariate stochastic trends, and

the methodology is illustrated by the statistical measurement of trend inflation using both core

and total inflation data. Section 5 provides our conclusions, and mathematical proofs are in the

Appendix.

2 Multivariate signal extraction from a bi-infinite sample

This section gives a highly general solution to the signal extraction problem for multiple non-

stationary series and generalizes the WK formula to this case. The aim of signal extraction

is to elicit components of interest — the signals — from series that also contain other compo-

nents. Signal-noise decompositions have the form of unobserved component (UC) processes,

where the signal processes (which may take the form of a combination of two or more distinct

latent processes) typically have an interpretation, such as a stochastic trend, that suggest some

dynamic formulation. The noise combines all the remaining components in the series; then, to

achieve the goal of extracting the target signals, we may use an appropriate filter to remove the

unwanted effects of the noise. The WK formula produces the optimal estimator of the signals

in terms of the dynamics of the UC processes, so it shows how component structure maps into

filter design. In this way, the filters that emerge from the formula have the major advantages of

coherency with each other and — by setting parameters in accordance with a fitted model — of

consistency with the set of input series.

In formulating the theory behind multivariate signal extraction, we first treat the benchmark

case of a hypothetical doubly infinite process. In the next section we examine the estimation

problem based upon a finite sample. The bi-infinite case is useful for studying the fundamental

and long-term impact of filters, as it abstracts from near-end-of-sample effects and allows one to

derive mathematical expressions in terms of the specifications of components and parameter values

that capture the essence of the signal extraction mechanism. This theoretical framework generally
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proves most useful for analysis in the frequency domain, for which signal estimators typically give

rise to gain functions of a compact form, making possible the transparent and straightforward

comparison of optimal filters across different models. The doubly infinite assumption represents a

natural limiting case, with estimators based on the maximum information set, and in practice, for

long enough samples, it applies approximately to most of the time points in a wide neighborhood

around the mid-point.

We first set out our notation and some basic concepts; also see Brockwell and Davis (1991).

Consider a vector-valued, possibly nonstationary, time series denoted {y} = {y−∞   ∞},
with each y of dimension  A multivariate filter for a set of  series has the expression

W () =
∞X

=−∞
W 

 (1)

where  is the standard lag operator, andW  is the  × matrix of coefficients for lag . The

cross-elementsW 
 andW 

 are generally unequal. The filter produces output z as follows:

z =W ()y =
∞X

=−∞
W 

y =
∞X

=−∞
W y− (2)

Therefore, the weight matrix W  at lag  is applied to the lagged series y−. Equivalently,

component  of z is computed as

z
()
 =

X
=1

∞X
=−∞

W 
 y

()
−

where W 
 represents the weight applied to series , at lag , in estimating the th element of

the output at time 

The filter output for each  equals a sum of  terms, each given by a weighting kernel applied

to an element series. For  = , we will call the profile of weights an auto-filter, while for distinct

indices they will be called a cross-filter, i.e., the weights for the signal are applied to a different

series. We now have  input series for each output series, so there are 2 filters to consider.

The spectral representation for a stationary multivariate time series (see Chapter 11.6 of

Brockwell and Davis (1991)) involves a vector-valued orthogonal increments process Z() for

frequencies  ∈ [− ] defined as y =
R 
− 

 Z(). When this is well-defined, the spectral

density matrix F is defined via E[|Z()|2] divided by 2, and describes the second moment
variation in terms of power at different frequencies. The diagonal entries of F are the spectral

densities of the component processes of {y}, whereas the off-diagonal entries are cross-spectral
densities that summarize the relationships across series for the range of frequency parts. The

output of the filterW () is expressed in the frequency domain as

z =

Z 

−
W (−)Z() (3)
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with the quantityW (−) obtained by plugging the complex exponential into the filter formula

(1); this gives the definition of the multivariate frequency response function (frf). That is, the frf

W (−) is the discrete Fourier Transform (FT) of the weights sequence {W }. A comparison of
input and output in (3) indicates that the orthogonal increments process for {z} isW (−)Z().

Correspondingly, the spectral density matrix of the output process isW (−)F ()W 0()

For many filters of interest, including those we study in Section 4 below, W− =W  for all

, which implies the frf is real-valued. In this case there is no phase shift (see Brockwell and

Davis (1991)) and the frf is identical with the Gain function, denoted G, i.e., G() =W (−).

We focus on this case in what follows; if we examine the action for the th component output

process, we have

z
()
 =

Z 

−


X
=1

W (−)Z() =
X
=1

Z 

−
G()Z()

So the gain is a  x  matrix-valued functions of frequency, whose th components act to

modulate the amplitude of variation for the contribution of the th input series to the th output

series.

As noted above, the spectral density F gives a breakdown of the second order structure of

a vector time series. An equivalent tool is the multivariate autocovariance generating function

(ACGF), which for any mean zero stationary series x is written as

Γ() =
∞X

=−∞
Γ



where Γ = (xx
0
−) is the covariance between x and x−. Therefore, Γ() contains

information about the autocovariances of each component of the vector process, as well as the

cross-covariances of the various elements at different lags. The mapping from time to frequency

domain, F () = Γ(
−), shows that the spectrum is the Fourier transform of the autocovariance

sequence.

So far we have reviewed multivariate filters and properties of stationary vector time series.

Now, the basic aim of signal extraction is to estimate a target signal s, in a series y of interest,

or equivalently, to remove the remainder n, called the noise. A precise formulation is given by

y = s + n (4)

(for all −∞    ∞), which assumes that the observed time series {y} can be decomposed
into unobserved signal and noise, both of which have dimension  × 1. We also assume that s
and n are uncorrelated with one another, which is consistent with the large literature on signal

extraction theory. The two component decomposition in (4) is actually a general formulation of
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signal extraction problems, because we can identify {s} with a particular component of interest
or with an aggregate signal given by a sum of components, whereas {n} consists of the sum of

all the remaining parts of the observed time series.

The problem of multivariate signal extraction is to compute, for each  and at each time

, E[s() |{y}], the estimate that minimizes the Mean Squared Error (MSE) criterion. Interest
centers on linear optimal estimators following Whittle (1963), as usually undertaken in the lit-

erature. The linear solution is, strictly speaking, only appropriate for Gaussian data. That is,

the mean of the signal, conditional on the observations, is always given by a linear filter only

under normality. For non-Gaussian data, the linear estimates constructed here do not yield the

conditional expectation in all cases2. However, for any type of white noise distribution, our linear

estimators are still minimum MSE among all linear estimators.

In the case that both the signal and noise processes are stationary, the optimal filter for

extracting the signal vector is

W() = Γ()[Γ() + Γ()]
−1 (5)

where WK stands for the Wiener-Kolmogorov filter (see Wiener (1949); the formula under sta-

tionarity is also discussed more recently in Gómez (2006)). The filter for extracting the noise is

Γ()[Γ() + Γ()]
−1, which is 1 −W(), where 1 denotes an  × identity matrix.

Now (5) gives the time-domain characterization, which when expressed in the form (1) shows

the matrix weights applied to the series to extract the signal vector in a bi-infinite sample. To

convert to the frequency domain, substitute − for , which then produces the WK frf:

W(
−) = Γ(

−)[Γ(−) + Γ(
−)]−1

where the quantities Γ(
−) and Γ(−) are the multivariate spectral densities of signal and

noise, respectively. Note that a multivariate WK filter’s frf can have complex values, because

the off-diagonal entries of Γ(
−) and Γ(−) can be complex-valued when there is non-trivial

phase shift between the components of the vector process.

Below, we extend this result to the nonstationary case, both under very general conditions

on the component structure and under the similar specification form that usually holds for mul-

tivariate models used in research and applications, generalizing the classic results of Bell (1984).

The first formulation involves detailed results allowing for a flexible form where the component

design may differ across series. This would include, for instance, a situation where series have

stochastic trends with different orders of integration. The second version refers to the uniform

2For some non-Gaussian distributions, the optimal signal estimator can be computed with simulation techniques.

See Trimbur (2010) for an example with an irregular distributed as a Student-t. However, explicit formulas are

not available for most non-Gaussian distributions.
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nonstationary operators form, often used in time series analysis, where the component orders of

integration are the same across variables. Within this form, there are two possible portrayals:

first, in terms of ACGFs of “over-differenced" signal and noise processes, u and v defined below,

in which case the stationarity of the processes immediately guarantees that the filter and its frf

are well-defined; or second, explicitly in terms of signal and noise ACGFs (called pseudo-ACGFs

when the component is nonstationary), which is directly analogous to (5) in terms of stationary

ACGFs, in which case existence and convergence of the filter and its frf can be verified by taking

appropriate limits.

For the multivariate signal and noise processes, we consider all processes that are difference-

stationary: there is a “minimal" differencing operator (a polynomial in the lag operator that

has all roots on the unit circle), and there is no way to factor the polynomial so that the re-

maining factors form an operator that by itself renders the process stationary. This includes

openly formulated VARIMA specifications (see the discussion in Lütkepohl (2006) on integrated

processes), or structural forms that involve intuitive restrictions (that help in model parsimony

and interpretability).

We will use the term “core," to refer to the mean zero, covariance stationary process resulting

from differencing. Note that the noise process may be nonstationary as well, but the differencing

polynomials must be different from those of the signal process. This involves no loss of generality

in practice; it is a simple requirement for keeping signal and noise well-defined. Components may

also have co-integration or co-linearity, expressed as having a spectral density matrix for the core

process that is singular at some (finite set of) frequencies.

Consider the th observed process, {y() }. Since it is a difference-stationary process (e.g.,
VARIMA), by definition there exists an order  polynomial () in the lag operator  such

that {w()
 } = {()()y() } is covariance stationary. Similarly, we suppose there are signal and

noise differencing polynomials ()s and ()n that render each of them stationary, so that {u() } =
{()s ()s() } and {v() } = {()n ()n() }. As a special and leading case, it may occur that the signal
and noise differencing operators do not depend on , so that they are the same for each series

(though they still differ for signal versus noise); we refer to this situation as “uniform differencing

operators."

Let F 
u , F


v , and F


w denote the cross-spectral density functions for the th and th processes

for the signal, noise, and observed processes, respectively. These functions are the components of

spectral matrices (which are functions of the frequency ) denoted F u, F v, and Fw. We suppose

that Fw is invertible almost everywhere, i.e., the set Λ of frequencies where Fw is noninvertible

has Lebesgue measure zero. Note that if the data process is co-integrated (in the sense of Engle

and Granger (1987)), then Fw(0) is singular, but Fw() is invertible for  6= 0. However (as

shown below), if the innovations for {w} are co-linear (i.e., the covariance of the white noise
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process has determinant zero) then Fw() is singular for all values of , and our results don’t

apply — but neither is conventional model estimation possible. See the further discussion following

Theorems 1 and 2. It is convenient to define the so-called “over-differenced" processes given by

u
()
 = ()()s

()
 = ()n ()u

()


v
()
 = ()()n

()
 = ()s ()v

()
 

These occur when the full-differencing operator ()() is applied to signal and noise respectively,

resulting in covariance stationary processes that may have zeroes in their spectral densities.

Next, we assume that the vector processes {u} and {v} are uncorrelated with one another.
This is reasonable when signal and noise are driven by unrelated processes; for instance, the trend

may be linked to long-run factors (like the setting of contracts), while the short-run run noise

stems from temporary forces. The assumption of zero correlation also seems a natural choice

when a correlation restriction is required for identification.

Note that each nonstationary process {y() } can be generated from  stochastic initial values

y
()
∗ together with the disturbance process {w()

 }, for each , in the manner elucidated for the

univariate case in Bell (1984). The information contained in {y() } is equivalent to that in {w()
 }∪

y
()
∗ for the purposes of linear projection, since the former is expressible as a linear transformation

of the latter, for each . In model fitting and forecasting applications, a working assumption on

vector time series is that these initial values y
()
∗ are uncorrelated with the disturbance process

{w()
 }; we will assume a stronger condition that actually implies this assumption.

Assumption ∞. Suppose that, for each  = 1 2 · · ·   , the initial values y()∗ are uncorre-

lated with the vector signal and noise core processes {u} and {v}.

This assumption generalizes the univariate Assumption A of Bell (1984) to a multivariate frame-

work — each set of initial values y
()
∗ are orthogonal not only to the signal and noise core processes

for the th series, but for all  series. Set  = − and  = , and utilize the following nota-

tion, that for any matrix  the matrix consisting of only the diagonal entries is written e. Then
for nonstationary (and possibly co-integrated) multivariate time series, the optimal estimator of

the signal, conditional on the observations {y}, for each  and at each time , is given by a

multivariate filterW () described below.

Theorem 1 Assume that Fw() is invertible for each  in a subset Λ ⊂ [− ] of full Lebesgue
measure. Also suppose that the vector processes {u} and {v} are uncorrelated with one another,
and that Assumption ∞ holds. Denote the cross-spectra between {u} and {w} via Γuw(),
which has th entry F 

u ()
()
n (). Similarly, denote the cross-spectra between {v} and {w}

10



via Γvw(). Also, let eδ() denote the diagonal matrix with entries ()(). Consider the filter
W () defined as follows: it has frf defined for all  ∈ Λ via the formula

W () = eΓ−1w () heΓu()−
³eΓuw()Γvw()− eΓvw()Γuw()´Γ−1w () eδ()i  (6)

Moreover, we suppose that this formula can be continuously extended to  6∈ Λ, and we refer to

this extension by W () as well. Then the optimal estimate of the signal at time  is given bybs = W ()y. Let eΓuw()Γvw() − eΓvw()Γuw() be abbreviated by B(). Then the spectral
density of the signal extraction error process is given by

eΓ−1w ()eΓuw()F v()eΓ0uw()eΓ−1w () + eΓ−1w ()eΓvw()F u()eΓ0vw()eΓ−1w ()
− eΓ−1w ()B()Γ−1w ()B0()eΓ−1w ()

When the differencing operators are uniform, a compact matrix formula for F () is given by

F () = Γu()Γ
−1
w () = F u()F

−1
w () (7)

for  ∈ Λ, and by the limit of such for  6∈ Λ; the error spectral density is Γu()Γ
−1
w ()Γv().

Remark 1 Because Γw = Γu + Γv, (7) generalizes (5) to the nonstationary case. If some of

the differencing polynomials are unity (i.e., no differencing is required to produce a stationary

series), the formula collapses down to the classical case. In the extreme case that all the series

are stationary, trivially u = s and v = n for all times . The second expression for the frf

in (7) shows how this is a direct multivariate generalization of the univariate frf in Bell (1984),

which has the formula |()|2()().

Theorem 1 is worded so as to include the important case of co-integrated vector time series

(Engle and Granger, 1987), as Fw is only required to be invertible at most frequencies. We next

show that the key assumptions of Theorem 1 on the structure ofW () are satisfied for a very wide

class of co-integrated processes. We present our discussion in the context of uniform differencing

operators — a result can be formulated for the more general case, but it is much more difficult to

state, and the uniform differencing operator situation is sufficient for most, if not all, econometric

applications of interest.

The vector signal and noise processes satisfy s()s = u and n()n = v, and we suppose

that a Wold decomposition can be found for these core processes:

u = Ξ()ζ v = Ω()κ (8)

where {ζ} and {κ} are uncorrelated multivariate white noise processes. The MA filters Ξ() and
Ω() are linear and causal by assumption, and we assume that the white noise covariance matrices
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Σ and Σ are non-negative definite. Then F u() = Ξ()ΣΞ
0(), which is singular (for a given )

iff either |Σ| = 0 or there exists a matrix  (depending on ) such that 0Ξ() = 0. The former

case is described as co-linearity of the innovations, or in particular is referred to as “common

trends" when the signal is a trend (see Stock and Watson (1988)). The latter case is a type of co-

integration (with  the co-integrating relations), although more properly the term is only applied

when 0Ψ(1) = 0, i.e., there is a singularity at the  = 0 frequency. Singularities in the spectrum

of a core process can only arise in one of these two ways, as co-linearity or co-integration (in our

generalized sense). Moreover, in the former case it must follow that the spectrum is singular at

all frequencies, whereas in the latter case there could be an isolated number of singular matrices.

In order that the data core spectrum Fw is invertible almost everywhere, it is convenient to

assume that F v is positive definite at all frequencies; as shown below, this is a sufficient condition.

Such a noise core process is said to be invertible, by definition.

Proposition 1 Suppose that the differencing operators are uniform and that the core processes

follow (8). Also suppose that {v} is invertible. Then Fw is invertible except at a finite set of

frequencies, and W () defined in (7) can be continuously extended from its natural domain Λ to

all of [− ].

The argument also works with the roles of signal and noise swapped; we require that one of

the core component processes be invertible. So the formula for the WK frf is well-defined — by

taking the appropriate limits at the nonstationary frequencies — and (7) can be used to give a

compact expression for the filter, formally substituting  for  = −:

W () = Γu() [Γu() + Γv()]
−1
 (9)

This expresses the filter in terms of the ACGFs of the over-differenced signal and noise processes.

We can re-express this in terms of the so-called pseudo-ACGFs of signal and noise, which are

defined via

Γs() = Γu()
hes()es(−1)i−1 Γn() = Γv()

hen()en(−1)i−1
As usual, the tilde denotes a diagonal matrix; here the entries correspond to the differencing

polynomials for each series. This generalizes the ACGF structure from stationary to nonstationary

multivariate processes. Also Γu() = Γs()eδ()eδ(−1) and Γv() = Γn()eδ()eδ(−1), so that
when the differencing operators are uniform (9) reduces to (5). Even though Γs() and Γn()

are not strictly well-defined by themselves, as the infinite series representing their ACGF may

not converge, the cancellations that occur ensure that W () is indeed well-defined. Note that

it was not obvious at the outset that (5) would hold with pseudo-ACGFs replacing the ACGFs
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of the stationary case; the steps in the proof are crucial for verifying the form of the filter from

the differencing operators and core stationary processes. With (5) confirmed to hold generally,

we can directly form filters for the nonstationary models of interest for multiple economic series.

Whereas in the univariate case one can compute filter coefficients readily from the filter formula

(9) — by identifying the frf as the spectral density of an associated ARMA process and using

standard inverse FT algorithms — the situation is more challenging in the multivariate case.

Instead, coefficients would be determined by numerical integration. Although this may be done,

for practical applications we rather recommend the exact finite sample approach of the next

section. Of course, filters can be expressed for both signal and noise extraction, and trivially by

(7) the sum of their respective frfs is the identity matrix (as a function of ). This is analogous

to the univariate case, where signal and noise frfs sum to unity for all .

3 Multivariate signal extraction from a finite sample

We now discuss multivariate signal extraction for a finite sample from a time series, and present

exact matrix formulas for the solution to the problem. This represents the first treatment of

the multivariate case for either the stationary or nonstationary frameworks. Even away from

the end-points in a relatively long but finite sample, there is a certain attraction to having the

unique optimum signal derived from the underlying theory. However, the main interest for

applications like current monitoring of price trends lies in estimators near the end of series, for

which the formulas give an analytical characterization and reveal the explicit dependence on

series’ individual parameters, on cross-relationships, and on sample size and signal location.

As in Section 2, we consider  time series {y() } for 1 ≤  ≤  , and suppose that each

series can be written as the sum of unobserved signal and noise components, denoted {s() } and
{n() }, such that (4) holds for all . While in the previous section, we considered  unbounded

in both directions, here we suppose the time range of the sample consists of  = 1 2 · · ·   . We
will express the realizations of each series as a length- vector, namely y() = [

()
1  

()
2   

()
 ]

0
,

and similarly for signal, s() and noise, n(). For each , the optimal estimate is the conditional

expectation E[s()|y(1)y(2) · · · y()]. As in the previous section, the definition of optimality

used here is the minimum MSE estimator under normality and the best linear estimator with

non-Gaussian specifications.

So our estimate bs() can be expressed as a  × ( ) matrix acting on all the data vectors

stacked up, or equivalently as

bs() = X
=1

 y()

Each matrix   is  ×  dimensional. The notation here is as follows: the first superscript
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is associated with the output , whereas the second superscript is associated with the input .

Our task is to compute the entries of   such that error process bs() − s() is uncorrelated with
the observed data. As shown below, the coefficients of   depend heavily on the properties

of the Data Generating Processes (DGPs) for signal and noise. As in the previous section, our

treatment encompasses any general signal and noise (for each , ()s and ()n are composed of

fully distinct factors) processes with nonstationary operators that may differ across series.

We may express the specification of the finite series in matrix notation with ∆()y() being

a stationary vector, where ∆() is a  −  ×  dimensional matrix whose rows consist of the

coefficients of (), appropriately shifted. (For the treatment of the univariate case, see McElroy

(2008).) The application of each ∆() yields a stationary vector, called w(), which has length

 −  (so w() = [w
()

+1 · · · w()
 ]

0
). These vectors may be correlated with one another and

among themselves, which is summarized in the notation E[w()w()0] = Σ
w . We further suppose

that the differencing is taken such that all random vectors have mean zero (this presupposes that

fixed effects have been removed via regression). Note that this definition includes processes that

are nonstationary only in second moments, i.e., heteroskedastic. Therefore, the setup is somewhat

broader than in the previous section where the core processes were assumed covariance stationary.

This discussion can also be extended to the signal and noise components as follows. We form

the matrices ∆
()
s and ∆

()
n corresponding to the signal and noise differencing polynomials ()s

and ()n  Let u() = ∆
()
s s() and v() = ∆

()
n n(), with cross-covariance matrices denoted Σ

u and

Σ
v . Now assume there are no common roots among 

()
s and ()n , so that 

()() = ()s ()
()
n ().

Then as in the univariate case (McElroy and Sutcliffe, 2006), we have

∆() = ∆()
n ∆()

s = ∆()
s ∆()

n  (10)

where ∆()
n and ∆()

s are similar differencing matrices of reduced dimension, having  −  rows.

It follows that

w() = ∆()y() = ∆()
n u

() +∆()
s v

() (11)

and hence — if u() and v() are uncorrelated for all   —

Σ
w = ∆()

n Σ
u ∆

()
n

0
+∆()

s Σ
v ∆

()
s

0


We can splice all these Σ
w matrices together as block matrices in one large matrix Σw, which is

also the covariance matrix of w, the vector composed by stacking all the w(). A key condition

for optimal filtering is the invertibility of Σw. Further, the Gaussian likelihood function for the

differenced sample involves the quadratic formw0Σ−1w w, so parameter estimation on this basis also

requires an invertible covariance matrix. Below, we show that for possibly co-linear signal-noise

decompositions and homoskedastic core processes, the invertibility of Σw is guaranteed.
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Up to this point, we have set out notation and some basic working assumptions. For the signal

extraction formula below, we require a few additional assumptions: let Σ
u and Σ

v be invertible

matrices for each , assume that u() and v() are uncorrelated with one another for all  , and

suppose that the initial values of y() are uncorrelated with u() and v() for all  . These initial

values consist of all the first  values of each sampled series y(). This type of assumption is less

stringent than ∞ of the previous subsection, and will be called Assumption  instead.

Assumption  . Suppose that, for each  = 1 2 · · ·  , the initial values of y() (the first 
observations) are uncorrelated with u and v.

Since Assumption entails that the initial values of the observed process are uncorrelated with

w, it implies the condition often used to give a relatively simple Gaussian likelihood. Our main

result below involves block matrices, and we use the following notation. If  is a block matrix

partitioned into sub-matrices , then e denotes a block matrix consisting of only the diagonal

sub-matrices , being zero elsewhere.

Theorem 2 Assume that Σw is invertible, along with all Σ

u and Σ


v matrices, and that u

() and

v() are uncorrelated with one another for all  and . Also suppose that Assumption  holds.

Let

  = ∆()
n

0
Σ
v

−1
∆()
n +∆()

s

0
Σ
u

−1
∆()
s 

Then   is invertible. If bs = y is the optimal estimate of the signal, then the matrix  is

defined as follows. Letting Ψw = Σ−1w , we have

  =  −1
h
∆()
n

0
Σ
v

−1
∆()
n + Σ6=

³
∆()
s

0
Σ
u

−1
Σ
u ∆()

n

0 −∆()
n

0
Σ
v

−1
Σ
v∆

()
s

0´
Ψ
w∆

()
i

  =  −1Σ
=1

³
∆()
s

0
Σ
u
−1
Σ
u∆

()
n

0 −∆()
n

0
Σ
v
−1
Σ
v∆

()
s

0´
Ψ
w∆

()

for  6= . The signal extraction covariance matrix between the th and th error vectors is given

by  −1 −1, where   is given by

X
=1

h
∆()
n

0
Σ
v
−1
Σ
v∆

()
s

0 − ∆()
s

0
Σ
u
−1
Σ
u∆

()
n

0i
Ψ
w

h
∆()
n Σ

u Σ
u

−1
∆()
s −∆()

s Σ
v Σ

v

−1
∆()
n

i
+ ∆()

n

0
Σ
v
−1
Σ
v Σ


v

−1
∆()
n + ∆()

s

0
Σ
u
−1
Σ
u Σ


u

−1
∆()
s 

A compact matrix formula for  is given as follows. Define block-matrices  that have
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th block matrix entries given, respectively, by

 = ∆()
s

0
Σ
u

−1
Σ
u Σ


u

−1
∆()
s

 = ∆()
n

0
Σ
v
−1
Σ
v Σ


v

−1
∆()
n

 = ∆()
s

0
Σ
u
−1
Σ
u ∆

()
n

0

 = ∆()
n

0
Σ
v

−1
Σ
v ∆

()
s

0


Also let e∆ denote a block diagonal matrix with the matrix ∆() in the th diagonal. Then

 = e+ e
 =−1

h e + ( −)Σ−1w e∆i
 = + + ( −)Σ−1w ( −)0

and the covariance matrix of the error vector is −1−1.

Remark 2 These formulas tell us mathematically how each series y() contributes to the com-

ponent estimate bs(). From the formulas for   and   we see that only the noise in y() is

differenced, while for all other series both signal and noise are differenced. When there is no

cross-series information, i.e., Σ
u and Σ

v are zero for  6= , then clearly  and  are zero,

and  reduces to an -fold stacking of the univariate filter (−1 e is just the stacking of the

univariate matrix filters of McElroy (2008)).

The matrix formula for  is predicated on a specific way of stacking the time series data into

y. This is a particularly convenient form, since each sub-matrix   can be easily peeled off from

the block matrix  , and directly corresponds to the contribution of the th series to the signal

estimate for the th series. Stacking the data in another order — e.g., with all the observations

for time  = 1 together, followed by  = 2, etc. — would scramble the intuitive structure in  .

In particular, one may pass to this alternative stacking, written as

w = [
(1)
1  

(2)
1  · · ·  ()1  

(1)
2  

(2)
2  · · ·  ()2  · · · ]0

via application of a  ×  dimensional permutation matrix  . This format is more typical

for describing VARMA processes, for example (see Lütkepohl (2006)). The covariance matrix of

Σw has a familiar form, being block-Toeplitz with th block Γ−, the acf of {w}. Of course,
Σw = −1Σw−10, so invertibility of the one form is equivalent to invertibility of the other.

Let us consider any length  column vector  (which may be stochastic or deterministic),

consisting of  subvectors  of length  , where  = 1 2 · · ·   . Then

0Σw =
X


0Γ− =
1

2

Z 

−
0(−)Fw()() 
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where () =
P

=1 
−. Now in the case that the signal is co-linear (but the noise is not), there

exist a finite set of frequencies {} such that Fw() is not positive definite — see Proposition
1 and its proof for additional details. Hence it is possible to select  — corresponding to

this frequency  — such that 
0

(−)Fw()() is zero when evaluated at this  frequency.

However, the integrand above will be nonzero at all other frequencies; hence Σw is positive

definite, and therefore invertible. If on the other hand the innovations of {w} were co-linear, a
similar argument shows that Fw() is singular for all , and hence Σw would be singular.

But Σw is invertible for processes consisting of co-linear core signal and invertible core noise

(or vice versa), which indicates that maximum likelihood estimation is viable; the Gaussian log

likelihood is

log(wΣw) = − (w0Σ−1w w+ log |Σw|)2 (12)

up to a constant irrelevant for maximization (once we factor out the initial value vectors using

Assumption  ). It is interesting that the Whittle likelihood is not well-defined when Fw has

zeroes, as alluded to in the proof of Proposition 1.

The use of these formulas have some advantages over the state space approach. Certain

questions, which involve the covariances of the signal extraction error across different time points,

can be directly addressed with a matrix analytical approach. Also, the expressions are of prac-

tical interest when processes cannot be embedded in State Space Form (SSF); for example, a

long memory cannot be cast in this form without truncation, which radically alters the memory

dynamics. Generally, so long as the covariance and cross-covariance matrices used in Theorem 2

are available, the results apply. So we may consider heteroskedastic core processes and see the

exact functional dependence of the filters on each time-varying variance parameter.

Furthermore, we can estimate any linear function of the signal. Supposing that our quantity

of interest is s for some large matrix  applied to the stacked signal vector s (for example, s

could be the rate of change of the signal processes), then the optimal estimate for this quantity

is simply y by the linearity of the conditional expectation (for Gaussian time series). Also,

since the error covariance matrix for the estimation of s is −1−1, it follows that the error

covariance matrix (whose diagonals are the MSEs) for our estimate of s is −1−1  0.

Thus, for non-trivial problems a full knowledge of all the entries of  and  is required.

One particular case that is simple and of practical interest arises when  is composed of unit

vectors such that s = s(). That is, we are interested in the th component of the signal at

all sampled time points. Since s() is just a projection of s, its extraction matrix is given by the

same projection  applied to  . So the components of the optimal signal estimate are equal

to the optimal estimates of the components of the signal (this is just linearity of conditional

expectations).
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4 Signal extraction for related and common trends

We now use the general results of Sections 2 and 3 to treat a few stochastic trend models widely

used in econometrics. After reviewing these models, we develop the corresponding signal extrac-

tion filters, discussing some of the new, key aspects of the multivariate nonstationary case that

warrant special attention.

4.1 Discussion of models

Since many economic time series are subject to permanent changes in level, there has been

extensive research on models with stochastic trends. Models with related trends, where the

underlying permanent shocks are correlated, allow us to establish links between series in their

long-run behavior.

When there exists a particularly close relationship in the long-run movements across variables,

as when series are co-integrated, there are some special implications for trend extraction, as we

discuss later. A natural way to think about co-integration is in terms of common trends (i.e.,

co-linear innovations), as in Stock and Watson (1988) and Harvey (1989). A co-integrating

relationship implies a tight long-run connection between a set of variables, with any short-run

deviations in the relationships tending to correct themselves as time passes. Then, the long-run

components of different series move together in a certain sense (there exist linear combinations

of the trends that fluctuate around zero, i.e., are stationary). In the case of common trends, as

demonstrated in the next sub-section, the gain functions for signal extraction have a collective

structure at the frequency origin. Otherwise, in the absence of commonality, no matter how

closely related the trends are, the filters decouple at the zero frequency.

As in the treatment given in Nyblom and Harvey (2000), we define the vector process μ =

(
(1)
   

()
 )0 as the trend, ε = (

(1)
   ε

()
 )0 as the irregular, and y = (

(1)
   

()
 )0 as the

observed series. Then the multivariate Local Level Model (LLM) is given by

y = μ + ε ε ∼(0Σ) (13)

μ = μ−1 + η η ∼ (0Σ)

where(0Σ) denotes that the vector is white noise, i.e., serially uncorrelated with zero mean

vector and  ×  non-negative definite covariance matrix Σ; note that we may allow |Σ| = 0,
which means that the innovations are co-linear. The irregular {ε} accounts for transient factors,
for instance, short-run movements due to weather, and is assumed to be invertible. However, the

trend innovations {η} are possibly co-linear, which is equivalent to saying that Σ may have
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reduced rank    . When this occurs, we can rewrite (13) as

y = Θμ†+μ0 + ε (14)

μ† = μ†−1 + η† 

For identification, the elements of the load matrix Θ are constrained to satisfyΘ = 0 for   ,

and Θ = 1 for  = 1   Hence, the long-run movements in y depend on a smaller set of

processes, arranged in the-element vector μ† , that tie together the series and are called common

trends. These are driven by the disturbance η† whose × covariance matrix, Σ† is diagonal.

The length- vector μ†0 contains zeros in the first  positions, and constants elsewhere. The

common trend form makes the model more parsimonious, which can lead to better parameter

estimates and may improve its descriptive ability.

As an I(2) process, the Smooth Trend Model (STM) specification accounts for a time-varying

slope:

y = μ + ε ε ∼(0Σ)  = 1   (15)

μ = μ−1 + β

β = β−1 + ζ ζ ∼(0Σ)

This formulation tends to produce a visibly smooth trend. For reduced rank Σ, the common

trends model is

y = Θμ† + μ0 + β0+ ε (16)

μ† = μ†−1 + β† 

β† = β†−1 + ζ†  ζ† ∼(0Σ†)

where β† has  elements (  ), and Σ† is diagonal. The load matrix Θ has elements

Θ = 0 for   , and Θ = 1 for  = 1  . The possibility of common slopes has been

little considered in empirical work.

The multivariate model captures the crucial aspect that related series undergo similar move-

ments; pooling series allows us to more effectively pinpoint the underlying trend of each series.

Further, the multivariate models give a better description of the fluctuations in different series

and so the filters’ compatibility improves even more. Parameter estimates for each series improve

and the new information is available for signal estimation through the estimated correlations,

which discriminate between trend and stationary parts.

4.2 Gain Functions and Finite-Sample Filters

Now we present expressions for the gain functions in the bi-infinite case and for the input matrices

needed for the exact filters with finite-length series. Throughout this sub-section,  denotes an
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integer where  = 1 for the LLM and  = 2 for the STM. Because

F u() = Σ F v() = Σ Fw() = Σ + |1− |2Σ

the quantities in the matrix formulation of Theorem 1 are Γu() = Σ and Γv() = |1− |2Σ.

Then the multivariate frf, equivalent to the gain, is

W () = Σ

¡
Σ + |1− |2Σ

¢−1
 (17)

The time domain expression for the filter follows by replacing  by  in (17).

Recall that the component functionsW () tell us how the th series’ dynamics are spectrally

modified in producing the th output series. The corresponding component gain functions are

tied closely to the values of the variances and the correlations. ConsiderW (1), or the value of the

gain function at  = 0; this is of special interest, since it relates to how the very lowest frequency

is passed by the filter. In the case that Σ is invertible (i.e., the related trends case — where

Θ can be taken as an identity matrix), we easily see that W (1) = 1 ; in other words, related

series have no impact on the low frequency parts of the filter. Note that this separation of gains

only holds at the extreme frequency of exactly zero; at all nonzero frequencies, even very low

values, the frf is typically not diagonal. The basic principle is that without the deep relationship

of co-integration, the filters select out various trends that eventually diverge and that become

specific to each series.

However, if Σ is non-invertible, as in the common trends case, then a different situation

emerges. Suppose that Σ = ΘΣ†Θ
0, and using (A.1) — see the proof of Proposition 1 — we

obtain

W (1) = lim
→0

W () = Θ
¡
Θ0Σ−1 Θ

¢−1
Θ0Σ−1 

This formula reveals how the filter treats the utmost lowest-frequency components. In the special

case of one common trend with Θ =  — where  is defined to be the column vector of ones —

and Σ is a multiple of the identity matrix, we get W (1) = 0 , which equally weights the

contribution of each input series. But for a more general Θ matrix, a differentiated weighting

occurs across the series. For instance, a series with larger Θ entries will tend to have the trend

amplified. Likewise, for Σ having different diagonal elements, the series with larger values will

generally be assigned less weight as their signals are clouded with more noise.

The frfs for related trends and common trends filters are similar away from frequency zero.

The general situation is that Σ = 0 for an orthogonal matrix  and a diagonal matrix 

with non-negative eigenvalues. When common trends are present, only  of these eigenvalues

are nonzero. But for an irreducible related trends scenario, all  eigenvalues are positive; in this

case, we can plug 0 in for Σ in (17) to give

Ψ() = 0
¡
0 + |1− |2Σ−1

¢−1

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Now let us suppose that we continuously change our related trends model to a common trends

model, essentially by letting  − of the eigenvalues of  tend to zero. How does the frf change

as a result? The limit of 0 can be written as ΘΣ†Θ
0; therefore the frf for the related trends

model tends continuously to the frf for the common trends model — at all frequencies except  = 0

— as the eigenvalues of Σ tend to zero. Hence, low frequencies — apart from frequency zero — are

treated similarly by the signal extraction frfs, when the correlations are high (which implies the

determinant of Σ is close to zero).

But the treatment of frequency zero remains distinct; given the discontinuity in behavior of

the frfs at the lower bound of the spectrum, which represents the longest periodicity, it becomes

important to clearly differentiate between related trends and common trends. Taking the limit

of the related trends models as it tends toward a common trends model gives a different result

from actually evaluating the common trends model itself. This occurs because for any invertible

matrix Σ, no matter how close it is to being non-invertible, the filter still satisfiesW (1) = 1 

The same analysis also shows that signal extraction MSE can differ somewhat between the

common and related trends cases. The error spectral density is Σ

¡
Σ + |1− |2Σ

¢−1
Σ, whose

average integral equals the signal extraction MSE (the diagonals being of principal interest). But

since the values at  = 0 can be quite different for the common and related trends cases — but with

similarity elsewhere if correlations are close to full — the resulting MSEs need not be the same.

Due to the continuity of these functions in , no matter how close the related trends eigenvalues

are to zero, the common trends frf will differ from the related trends frf in a neighborhood of

frequency zero, yielding a discrepancy in their integrals (we have verified this numerically).

Therefore, it is important to use the exact common trends formulation in Theorem 1 when

this case applies, and not approximate with a close related trends formulation, when computing

gain functions or signal extraction MSE. Similar observations hold for finite-sample MSEs derived

from Theorem 2: small discrepancies arise between the common trends case and the related trends

case with very high correlation.

Moving to the analytical finite-length filters, the covariance matrices needed in Theorem 2 are

Σu = Σ ⊗ 1− Σv = Σ ⊗ 1  (18)

where ⊗ denotes the Kronecker product (Lütkepohl, 2006). Therefore we obtain block-diagonal
matrices (because the processes are white noise) with entries given by the respective members of

the error covariance matrices. Note that in the case of common trends, we substitute Σ = ΘΣ†Θ
0.

It follows from (18) that

Σw = Σ ⊗ 1− + Σ ⊗∆∆0 (19)

where the matrices ∆ are ( −)×  dimensional, with row entries given by the coefficients of

(1− ). Observe that (19) can be used as the basis for an explicit Gaussian likelihood for the
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observed data, given the Assumption  that initial values and w are orthogonal.

Also, (18) and (19) allow us to compute the signal extraction quantities of Theorem 2. Details

are omitted here, but R code that provides both the exact Gaussian likelihood and the filter and

error covariance matrices  ,  , and  is available from the authors.

4.3 Inflation co-movements and trend estimation

The models discussed in the previous sub-section provide useful starting points for developing UC

models and trend estimators for the core and total US inflation time series. While considerable

work has been done on extensions of the univariate model such as stochastic volatility (see Stock

and Watson (2007) or richer stationary dynamics around the trend (e.g., Cogley and Sbordone

(2008)), we do not address these model aspects here because our principal goal is to illustrate

the multivariate extension of the signal extraction framework with integrated series. The basic

stochastic trend specifications already give the main insights about mutually consistent modelling

and signal estimation for a set of related nonstationary variables: the role of trend behavior, of

series-specific parameters, and of component correlations across series. Richer models and filters

have the same essential foundation — the nonstationary part often represents the most crucial

part of the design — but with more subtle dependencies or more inter-relationships and more

parameters. Also, for our particular example of US inflation over the last twenty five years or

so, the basic models already give a decent statistical representation, as evidenced in our results.

To the extent it represents the rate at which inflation is likely to settle moving forward, trend

inflation is worth monitoring by central banks and could even be a significant factor in monetary

policy deliberations. In a time series framework, we can set up an explicit model containing a

trend, specified as a stochastic process with permanent changes, and an additional component

reflecting short-term and less predictable variation. One advantage of such a framework is that,

with a flexible modeling approach and loose constraints on its structure and parameters, we may

tailor the model to the data of interest, making it consistent with their dynamic behavior and

suitable for estimating useful signals both historically and currently. A model with stochastic

trend also gives a convenient way to describe properties like inflation persistence (as mentioned

in Cogley and Sbordone (2008), for instance), as the permanent component evolves slowly over

time.

Here, we focus on the trend in total inflation as our measure of the underlying rate since

the total includes the full expenditure basket, including items like gasoline, of the representative

consumer. For clarity, we use "core inflation" to refer specifically to inflation for all products

excluding food and energy goods. In other usage, the term "core" inflation has sometimes been

used interchangeably with "trend" inflation, the idea being that simply stripping out two of the
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most volatile components in inflation already gives a better representation of long-run signal.

However, equating core with trend neglects the important role of food and energy costs for the

typical household, and it fails to account for the presence of both long-term and short-term

movements in core as well as total. With much of the irregular component removed, the core

index has additional information, which we can use in the framework of a bivariate time series

model to improve the trend estimator in total inflation. In terms of notation, we consider  = 2

with core and total arranged in the observation vector with core being the first element, and let

 denote the correlation across series for a given component; for example,  is the correlation

between the irregulars in the core and total series. The common trend specification has  = 1;

for identification, we take the base trend to represent that of core inflation, with the load matrix

taking the form [1 ]0 where the scalar  gives the coefficient in the linear mapping from trend

core to trend total.

The models used here generalize some previous treatments. Cogley (2002) uses a univariate

version of a specific model used here. Kiley (2008) considers a bivariate common trend model

with a random walk and with the loading factor constrained to unity. Here, we consider two

possible trend specifications, relax the assumption of perfect correlation, and in the common

trends form, allow the loading factor to be unrestricted. While it seems entirely reasonable that

the trends in core and total are closely related (both because the core is a large fraction of the

total basket of goods and because it is well known that price changes for the food and energy

group are dominated by temporary factors), whether there are correlated or common trends is

essentially an empirical question; setting up appropriately constructed models and fitting them to

the data provides a coherent basis for addressing this question and for measuring the correlations

between both trend and noisy movements as parameters. Finally, restricting the load parameter

to one implies that core and total inflation trends are identical, which is not necessarily true given

the share of food and energy in the total index and a possible stochastic trend in the food and

energy portion, in general having different properties from the core trend.

We use inflation rates based on the price index for personal consumption expenditures (PCE).

Core and total PCE inflation represent widely referenced data in research studies and current

reports, and they are included in the economic projections of FOMC meeting participants. In

considering the welfare of society, total PCE inflation gives a valuable measure, intended to

capture cost changes for the actual consumption basket of the population. The base data are

the quarterly indices for total and core PCE prices from 1986Q1 to 2010Q4 (Source: Bureau

of Economic Analysis). Inflation is defined as 4 · log(−1) for price index . Inflation

fluctuations appear to have a different structure prior to the sample used here; for example, as

apparent in Figure 1, there is no episode, post-mid 80s, comparable to the Great Inflation of the

70s and early 80s. Following this time of high levels and volatile movements, inflation seems to
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have settled into a different pattern of variation, with a more stable level and with temporary

components tending to dissipate rapidly. Economists have discussed various reasons for this new

regime, such as a more effective anchoring of inflation expectations.

We estimate the models by Maximum Likelihood3. Though the computation of the likeli-

hood relies on Gaussian distributions, the assumption of normality is actually not needed for the

efficiency of the resulting MLEs; see Taniguchi and Kakizawa (2000). With the model cast in

state space, the likelihood is evaluated for each set of parameter values using the prediction error

decomposition from the Kalman filter; see Harvey (1989) or Durbin and Koopman (2001). The

parameter estimates are computed by optimizing over the likelihood surface. Programs were writ-

ten in the Ox language (Doornik, 1998) and included the Ssfpack library of state space functions

(Koopman et. al., 1999) for parameter estimation routines.

Local level results are in Table 1 for the univariate case. While the value of 2 has a similar

magnitude for core and total, the variance of the irregular is far larger for total inflation. The

application of the signal extraction formulas, given the estimated parameters, yields the trends

shown in Figure 1. The confidence bands around the trends represent one standard deviation

above and below the conditional expectation - the point estimate - taken at all time periods.

Each trend meanders throughout the sample, its basic level evolving slowly over the sample period,

and it also undergoes frequent and subtle adjustments on a quarterly basis (due to scaling, this is

more evident in the graph for core). Such an adaptive level seems reasonable to the extent that

underlying inflation is affected by factors that are constantly changing. The signal-noise ratio

 = 2
2
 indicates the relative variability of trend and noise (for a given model structure). The

value of  reported in the table is much greater for core; this contrast gives a precise statistical

depiction and quantifies the informal expression that "core inflation has more signal".

Table 1 also reports three measures of performance and diagnostics. Analogous to the usual

regression fit, 2 is the coefficient of determination with respect to first differences; the values in

the table indicate that a sizeable fraction of overall variation is explained by the models beyond a

random walk, especially for total, where the extraction of the more volatile irregular in producing

the trend leads to a favorable fit. The Box-Ljung statistic ( ) is based on the first  residual

autocorrelations; here  = 10. The degrees of freedom for the chi-squared distribution of ( ) is

 −+1, where  is the number of model parameters, so the 5% critical value for 2(9) is about

16.9. Core and total inflation have roughly equivalent values of ( ) clearly below the 5%

cutoff. The trade-off between fit and parsimony is expressed in the Akaike Information Criterion

3As an aside, we independently estimated all the models using (12) and our matrix expressions for Σw, and

obtained nearly identical results. Note that, as shown in Bell and Hillmer (1991), a state space likelihood corre-

sponds to the Gaussian likelihood under Assumption ∞ if it is initialized using the transformation approach of

Ansley and Kohn (1985); other initializations, such as the diffuse, can produce different results.
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(AIC), defined by  = −2 log ̂+ 2 where log ̂ is the maximized log-likelihood — see (12).
The set of results for the bivariate case, shown in Table 2, confirm the utility of including

the core inflation series in the model. Relative to univariate, the −statistic for total declines
modestly for the bivariate model, while the coefficient of determination rises significantly, with

2 now measuring over 35% for total inflation. Shared parameters are shown in Table 2b; the

close connection between the two series mainly appears in the trends, for which the correlation

between the disturbances is estimated as unity. The cross-correlation for the irregulars takes on

a smaller positive value of about  = 05. As the perfect correlation condition holds, we may

directly reformulate the model as having a single common trend. As reported in Table 2b,  is

somewhat less than one; the AIC decrease reflects the reduction in the number of parameters

(values of AIC can be used to compare common and related trends models for either the LLM

or STM, but cannot be used to compare an LLM to an STM, because they have different orders

of integration.) Figure 2 shows the resulting trend in total inflation and compares it with the

univariate output. The solid lines pertain to the bivariate estimates. There are noticeable

differences in both the trajectory of the bivariate trend and in the substantially reduced degree

of uncertainty associated with its estimation.

We can now use our signal extraction results to show how the model-based estimator makes

optimal use of the information that core inflation gives about the trend in total. The filters,

estimated from the model and applied to bivariate dataset, have coefficients in the form of 2× 2
weight matrices. An equivalent formulation expresses the bivariate filter as a 2 × 2 matrix of
scalar filters of the usual form; for each element, figure 3 plots each filter weight against the

time separation between weighted observation and signal location. The core-to-core weighting

pattern in the upper-left box nearly matches the decay pattern of an exponential on each side

(there is a slight discrepancy as the weights dip just below zero at the ends). Apart from a very

slight constant offset, the weights for total-to-core seem to follow a negative double exponential.

Therefore, the current and adjacent values of core inflation are somewhat overweighted, with a

modestly-valued moving average of total inflation subtracted. (The small constant offset is due

simply to the linear relationship between the two trends.) The bottom-left box shows the core-

to-total weights, also resembles a shifted double exponential (with a slightly reduced maximum,

compared to core-to-core, to dampen the trend variability a bit). A negative offset is now readily

apparent, with the weights going negative after five lags or so, again, from the linear linkage. This

kernel is then set against a total-to-total pattern which, like the total-to-core cross filter, has the

shape of an inverted double exponential, adjusted by a fixed amount.

The gain functions (for the hypothetical, doubly infinite series) are shown in figure 4. The

filter for core-to-core has the usual shape of a low-pass filter, representing a standard focus on

low frequencies. The gradual decay of the core-to-core low-pass results from the slow decline of
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the trend pseudo-spectrum and its overlap with the flat spectrum of the white noise irregular.

The gain rises modestly above unity at the low end, indicating a small expansion of amplitudes.

Correspondingly, the cross-gain for total-to-core is less than or equal to zero everywhere, reflecting

an opposite effect due to total inflation.

As the major portion of the trend in total is assessed by smoothing the core rate, this leads

to a core-to-total filter that also resembles a low-pass filter. Now the gain reaches a maximum

somewhat below unity, so the filter diminishes slightly the strength of the trend core movements;

this contribution is then combined with another reflected (about the frequency-axis) low-pass

filter applied to total.

For the smooth trend model, given in (15), the direction adjusts gradually, suggesting slowly

changing long-run factors. While the smooth trend model has been successfully applied in

research such as Harvey and Trimbur (2003), who examine cycles and trends in economic activity

series, the multivariate smooth trends model has not yet been used for inflation data. Now,

the specification allows trend inflation to increase or decrease going forward, with the rate of

change subject to permanent shocks, whereas the local level model simply projects the current

level ahead. As a result, it gives scope for a different view of trend inflation connected to most

significant and long-run transitions in the rate over the sample period.

The results, shown in Tables 3 and 4, indicate the smooth trend as another effective tool for

inflation, as there is little difference in the fit measure and diagnostics relative to the local level

model. There is again a clear improvement in the fit and residual serial correlation in moving to

the bivariate model. For the I(2) model, the trends in Figure 5 show stable variation for which

the major trending phases and turning points become clearer, than for the more reactive local

level. Basically, the estimated trend of the I(2) model concentrates on the lowest frequency,

major transitions, for instance, the persistent rise in trend inflation moving into the mid-2000’s,

followed by stalled gains and a peak during 2007.

The correlation between the slope disturbances is unity, signifying a very close connection. as

the pace of adjustment of trend moves together for core and total. Figure 6 contrasts the resulting

trend with the univariate output. The solid lines, which show the estimates and confidence bands,

indicate that the path of the bivariate trend exhibits somewhat more variation over the sample

and is estimated with greater precision. The associated common trend model has the form of

(16) with the loading on core normalized to one and a load parameter  applied to total. The

reported value of  is close to one. The weighting kernels for this case are shown in Figure

7. Compared to the local level case, the trend weights for core-to-core are spread over a longer

range, with a slower rate of decay with lag length. This difference in weighting pattern gives

rise to the smoother trend. As before, a weighted average (offset) of the total inflation series is

subtracted from smoothed core inflation (also offset) to form the trend estimate in each series.
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From the frequency domain perspective, the persistence in the direction of the trend and its

relative smoothness result from greater concentration on low frequencies than for the random

walk trend. The resulting set of low-pass filters for the smooth trend model is shown in figure 8.

For both series, the gain applied to core inflation cuts off more sharply than the gains in figure

4, and this contribution is set against a negative gain, operating on total inflation, that also falls

to near zero more rapidly. The greater effectiveness of the gain in cutting out high frequencies

leads to the contrast in visual properties of the smooth trend compared to the local level case, as

indicated in figure 9.

The formulas presented above reveal analytically how to make the most efficient use of series

with high relative signal content, whose components correlate with the target’s. The substantially

higher signal-noise ratio of core, and to some extent also the positive irregular correlation, affects

the filter design. A pronounced focus on core, which is actually over-weighted and compensated

for by subtracting some signal in total, appears to help avoid large errors in favor of more frequent

smaller errors in the signal extraction (as the estimator satisfies the minimum MSE optimality

criterion).

Compared to a simple reliance on core, the optimal measurement of trend has some basic

differences. In both the local level and smooth trend cases, the estimation of each trend starts

with the extraction of noise from core. To extract the trend in total inflation, although the

emphasis remains on core, a different moving average is applied to the core rate (adjusted by

a linear function compared to the weights for computing core trend), which is then set against

a modest weighted average of the total rate. So, the measurement of total’s trend relies also

to some extent on total (and likewise for the trend in core). Our example with trend inflation

illustrates how the possibility of contrasting trend structures, different properties of individual

series, and linkages across series, together exert important effects on the weight and gain patterns

for signal estimation.

While our illustrations have used simple stochastic trend plus noise models, they already show

that the exact optimal weighting of just two series has non-obvious aspects such as a slight over-

emphasis on the signalling series compensated by subtracting a weighted average of the noisier

target. When using more complex specifications to generate even more refined trend estimates,

while the set of determinants would expand to include, for instance, variance-ratios involving

disturbances for other components such as cycles, one would encounter the same essential issues

as in our illustration. The precise way to best combine two or more series with variable signal

content, that may have multiple components, depends now on the matrix structures expressing the

complete set of dynamic relationships. Our new results allow us to solve the general formulation

of such problems explicitly, that would either lie outside our ability to intuit the optimal extraction

of the signal or where reliance on intuition alone would lead to inefficient use of the available data
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(and would preclude knowledge of the probable error or of the uncertainty in our estimates).

5 Conclusions

Applications of signal extraction intertwines with areas like current analysis, policy-making, and

forecasting; in this context, multivariate frameworks may yield more informed and accurate esti-

mates of components of interest, while incorporating more of the available information in the form

of additional series and their cross-relationships. Often the economic data involved show non-

stationary behavior, and the related stochastic trends across series represent a primary signal of

interest, whose estimation also substantially influences the measurement of any other components

present in the series.

Here, we have generalized the well-known Wiener-Kolmogorov formula to the situation of

interest in econometrics, which represents a key theoretical foundation and allows us to derive

new results on signal estimation for multiple economic time series. The effective modelling of co-

movements across related time series has been the subject matter of some of the major ongoing

developments in econometrics in statistics, and correspondingly, a wide range of multivariate

signal extraction systems appear in economics and other fields. The contributions of this paper

substantially extend our understanding of such problems; now we can examine the analytical

expressions for the optimal set of weight polynomials, applied to the observation vectors, based on

the matrix ACGFs or pseudo-ACGFs. The bi-infinite analysis shows, in compact form, precisely

how to best use the new information, in addition to the component relationships in the signal’s own

reference series, to construct estimates. When series with high signal content are readily available,

as in the total-core inflation example, we can derive the adjustment and shifting of model-based

weightings on the observations, quantifying how it depends on the cross-correlations and variances.

This mathematical precision, together with the accompanying insight and knowledge about the

signal estimation, may provide the basis for improved treatment of and better understanding

of existing contexts. Our formulas also allow us to derive new signal estimators for multiple

nonstationary time series, expanding the scope of methodology in economics and other fields.

The finite sample time-domain formulas, which we have used for the actual application of the

filters, account for the dependence of the correct optimal filters on series length and signal loca-

tion. The new theoretical content consists of general analytical expressions for weight patterns,

that reveal precisely how series length, signal location, and parameters (including those governing

dynamic linkages among series) jointly affect the estimators. From a methodological perspective,

our contribution expands the array of available computational strategies, in particular the widely

used state space approach. The direct matrix approach includes extensions, such as long-memory,

not easily handled in state space. As another example, it allows us to explore signal extraction
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theory in the presence of time variation in variances — a model aspect of extensive interest in

the time series literature — in the multivariate extension to McElroy (2008), who showed initial

results for the univariate case.

While our results cover ground complementary to the state space approach, our method offers

a different, direct route to calculation (results in Bell and Hillmer (1991) indicate that a correctly

initialized Kalman filter will produce Gaussian conditional expectations that are in agreement with

standard initial values assumptions such as those made in this paper). The complete functional

form of the optimal asymmetric filters for multiple series may also prove useful toward improving

practice, as, for instance, signal detection properties toward the end of the available data remain of

considerable importance for researchers and, perhaps, policymakers. The method can also readily

produce useful additional information, e.g., quantities like signal velocity, or rates of change. As

another example, we may examine signal estimation diagnostics that indicate performance in

this context, analogous to statistical measures for specification tenability in a model comparison

context.

In addition to providing the base for eliciting movements of interest (or certain properties of

these movements), signal-noise structures also represent candidate classes of time series models,

useful for the typical problems like historical summary and interpretation and explanatory analysis

as well as forecasting. These formulations offer useful windows into patterns in fluctuations, and

we can handle co-integration with common driving forces for the stochastic trends or analogously,

linked stationary, serially correlated elements in groups of series. So we can unify modelling,

descriptive analysis, and forecasting with signal extraction frameworks, including classic ones —

connected to the kind of macroeconomic story-telling useful for discussions among economists

and policy-makers — like those used to estimate trends (such as potential output or the NAIRU)

or business cycle components.

Based on the core property of optimality and adaptability to time series dynamics, our contri-

butions provide a cornerstone for signal extraction theory and estimator design in econometrics:

completing a well-known line of contributions (Wiener (1949), Whittle (1963), and Bell (1984))

and generalizing the matrix method, a direct alternative to the popular state space approach

with new theoretical content for finite samples. As the formulations we consider include highly

general multivariate specifications for nonstationary sets of time series, our results have a broad

scope and allow for comprehensive development and investigation of a very wide range of situ-

ations, including advances in existing areas like trend analysis, as well as new signal extraction

architectures that may emerge from future research and experience with economic fluctuations.
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Appendix

Proof of Theorem 1. The action of each filter on a time series is obtained by replacing  by

 and  by −1. The error process is defined via ² =W ()y − s. (It is also easy to derive an
expression for 1−W (), which has the same formula as (6) but with signal and noise swapped.)

Then applying (6) to this error decomposition yields

² = eΓ−1w ()³eΓvw()Γuw()− eΓuw()Γvw()´Γ−1w ()w

+ eΓ−1w ()eΓuw()v − eΓ−1w ()eΓvw()u
One can swiftly see the stationarity of the error process, as well as its orthogonality to w+ for

all  and any . In the expectation calculations, we can use the Cramer representation for {w}
to get expressions involving integrals — then the fact that the frf is not defined on a set of measure

zero becomes irrelevant. Moreover, since the error process only depends on {u} and {v}, it
is orthogonal to the initial values of the data process as well, by Assumption ∞. Hence the

error process is uncorrelated with {y}, proving the optimality of the signal extraction filter. The
formula for the error spectral density also follows from the above description of the error process.

Under the assumption that the differencing operators are uniform, we have (since diagonal

matrices commute with any other matrix)

eΓvw()Γuw()eδ() = eΓv()Γu()eΓuw()Γvw()eδ() = eΓu()Γv()

Using this relation produces

W () = eΓ−1w () heΓu() +
³eΓv()Γu()− eΓu()Γv()

´
Γ−1w ()

i
= eΓ−1w () heΓu()Γu() + eΓv()Γu()

i
Γ−1w ()

= Γu()Γ
−1
w ()

Similar substitutions in the error spectral density produce, after much algebra, the stated formula.

2

Proof of Proposition 1. The spectral density of the differenced data process is

Fw() = |n()|2Ξ()ΣΞ
0() + |s()|2Ω()ΣΩ

0()

For any fixed , this expression is the linear combination of a positive definite and a non-negative

definite matrix. So long as |s()|2 is nonzero, Fw() will be invertible, but otherwise the matrix

is singular. Let () = |n()|2 and () = |s()|2 for short. If  is a root of , then

Fw() = ()Ξ()ΣΞ
0()
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where  = −. If this matrix has determinant zero, then either |Σ| = 0 or there exists some
matrix  (depending on ) such that 

0Ξ() = 0. The former case corresponds to co-linearity

of the signal core process, whereas the latter case is discussed further below. If the signal core

process is co-linear, then from the singular value decomposition of Σ we can write this matrix

as ΘΣΘ
0. Here Σ has reduced dimension corresponding to the number of nonzero eigenvalues

of Σ, and Θ is rectangular. Then the Sherman-Morrison-Woodbury formula (Golub and Van

Loan, 1996) yields

F−1w () = −1()[Ω()ΣΩ
0()]−1 − ()

()
[Ω()ΣΩ

0()]−1Ξ()ΘΣ

·
n
()1 + ()Θ0Ξ0()[Ω()ΣΩ

0()]−1Ξ()ΘΣ

o−1
·Θ0Ξ0()[Ω()ΣΩ

0()]−1

This formula is quite informative: the above derivation shows that F−1w is bounded for all ,

even in a neighborhood of . Unfortunately, the matrix Fw is not invertible at , and the rate

of explosion of −1() is generally such that the Whittle likelihood (see (3.1.5 of Taniguchi and

Kakizawa (2000)) is not well-defined.

However, the frf (7) for any  such that () 6= 0 is given by

W () = 1 − ()Ω()ΣΩ
0()F−1w ()

= ()Ξ()ΘΣ ·
n
()1 + ()Θ0Ξ0()[Ω()ΣΩ

0()]−1Ξ()ΘΣ

o−1
·Θ0Ξ0()[Ω()ΣΩ

0()]−1

and the limit as →  of this is well-defined; we set () = 0 and () = () (which is nonzero,

since the signal and noise differencing polynomials are relatively prime by assumption). That is,

W () = ()Ξ()ΘΣ ·
n
()Θ

0Ξ0()[Ω()ΣΩ
0()]

−1
Ξ()ΘΣ

o−1
·Θ0Ξ0()[Ω()ΣΩ

0()]
−1
 (A.1)

Now let us treat the case that the innovations are not co-linear, and yet 0Ξ() = 0 at some

measure zero set of frequencies (with a different  for each frequency ). Let Λ denote the set of

frequencies where Fw is invertible, so that

Γu()Γ
−1
w () = 1 − ()

¡
1 + ()Fu()F

−1
v ()

¢−1


which is well-defined for all frequencies ; for  6∈ Λ, we can take the limit as  → , since

the matrix inverse in the above expression always exists. The limit is just 1 , so W() can be

continuously extended to all frequencies. This completes the proof. 2
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Proof of Theorem 2. The invertibility of each   follows from the univariate argument in

McElroy (2008), using the fact that ()s and ()n share no common factors. The signal error for

the th signal is

() = bs() − s() =X
 6=

 y() +  n() − (1−  )s()

Optimality of the matrix formulas follows from demonstrating that () is orthogonal to y, the

stacking of the individual data vectors y(). As in Bell (1984), we can write y as a linear combi-

nation of w and various initial values for all the component series. Utilizing Assumption  , it

is then sufficient to demonstrate that () is uncorrelated with w. Noting the formula for 1− ,

we obtain

() =
X
 6=

 −1
X
=1

¡
 −

¢
Γww

()

+ −1
h
∆()
n

0
Σ
v
−1
v() + Σ6=

¡
 −

¢
Γw∆

()
s v

()
i

− −1
h
∆()
s

0
Σ
u
−1
u() + Σ6=

¡
 −

¢
Γw∆

()
n u

()
i


Next, we show that the covariance between this error vector and each w() is zero for each .

Noting (11), we obtain

E[()w()0] =
X
 6=

 −1
X
=1

¡
 −

¢
ΓwΣ


w

+ −1
h
∆()
n

0
Σ
v
−1
Σ
v ∆

()
s

0
+ Σ6=

¡
 −

¢
Γw∆

()
s Σ

v ∆
()
s

0i
− −1

h
∆()
s

0
Σ
u
−1
Σ
u ∆

()
n

0
+ Σ6=

¡
 −

¢
Γw∆

()
n Σ

u ∆
()
n

0i
= −1

X
=1

¡
 −

¢X
 6=

ΓwΣ

w

+ −1Σ6=
¡
 −

¢
ΓwΣ


w

+ −1 ¡ −
¢


Consider the first term. By the definition of Γw , we know that
P

 Γ

wΣ


w is a matrix of zeroes

unless  = , in which case it is an identity matrix. As a result, the first term can be rewritten as

 −1 ¡ −
¢− −1

X
=1

¡
 −

¢
ΓwΣ


w 

The left-hand term here cancels with the third term above. The right-hand term here actually

cancels with the second term above, since when  =  we get

∆()
s

0
Σ
u

−1
Σ
u∆

()
n

0 −∆()
n Σ

v

−1
Σ
v ∆

()
s

0
= ∆() −∆() = 0
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by (10). This completes the proof of optimality. The signal extraction covariance matrix is

produced by using the above expression for () in E[()()0], after much algebra.
To prove the matrix form of the results, note that the th block matrix of the putative

formula for  is

X
=1

 −1
Ãe +

X
=1

¡
 −

¢
Γw∆



!

= −1
Ã
 +

X
=1

¡
 −

¢
Γw∆()

!


using the block-diagonal structure of  , e, and ∆. The formula for   can now be recognized

by the above expression. Similar calculations establish the formulas for   and  . 2
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Table 1: Parameter estimates, Univariate Local Level Models

 2 2  2 ( ) 

Core 5.82e-006 1.77e-005 0.329 0.164 13.42 -750.96

Total 7.41e-006 0.000172 0.0431 0.261 13.26 -559.01

Results for sample period 1986Q1 to 2010Q4 for models of the form (13) with = 1. The parameter

2 corresponds to the variance of the trend disturbance, in this case a level disturbance, and 2 is

the irregular variance;  = 2
2
 is the signal-noise ratio 

2
 is the coefficient of determination with

respect to first differences, and ( ) is the Box-Ljung statistic based on the first  = 10 residual

autocorrelations.  is the Akaike Information Criterion, given by −2logb+ 2 where logb is the

maximized log-likelihood.

Table 2: Parameter estimates, Bivariate Local Level Model

Table 2a: Own Parameter estimates

 2 2  2 ( )

Core 5.18946e-006 1.84607e-005 0.281 0.179 11.08

Total 3.66532e-006 0.000177859 0.0206 0.3552 12.77

Results for sample period 1986Q1 to 2010Q4 for a model of the form (13) with  = 2. For the series

indicated in the left-most column, the parameter 2 corresponds to the variance of the level disturbance

and 2 is the irregular variance;  = 2
2
 is the signal-noise ratio 

2
 is the coefficient of determination

with respect to first differences, and ( ) is the Box-Ljung statistic based on the first  = 10 residual

autocorrelations.

Table 2b: Linked Parameter estimates

   (Related)   (Common)

1.000 0.49832 -1349.25 0.840 -1351.25

Results for sample period 1986Q1 to 2010Q4 for a model of the form (13) with = 2. The parameter

 corresponds to the correlation between the level disturbances in the two series, and  is the irregular

variance.  is given by −2logb+ 2 where logb where logb is the maximized log-likelihood. 
(Related) is the Akaike Information Criterion for (13) where  is an estimated parameter. For the

common levels form, (14),  is the load factor, applied to the trend in core, that gives the trend in total;

 (Common) is the Akaike Information Criterion of the model.
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Table 3: Parameter estimates, Univariate Smooth Trend Models

 2 2  2 ( ) 

Core 6.36e-008 2.33e-005 0.00273 0.133 16.37 -748.82

Total 6.17e-008 0.000185 0.000334 0.22 12.64 -555.06

Results for sample period 1986Q1 to 2010Q4 for models of the form (15) with = 1. The parameter

2 is the slope disturbance variance parameter, and 
2
 is the irregular variance;  = 2

2
 is the signal-

noise ratio 2 is the coefficient of determination with respect to first differences, and ( ) is the

Box-Ljung statistic based on the first  = 10 residual autocorrelations.  is the Akaike Information

Criterion, given by −2logb+ 2 where logb is the maximized log-likelihood.
Table 4: Parameter estimates, Bivariate Smooth Trend Model

Table 4a: Own Parameter estimates

 2 2  2 ( )

Core 6.11564e-008 2.34043e-005 0.00261 0.1462 15.3

Total 6.89953e-008 0.000179544 0.000384 0.3457 14.07

Results for sample period 1986Q1 to 2010Q4 for a model of the form (15) with  = 2. For the

series indicated in the left-most column, the parameter 2 corresponds to the variance of the slope

disturbance and 2 is the irregular variance;  = 2
2
 is the signal-noise ratio 

2
 is the coefficient

of determination with respect to first differences, and ( ) is the Box-Ljung statistic based on the first

 = 10 residual autocorrelations.

Table 4b: Linked Parameter estimates

  (Related)  (Common)

1.000 0.513972 -1332.06 1.06219 -1334.06

Results for sample period 1986Q1 to 2010Q4 for a model of the form (15) with = 2. The parameter

 corresponds to the correlation between the slope disturbances in the two series, and  is the irregular

variance.  is given by −2logb+ 2 where logb where logb is the maximized log-likelihood. 
(Related) is the Akaike Information Criterion for (15) where  is an estimated parameter. For the

common slopes form, (16),  is the load factor, applied to the trend in core, that gives the trend in total;

 (Common) is the Akaike Information Criterion of the model.
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Figure 1: Trend estimates, Univariate Local Level Model, for core and total PCE inflation. Sample is

1986Q1 to 2010Q4.
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Figure 2: Trend estimates, univariate and bivariate Local Level Model, for total PCE inflation. Sample

is 1986Q1 to 2010Q4.
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Figure 3: Observation weights for estimating trends in core inflation and total inflation for the

local level model. The horizontal axis is the separation between the signal and observation times.

Note that the y-axes have differing scales.
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Figure 4: Top: Gain function applies to core (solid) and total (dashed) inflation to measure trend

in core inflation for local level model. Bottom: Gain function applied to core (dashed) and total

(solid) inflation to measure trend in total inflation for local level model.
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Figure 5: Trend estimates, Bivariate Smooth Trend Model, for core and total PCE inflation. Sample

is 1986Q1 to 2010Q4.
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Figure 6: Trend estimates, Univariate and Bivariate Smooth Trend Model, for total PCE inflation.

Sample is 1986Q1 to 2010Q4.
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Figure 7: Observation weights for estimating trends in core and total inflation for the smooth

trend model. The horizontal axis is the separation between the signal and observation times.

Note that the y-axes have differing scales.
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Figure 8: Top: Gain function applied to core (solid) and total (dashed) inflation to measure trend

in core inflation for smooth trend model. Bottom: Gain function applied to core (dashed) and

total (solid) inflation to measure trend in total inflation for smooth trend model.
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Figure 9: Trend estimates, Bivariate Local Level and Smooth Trend Model, for total PCE infla-

tion. Sample is 1986Q1 to 2010Q4.
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