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1 Introduction

One area of agreement among economists at universities, central banks, and on Wall Street is

that forecasting economic activity is hard. While the existing methods give us some ability to

forecast economic developments for the current quarter and perhaps the quarter after that, their

predictive power is modest at best and deteriorates rapidly as the forecast horizon extends beyond

the very near term. Moreover, what little predictability there seems to be appears to be captured

about as well by simple models—such as a univariate autoregression—as by the large number of

complex statistical and DSGE forecasting methods that have been proposed in the literature; see,

for example, Sims [2005]; Tulip [2005]; Faust and Wright [2009]; and Edge and Gürkaynak [2010].

Economists have long sought to improve on this record by using information from financial

markets. Because they are inherently forward looking, the argument goes, financial market prices

should impound information about investors’ expectations of future economic outcomes.1 From

a theoretical perspective, default-risk indicators such as credit spreads—the difference in yields

between various corporate debt instruments and government securities of comparable maturity—

are particularly well suited for forecasting economic activity. Philippon [2009], for example, presents

a model in which the decline in investment fundamentals, owing to a reduction in the expected

present-value of corporate cash flows, leads to a widening of credit spreads prior to a cyclical

downturn. As emphasized by Bernanke, Gertler, and Gilchrist [1999] and Gilchrist and Zakraǰsek

[2012], increases in credit spreads can also signal disruptions in the supply of credit resulting from

the worsening in the quality of corporate balance sheets or from the deterioration in the health of

financial intermediaries that supply credit.2

The empirical success of default-risk indicators as predictors of economic activity is decid-

edly mixed, however, with results varying substantially across various credit spread indexes and

different time periods. For example, the “paper-bill” spread—the difference between yields on non-

financial commercial paper and comparable-maturity Treasury bills—had substantial forecasting

power for economic activity during the 1970s and the 1980s, but its predictive ability vanished

in the subsequent decade. In contrast, credit spreads based on indexes of speculative-grade (i.e.,

“junk”) corporate bonds, which contain information from markets that were not in existence before

the mid-1980s, did particularly well at forecasting output growth during the 1990s, according to

Gertler and Lown [1999] and Mody and Taylor [2004]. Stock and Watson [2003], however, show

1Financial indicators considered in this vast literature include stock prices (Fama [1981] and Harvey [1989]);
spreads between long and short-term risk-free interest rates (Harvey [1988]; Estrella and Hardouvelis [1991];
Estrella and Mishkin [1998]; and Hamilton and Kim [2002]); the term structure of interest rates more generally
(Ang, Piazzesi, and Wei [2006]); spreads between rates on short-term commercial paper and rates on Treasury bills
(Bernanke [1990]; Friedman and Kuttner [1992, 1998]; and Emery [1999]); and yield spreads on longer-term corpo-
rate debt (Gertler and Lown [1999]; King, Levin, and Perli [2007]; Mueller [2009]; Gilchrist, Yankov, and Zakraǰsek
[2009]; and Gilchrist and Zakraǰsek [2012]).

2In fact, in a recent paper, Del Negro and Schorfheide [2012] show that by incorporating credit spreads into
relatively simple DSGE models noticeably improved—relative to the Blue Chip Economic Consensus forecast— the
ability of such models to forecast the “Great Recession.”
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that the forecasting ability of this default-risk indicator is quite uneven.

In a recent paper, Gilchrist, Yankov, and Zakraǰsek [2009] (GYZ hereafter) argue that these

mixed results may be due to the fact that the credit spread indexes used by researchers tend to

be based on aggregates of returns on a mishmash of bonds with different duration, credit risk, and

other characteristics. In part to address these problems, GYZ constructed 20 monthly credit spread

indexes for different maturity and credit risk categories using secondary market prices of individual

senior unsecured corporate bonds.3 Their findings indicate that these credit spread indexes have

substantial predictive power, at both short- and longer-term horizons, for the growth of payroll

employment and industrial production. Moreover, they significantly outperform the predictive

ability of the standard default-risk indicators, a result that suggests that using “cleaner” measures

of credit spreads may, indeed, lead to more accurate forecasts of economic activity.

This paper extends the analysis of GYZ in several dimensions. Most importantly, we provide

a thorough evaluation of the marginal information content of credit spreads in real-time economic

forecasting. Given the extensive and ongoing search for consistent predictors of U.S. economic

activity, the macroeconomics profession runs a substantial risk that results like those of GYZ are

due to researchers stumbling on variables that just happen to fit the existing sample, but which,

in reality, have no predictive power. The regular breakdown of new forecasting relationships soon

after they are documented confirms that this risk is real. Thus, it is especially important that any

such analysis takes into account model search and selection issues.

To guard against the problem of selecting financial indicators that just happen to fit our sample,

we adopt a Bayesian Model Averaging (BMA) approach and evaluate it in a pseudo out-of-sample

forecasting exercise. As explained more fully below, we add the new credit spread indexes to a

predictor set containing over 100 asset market indicators, as well as a large number of real variables,

and begin with a prior that each predictor is equally likely to be useful in forecasting future economic

activity. The posterior weight assigned to each predictor in period t is then based on a Bayesian

updating scheme that uses only the information available at time t. While our BMA scheme has,

under certain conditions, a formal Bayesian justification, we follow a large and growing literature

that takes a frequentist perspective and relies on the BMA framework as a pragmatic approach

to data-based weighting of a large number of competing prediction models4. The combination of

the BMA framework and out-of-sample forecast evaluation mitigates—though does not completely

eliminate—the problem of data mining.

While following GYZ’s basic approach for constructing credit spread indexes, we also improve

on their methodology by adjusting the underlying micro-level credit spreads for the call option

embedded in many of the underlying securities. As pointed out by Duffee [1998] and Duca [1999],

3GYZ measure the underlying credit risk by the issuer’s expected default frequency (EDF™), a market-based
default-risk indicator calculated by Moody’s/KMV that is more timely that the issuer’s credit rating.

4See, for example, Min and Zellner [1993]; Fernandez, Ley, and Steel [2001b]; Avramov [2002]; Cremers [2002];
Sala-i-Martin, Doppelhofer, and Miller [2004]; Koop and Potter [2004]; King, Levin, and Perli [2007]; and Wright
[2008].
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fluctuations in the value of embedded options—reflecting shifts in the term structure of risk-free

rates—can substantially alter the information content of movements in corporate bond yields at

business cycle frequencies.

Our results indicate that the new credit spread indexes have considerable marginal predictive

power for real-time measures of economic activity, especially those of the cyclically sensitive nature.

When using the entire predictor set to forecast a wide array of economic activity indicators, the

gains in the root mean-square prediction error (RMSPE)—relative to a univariate autoregressive

benchmark—are statistically significant and often substantial in economic terms. BMA forecasts

consistently generate reductions in out-of-sample RMSPEs on the order of 10 percent when fore-

casting the cumulative growth of cyclically sensitive economic indicators four quarters into the

future. Consumption growth is the main exception to this general result—there are no gains in

predictive accuracy relative to our benchmark for this measure of economic activity.

When we omit the credit spread indexes from the predictor set and redo the analysis, we

obtain the standard result, namely, that the predictive accuracy of the BMA method—like that

of most other documented forecasting methods—is statistically indistinguishable from that of the

univariate autoregressive benchmark. This result indicates that there is something different about

the information content of credit spreads and that our BMA weighting scheme is able to pick out

this difference in real-time from a large number of predictors, all of which were treated equally

ex ante. Indeed, the analysis of the evolution of posterior weights that the BMA scheme assigns to

various variables in the predictor set shows that it is economic downturns that lead to the majority

of the posterior weight being placed on the credit spreads. This finding suggests that corporate

bond spreads—when properly measured—may be one of the earliest and clearest aggregators of

accumulating evidence of incipient recession.

The remainder of the paper is organized as follows. Section 2 describes our bond-level data

and the construction of portfolios based on the option-adjusted credit spreads. In Section 3, we

outline the econometric methodology used to combine forecasts by BMA. Section 4 contains our

main empirical results. In Section 5, we compare the performance of BMA forecasts at different

stages of the business cycle—that is, in economic recessions and expansions. And lastly, Section 6

concludes.

2 Data Sources and Methods

2.1 Credit Spreads

The key information for our analysis comes from a large sample of fixed income securities issued by

U.S. corporations.5 Specifically, from the Lehman/Warga (LW) and Merrill Lynch (ML) databases,

5Securities issued by government-sponsored entities, such as Fannie Mae and Freddie Mac, were excluded from
our analysis.
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we extracted month-end prices of outstanding long-term corporate bonds traded in the secondary

market between January 1986 and September 2011.6 To guarantee that we are measuring borrowing

costs of different firms at the same point in their capital structure, we restricted our sample to senior

unsecured issues with a fixed coupon schedule only. For such securities, we spliced the month-end

prices across the two data sources.

We exploit the micro-level nature of our data to construct credit spreads that are not contam-

inated by the maturity/duration mismatch that is a bane of most commonly-used credit spread

indexes. Specifically, for each individual bond issue in our sample, we construct a theoretical risk-

free security that replicates exactly the promised cash-flows of the corresponding corporate debt

instrument. For example, consider a corporate bond k issued by firm i that at time t is promising a

sequence of cash-flows {Cs}
S
s=1, which consists of the regular coupon payments and the repayment

of the principle at maturity. The price of this bond in period t is given by

Pit[k] =
S
∑

s=1

CsD(ts),

where D(t) = e−rtt is the discount function in period t. To calculate the price of a corresponding

risk-free security—denoted by P f
t [k]—we discount the promised cash-flow sequence {Cs}

S
s=1 using

continuously-compounded zero-coupon Treasury yields in period t—denoted by rt—derived from

the daily estimates of the U.S. Treasury yield curve estimated by Gürkaynak, Sack, and Wright

[2007]. The resulting price P f
t [k] can then be used to calculate the yield—denoted by yft [k]—of a

hypothetical Treasury security with exactly the same cash-flows as the underlying corporate bond.

The credit spread Sit[k] = yit[k] − yft [k], where yit[k] denotes the yield of the corporate bond k,

is thus free of the “duration mismatch” that would occur were the spreads computed simply by

matching the corporate yield to the estimated yield of a zero-coupon Treasury security of the same

maturity.

To ensure that our results are not driven by a small number of extreme observations, we elim-

inated all bond/month observations with credit spreads below 5 basis points and with spreads

greater than 3,500 basis points.7 In addition, we dropped from our sample very small corporate

6These two data sources are used to construct benchmark corporate bond indexes used by market participants.
Specifically, they contain secondary market prices for a vast majority of dollar-denominated bonds publicly issued
in the U.S. corporate cash market. The ML database is a proprietary data source of daily bond prices that starts
in 1997. The LW database of month-end bond prices is available from 1973 through mid-1998 (see Warga [1991] for
details).

7These cutoffs resulted in dropping about 3 percent of observations from the sample of bonds issued by nonfinancial
firms and about 1 percent from the sample of bonds issued by their financial counterparts. A significant majority
of these observations involved negative credit spreads, economically a nonsensical value. Although our method for
calculating credit spreads does not suffer from the duration mismatch, it nevertheless yielded a negative spread in a
small number of cases. Such implausible observations were likely a result of stale secondary market prices, reflecting
the relatively poor liquidity of the underlying securities—while corporate bonds are actively traded, the volume of
transactions is far lower than in the Treasury market (Edwards, Harris, and Piwowar [2007]).
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Table 1: Corporate Bond Characteristics by Type of Firm

Nonfinancial Firms

Bond Characteristic Mean StdDev Min Median Max

No. of bonds per firm/month 3.14 3.89 1.00 2.00 76.0
Mkt. value of issue ($mil.) 349.2 342.6 1.22 255.1 5,628
Maturity at issue (years) 12.8 9.2 1.0 10.0 50.0
Term to maturity (years) 10.4 8.3 1.0 7.4 30.0
Duration (years) 6.28 3.30 0.91 5.72 17.1
Credit rating (S&P) - - D BBB1 AAA
Coupon rate (pct.) 7.18 2.03 0.75 6.95 17.5
Nominal yield to maturity (pct.) 7.07 3.08 0.42 6.79 44.3
Credit spread (bps.) 222 290 5 132 3,499

Financial Firms

Bond Characteristic Mean StdDev Min Median Max

No. of bonds per firm/month 3.06 3.50 1.00 2.00 26.0
Mkt. value of issue ($mil.) 486.8 566.9 9.11 274.4 4,351
Maturity at issue (years) 10.4 8.0 2.0 10.0 40.0
Term to maturity (years) 8.7 7.8 1.0 5.9 30.0
Duration (years) 5.54 3.25 0.90 4.82 15.3
Credit rating (S&P) - - C A2 AAA
Coupon rate (pct.) 6.80 1.94 2.00 6.60 15.8
Nominal yield to maturity (pct.) 6.54 2.78 0.69 6.27 41.2
Credit spread (bps.) 185 250 5 117 3,499

Note: Sample period: 1986:M1–2011:M9. No. of nonfinancial firms/bonds = 1,156/6,404 (Obs. =
334,685); No. of financial firms/bonds = 202/942 (Obs. = 46,135). The market value of the bond
issues is deflated by the CPI (2000 = 100). Sample statistics are based on trimmed data; see text for
details.

issues—those with a par value of less than $1 million—and all observations with a remaining term-

to-maturity of less than one year or more than 30 years.8 These selection criteria yielded a sample

of 6,404 individual securities issued by firms in the nonfinancial sector and 942 securities issued

by financial firms. We matched these corporate securities with their issuer’s quarterly income and

balance sheet data from Compustat and daily data on equity valuations from CRSP, yielding a

matched sample of 1,156 nonfinancial firms and 202 financial firms.

Table 1 contains summary statistics for the key characteristics of bonds in our sample by the

type of firm (nonfinancial vs. financial). Note that a typical firm has only a few senior unsecured

issues outstanding at any point in time—the median firm in both sectors, for example, has two such

8We also eliminated a very small number of puttable bonds from our sample. In contrast, a significant fraction of
the securities in our sample is callable, which raises an important issue of how to separate time-varying prepayment
risk from the default risk premium. We address this issue in detail later in the paper.
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issues trading at any given month. The size of bond issues, measured by their market value, tend

to be somewhat larger, on average, in the financial sector. Not surprisingly, the maturity of these

debt instruments is fairly long, with the average maturity at issue of more than 10 years in both

sectors. Because corporate bonds typically generate significant cash flow in the form of regular

coupon payments, their effective duration is considerably shorter.

According to the S&P credit ratings, our sample spans the entire spectrum of credit quality,

from “single D” to “triple A.” At A2, the median bond/month observation in the financial sector

is somewhat above that in the nonfinancial sector (i.e., BBB1), though they are both solidly in the

investment-grade category. Turning to returns, the (nominal) coupon rate on the bonds issued by

nonfinancial firms averaged 7.18 percent during our sample period, compared with 6.89 percent for

bonds issued by their financial counterparts. The average expected total return was 7.29 percent per

annum in the nonfinancial sector and 6.80 percent in the financial sector. Relative to Treasuries, an

average bond issued by a nonfinancial firm has an expected return of about 222 basis points above

the comparable risk-free rate. Reflecting their generally higher credit quality—at least as perceived

by the ratings agencies—the average credit spread on a bond issued by a financial intermediary is

185 basis points.

2.2 Default Risk

The measurement of firm-specific default risk is the crucial input in the construction of our bond

portfolios. To measure an issuer’s probability of default at each point in time, we employ the

contingent claims approach to corporate credit risk developed in the seminal work of Merton [1973,

1974]. The key insight of this “distance-to-default” (DD) framework is that the equity of the firm

can be viewed as a call option on the underlying value of the firm with a strike price equal to the

face value of the firm’s debt. Although neither the underlying value of the firm nor its volatility

is directly observable, they can, under the assumptions of the model, be inferred from the value of

the firm’s equity, the volatility of its equity, and the firm’s observed capital structure.

Formally, the distance-to-default—essentially, a volatility-adjusted measure of leverage—is given

by

DD =
ln(V/D) + (µV − 0.5σ2

V
)

σV

,

where V is the total value of the firm (i.e., the market value of its debt and equity), D is the

book-value of firm’s liabilities, µV is the expected return on V , and σV is the volatility of firm

value. Theoretically, default is occurs when the ratio of the value of assets to debt falls below one

(or its log is negative)—in effect, distance-to-default measures the number of standard deviations

the log of this ratio must deviate from its mean for default to occur.9

The numerical procedure used to construct this market-based measure of default risk is based on

9In this context, the probability of default is given by Φ(−DD), where Φ denotes the standard normal CDF.
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Figure 1: Distance-to-Default by Type of Firm
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Note: Sample period: 1986:M1–2011:M9. The solid line depicts the weighted median DD of the 1,156
nonfinancial bond issuers in our sample; the dotted line depicts the weighted median DD of the 202 financial
bond issuers. The shaded band depicts the weighted interquartile range of the DDs for the entire U.S.
corporate sector; all percentiles are weighted by the firm’s outstanding liabilities. The shaded vertical bars
represent the NBER-dated recessions.

Bharath and Shumway [2008]. Employing their methodology, we calculate the distance-to-default

for all U.S. corporations covered by S&P’s Compustat and CRSP over the 1986:M1–2011:M9 period.

Figure 1 plots the cross-sectional median of the DDs for the 1,156 nonfinancial and 202 financial

bond issuers in our sample. As a point of comparison, the figure also depicts the cross-sectional

interquartile range (IQR) of the DDs for the entire Compustat-CRSP matched sample.10

According to this metric, the credit quality of the median nonfinancial bond issuer in our

sample is, on average, appreciably higher than that of the median financial issuer, a result that is

primarily due to the fact that financial firms tend to have higher leverage than their nonfinancial

counterparts. More importantly, the median DD for both sets of firms is strongly procyclical,

implying that equity market participants anticipate corporate defaults to increase during economic

downturns. In addition, this indicator of default risk worsened significantly in periods of financial

market stress, such as those associated with the stock market crash in October 1987 and the collapse

10To ensure that our results were not driven by a small number of extreme observations, we eliminated from our
sample all firm/month observations with a DD of more than 20 or less than -2, cutoffs corresponding roughly to the
99th and 1st percentiles of the DD distribution, respectively.
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Figure 2: Callable Corporate Bonds
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Note: Sample period 1986:M1–2011:M9. The figure depicts the proportion of bonds in our sample that are
callable. The shaded vertical bars represent the NBER-dated recessions.

of the Long-Term Capital Management hedge fund in the early autumn of 1998. In fact, during

the height of the recent financial crisis in the latter part of 2008 and early 2009, the IQR of the

distribution of the DDs across the entire U.S. corporate sector shifted noticeably lower, with the

median DD of our sample of 202 financial firms falling to a historic low.

2.3 Call-Option Adjustment

Figure 2 shows the proportion of bonds in our sample that are callable—that is, the issuer has, under

certain pre-specified conditions, the right to “call” (i.e., redeem) the security prior to its maturity.

The share of senior unsecured bonds with embedded call options is, on average, substantial in both

sectors.11 Moreover, the proportion of callable debt has changed considerably over the course of our

sample period, with almost all bonds being subject to a call provision at the start of our sample.

In the late 1980s, however, the composition of debt began to shift noticeably toward noncallable

debt, and by the mid-1990s, the majority of senior unsecured debt traded in the secondary market

11The proportions and the U-pattern of the two series are very similar if the shares are weighted by the amount
issued. The fact that financial firms, on average, tend to issue less callable debt than their nonfinancial counterparts
primarily reflects the noticeably shorter average duration of bonds issued by financial intermediaries (see Table 1).
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was in the form of noncallable securities. Over the past decade or so, this trend has been reversed,

as firms resumed issuing large amounts of callable long-term debt.

As shown by Duffee [1998], if a firm’s outstanding bonds are callable, movements in the risk-

free rates—by changing the value of the embedded call option—will have an independent effect on

bond prices, complicating the interpretation of the behavior of credit spreads. For example, as the

general level of interest rates in the economy increases, the option to call becomes less valuable,

which accentuates the price response of callable bonds relative to that of noncallable bonds. As

a result, a rise in interest rates will, ceteris paribus, compress the credit spreads of callable bonds

more than the credit spreads of their noncallable counterparts. In addition, prices of callable bonds

are more sensitive to uncertainty regarding the future course of interest rates. On the other hand,

to the extent that callable bonds are, in effect, of shorter duration, they may be less sensitive to

changes in default risk.

To deal with this issue, we utilize the micro-level aspect of our bond data to adjust directly for

the value of embedded options in callable bonds. Ideally, we would correct for the callability of each

bond using option price theory. However, our bond-level data set does not contain any information

regarding the terms of the underlying call provisions—it just indicates whether the bond is callable

or not. Accordingly, we consider the following empirical credit-spread pricing model:

lnSit[k] = CALLi[k]×
(

β0c + β1cDDit + β2cDD
2
it + λ′

cZit[k]
)

+ (1− CALLi[k])×
(

β0n + β1nDDit + β2nDD
2
it + λ′

nZit[k]
)

+ CALLi[k]×
(

θ1LEVt + θ2SLPt + θ3CRVt + θ4VOLt

)

+RTGit[k] + ǫit[k],

(1)

where CALLi[k] is an indicator variable that equals one if bond k (issued by firm i) is callable and

zero otherwise; DDit denotes the issuer’s distance-to-default; and ǫit[k] represents the credit-spread

“pricing error.”12 In our framework, credit spreads on outstanding bonds are allowed to depend

(possibly nonlinearly) on the issuer’s distance-to-default DDit and a vector of bond-specific control

variables Zit[k] that could influence credit spreads through term or liquidity premiums.13 Specifi-

cally, these variables include the log of the bond’s duration, the log of the amount outstanding, the

log of the bond’s age, and the log of the bond’s (fixed) coupon rate. The regression also includes

credit rating fixed effects (RTGit[k]), which capture the “soft information” regarding the firm’s

financial health that is complementary to our market-based measures of default risk (Löffler [2004,

2007]).

The distance-to-default and bond-specific controls are allowed to have differential effects on the

credit spreads of callable and noncallable bonds. Because shifts in the Treasury term structure

12Because the distribution of credit spreads is highly skewed, log transformation of credit spreads ameliorates the
problem of heteroskedasticity in the estimation of equation (1).

13Specification 1 allows for the nonlinear relationship between credit spreads and leverage documented by
Levin, Natalucci, and Zakraǰsek [2004]. As a robustness check, we also considered higher-order polynomials of the
distance-to-default, but the inclusion of cubic and quartic terms had virtually no effect on our results.
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affect the value of the embedded call option, the spreads of callable bonds are also allowed to

depend separately on the level (LEVt), slope (SLPt), and curvature (CRVt) of the Treasury yield

curve.14 Note that movements in risk-free interest rates should, ceteris paribus, affect the credit

spreads of noncallable bonds only insofar as they change firms’ expected future cash flows and,

as a result, their distance-to-default; thus, our specification does not allow these term structure

variables to directly affect the spreads of noncallable bonds. Likewise, the value of the embedded

call option will change in response to fluctuations in interest rate uncertainty, so we allow the credit

spreads on callable bonds to respond to the option-implied volatility on the 30-year Treasury bond

futures (VOLt)—again, this variable is not allowed to affect the spreads of noncallable bonds.

We estimate the credit-spread regression (1) separately for the sample of securities issued by

nonfinancial firms and those issued by financial firms. Assuming normally distributed pricing errors,

the option-adjusted spread on a callable bond k (i.e., CALLi[k] = 1)—denoted by S̃it[k]—is given

by

S̃it[k] = exp

[

lnSit[k]−
(

β̂0c + β̂1cDDit + β̂2cDD
2
it + λ̂′

cZit[k]
)

− (θ̂1LEVt + θ̂2SLPt + θ̂3CRVt + θ̂4VOLt)−
σ̂2
t

2

]

,

where β̂0c, β̂1c, β̂2c, λ̂c and θ̂1, . . . , θ̂4 denote the OLS estimates of the corresponding parameters

from equation (1) and σ̂2
t denotes the sample variance of the residuals in period t.15 With this

option adjustment, credit spreads are now constructed variables.

Table 2 translates the selected coefficients from the estimated credit-spread pricing equation

into the impact of variation in default risk (the sum of the linear and quadratic DD terms), the

shape of the term structure, and interest rate uncertainty on the level of credit spreads. For

callable bonds issued by nonfinancial firms, the effect of the distance-to-default on credit spreads

is significantly attenuated by the call-option mechanism: A one standard deviation increase in the

distance-to-default—a signal of improving credit quality—implies a decrease of 21 basis points in

the spreads of noncallable bonds, compared with a 14 basis points decline in the spreads of their

callable counterparts. The same call-option mechanism, however, does not seem to be as important

for bonds issued by financial intermediaries. In that case, a one standard deviation increase in the

distance-to-default implies a narrowing of spreads of about 13 basis points for both types of bonds.

The estimates in Table 2 also indicate that movements in the shape of the Treasury term

14The level, slope, and curvature factors correspond, respectively, to the first three principal components of nominal
Treasury yields at 3-month, 6-month, 1-, 2-, 3-, 5-, 7-, 10-, 15-, and 30-year maturities. All yield series are monthly
(at month-end) and with the exception of the 3- and 6-month bill rates are derived from the smoothed Treasury yield
curve estimated by Gürkaynak, Sack, and Wright [2007].

15The σ̂2
t /2 term is a correction for Jensen’s inequality. All of the results reported in the paper are virtually

identical if the Jensen’s inequality correction imposes that the conditional variance of the error term is constant over
time, or if no such correction is implemented.
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Table 2: Selected Marginal Effects for Callable vs. Noncallable Bonds

Nonfinancial Firmsa Financial Firmsb

Marginal Effect CALL = 0 CALL = 1 CALL = 0 CALL = 1

Distance-to-default: DDit -0.209 -0.136 -0.125 -0.133
(0.011) (0.008) (0.028) (0.015)

Term structure: LEVt - -0.473 - -0.421
(0.041) (0.081)

Term structure: SLPt - -0.288 - -0.218
(0.037) (0.047)

Term structure: CRVt - -0.074 - -0.123
(0.038) (0.034)

Term structure: VOLt - 0.144 - 0.147
(0.013) (0.017)

Adjusted R2 0.746 0.615
Pr > W c 0.000 0.000

Note: Sample period: 1986:M1–2011:M9. Entries in the table denote the estimated marginal
effects of a one-unit change in the specified variable on the level of credit spreads (in percentage
points) for noncallable (CALL = 0) and callable (CALL = 1) bonds. The estimates of marginal
effects are based on the OLS estimates of parameters of the credit-spread regression (1). All
marginal effects are evaluated at their respective sample means (not reported). Robust asymptotic
standard errors reported in parentheses are double clustered in the firm (i) and time (t) dimensions
(see Cameron, Gelbach, and Miller [2011] for details) and are computed according to the delta
method.
a No. of firms/bonds = 1,156/6,404; Obs. = 334,685.
b No. of firms/bonds = 202/942; Obs. = 46,135.
c p-value for the robust Wald test of the exclusion of credit rating fixed effects.

structure and interest rate uncertainty have first-order effects on the credit spreads of callable

bonds, which are consistent with the theoretical predictions. For example, a one standard deviation

increase in the level factor implies a narrowing of about 45 basis points in the credit spreads on

callable bonds in both sectors. Similarly, an increase in the option-implied volatility on the long-

term Treasury bond futures of one percentage point implies a widening of callable credit spreads

of about 15 basis points because the rise in interest rate uncertainty lowers the prices of callable

bonds by boosting the value of the embedded call option.

The importance of the option-adjustment procedure over the entire sample period is illustrated

in Figure 3, which shows the time path of the average credit spread in our two data sets, calculated

using both the raw and option-adjusted spreads. Although the two series in each sector are clearly

highly correlated (ρ = 0.90 for nonfinancial issuers and ρ = 0.95 for financial issuers) and are all

strongly countercyclical, there are a number of noticeable differences. First, the option-adjusted

credit spreads are, on average, lower than their unadjusted counterparts, reflecting the positive value

of the embedded call options. By eliminating, at least in part, fluctuations in the call option values,
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Figure 3: Credit Spreads on Corporate Bonds by Type of Firm
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Note: Sample period: 1986:M1–2011:M9. The solid line in each panel depicts the time-series of the weighted
cross-sectional average of the option-adjusted credit spreads for our sample of bonds (see text for details);
the dotted line depicts the time-series of the weighted cross-sectional average of the raw credit spreads. In
all cases, the weights are equal to the market values of the underlying bond issues. The shaded vertical bars
represent the NBER-dated recessions.

the option-adjusted credit spreads are also less volatile, on average, than the raw credit spreads.

Lastly, the largest differences between the two series occurred in the mid-1980s and during the

recent financial crisis. The former period was characterized by a high general level of interest rates

and relatively high uncertainty regarding the future course of long-term interest rates, whereas the

difference during the latter period owes primarily to the plunge in interest rates and the steepening

of the term structure that began with the onset of the financial crisis in the summer of 2007, two

factors that more than offset the spike in interest rate volatility that occurred during that period.
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2.4 Distance-to-Default Portfolios

We summarize the information contained in credit spreads, DDs, and excess equity returns for the

sample of bond issuers by constructing portfolios based on expected default risk—as measured by

our estimate of the distance-to-default—at the beginning of the period. These conditional DD-

based portfolios are constructed by sorting the three financial indicators in month t into bins based

on the percentiles of the distribution of the distance-to-default in month t− 1. Separate portfolios

are formed for the financial and nonfinancial issuers.

The distance-to-default portfolios are constructed by computing a weighted average of DDs in

month t for each bin, with the weights equal to the book value of the firm’s liabilities at the end

of month t− 1. Similarly, the stock portfolios are computed as a weighted average of excess equity

returns in month t for each bin, with the weights equal to the market value of the firm’s equity

at the end of month t − 1.16 Given the relatively large number of nonfinancial issuers, the bins

for nonfinancial portfolios are based on the quartiles of the DD distribution, yielding four credit-

risk categories, denoted by NFIN-DD1, NFIN-DD2, NFIN-DD3, and NFIN-DD4. The financial

bond issuers, by contrast, are sorted into two credit-risk categories—denoted by FIN-DD1 and

FIN-DD2—based on the median of the DD distribution.

To control for maturity, we further split each DD-based bin of nonfinancial credit spreads into

four maturity categories: (1) NFIN-MTY1: credit spreads of bonds with the remaining term-

to-maturity of more than 1 year but less than (or equal) to 5 years; (2) NFIN-MTY2: credit

spreads of bonds with the remaining term-to-maturity of more than 5 years but less than (or equal)

10 years; (3) NFIN-MTY3: credit spreads of bonds with the remaining term-to-maturity of more

than 10 years but less than (or equal) to 15 years; (4) NFIN-MTY4: credit spreads of bonds with

the remaining term-to-maturity of more than 15 years. Given the substantially smaller sample of

bonds issued by firms in the financial sector, we split the two credit-risk categories in this sector

into two maturity categories: (1) FIN-MTY1: credit spreads of bonds with the remaining term-

to-maturity of more than 1 year but less than (or equal) to 5 years; and (2) FIN-MTY2: credit

spreads of bonds with the remaining term-to-maturity of more than 5 years. All told, this gives

us a total of 16 nonfinancial and 4 financial DD/maturity bond portfolios. Within each of these

portfolios, we compute a weighted average of option-adjusted credit spreads in month t, with the

weights equal to the market value of the outstanding issue.

The DD-based portfolios considered thus far were based on asset prices of a subset of U.S.

corporations, namely firms with senior unsecured bonds that are traded in the secondary market.

We also consider a broader set of DD-based financial indicators by constructing the same type of

portfolios using the distance-to-default estimates and excess equity returns for the entire matched

CRSP-Compustat sample of U.S. corporations. Given the large number of firms in any given month,

16Excess equity returns, which include dividends and capital gains, are measured relative to the yield on 1-month
Treasury bills.
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we increase the number of bins by sorting—for both nonfinancial and financial firms separately—

the DDs and excess equity returns in month t into 10 deciles based on the distribution of the

distance-to-default in month t − 1. As before, the conditional DD portfolios are constructed by

computing a weighted average of DDs in month t for each DD decile, whereas the stock portfolios

are computed as a weighted average of excess equity returns in month t. This procedure yields a

total of 20 additional DD-based portfolios for the nonfinancial sector and another 20 portfolios for

the financial sector.17

3 Econometric Methodology

We examine the predictive content of the DD-based portfolios, as well as a large number of other

predictors, within the Bayesian Model Averaging (BMA) framework, an approach that is partic-

ularly well-suited to deal with model uncertainty. Initially proposed by Leamer [1978], BMA has

been used extensively in the statistics literature; see, for example, Raftery, Madigan, and Hoeting

[1997] and Chipman, George, and McCulloch [2001]. The BMA approach to model uncer-

tainty has also found numerous econometric applications, including the forecasting of out-

put growth (Min and Zellner [1993] and Koop and Potter [2004]); the forecasting of recession

risk (King, Levin, and Perli [2007]); cross-country growth regressions (Fernandez, Ley, and Steel

[2001b] and Sala-i-Martin, Doppelhofer, and Miller [2004]); exchange rate forecasting (Wright

[2008]); and the predictability of stock returns (Avramov [2002] and Cremers [2002]).

3.1 Bayesian Model Averaging

We begin with a brief review of the formal Bayesian justification for our model-averaging approach.

The researcher starts with a set of n possible models, where the i-th model, denoted by Mi, is

parametrized by θi. The researcher has prior beliefs about the probability that the i-th model

is true—denoted by P (Mi)—observes data D, and updates her beliefs to compute the posterior

probability that the i-th model is the true model, according to

P (Mi|D) =
P (D|Mi)P (Mi)

∑n
j=1

P (D|Mj)P (Mj)
, (2)

where

P (D|Mi) =

∫

P (D|θi,Mi)P (θi|Mi)dθi (3)

17Note that the DDs and excess equity returns for our sample of bond issuers are also included in these additional
DD-based portfolios. Although firms that issue bonds tend to be somewhat bigger than a typical publicly-traded
corporation, their inclusion has a very small effect on the time-series properties of these more-representative portfolios.
For example, the correlations between the stock and DD portfolios that include bonds issuers and those that do not
range from 0.85 to 0.98—depending on the decile and the type of portfolio—suggesting that any information content
of these broader portfolios is not unduly influenced by the inclusion of firms that have bonds traded in the secondary
market.
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is the marginal likelihood of the i-th model; P (θi|Mi) is the prior density of the parameter vector

θi associated with the i-th model; and P (D|θi,Mi) is the likelihood function.

Each model also implies a forecast. In the presence of model uncertainty, the BMA forecast

weights each of the individual forecasts by their respective posterior probabilities. To operationalize

a BMA forecasting scheme, the researcher needs only to specify the set of models, the model priors

P (Mi), and the parameter priors P (θi|Mi). In this paper, we follow a growing literature that

considers a large set of very simple models. Specifically, the models are all linear regression models,

with each model adding a single regressor to the baseline specification. More formally, the i-th

model in our framework is given by

yt+h = βiXit + γ′iZt + ǫt+h, (4)

where yt+h is the variable that the researcher wishes to forecast at a horizon of h periods; Xit is

the (scalar) predictor specific to model i; Zt is a (p × 1)-vector of predictors that are common to

all models; and ǫt+h
iid
∼ N(0, σ2

i ) is the forecast error. Without loss of generality, the model-specific

predictor Xit is assumed to be orthogonal to the common predictors Zt. In our setup, the vector

of parameters characterizing the i-th model is thus given by θi = [βi γ′i σ2
i ]

′. The n-th model,

which is included in every BMA application in this paper, imposes the restriction βi = 0 and so

has θi = [γ′i σ
2
i ]

′.

In setting the model priors, we assume that all models are equally likely—that is, P (Mi) =

1/n. For the parameter priors, we follow the general trend of the BMA literature (e.g.,

Fernandez, Ley, and Steel [2001a]) in specifying that the prior for γi and σ2
i , denoted by p(γi, σi),

is uninformative and is proportional to 1/σi, for all i, while using the g-prior specification of Zellner

[1986] for βi conditional on σ2
i . The g-prior is given by N(0, φσ2

i (X
′
iXi)

−1), where the shrinkage

hyperparameter φ > 0 measures the strength of the prior—a smaller value of φ corresponds to a

more dogmatic prior.

Letting β̂i and γ̂i denote the OLS estimates of the corresponding parameters in equation (4),

the Bayesian h-period-ahead forecast made from model Mi at time T is given by

ỹiT+h|T = β̃iXit + γ̂′iZt, (5)

where β̃i =
(

φ
φ+1

)

β̂i denotes the posterior mean of βi. In our framework, the marginal likelihood

of the i-th model reduces to

P (D|Mi) ∝

[

1

1 + φ

]− 1
2

×

[

1

1 + φ
SSRi +

φ

1 + φ
SSEi

]−
(T−p)

2

, (6)

where SSRi is the sum of squares from the i-th regression, and SSEi is the associated sum of squared

errors. The posterior probabilities of the models can then be worked out from equation (2), and
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the final BMA forecast that takes into account model uncertainty is given by

ỹT+h|T =
n
∑

i=1

P (Mi|D)ỹiT+h|T . (7)

Clearly, the BMA forecast in equation (7) will depend on the value of the shrinkage hyperpa-

rameter φ. A low value of φ implies that the model likelihoods are roughly equal, and so the BMA

forecast will resemble equal-weighted model averaging (Bates and Granger [1969]). In contrast, a

high value of φ amounts to weighting the models by their in-sample R2 values, a procedure that is

well known to generate poor out-of-sample forecasting performance. Because the relationship be-

tween the out-of-sample root mean square prediction error and the parameter φ is often U-shaped,

the best out-of-sample forecasts are obtained when φ is neither too small nor too big. Our baseline

results are based on a standard value (φ = 4) taken from the aforementioned literature, but we also

conduct sensitivity analysis, which shows that our results are robust with respect to this choice.

We apply BMA to forecasting various indicators of economic activity using standard macroe-

conomic variables and asset market indicators as predictors. The common predictors Zt in the

predictive regression (4) are a constant and lags of the dependent variable. It is worth emphasiz-

ing that we view the forecasting scheme proposed above as a pragmatic approach to data-based

weighting of models and make no claim to its Bayesian optimality properties.18

3.2 The Forecasting Setup

We focus on forecasting real economic activity, as measured by real GDP, real personal consumption

expenditures (PCE), real business fixed investment, industrial production, private payroll employ-

ment, the civilian unemployment rate, real exports, and real imports over the period from 1986:Q1

to 2011:Q3. All of these series are in quarter-over-quarter growth rates (actually 400 times log first-

differences), except for the unemployment rate, which is simply in first differences. Our objective is

to forecast the cumulative growth rate (or the cumulative change in the case of the unemployment

rate) for each of these economic indicators from quarter t− 1 through quarter t+ h.

Specifically, let yt denote the growth rate in the variable from quarter t − 1 to quarter t. (In

the case of the unemployment rate, yt denotes the first difference.) The average value of yt over

the forecast horizon h is denoted by yC

t+h = 1

h+1

∑h
i=0

yt+i. The i-th forecasting model in our setup

18As noted by a number of papers that employ the same data-based model averaging approach, several of the
conditions for strict optimality are not met in typical macro time-series applications. First, the regressors are
assumed to be strictly exogenous. And second, the forecasts are overlapping h-step ahead forecasts, so the forecast
errors less than h periods apart are bound to be serially correlated, even though it is assumed that they are i.i.d.
normal. Nevertheless, BMA, like other methods that combine a large number of predictors to generate a forecast,
may still have good forecasting properties, even if the premises underlying their theoretical justification are false
(e.g., Stock and Watson [2005]). In fact, ability to provide accurate out-of-sample forecasts is a stringent test of the
practical usefulness of BMA in forecasting.
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is given by:

yC

t+h = α+ βixit−1 +

p−1
∑

j=1

γijyt−j + ǫt+h, (8)

where xit is one of the predictors listed in Table 3 and p − 1, the number of lags, is determined

recursively by the Bayes Information Criterion (BIC), conditional on βi = 0.

The set of possible predictors listed in Table 3 includes 15 different real-time macroeconomic

series and 119 asset market indicators. Among the latter set are our 20 bond portfolios of option-

adjusted credit spreads, as well as average DDs and excess equity returns for different default-risk

portfolios; in addition, we consider the predictive content of the three Fama-French risk factors

(i.e., the excess market return and the SMB and HML factors), stock return on industry portfo-

lios, a range of standard interest rates and interest rate spreads, implied volatilities from options

quotes, commodity prices, and commonly-used credit spreads.19 As noted above, the set of models

considered also includes a model in which we restrict βi = 0. All told, our BMA forecasting scheme

includes 135 different models.

The timing convention in the forecasting regression (8) is as follows. We think of forecasts

as being made in the middle month of each quarter. For macroeconomic variables, we use the

February, May, August, and November vintages of data from the real-time data set compiled and

maintained by the Federal Reserve Bank of Philadelphia; this includes data through the previous

quarter for all the macroeconomic series that we consider. All asset market indicators are as of the

end of the month from the first month of the current quarter and would have been available to

forecasters as of the middle month of the quarter.

Importantly, our empirical option-adjustment procedure is also implemented in real-time—

that is, the parameters of the credit-spread regression (1) are estimated each month using only

data available at that time. The resulting real-time coefficient estimates are used to compute the

option-adjusted credit spreads, which are then sorted into the DD-based bond portfolios.20 With

these fully real-time data in hand, we then use BMA to construct forecasts of the values of the

dependent variable for the current and next four quarters (i.e., h = 0, 1, . . . , 4). Thus, we are

considering both “nowcasting” (i.e., h = 0) and prediction at horizons up to one year ahead.

We evaluate the accuracy of these BMA forecasts in a recursive out-of-sample forecast evaluation

exercise, starting with the forecasts made in 1992:Q1 and continuing through to the end of the

sample period in 2011:Q3. The implementation of BMA in this recursive forecasting scheme uses

the g-prior (see the discussion above) with the same shrinkage hyperparameter φ for each date. This

means that the prior is tighter for the forecasts that are made later in the forecast period—the data,

19The three risk factors and returns on industry portfolios were obtained from the Kenneth R. French’s website
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/).

20Note that the real-time implementation of the option-adjustment procedure generates spreads that differ from
the option-adjusted spreads underlying Figure 3, where the option-adjustment procedure was implemented using the
full data set.
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Table 3: Predictors Used in BMA Forecasts

Predictor (No. of series) Data Transformation

Macroeconomic Indicators (15)
GDP log difference
PCE log difference
PCE (durable goods) log difference
Residential investment log difference
Business fixed investment log difference
Government spending log difference
Exports log difference
Imports log difference
Nonfarm private payrolls log difference
Civilian unemployment rate difference
Industrial production log difference
Single-family housing starts log difference
GDP price deflator log difference
Consumer price index log difference
M2 log difference

Asset Market Indicators (119)
Credit spreads in DD-based bond portfolios (nonfinancial) (16) level
Credit spreads in DD-based bond portfolios (financial) (4) level
Avg. DD by DD percentile (nonfinancial bond issuers) (4) level
Avg. DD by DD percentile (nonfinancial firms) (10) level
Excess stock returns by DD percentile (nonfinancial bond issuers) (4) level
Excess stock returns by DD percentile (nonfinancial firms) (10) level
Avg. DD by DD percentile (financial bond issuers) (2) level
Avg. DD by DD percentile (financial firms) (10) level
Excess stock returns by DD percentile (financial bond issuers) (2) level
Excess stock returns by DD percentile (financial firms) (10) level
3-month nonfinancial commercial paper rate level
3-month nonfinancial commercial paper rate less 3-month Tbill rate
3-month Eurodollar rate level
3-month Eurodollar rate less 3-month Tbill rate
3-month Treasury bill rate level
Federal funds rate level
1- to 10-year Treasury yields (10)a level
1- to 10-year Treasury yields (10) less 3-month Tbill rate
Fama-French risk factors (3) level
S&P 100 futures implied volatility (VXO) level
Treasury futures implied volatility (10- and 30-year) level
Gold price 2nd difference of logs
Oil price 2nd difference of logs
CRB commodity price index 2nd difference of logs
S&P 500 dividend yield log
Moody’s Baa-Aaa credit spread level
Returns on industry portfolios (10) level

Note: All macroeconomic series come from the real-time data set maintained by the Federal Reserve Bank
of Philadelphia. The NIPA series are in real terms (c-w, $2000).
a The nominal Treasury yields between maturities of 1- and 10-years are taken from the Treasury yield curve
estimated by Gürkaynak, Sack, and Wright [2007].
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of course, are also more informative at that point—a choice that is consistent with what a researcher

would have done, if she was applying BMA as a shrinkage device at each point in time.

An important issue in this type of real-time forecasting exercise is the definition of what con-

stitutes the “actual” values with which to compare our forecasts. The macroeconomic indicators

that we are forecasting are subject to benchmark revisions, and some of the series are also sub-

ject to definitional and conceptual changes. None of these changes seem sensible to predict in a

real-time forecasting exercise. Accordingly, we follow a standard convention (e.g., Tulip [2005] and

Faust and Wright [2009]), which is to measure actual realized values from the data as recorded in

the real-time data set of the Philadelphia Fed two quarters after the quarter to which the data

refer. In general, this implies that we are comparing our forecasts to the “first final” vintage in

series from the National Income and Product Accounts (NIPA).

3.3 Inference

The accuracy of the BMA forecasts is evaluated by comparing the RMSPE (root mean-square

prediction error) of the BMA forecast to that obtained from a univariate autoregression:21

yC

t+h = α+

p−1
∑

j=1

γjyt−j + ǫt+h. (9)

Unfortunately, evaluating the statistical significance of the difference in RMSPEs from BMA and the

direct autoregression is complicated by the fact that the forecasts are generated by nested models.

As shown by Clark and McCracken [2001], the distribution of the Diebold and Mariano [1995] test

statistic under the null hypothesis of equal forecast accuracy has a nonstandard distribution in

this case. Accordingly, we use a bootstrap to approximate the limiting distribution of the Diebold-

Mariano statistic under the null hypothesis. In the bootstrap, the predictors are, by construction,

irrelevant—nevertheless, they have time-series and cross-sectional dependence properties that are

designed to mimic those of the underlying data. The resulting bootstrapped p-values hence allow

us to test the null hypothesis of no improvement in forecast accuracy, relative to the autoregressive

benchmark.

The specific bootstrap re-sampling scheme used follows Gonçalves and Perron [2011] and

Clark and McCracken [2012]. Specifically, we estimate two models: (1) a restricted model that

involves estimating an AR(4) process for yt; and (2) an unrestricted model that consists of a regres-

sion of yt on four lags of itself and the first three principal components of the entire predictor set. In

each bootstrap replication, we then re-sample the residuals of the unrestricted model using a wild

bootstrap and then construct a bootstrap sample of yt using these re-sampled residuals, together

21Note that this is a direct autoregression that projects yC

t+h onto p − 1 lags of yt. An alternative would be to
estimate an AR(p−1) model for yt and then iterate it forward to construct the forecasts. This approach yielded very
similar results.
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with the coefficients from the restricted model; see Clark and McCracken [2012] for details. The

predictor set meanwhile, is held fixed, implying that the predictors are, by construction, irrele-

vant for the forecasting of the dependent variable in all samples. As implemented, this bootstrap

preserves any conditional heteroskedasticity in the data.22

4 Results

Table 4 contains the relative out-of-sample RMSPEs of the BMA forecasts, based on the benchmark

value of the shrinkage hyperparameter φ = 4. Bootstrapped p-values testing the null hypothesis that

the relative RMSPE is equal to one are shown in brackets. For real GDP growth, the RMSPEs

from the BMA forecasts, relative to those from the direct autoregression, are around 0.9 at all

forecast horizons beyond the current quarter. As evidenced by the the associated p-values, these

economically meaningful improvements in forecast accuracy are all statistically significant, at least

at the 5 percent level.

The relative accuracy of BMA in forecasting output growth appears to reflect, in part, its ability

to predict the growth of business fixed investment. In addition, BMA also does well in forecasting

the external dimension of U.S. economic performance, namely the growth of both exports and im-

ports. Personal consumption expenditures, in contrast, are considerably less predictable. Although

BMA is noticeably more accurate than the direct autoregression in forecasting consumption growth

over the very near term, the relative RMSPEs are statistically indistinguishable from one at the

two- to four-quarter-ahead horizons. This result may reflect the fact that optimal consumption

smoothing generally implies very little predictability of consumption growth, even if other more

cyclical components of aggregate demand are forecastable.

Our BMA setup also implies economically and statistically significant gains in accuracy when

predicting the growth of industrial production and changes in labor market conditions at both the

near- and longer-term forecast horizons. In the case of industrial production, the relative RMSPEs

lie between 0.9 and 0.96, improvements that are borderline statistically significant. The relative

RMSPEs in the case of employment growth and changes in the unemployment rate are mostly

around 0.88, values that are all significantly below one at a 5 percent significance level.23

Note that the benchmark to which we compared the accuracy of our BMA forecasts is a simple

22As a robustness check, we also computed p-values using a different bootstrap re-sampling scheme, which involved
fitting an AR model for yt and a dynamic factor model to the predictors. We constructed bootstrap samples of yt
and the predictors separately, so that the predictors were again irrelevant for forecasting the dependent variable. The
exact details and the actual p-values for this alternative re-sampling scheme are available in Appendix E. All told,
the two sets of bootstrap p-values are quite close to each other.

23In light of the gains in predictive accuracy documented in Table 4, a natural question to ask is whether these
gains apply to measures of real economic activity only, or are also evident when forecasting inflation. We investigated
this question for inflation as measured by the GDP deflator and the CPI (the results of this exercise are reported
in Appendix G). It turns out that the BMA forecasts of inflation do not outperform the univariate autoregression
benchmark, a result that suggests that movements in credit spreads provide more accurate and timely signals of
changes of future real economic activity, rather than of prices.
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Table 4: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.96 0.90 0.87 0.88 0.87
[0.03] [0.01] [0.01] [0.02] [0.02]

Personal consumption expenditures 0.88 0.90 0.97 1.03 1.06
[0.01] [0.02] [0.12] [0.28] [0.35]

Business fixed investment 0.94 0.84 0.90 0.90 0.88
[0.01] [0.00] [0.01] [0.02] [0.01]

Industrial production 0.96 0.92 0.93 0.92 0.91
[0.02] [0.02] [0.04] [0.05] [0.05]

Private employment 0.92 0.86 0.90 0.90 0.88
[0.00] [0.00] [0.02] [0.02] [0.01]

Unemployment rate 0.95 0.87 0.86 0.87 0.88
[0.01] [0.00] [0.00] [0.01] [0.02]

Exports 0.98 0.95 0.93 0.98 1.00
[0.00] [0.00] [0.00] [0.03] [0.10]

Imports 0.94 0.92 0.93 0.93 0.94
[0.00] [0.00] [0.02] [0.04] [0.05]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see text for details).

univariate autoregression. Another, even simpler, possible benchmark is given by a constant fore-

cast, which is equal to the real-time sample average of the variable being predicted at all horizons.

As it turns out, for sample periods dominated by the “Great Moderation,” a constant forecast is a

relatively good benchmark because the macroeconomic indicators considered in our exercise seem

to have contained little forecastable variation during this period. The counterpart to Table 4 using

this alternative benchmark is in Appendix D. The upshot of those results is that our BMA fore-

casts of cyclically-sensitive indicators of economic activity still deliver economically and statistically

significant reductions in RMSPEs relative to the constant forecast benchmark.

Overall, our first set of results indicates that for forecasting a range of real economic activity

indicators, BMA—with (option-adjusted) portfolio credit spreads in the set of predictors—yields

improvements relative to the univariate autoregressive benchmark that are both economically and

statistically significant. The gains in forecasting accuracy are most pronounced for cyclically-

sensitive indicators of economic activity, such as the growth of business fixed investment and in-
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Table 5: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables Except Credit Spreads in DD-Based Portfolios)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.98 0.98 0.98 0.99 0.99
[0.11] [0.13] [0.14] [0.15] [0.14]

Personal consumption expenditures 0.97 0.96 0.99 1.03 1.06
[0.14] [0.11] [0.21] [0.32] [0.40]

Business fixed investment 0.95 0.95 0.95 0.97 0.94
[0.01] [0.04] [0.05] [0.09] [0.05]

Industrial production 0.99 1.02 1.05 1.05 1.04
[0.09] [0.52] [0.67] [0.53] [0.33]

Private employment 0.98 1.00 1.05 1.06 1.03
[0.07] [0.26] [0.58] [0.51] [0.24]

Unemployment rate 0.97 0.97 1.02 1.05 1.04
[0.01] [0.03] [0.36] [0.51] [0.31]

Exports 0.97 1.02 1.02 1.02 1.01
[0.00] [0.61] [0.32] [0.27] [0.19]

Imports 0.96 0.97 1.01 1.04 1.04
[0.00] [0.04] [0.16] [0.28] [0.26]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see text for details).

dustrial production, as well as for indicators measuring changes in labor market conditions.24

To gauge more precisely the information content of credit spreads in predicting economic ac-

tivity, we repeat the above analysis, except that we exclude the 20 models that utilize the credit

spreads in the DD-based bond portfolios from the pool of prediction models. As shown in Table 5,

very few of the entries are less than 0.97, and, especially at longer forecast horizons, most relative

RMSPEs are greater than one. This finding is consistent with the standard result that a majority

of forecasting methods perform about as well as a univariate autoregression. These results also

illustrate a sense of how the information content of our portfolio-based credit spread indexes differs

from that of the other real and asset market indicators in the predictor set: When assigning the

weight to a predictor using only information available at the time of the forecast, the BMA method

24As an additional robustness check, we also considered other methods for forecasting in a data-rich environment,
including a factor-augmented autoregression and an equally-weighted average of OLS-based forecasts. In general, our
BMA forecasting scheme outperformed these methods.
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Table 6: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictors: Credit Spreads in DD-Based Portfolios Only)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.94 0.91 0.90 0.94 0.97
[0.00] [0.00] [0.01] [0.02] [0.06]

Personal consumption expenditures 0.87 0.86 0.95 0.98 1.04
[0.00] [0.00] [0.07] [0.13] [0.30]

Business fixed investment 0.92 0.83 0.90 0.90 0.91
[0.00] [0.00] [0.01] [0.02] [0.02]

Industrial production 0.94 0.91 0.94 0.94 0.92
[0.01] [0.01] [0.05] [0.07] [0.07]

Private employment 0.91 0.86 0.90 0.89 0.86
[0.00] [0.00] [0.00] [0.01] [0.01]

Unemployment rate 0.91 0.86 0.85 0.86 0.87
[0.00] [0.00] [0.00] [0.00] [0.00]

Exports 0.98 0.97 0.99 1.05 1.10
[0.00] [0.00] [0.02] [0.36] [0.56]

Imports 0.93 0.89 0.90 0.92 0.93
[0.00] [0.00] [0.01] [0.05] [0.08]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see text for details).

singles out the portfolio-based credit spreads and is able to exploit their predictive ability for future

economic activity to improve significantly upon the benchmark forecast.

Another way to highlight the predictive ability of credit spreads is shown in Table 6, which

contains the results of the forecasting exercise based only on models that include portfolio credit

spreads as predictors. These results are very similar to those reported in Table 4, which utilize

the information content of the entire predictor set. Although restricting the predictor set to only

DD-based portfolios of credit spreads leads to some loss of predictive accuracy for real GDP growth,

it actually improves the accuracy of the BMA forecasts for labor market indicators and business

fixed investment. Because the autoregressive benchmark is embedded in all of these forecasting

exercises, the results in Tables 5–6 together imply that any forecasting gains over the univariate

autoregression are due predominantly to the information content of credit spreads in our DD-based

portfolios.
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4.1 Which Predictors are the Most Informative?

The vertical bars in the panels of Figure 4 depict the final total weights—that is, the sum of

posterior probabilities—that BMA assigns to variables in the following predictor subsets: PS-

I = option-adjusted credit spreads in the 20 DD-based bond portfolios; PS-II = macroeconomic

variables; PS-III = other interest rates and interest rate spreads; and PS-IV = all other asset market

indicators. Lastly, the AR bucket in each panel represent the final posterior probabilities that BMA

assigned to the autoregressive benchmark. Results are shown for all the forecast horizons considered

and for each of the eight different indicators of economic activity. Note that, by construction, these

probabilities sum up to one at each forecast horizon.

These results provide a visual confirmation of the information content of the option-adjusted

credit spreads in our DD-based bond portfolios. With the exception of consumption growth, BMA

assigns the vast majority of the posterior weight to credit spreads in the DD-based portfolios. But

even in that case, most of the posterior weight for the near-term forecasts of the growth in real

PCE (i.e., h = 0, 1, 2) is assigned to the portfolio credit spreads; at longer horizons (i.e., h = 3, 4),

BMA forecasts of consumption growth assign some weight to the macroeconomic variables, but the

accuracy of these forecasts is, according to Table 4, statistically indistinguishable from those made

by the benchmark autoregression.

It should be emphasized, however, that Figure 4 shows the posterior probabilities for the differ-

ent subsets of predictors as of 2011:Q3, that is, at the end of our sample period. In our real-time

forecasting exercise, these posterior probabilities were updated each time a new forecast was made

and thus, in principle, could have changed over time. Figure 5 illustrates how these probabilities

evolved over time. Specifically, for each indicator of economic activity, the figure plots the total pos-

terior weight attributed to the option-adjusted credit spreads in the 20 DD-based portfolios against

the time that the forecast was made. (To conserve space, we show the posterior probabilities for

the four-quarter-ahead forecast horizon only.)

In line with the specified prior, forecasts made in the 1990s assigned very little weight to the

portfolio credit spreads. The macroeconomic outcomes during the 2000–01 cyclical downturn led

BMA to significantly increase—relative to other predictors—the posterior weight on the portfolio

credit spreads, a pattern that was further reinforced by the 2007–09 financial crisis. In fact,

by the end of our sample period, BMA assigns the vast majority of the posterior weight to the

information content of credit spreads in the DD-based portfolios, a result consistent with those

shown in Figure 4. However, it is important to note that during the 1990s—a portion of the sample

sample period that is included in the forecast evaluation—the real-time BMA forecasts of economic

activity based on the entire predictor set would have differed markedly from those based only on

the credit spreads.
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Figure 4: Final Posterior Probabilities by Predictor Subset
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Note: The figure depicts the sum of final (as of 2011:Q3) posterior probabilities that BMA assigns to
variables in the following predictor subsets: PS-I = option-adjusted credit spreads in the 20 DD-based bond
portfolios; PS-II = macroeconomic variables; PS-III = other interest rates and interest rate spreads; and PS-
IV = all other asset market indicators; the bars in the AR bucket represent the final posterior probabilities
that BMA assigned to the autoregressive benchmark.

25



Figure 5: Real-Time Posterior Probabilities for Credit Spreads in DD-Based Portfolios

(Four-Quarter-Ahead Forecast Horizon)
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Note: Sample period: 1992:Q1–2011:Q3. The figure depicts the real-time evolution of the sum of posterior
probabilities that BMA assigns to the option-adjusted credit spreads in the 20 DD-based bond portfolios.
The results shown are for the four-quarter-ahead forecast horizon (i.e., h = 4). In each quarter, the posterior
probabilities for the 20 portfolios—16 in the case of nonfinancial portfolios and four in the case of financial
portfolios—have been added together. The shaded vertical bars represent NBER-dated recessions.

The time-series evolution of posterior weights is important because the prediction of cycli-

cal turning points is of special interest in many forecasting applications. As emphasized by

Philippon [2009], the anticipation of rising defaults associated with economic downturns may make

corporate bond spreads a particularly timely indicator of an incipient recession. The result is

also consistent with the recent work by Gertler and Kiyotaki [2010], Gertler and Karadi [2011],

Brunnermeier and Sannikov [2011], and He and Krishnamurthy [2012], who introduce macroeco-

nomic models in which shocks to the value of assets held by financial intermediaries—by reducing

the supply of credit—have independent effects on the real economy.

Next, we examine the posterior weights implied by the forecasting exercise shown in Table 5,

a case in which the predictor set includes only the option-adjusted credit spreads in the 20 DD-

based bond portfolios. Figure 6 depicts the total final posterior probabilities that BMA assigns

to nonfinancial portfolios in each DD quartile (NFIN-DD1, NFIN-DD2, NFIN-DD3, and NFIN-

DD4) and the posterior probabilities assigned to the financial portfolios in the two halves of the

DD distribution (FIN-DD1 and FIN-DD2). Results are shown for the one-quarter-ahead and four-
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Figure 6: Final Posterior Probabilities for Credit Spreads in DD-Based Portfolios
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Note: The figure depicts the sum of final (as of 2011:Q3) posterior probabilities that BMA assigns to
the option-adjusted credit spreads in the DD-based bond portfolios. The results shown are for the case in
which the predictor set includes only the option-adjusted credit spreads in the 20 DD-based bond portfolios
(see Table 6). The posterior probabilities for maturity categories within each DD bin—four in the case of
nonfinancial portfolios and two in the case of financial portfolios—have been added together.
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quarter-ahead forecast horizons only. For the ease of presentation, we also summed up the poste-

rior probabilities across the maturity categories within each DD-based portfolio—by construction,

therefore, these six posterior probabilities must sum to one.

In forecasting economic activity over the subsequent quarter (i.e., h = 1), BMA tends to place

most posterior weight on credit spreads based on portfolios that contain bonds issued by nonfinan-

cial firms. At the four-quarter-ahead forecast horizon, in contrast, the posterior probabilities are

concentrated on credit spreads based on portfolios that contain bonds issued by financial firms in the

lower half of the credit-quality spectrum; though not reported, most of that posterior probability

is assigned to portfolios that contain longer maturity bonds (i.e., FIN-DD1-MTY2).

4.2 Robustness Checks

The appendixes at the end of the paper contain a number of robustness checks. The results reported

thus far have been based on the value of the shrinkage hyperparameter φ = 4. In Appendix H, we

show that our BMA forecasts generate relative RMSPEs that are less than one for a wide range of

choices of φ.

Appendix A reports BMA forecasting results that rely on different forms of empirical option-

adjustment techniques when constructing DD-based portfolios, as well as for the case when we

construct the portfolios using raw (i.e., unadjusted) credit spreads. In general, we find that the

BMA forecasts that use raw credit spreads continue to be more accurate—at least at shorter

horizons—than the forecasts obtained from direct autoregressions. However, the gains in predictive

accuracy are neither as large nor as consistent as those based on the option-adjusted credit spreads.

These results suggest that the information content of credit spreads on corporate bonds is

significantly influenced by fluctuations in the values of embedded options. Given that the widely-

used credit spread indexes (e.g., the Baa–Aaa and the “high-yield” spreads) are constructed using

prices on both callable and non-callable bonds and that the portion of callable corporate debt is

changing over time, this may also help explain the uneven forecasting performance of standard

credit spread indexes for future economic activity.

5 When Do Credit Spreads Forecast Best?

Predictive relationships between economic variables may be episodic, performing better at some

times than at others; see, for example, Stock and Watson [2009] and Rossi [2012]. Therefore, it

seems natural to ask if the ability of credit spreads to forecast economic activity owes its performance

to recessions, expansions, or both. To formally examine this question, we consider the relative

RMSPEs of the BMA forecasts over two different subsamples: (1) forecasts made for quarters that

turned out to fall into NBER-dated contractions; and (2) forecasts made for quarters that turned

out to fall into NBER-dated expansions. When creating these two subsamples, we use the standard
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Table 7: Out-of-Sample Predictive Accuracy of BMA Forecasts During Economic Expansions and Contractions
(Predictors: All Predictors)

NBER-Dated Expansions NBER-Dated Contractions

Forecast Horizon (h quarters) Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4

GDP 1.03 1.05 1.03 0.91 0.87 0.88 0.74 0.71 0.85 0.92
[0.93] [0.80] [0.34] [0.02] [0.01] [0.16] [0.09] [0.11] [0.28] [0.35]

Personal consumption expenditures 0.97 0.99 0.92 0.94 1.03 0.73 0.80 1.01 1.12 1.11
[0.13] [0.24] [0.05] [0.08] [0.26] [0.06] [0.19] [0.48] [0.60] [0.59]

Business fixed investment 0.94 0.87 0.97 0.87 0.88 0.94 0.76 0.78 0.84 0.83
[0.01] [0.01] [0.08] [0.02] [0.02] [0.20] [0.12] [0.12] [0.24] [0.26]

Industrial production 1.00 1.03 1.09 1.02 0.97 0.92 0.84 0.85 0.87 0.89
[0.19] [0.54] [0.82] [0.26] [0.11] [0.07] [0.10] [0.15] [0.24] [0.28]

Private employment 0.98 1.02 1.07 1.01 0.93 0.88 0.70 0.75 0.77 0.82
[0.08] [0.41] [0.59] [0.14] [0.05] [0.02] [0.02] [0.13] [0.24] [0.28]

Unemployment rate 1.02 1.03 1.06 0.98 0.90 0.87 0.77 0.73 0.77 0.86
[0.88] [0.61] [0.64] [0.08] [0.03] [0.02] [0.03] [0.05] [0.09] [0.20]

Exports 1.01 1.04 1.03 1.05 1.06 0.95 0.88 0.84 0.86 0.85
[0.54] [0.78] [0.29] [0.39] [0.37] [0.09] [0.07] [0.12] [0.20] [0.22]

Imports 0.95 0.97 1.02 0.97 0.98 0.95 0.89 0.87 0.91 0.92
[0.00] [0.03] [0.24] [0.08] [0.11] [0.20] [0.19] [0.25] [0.30] [0.35]

Note: Overall sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is 1992:Q1. The forecasted variable
is the cumulative growth rate (or change in the case of unemployment rate) of each economic activity indicator over the specified forecast horizon.
The table breaks out the forecasts into two subsamples—forecasts made for quarters that turned out to fall into NBER-dated expansions (left
panel) and forecasts made for quarters that turned out to fall into NBER-dated recessions (right panel). The quarters corresponding to peaks
and troughs are both coded as being part of the recession. Entries in the table denote the ratio of the RMSPE from the BMA forecast to the
RMSPE from a direct autoregression for the two subsamples. The autoregression is also included in the set of candidate models. Bootstrapped
p-values (500 replications) for the test of the null hypothesis that the ratio of the RMSPEs is equal to one are shown in brackets (see text for
details).

29



NBER business cycle dates and code quarters corresponding to peaks and troughs as being part of

the recession.

Clearly, this exercise is of no use to real-time economic forecasting—no forecaster ever knows

whether the quarter for which the prediction is being made will turn out to be a recession or an

expansion. Nevertheless, it is still useful as a diagnostic to understand, ex post of course, when the

predictability of credit spreads in the DD-based portfolios arose.25 The results of this exercise are

summarized in Table 7.

Depending on the measure of economic activity being predicted and the forecast horizon, the

BMA forecast may be more accurate than the autoregressive benchmark during economic expan-

sions alone. For example, the relative RMSPE of the BMA forecast is significantly below one

when predicting real GDP growth and business fixed investment during economic expansions at

the three- and four-quarter-ahead horizons; a similar result holds for the year-ahead change in the

unemployment rate.

In economic terms, however, the estimated gains in predictive accuracy from our BMA forecasts

appear to be greatest during economic downturns. During the two NBER-dated recessions in

our sample, the relative RMSPEs are below one for all indicators and all horizons, with the sole

exception being the growth of real PCE at longer horizons. At the same time, the recessions

typically span such a short period of time that the gains in forecast accuracy during economic

contractions alone are statistically significant only at shorter horizons. All told, the documented

improvements in overall predictive accuracy from BMA forecasts based on credit spreads in our

DD-based portfolios appear to accrue mainly, though not exclusively, in recessionary periods.

6 Conclusion

This paper has revisited the forecasting of real-time economic activity using a large number of

macroeconomic and asset market indicators. Our contribution involved expanding the set of asset

market indicators with credit spreads based on corporate bond portfolios sorted by the instrument’s

maturity and credit risk as measured by the issuer’s distance-to-default. These portfolio credit

spreads were constructed directly from the secondary market prices of a large number of senior

unsecured bonds issued by U.S. financial and nonfinancial corporations. Using a flexible empirical

credit-spread pricing framework, the micro-level credit spreads were adjusted for the callability of

the underlying issue, a pervasive feature of the corporate cash market and one that significantly

influences the information content of credit spreads for future economic activity.

To take explicitly into account model selection issues, we employed Bayesian model averaging

techniques. Our results indicate that the accuracy of the BMA forecasts significantly exceeds—

both economically and statistically—the accuracy of the forecasts obtained from a univariate direct

25It may also be helpful if the user of the forecast has a nonstandard loss function that penalizes forecast misses
more during recessions than expansions (or vice-versa).
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autoregression, a benchmark that has proven to be quite difficult to beat when forecasting real-time

economic activity.

The gains in forecasting accuracy stem almost exclusively from the inclusion of the option-

adjusted portfolio credit spreads in the set of predictors—Bayesian model averaging consistently

assigns very high posterior probabilities to models that include these asset market indicators. In

contrast, if the portfolio credit spreads are omitted from the predictor set, the BMA forecasts of

future economic activity are generally statistically indistinguishable from the forecasts obtained

from a direct autoregression. This finding highlights the rich amount of information contained in

corporate bond spreads, information, as argued by Gilchrist and Zakraǰsek [2012], that may be

particularly useful for identifying the importance of credit supply shocks in the determination of

macroeconomic outcomes.

Although the combination of BMA and out-of-sample forecasting appreciably mitigates concerns

about data mining, the sample period used in the analysis contains only three distinct recessions.

Economic downturns in the United States have different causes, with factors such as monetary

tightenings, oil price shocks, and bursting of asset price bubbles all having played varying roles in

our historical sample. Time alone will tell how our BMA forecasts do in predicting future recessions.

However, to the extent that significant disruptions in credit supply may also accompany future

recessions, BMA forecasts utilizing the information content of credit spreads in our DD-based bond

portfolios will likely provide a timely and informative signal regarding the evolution of cyclically-

sensitive indicators of real economic activity, such as growth of business fixed investment and

industrial output, as well as of changes in labor market conditions.
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Appendices

A Different Option-Adjustment Procedures

This section reports the relative RMSPEs of BMA forecasts (as in Table 4 of the paper) using
different forms of the call-option adjustment:

(1) Table A-1 reports results with no option-adjustment—that is, the DD-based portfolios are
constructed using raw credit spreads.

(2) Table A-2 reports results without any Jensen’s inequality correction—the σ̂2
t /2 term is deleted

from the option adjustment.

(3) Table A-3 reports results with a time-invariant Jensen’s inequality correction—the σ̂2
t /2 term

in the option adjustment is replaced by σ̂2/2, where σ̂2 is the sample variance of the errors over
all bonds and all time periods.

According to entries in Table A-1, BMA forecasts that use raw credit spreads continue to be
more accurate than the forecasts obtained from direct autoregressions, at least at shorter horizons.
Although gains in forecast accuracy are economically and statistically significant in some cases, they
are neither as large nor as consistent—both across economic indicators and horizons—as those that
relied on the option-adjusted credit spreads. The BMA forecasts that use option-adjusted spreads
with the alternative option adjustments (Tables A-2 and A-3) have virtually identical predictive
accuracy, compared with the baseline option adjustment (Table 4 of the paper). In summary,
the option adjustment is important for the predictive content of credit spreads. However, how
one treats the Jensen’s inequality term in our regression-based option-adjustment procedure is
inconsequential.
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Table A-1: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With Raw Credit Spreads)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.97 0.97 0.94 0.96 0.92
[0.05] [0.06] [0.05] [0.07] [0.04]

Personal consumption expenditures 0.96 0.97 1.00 1.05 1.09
[0.07] [0.15] [0.22] [0.33] [0.45]

Business fixed investment 0.93 0.89 0.96 0.95 0.94
[0.01] [0.01] [0.06] [0.05] [0.05]

Industrial production 0.97 0.98 1.05 1.05 1.05
[0.03] [0.08] [0.60] [0.42] [0.35]

Private employment 0.96 0.97 1.04 1.09 1.06
[0.03] [0.07] [0.37] [0.49] [0.30]

Unemployment rate 0.96 0.97 1.05 1.09 1.07
[0.00] [0.04] [0.46] [0.55] [0.34]

Exports 0.98 0.96 0.99 1.00 0.96
[0.00] [0.00] [0.02] [0.07] [0.03]

Imports 0.95 0.95 1.00 1.01 0.99
[0.00] [0.01] [0.11] [0.15] [0.13]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see paper for details).
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Table A-2: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With Option-Adjusted Credit Spreads)

(No Jensen’s Inequality Correction)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.96 0.90 0.86 0.88 0.89
[0.03] [0.01] [0.01] [0.02] [0.03]

Personal consumption expenditures 0.89 0.91 0.97 1.02 1.06
[0.01] [0.03] [0.11] [0.27] [0.35]

Business fixed investment 0.94 0.82 0.88 0.86 0.86
[0.01] [0.00] [0.01] [0.01] [0.01]

Industrial production 0.97 0.93 0.94 0.92 0.91
[0.03] [0.02] [0.04] [0.05] [0.06]

Private employment 0.93 0.87 0.90 0.90 0.89
[0.00] [0.00] [0.01] [0.02] [0.02]

Unemployment rate 0.96 0.88 0.87 0.87 0.88
[0.01] [0.00] [0.00] [0.01] [0.02]

Exports 0.98 0.95 0.92 0.96 0.98
[0.00] [0.00] [0.00] [0.01] [0.06]

Imports 0.95 0.93 0.94 0.94 0.95
[0.00] [0.00] [0.03] [0.05] [0.08]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see paper for details).
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Table A-3: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With Option-Adjusted Credit Spreads)

(Time-Invariant Jensen’s Inequality Correction)

Forecast Horizon (h quarters]

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.96 0.90 0.86 0.86 0.86
[0.03] [0.01] [0.01] [0.02] [0.02]

Personal consumption expenditures 0.88 0.88 0.94 1.01 1.06
[0.01] [0.02] [0.08] [0.22] [0.35]

Business fixed investment 0.94 0.82 0.87 0.87 0.87
[0.01] [0.00] [0.00] [0.01] [0.01]

Industrial production 0.96 0.93 0.91 0.90 0.90
[0.03] [0.02] [0.03] [0.04] [0.06]

Private employment 0.93 0.87 0.90 0.90 0.88
[0.00] [0.00] [0.01] [0.02] [0.01]

Unemployment rate 0.96 0.88 0.86 0.85 0.87
[0.01] [0.00] [0.00] [0.00] [0.01]

Exports 0.98 0.95 0.93 0.97 0.99
[0.00] [0.00] [0.00] [0.02] [0.06]

Imports 0.95 0.93 0.92 0.92 0.93
[0.00] [0.00] [0.02] [0.03] [0.05]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see paper for details).
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B Raw vs. Option-Adjusted Credit Spreads

One of the aims of the paper was to demonstrate that by using “cleaner” measures of credit
spreads, one is able to improve on real-time forecasts of economic activity, as well as to point out
that the well-documented uneven forecasting performance of standard credit spread indexes (i.e.,
the Baa-Aaa and the “junk” spreads) might reflect contamination induced by swings in the values of
embedded options. This appendix compares the information content of raw credit spreads with that
of their option-adjusted counterparts. In particular, the vertical bars in the panels of Figure B-1
depict the final total weights—that is, the sum of posterior probabilities—that BMA assigns to
variables in the following predictor subsets: PS-I = option-adjusted credit spreads in the 20 DD-
based bond portfolios; PS-II = raw credit spreads in the 20 DD-based bond portfolios; and PS-III =
all other predictors (this subset of models also includes the autoregressive benchmark). Results
are shown for all the forecast horizons considered and for each of the eight different indicators of
economic activity. Note that, by construction, these probabilities sum up to one at each forecast
horizon.

These results provide a visual confirmation of the fact that information content of the option-
adjusted credit spreads consistently exceeds that of raw credit spreads, especially for cyclically-
sensitive indicators of economic activity and at horizons extending beyond the very near term.
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Figure B-1: Final Posterior Probabilities by Predictor Subset
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Note: The figure depicts the sum of final (as of 2011:Q3) posterior probabilities that BMA assigns to
variables in the following predictor subsets: PS-I = option-adjusted credit spreads in the 20 DD-based bond
portfolios; PS-II = raw credit spreads in the 20 DD-based bond portfolios; and PS-III = all other predictors
(this subset of models also includes the autoregressive benchmark).
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C BMA Forecasts With the Median Credit Spread

This appendix reports the relative RMSPEs of BMA forecasts (as in Table 4 of the paper) that use
only the median credit spread of our 24 DD-based bond portfolios, rather than all the 24 credit
spreads. According to the entries in Table C-1, the resulting BMA forecasts continue to be more
accurate than the forecasts obtained from direct autoregressions. The predictive gains, however,
are smaller than those from the corresponding forecasts that included all the portfolio-based credit
spreads.

Table C-1: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With the Median Option-Adjusted Credit Spread)

Forecast Horizon (h quarters]

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.98 0.96 0.94 0.95 0.95
[0.10] [0.06] [0.07] [0.08] [0.10]

Personal consumption expenditures 0.95 0.96 0.99 1.03 1.06
[0.05] [0.09] [0.21] [0.31] [0.38]

Business fixed investment 0.95 0.85 0.85 0.86 0.86
[0.01] [0.00] [0.00] [0.01] [0.01]

Industrial production 0.97 0.93 0.92 0.91 0.92
[0.03] [0.02] [0.03] [0.04] [0.06]

Private employment 0.98 0.94 1.01 1.06 1.04
[0.03] [0.02] [0.24] [0.44] [0.26]

Unemployment rate 0.96 0.94 0.99 1.02 1.03
[0.01] [0.00] [0.10] [0.27] [0.26]

Exports 0.98 1.05 1.05 1.03 1.02
[0.00] [0.93] [0.73] [0.35] [0.23]

Imports 0.95 0.93 0.93 0.90 0.92
[0.00] [0.00] [0.02] [0.02] [0.04]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets
(see paper for details).
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D Alternative Benchmark

This appendix reports the RMSPEs of BMA forecasts (as in Table 4 of the paper), relative to the
benchmark of a constant forecast, which is equal to the real-time sample average of the variable
being predicted at all horizons. According to the entries in Table D-1, the BMA forecasts incorpo-
rating the information content of option-adjusted credit spreads in the DD-based portfolios again
generally do better than this very simple benchmark.

Table D-1: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With Option-Adjusted Credit Spreads)

Forecast Horizon (h quarters]

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.89 0.85 0.83 0.85 0.85
[0.00] [0.01] [0.01] [0.03] [0.02]

Personal consumption expenditures 0.85 0.85 0.89 0.98 1.03
[0.08] [0.17] [0.27] [0.38] [0.44]

Business fixed investment 0.81 0.72 0.79 0.82 0.84
[0.00] [0.00] [0.00] [0.02] [0.02]

Industrial production 0.90 0.90 0.93 0.92 0.90
[0.00] [0.02] [0.05] [0.06] [0.05]

Private employment 0.48 0.53 0.62 0.66 0.68
[0.03] [0.03] [0.05] [0.05] [0.05]

Unemployment rate 0.80 0.74 0.77 0.80 0.82
[0.00] [0.00] [0.00] [0.00] [0.01]

Exports 0.94 0.95 0.94 0.99 1.01
[0.03] [0.00] [0.00] [0.20] [0.29]

Imports 0.92 0.96 0.94 0.97 0.99
[0.44] [0.22] [0.03] [0.07] [0.10]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote
the ratio of the RMSPE from the BMA forecast to the RMSPE from a constant forecast (i.e., a forecast
that is set equal to the recursively estimated real-time sample mean at all horizons); the constant forecast
is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the test of the
null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets (see paper for
details).
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E Alternative Bootstrap

This appendix reports the relative RMSPEs of BMA forecasts (as in Table 4 of the paper), except
that the p-values of the null hypothesis of equal predictive accuracy use a different bootstrap
procedure.

This alternative bootstrap involves fitting an AR(4) process to yt and separately estimating a
dynamic factor model using the set of all predictors Xt:

Xt = ΛFt + ut; (E-1)

and
Ft = ΦFt−1 + vt, (E-2)

where the elements of the vector Ft correspond to the first three principal components ofXt. In each
bootstrap replication, we first re-sample with replacement from the residuals of the AR(4) process
for yt to construct bootstrap samples of yt. We then independently re-sample with replacement
from the residuals in equations (E-1) and (E-2), thereby constructing bootstrap samples of Xt for
use in BMA; note that in this setup, the predictor set Xt is, by construction, irrelevant for the
forecasting of the dependent variable. Unlike the bootstrap in the paper, this bootstrap does not
preserve the conditional heteroskedasticity that may be present in the underlying data.

Entries in Table E-1 shows the relative RMSPEs of our BMA forecasts, exactly as in Table 4,
except using these alternative p-values; these alternative p-values are quite similar to those reported
in the paper.
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Table E-1: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With Option-Adjusted Credit Spreads)

(Alternative Bootstrap)

Forecast Horizon (h quarters]

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.96 0.90 0.87 0.88 0.87
[0.01] [0.00] [0.00] [0.01] [0.01]

Personal consumption expenditures 0.88 0.90 0.97 1.03 1.06
[0.00] [0.01] [0.11] [0.49] [0.70]

Business fixed investment 0.94 0.84 0.90 0.90 0.88
[0.00] [0.00] [0.00] [0.01] [0.01]

Industrial production 0.96 0.92 0.93 0.92 0.91
[0.00] [0.00] [0.02] [0.02] [0.02]

Private employment 0.92 0.86 0.90 0.90 0.88
[0.00] [0.00] [0.00] [0.01] [0.01]

Unemployment rate 0.95 0.87 0.86 0.87 0.88
[0.00] [0.00] [0.00] [0.00] [0.00]

Exports 0.98 0.95 0.93 0.98 1.00
[0.02] [0.00] [0.00] [0.07] [0.16]

Imports 0.94 0.92 0.93 0.93 0.94
[0.00] [0.00] [0.02] [0.03] [0.04]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive
benchmark is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square brackets;
these p-values are based on the alternative bootstrap described in Appendix D.
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F Forecasting With the Term Spread and the Paper-Bill Spread

This appendix reports the relative RMSPEs of forecasts that use—in addition to the lags of the
variable being forecasted—either the 10y/3m term spread or the paper-bill spread as predictor.
Table F-1 reports the results using the term spread, while Table F-2 reports the results using the
paper-bill spread.

Table F-1: Real-Time Out-of-Sample Predictive Accuracy of the Term Spread

Forecast Horizon (h quarters]

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 1.01 1.00 1.00 1.00 1.00
[0.44] [0.24] [0.21] [0.21] [0.21]

Personal consumption expenditures 1.00 1.01 1.02 1.03 1.03
[0.39] [0.52] [0.48] [0.54] [0.52]

Business fixed investment 0.99 0.99 0.98 0.98 0.97
[0.19] [0.16] [0.13] [0.12] [0.11]

Industrial production 0.99 1.00 1.00 0.99 0.98
[0.09] [0.15] [0.15] [0.09] [0.08]

Private employment 1.00 1.00 1.01 1.00 0.99
[0.26] [0.22] [0.24] [0.19] [0.13]

Unemployment rate 1.01 1.01 1.01 1.00 0.98
[0.71] [0.49] [0.27] [0.18] [0.11]

Exports 1.02 1.03 1.04 1.05 1.07
[0.98] [0.91] [0.88] [0.88] [0.86]

Imports 0.99 0.99 0.99 0.98 0.96
[0.07] [0.12] [0.12] [0.10] [0.07]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote the
ratio of the RMSPE from the forecast using a direct autoregression augmented with the term spread (10-year
less 3-month Treasury yield) to the forecast using the unaugmented direct autoregression. Bootstrapped
p-values (500 replications) for the test of the null hypothesis that the ratio of the RMSPEs is equal to one
are reported in square brackets, using the bootstrap described in the paper.
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Table F-2: Real-Time Out-of-Sample Predictive Accuracy of the Paper-Bill Spread

Forecast Horizon (h quarters]

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 1.05 1.04 1.09 1.08 1.09
[1.00] [0.98] [1.00] [0.99] [0.99]

Personal consumption expenditures 0.97 1.03 1.04 1.05 1.05
[0.04] [0.92] [0.92] [0.91] [0.88]

Business fixed investment 0.95 1.00 1.01 1.02 1.02
[0.0] [0.32] [0.49] [0.61] [0.60]

Industrial production 1.00 0.97 1.01 1.02 1.02
[0.18] [0.11] [0.61] [0.60] [0.51]

Private employment 0.98 0.99 1.03 1.05 1.05
[0.06] [0.14] [0.72] [0.83] [0.80]

Unemployment rate 0.98 0.98 1.00 1.02 1.02
[0.03] [0.06] [0.48] [0.67] [0.72]

Exports 1.01 1.07 1.07 1.08 1.07
[0.50] [0.97] [0.98] [1.00] [0.99]

Imports 0.95 0.94 0.97 0.99 0.99
[0.00] [0.01] [0.09] [0.22] [0.26]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive forecasts is
1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote
the ratio of the RMSPE from the forecast using a direct autoregression augmented with the 3-month
paper-bill spread to the forecast using the unaugmented direct autoregression. Bootstrapped p-values
(500 replications) for the test of the null hypothesis that the ratio of the RMSPEs is equal to one are
reported in square brackets, using the bootstrap described in the paper.
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G BMA Forecasts of Inflation

This appendix reports the relative RMSPEs of our BMA forecasts (as in Table 4 of the paper), but
where the variable being forecasted is inflation, measured either by the GDP price deflator or the
CPI. According to the entries in Table G-1, our BMA forecasts do not improve on the autoregressive
benchmark.

Table G-1: Real-Time Out-of-Sample Predictive Accuracy of BMA Forecasts
(Predictor Set: All Variables With Option-Adjusted Credit Spreads)

Forecast Horizon (h quarters]

Inflation Measure h = 0 h = 1 h = 2 h = 3 h = 4

GDP price deflator 1.00 1.00 1.01 1.01 1.02
[0.53] [0.52] [0.44] [0.37] [0.36]

CPI 1.00 1.02 1.02 1.01 1.02
[0.40] [0.66] [0.35] [0.27] [0.26]

Note: Sample period: 1986:Q1–2011:Q3. The jump-off date for the out-of-sample recursive
forecasts is 1992:Q1. The forecasted variable is the cumulative growth rate of each inflation
indicator over the specified forecast horizon. Entries in the table denote the ratio of the RMSPE
from the BMA forecast to the RMSPE from a direct autoregression; the autoregressive benchmark
is also included in the set of candidate models. Bootstrapped p-values (500 replications) for the
test of the null hypothesis that the ratio of the RMSPEs is equal to one are reported in square
brackets (see paper for details).
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H Varying the Hyperparameter φ

The results reported in the paper were based on the value of the shrinkage hyperparameter φ =
4. This appendix examines the robustness of our results to different values of φ, the parameter
governing the strength of the g-prior. Figure H-1 plots the out-of-sample RMSPE of the BMA
forecast—relative to the RMSPE from a direct autoregression—as a function of φ for all six economic
indicators and all five forecast horizons. Our BMA forecasting setup delivers substantial gains in
forecast accuracy relative to the direct autoregression for a wide range of values of φ; in fact,
the qualitative nature of our results appears to be fairly insensitive to the choice of the shrinkage
parameter. In some cases, the relative RMSPE decreases monotonically in φ (at least over the range
of values of φ considered). In others, the relationship between the RMSPE and φ is U-shaped, and
the best forecasts are consequently obtained with a small or intermediate value of φ.

With a sufficiently small value of φ—implying a very informative prior—BMA outperforms the
univariate time-series benchmark in all cases considered in this paper. This is an attractive feature
of BMA with a sufficiently informative prior, at least in this data set. Overall, setting φ = 4 as a
benchmark seems to be a good choice because it yields relative RMSPEs that are less than one in
nearly all cases, and it often yields substantial gains in forecast accuracy.

49



Figure H-1: BMA Forecasting Performance and the Informativeness of the g-Prior

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

GDP

φHyperparameter

Current quarter
1 quarter
2 quarter

3 quarter
4 quarter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Personal consumption expenditures

φHyperparameter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Business fixed investment

φHyperparameter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Industrial production

φHyperparameter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Private employment

φHyperparameter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Unemployment rate

φHyperparameter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Exports

φHyperparameter

0.8

0.9

1.0

1.1

1.2

 0  2  4  6  8 10

Relative RMSPE

 

Imports

φHyperparameter

Note: The figure depicts the ratio of the RMSPE of the BMA forecast to the RMSPE from a direct
autoregression for the different values of the shrinkage hyperparameter φ.
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