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1 Introduction

Stochastic time-change offers a parsimonious and economically well-grounded device for introducing
stochastic volatility to simpler constant volatility models. The constant volatility model is assumed
to apply in a latent “business time.” The speed of business time with respect to calendar time is
stochastic, and reflects the varying rate of arrival of news to the markets. Most applications of
stochastic time-change in the finance literature have focused on the pricing of stock options. Log
stock prices are naturally modeled as Lévy processes, and it is well known that any Lévy process
subordinated by a Lévy time-change is also a Lévy process. The variance gamma (Madan and
Seneta, 1990; Madan et al., 1998) and normal inverse Gaussian (Barndorff-Nielsen, 1998) models
are well-known early examples. To allow for volatility clustering, Carr, Geman, Madan, and Yor
(2003) introduce a class of models in which the background Lévy process is subordinated by the
time-integral of a mean-reverting CIR activity-rate process, and solve for the Laplace transform of
the time-changed process. Carr and Wu (2004) extend this framework to accommodate dependence
of a general form between the activity rate and background processes, as well as a wider class of
activity rate processes.

In this paper, we generalize the basic model in complementary directions. We discard the
assumption that the background process is Lévy, and assume instead that the background process
(Xt) has a known Laplace transform, S(u; t) = E [exp(−uX(t))]. Maintaining the requirement that
the business clock (Tt) and the background process are independent, we develop two different series
solutions for the Laplace transform of the time-changed process X̃t = X(Tt) given by S̃(u; t) =
E [exp(−uX(Tt))] = E [S(u;Tt)]. In fact, our methods apply generically to a very wide class of
smooth functions of time, and in no way require S to be the Laplace transform of a stochastic
process. Henceforth, for notational parsimony, we drop the auxilliary parameter u from S(t).

Our two series solution are complementary to one another in the sense that the restrictions
imposed by the two methods on S(t) and on Tt differ substantively. The first method requires that
Tt be a Lévy process, but imposes fairly mild restrictions on S(t). The second method imposes
fairly stringent restrictions on S(t), but very weak restrictions on Tt. In particular, the second
method allows for volatility clustering through serial dependence in the activity rate. Thus, the
two methods may be useful in different sorts of applications.

Our application is to modeling credit risk. Despite the extensive literature on stochastic volatil-
ity in stock returns, the theoretical and empirical literature on stochastic volatility in credit risk
models is sparse. Empirical evidence of stochastic volatility in models of corporate bond and credit
default swap spreads is provided by Jacobs and Li (2008), Alexander and Kaeck (2008), Zhang
et al. (2009) and Gordy and Willemann (2012). To introduce stochastic volatility to the class of
default intensity models pioneered by Jarrow and Turnbull (1995) and Duffie and Singleton (1999),
Jacobs and Li (2008) replace the widely-used single-factor CIR specification for the intensity with
a two-factor specification in which a second CIR process controls the volatility of the intensity pro-
cess. The model is formally equivalent to the Fong and Vasicek (1991) model of stochastic volatility
in interest rates. An important limitation of this two-factor model is that there is no region of the
parameter space for which the default intensity is bounded nonnegative (unless the volatility of
volatility is zero).1

In this paper, we introduce stochastic volatility to the default intensity framework by time-

1The structural models of Merton (1974) and Black and Cox (1976) have also been extended to allow for stochastic
volatility. See Fouque et al. (2006), Hurd (2009), and Gouriéroux and Sufana (2010).
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changing the firm’s default time. Let τ̃ denote the calendar default time, and let τ = Tτ̃ be the
corresponding time under the business clock. Define the background process Xt as the time-integral
(or “compensator”) of the default intensity and S(t) as the business-time survival probability
function S(t) = E [exp(−Xt)]. If we impose independence between Xt and Tt, as we do throughout
this paper, then time-changing the default time is equivalent to time-changing Xt, and the calendar-
time survival probability function is

S̃(t) = Pr(τ̃ > t) = Pr(τ > Tt) = E [exp(−X(Tt))] = E [E [exp(−X(Tt))|Tt]] = E [S(Tt)] .

The time-changed model inherits important properties of the business time model. In particular,
when the default intensity is bounded nonnegative in business time, the calendar-time default
intensity is also bounded nonnegative. However, analytical tractability in the business time model is
not, in general, inherited. If we allow for serial dependence in the default intensity, the compensator
Xt cannot be a Lévy process, so the method of Carr and Wu (2004) cannot be applied.2 We show
that both of our series methods are applicable and, indeed, both can be implemented efficiently.

The idea of time-changing default times appears to have first been used by Joshi and Stacey
(2006). Their model is intended for pricing collateralized debt obligations, so makes the simplifying
assumption that firm default intensities are deterministic.3 Mendoza-Arriaga et al. (2010) apply
time-change to a credit-equity hybrid model. If we strip out the equity component of their model,
the credit component is essentially a time-changed default intensity model. Unlike our model,
however, their model does not nest the CIR specification of the default intensity, which is by far
the most widely used specification in the literature and in practice. Most closely related to our
paper is the time-changed intensity model of Mendoza-Arriaga and Linetsky (2012).4 They obtain
a spectral decomposition of the subordinate semigroups, and from this obtain a series solution to
the survival probability function. As in our paper, the primary application in their paper is to the
evolution of survival probabilities in a model with a CIR intensity in business time and a tempered
stable subordinator. When that CIR process is stationary, their solution coincides with that of our
second solution method. However, our method can be applied in the non-stationary case as well
and generalizes easily when the CIR process is replaced by a basic affine process. Empirically, the
default intensity process is indeed non-stationary under the risk-neutral measure for the typical
firm (Duffee, 1999; Jacobs and Li, 2008).

Our two expansion methods are developed for a general function S(t) and wide classes of time-
change processes in Sections 2 and 3. An application to credit risk modeling is presented in Section
4. The properties of the resulting model are explored with numerical examples in Section 5. In
Section 6, we show that stochastic time-change has a very large effect on the pricing of deep out-
of-the-money options on credit default swaps. In Section 7, we demonstrate that our expansion
methods can be extended to a much wider class of multi-factor affine jump-diffusion business time
models.

2As we will discuss in Section 4, the compensator Xt can be expressed as a time-changed Lévy process, but not
in a way that allows the Laplace transform of X̃t to be obtained as in Carr and Wu (2004).

3Ding et al. (2009) solve a more sophisticated model in which the default intensity is self-exciting, but is constant
in between default arrival times.

4We became aware of this paper only upon release of the working paper on SSRN in September 2012. Our research
was conducted independently and contemporaneously.
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2 Expansion in derivatives

The method of this section imposes weak regularity conditions on S(t), but places somewhat strong
restrictions on Tt. Throughout this section, we assume

Assumption 1. (i) Tt is a subordinator. (ii) The Laplace exponent Ψ(u) of Tt exists for all u < u0

for a threshold u0 > 0 and is real analytic about the origin.

A subordinator is an almost surely increasing Lévy process (see Proposition 3.10 in Cont and
Tankov, 2004, for a formal definition). The Laplace exponent solves E [exp(uTt)] = exp(tΨ(u)).
Since tΨ(u) is the cumulant generating function of Tt, part (ii) of the assumption guarantees that
all cumulants (and moments) of Tt are finite, and that we can expand Ψ(u) as

Ψ(u) = ψ1u+
1

2
ψ2u

2 +
1

3!
ψ3u

3 . . . (2.1)

The nth cumulant of Tt is tψn. Carr and Wu (2004) normalize ψ1 = 1 so that the business clock
is an unbiased distortion of the calendar, i.e., E [Tt] = t. We assume ψ1 > 0 but otherwise leave it
unconstrained. The moments of Tt can be obtained from the cumulants:

E [Tnt ] =

n∑
m=0

Yn,n−m(ψ1, . . . , ψm+1)tn−m (2.2)

where Yn,k(x1, x2, . . . , xn−k+1) is the incomplete Bell polynomial. For notational compactness, we
may write Yn,n−m(ψ) to mean Yn,n−m(ψ1, . . . , ψm+1). In the analysis below, we will manipulate
Bell polynomials in various ways. Unless otherwise noted, the transformations can easily be verified
using the identities collected in Appendix A.

We assume that S(t) is a smooth function of time. Imposing Assumption 1, we expand S(t) as
a formal series and integrate:

S̃(t) = E [S(Tt)] = E

[ ∞∑
n=0

βn
n!
Tnt

]
=
∞∑
n=0

βn
n!

E [Tnt ]

=

∞∑
n=0

βn
n!

n∑
m=0

Yn,n−m(ψ)tn−m =

∞∑
m=0

∞∑
n=m

βn
n!
Yn,n−m(ψ)tn−m

=
∞∑
m=0

∞∑
n=0

βn+m

(n+m)!
Yn+m,n(ψ)tn =

∞∑
m=0

∞∑
n=0

βn+m

n!

(
n!

(n+m)!
Yn+m,n(ψ)

)
tn (2.3)

From equation (A.1) and the recurrence rule (A.3), it follows immediately that

Lemma 1. Under Assumption 1,

n!

(n+m)!
Yn+m,n(ψ) =

ψn+m
1

m!

m∑
j=0

(n)jYm,j

(
ψ2

2ψ2
1

,
ψ3

3ψ3
1

,
ψ4

4ψ4
1

, . . .

)

where (z)j denotes the falling factorial (z)j = z · (z − 1) · · · (z − j + 1). To handle the special case
of m = 0, we have Yn,n(ψ) = ψn1 for n ≥ 0.
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Defining the constants

γm,j =
1

m!
Ym,j

(
ψ2

2ψ2
1

,
ψ3

3ψ3
1

,
ψ4

4ψ4
1

, . . .

)
for m ≥ j ≥ 0, we can write

n!

(n+m)!
Yn+m,n(ψ) = ψn+m

1

m∑
j=0

γm,j(n)j .

Observe that γm,j depends on m, j, and ψ1, . . . , ψm+1, but not on n. We substitute into equation
(2.3) to get

S̃(t) =

∞∑
m=0

∞∑
n=0

βn+m

n!
ψn+m

1 tn
m∑
j=0

γm,j(n)j =

∞∑
m=0

m∑
j=0

γm,j

∞∑
n=0

βn+m

n!
(n)jψ

n+m
1 tn (2.4)

Observing that

(n)j
n!

=

{
1/(n− j)! if j ≤ n,
0 if j > n,

we have

∞∑
n=0

βn+m

n!
(n)jψ

n+m
1 tn =

∞∑
n=j

βn+m

(n− j)!
ψn+m

1 tn =

∞∑
n=0

βn+m+j

n!
ψn+m+j

1 tn+j = tjDm+j
t S(ψ1t)

where Dt is the differential operator d
dt . Substituting into equation (2.4) delivers

S̃(t) =
∞∑
m=0

m∑
j=0

γm,jt
jDm+j

t S(ψ1t). (2.5)

To obtain a generating function for the constants γm,j , we substitute exp(ut/ψ1) for S(t) and
then divide each side by exp(ut/ψ1).

exp(tΨ(u/ψ1)− tu) =
∞∑
m=0

m∑
j=0

γm,jt
jum+j . (2.6)

By Assumption 1(ii), Ψ(u) is analytic in the neighborhood of the origin, and tΨ(u/ψ1)− tu is linear
in t. Therefore, tΨ(u/ψ1) − tu is analytic in t and locally analytic in u. The exponential of a
convergent series gives rise to a convergent series, so the series in (2.6) is convergent for any t ≥ 0
and for u near zero.5 This will be helpful in the analysis below. We also note that the constants
γm,j can easily be computed via the recurrence rule (A.4).

To guarantee that the series expansion in equation (2.5) is convergent, we would require rather
strong conditions. The function S(t) must be entire, the coefficients βn in equation (2.3) must
decay faster than geometrically, and the coefficients γm,j must vanish at a geometric rate in m, j.
In application, it may be that none of these assumptions hold. If S(t) is analytic but non-entire,
then Dm+j

t S(ψ1t) = O((m + j)!), so geometric behavior in the γm,j would not be sufficient for

5By Hartog’s theorem, a function which is analytic in a number of variables separately, for each of them in some
disk, is jointly analytic in the product of the disks (Narasimhan, 1971).
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convergence. Furthermore, we will provide a practically relevant specification below in which the
γm,j are increasing in m for fixed j. Even if the series expansion in equation (2.5) is, in general,
divergent, we will see that it may nonetheless be computationally effective.

We now provide an alternative justification for equation (2.5) to clarify the convergence behavior
of our expansion. We introduce a regularity condition on S(t):

Assumption 2. There exists a finite signed measure µ on [0,∞) such that

S(t) =

∫ ∞
0

e−utdµ(u)

This regularity condition is roughly equivalent to imposing analyticity and restrictions on tail
behavior in the complex plane. It is an assumption that is often made in asymptotics and often
satisfied. The condition could be relaxed at the expense of making the analysis more cumbersome.6

Assumption 2 implies

S(ψ1t) =

∫ ∞
0

exp(−ψ1ut)dµ(u) (2.7)

so

Dm+j
t S(ψ1t) = ψm+j

1

∫ ∞
0

(−u)m+j exp(−ψ1ut)dµ(u)

Assumption 2 guarantees that this integral is convergent for all m+ j ≥ 0, which implies that S is
smooth. Thus we have for all M ≥ 0

M∑
m=0

m∑
j=0

γm,jt
jDm+j

t S(ψ1t) =
M∑
m=0

m∑
j=0

γm,jψ
m+j
1 tj

∫ ∞
0

(−u)m+j exp(−ψ1ut)dµ(u) (2.8)

Let RM be the remainder function from the generating equation (2.6), that is,

RM (t, u) = exp(tΨ(u/ψ1))− etu
M∑
m=0

m∑
j=0

γm,jt
jum+j (2.9)

and let S̃M (t) be the approximation to S̃(t) up to term M in the expansion (2.5), i.e.,

S̃M (t) =
M∑
m=0

m∑
j=0

γm,jt
jDm+j

t S(ψ1t). (2.10)

The following proposition formalizes our approximation:

Proposition 1. Under Assumptions 1 and 2,

S̃(t) = S̃M (t) +

∫ ∞
0

RM (t,−ψ1u)dµ(u)

6Our analysis indicates that Assumption 2 could be replaced altogether with the much weaker condition that S(t)
is analyzable, i.e., that the function admits a Borel summable transseries at infinity (see Écalle, 1993).
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Proof. By (2.7) we have

S̃(t) = E

[∫ ∞
0

e−uTtdµ(u)

]
=

∫ ∞
0

E
[
e−uTtdµ(u)

]
=

∫ ∞
0

etΨ(−u)dµ(u) (2.11)

where Assumption 2 guarantees the change of the order of integration and the last equality follows
from the fact that tΨ(u) is the cumulant generating function of Tt. We obtain from (2.8), (2.9) and
(2.11) that

S̃(t) =

∫ ∞
0

RM (t,−ψ1u) + e−tψ1u
M∑
m=0

m∑
j=0

γm,jψ
m+j
1 tj(−u)m+j

 dµ(u)

=

M∑
m=0

m∑
j=0

γm,jt
jDm+j

t S(ψ1t) +

∫ ∞
0

RM (t,−ψ1u)dµ(u)

which implies the conclusion.

Since M can be arbitrarily large, Proposition 1 provides a rigorous meaning for equation (2.5).
However, it does not by itself explain why we should expect S̃M (t) to provide a good approximation
to S̃(t). Equation (2.8) shows that the divergent sum (2.5) comes from the Laplace transform of
the locally convergent sum in (2.6) (with u replaced by −ψ1u). It has been known for a long
time that a divergent power series obtained by Laplace transforming a locally convergent sum is
computationally very effective when truncated close to the numerically least term. In recent years,
this classical method of “summation to the least term” has been justified rigorously in quite some
generality for various classes of problems.7 The analysis of Costin and Kruskal (1999) is in the
setting of differential equations, but their method of proof extends to much more general problems.
Although the series in our analysis is not a usual power series, the procedure is conceptually similar
and therefore expected to yield comparably good results.

For an interesting class of processes for Tt, the sequence ψ1, ψ2, . . . takes a convenient form. Let
ξ = ψ1 be the scaling parameter of the process, and let α = ψ2

1/ψ2 be the precision parameter. We
introduce the assumption

Assumption 3. ψn = an−1ξ
n/αn−1 where a0 = a1 = 1 and a2, a3, . . . do not depend on (α, ξ).

Assumption 3 implies ψn/ψ
n
1 = an−1/α

n−1, so we use transformation (A.1) to get

Ym,j

(
ψ2

2ψ2
1

,
ψ3

3ψ3
1

,
ψ4

4ψ4
1

, . . .

)
= α−mYm,j

(
1

2
,
a2

3
,
a3

4
, . . .

)
Thus, under Assumptions 1 and 3, Lemma 1 implies

n!

(n+m)!
Yn+m,n(ψ) =

ξn+m

αm
1

m!

m∑
j=0

(n)jYm,j

(
1

2
,
a2

3
,
a3

4
, . . .

)
(2.12)

7The earliest use of optimal truncation of divergent series was a proof by Cauchy (1843) that the least term
truncation of the Gamma function series is optimal, giving rise to errors of the same order of magnitude as the least
term. Stokes (1864) took the method further, less rigorously, but applied it to many problems and used it to discover
what we now call the Stokes phenomenon in asymptotics.
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Define a new set of constants

cm,j = αmγm,j =
1

m!
Ym,j

(
1

2
,
a2

3
,
a3

4
, . . .

)
so that

n!

(n+m)!
Yn+m,n(ψ) =

ξn+m

αm

m∑
j=0

cm,j(n)j .

Under Assumptions 1, 2 and 3, Proposition 1 holds with

S̃M (t) =
M∑
m=0

α−m
m∑
j=0

cm,jt
jDm+j

t S(ξt) (2.13)

RM (t, u) = exp(tΨ(u/ξ))− etu
M∑
m=0

α−m
m∑
j=0

cm,jt
jum+j (2.14)

This solution is especially convenient for two reasons. First, when the precision parameter α
is large, the expansion will yield accurate results in few terms. The variance V [Tt] is inversely
proportional to α, so Tt converges in probability to ξt as α → ∞. This implies that S̃(t) ≈ S(ξt)
for large α. Since the expansion constructs S̃(t) as S(ξt) plus successive correction terms, it is well-
structured for the case in which Tt is not too volatile. The same remark applies to the more general
case of Proposition 1, but the logic is more transparent when a single parameter controls the scaled
higher cumulants. Second, in the special case of Assumption 3, the coefficients cm,j depend only on
the chosen family of processes for Tt and not on its parameters (α, ξ). In econometric applications,
there can be millions of calls to the function S̃(t), so the ability to pre-calculate the cm,j can result
in significant efficiencies.

The three-parameter tempered stable subordinator is a flexible and widely-used family of sub-
ordinators. We can reparameterize the standard form of the Laplace exponent given by Cont and
Tankov (2004, §4.2.2) in terms of our precision and scale parameters (α and ξ) and a stability
parameter ω with 0 ≤ ω < 1. We obtain

Ψ(u) =

{
α1−ω

ω {1− (1− ξu/(α(1− ω)))ω} if ω ∈ (0, 1)

−α log(1− ξu/α) if ω = 0
(2.15)

It can easily be verified that

Proposition 2. If Tt is a tempered stable subordinator, then Assumption 1 is satisfied with u0 =
(1− ω)α/ξ and Assumption 3 is satisfied with

an =
(1− ω)(n)

(1− ω)n

We denote by (z)(n) the rising factorial (z)(n) = z · (z + 1) · · · (z + n− 1).
Two well-known examples of the tempered stable subordinator are the gamma subordinator

(ω = 0) and the inverse Gaussian subordinator (ω = 1/2). For the gamma subordinator, the
constants an simplify to an = n!, so

cm,j =
1

m!
Ym,j

(
1!

2
,
2!

3
,
3!

4
, . . .

)
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We can calculate the cm,j efficiently via recurrence. Rza̧dkowski (2012) shows that

cm,j =
1

m+ j
(cm−1,j−1 + (m+ j − 1)cm−1,j) (2.16)

for m ≥ j ≥ 1. The recurrence bottoms out at c0,0 = 1 and cm,0 = 0 for m > 0.
In the inverse Gaussian case (ω = 1/2), the an parameters are

an =
1

(1/2)n
1

2

3

2
· · · 2n− 1

2
=

n∏
i=1

(2i− 1) =
(2n)!

2nn!

so
an
n+ 1

=
1

2n
(2n)!

(n+ 1)!
=

1

2n
(2n)n−1.

Thus, for 1 ≤ j ≤ m, we have

cm,j =
1

m!
Ym,j

(
(2)0/2

1, (4)1/2
2, (6)2/2

3, (8)3/2
4, . . .

)
=

1

2mm!
Ym,j ((2)0, (4)1, (6)2, (8)3, . . .)

=
1

2mm!

(
m− 1

j − 1

)
(2m)m−j (2.17)

where the last equality follows from identity (A.2).

3 Expansion in exponential functions

The method of this section relaxes the assumption that Tt is a Lévy process, but is more restrictive
on S(t). In the simplest case, we require that

Assumption 4. S(t) has a series expansion of the form

S(t) = exp(at)

∞∑
n=0

βn exp(−nγt)

for constants a ≤ 0 and γ ≥ 0. The series
∑∞

n=0 |βn| is convergent.

The convergence of
∑
|βn| implies uniform convergence for the expansion of S(t). Note here that

we are redeploying symbols a, γ and β, which were defined differently in Section 2. When this
assumption is satisfied, Assumption 2 is satisfied with

µ(u) =
∞∑
n=0

βnµnγ−a(u) (3.1)

where µx is the point measure of mass one at u = x. Since
∑∞

n=0 |βn| is convergent, µ is a finite
measure.

Let Mt(u) denote the moment generating function for Tt. We assume

Assumption 5. Mt(u) exists for u ≤ a.
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Many time-change processes of empirical interest have known moment generating functions that
satisfy Assumption 5. When Tt is a Lévy process satisfying Assumption 1, Assumption 5 is imme-
diately satisfied.

Assumption 5 can accommodate non-Lévy specifications as well. Since volatility spikes are often
clustered in time, it may be desirable to allow for serial dependence in the rate of time change.
Following Carr and Wu (2004) and Mendoza-Arriaga et al. (2010), we let a positive process ν(t)
be the instantaneous activity rate of business time, so that

Tt =

∫ t

0
ν(s−) ds.

If we specify the activity rate as an affine process, the moment generating function for Tt will
have the tractable form Mt(u) = exp(Aνt (u) + Bν

t (u)ν0) for known functions Aνt (u) and Bν
t (u). A

widely-used special case is the basic affine process, which has stochastic differential equation

dνt = κν(θν − νt)dt+ σν
√
νtdW

ν
t + dJνt (3.2)

where Jν is a compound Poisson process, independent of the diffusion W ν
t . The arrival intensity of

jumps is ζν and jump sizes are exponential with mean ην . In Appendix B, we review the solution
of functions Aνt (u) and Bν

t (u) under this specification. Carr and Wu (2004, Table 2) list alternative
specifications of the activity rate with known Mt(u).

Under Assumptions 4 and 5, we have

S̃(t) = E [S(Tt)] =

∞∑
n=0

βnE [exp((a− nγ)Tt)] =

∞∑
n=0

βnMt(a− nγ)

which leads to the following proposition:

Proposition 3. Under Assumptions 4 and 5,

S̃(t) =
∞∑
n=0

βnMt(a− nγ)

converges uniformly in t.

Proof. Since a− nγ ≤ 0 for all n, we have |Mt(a− nγ)| ≤ 1 for all n and t. Thus, we have∣∣∣∣∣S̃(t)−
n1∑
n=0

βnMt(a− nγ)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=n1+1

βnMt(a− nγ)

∣∣∣∣∣ ≤
∞∑

n=n1+1

|βn| → 0

as n1 goes to ∞.

When S(t) is a Laplace transform of the time-integral of a nonnegative diffusion and when Tt is
a Lévy subordinator, Proposition 3 is equivalent to the eigenfunction expansion of Mendoza-Arriaga
and Linetsky (2012).8 However, because our approach is agnostic with respect to the interpretation
of S(t), it can be applied in situations when spectral decomposition is unavailable, e.g., when the

8The tractability of time-changing an expansion in exponential functions of time was earlier exploited by Mendoza-
Arriaga et al. (2010, Theorem 8.3) for the special case of the JDCEV model.
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background process is a time-integral of a process containing jumps. All that is needed is that S(t)
has a convergent Taylor series expansion as specified in Assumption 4. Moreover, our approach
makes clear that Tt need not be a Lévy subordinator.

As we will see in the next section, there are situations in which Assumption 4 does not hold,
so neither Proposition 3 nor the corresponding eigenfunction expansion of Mendoza-Arriaga and
Linetsky (2012) pertains. However, our method can be adapted so long as S(t) has a suitable
expansion in powers of an affine function of exp(−γt). We will make use of this alternative in
particular:

Assumption 4’. S(t) has a series expansion of the form

S(t) = exp(at)
∞∑
n=0

βn(1− 2 exp(−γt))n

for constants a ≤ 0 and γ ≥ 0. The series
∑∞

n=0 |βn| is convergent.

Under Assumptions 4’ and 5, we have

S̃(t) = E [S(Tt)] =
∞∑
n=0

βnE [exp(aTt)(1− 2 exp(−γTt))n]

=

∞∑
n=0

βn

n∑
m=0

(
n

m

)
(−2)mE [exp((a−mγ)Tt)] =

∞∑
n=0

βn

n∑
m=0

(
n

m

)
(−2)mMt(a−mγ) (3.3)

This leads to

Proposition 3’. Under Assumptions 4’ and 5,

S̃(t) =

∞∑
n=0

βn

n∑
m=0

(
n

m

)
(−2)mMt(a−mγ)

converges uniformly in t.

Proof. The proof is similar to that of Proposition 3. Observe that∣∣∣∣∣
n∑

m=0

(
n

m

)
(−2)mMt(a−mγ)

∣∣∣∣∣ = |E [exp(aTt)(1− 2 exp(−γTt))n]| ≤ |E [exp(aTt)]| ≤ 1

Thus,∣∣∣∣∣S̃(t)−
n1∑
n=1

βn

n∑
m=0

(
n

m

)
(−2)mMt(a−mγ)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=n1+1

βn

n∑
m=0

(
n

m

)
(−2)mMt(a−mγ)

∣∣∣∣∣ ≤
∞∑

n=n1+1

|βn| → 0

as n1 goes to ∞.
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Although Assumption 4’ is not a sufficient condition for Assumption 2, it is sufficient for pur-
poses of approximating S̃(t) by the expansion in derivatives of Section 2. Let Sn(t) denote the
approximation to S(t) given by the finite expansion

Sn(t) = exp(at)

n∑
m=0

βm(1− 2 exp(−γt))m

for n ≥ 0. This function by construction satisfies Assumption 4’, and furthermore satisfies As-
sumption 2 with

µ(u) =

n∑
m=0

βm

m∑
j=0

(
m

j

)
(−2)jµjγ−a(u)

where µx is the point measure of mass one at u = x. Therefore, expansion in derivatives can be
applied to Sn(t). Let S̃n,M (t) be the approximation to S̃n(t) up to term M in the expansion in
derivatives, and let

δn,M (t) = |S̃n(t)− S̃n,M (t)| =
∫ ∞

0
Rn,M (t,−ψ1u)dµ(u)

be the corresponding remainder term in Proposition 1. By Proposition 3’, for any ε > 0 there exists
n′ such that for all n > n′, |S̃(t) − S̃n(t)| < ε. Thus, we can bound the residual in expansion in
derivatives by

|S̃(t)− S̃n,M (t)| < δn,M (t) + ε

for n > n′.

4 Application to credit risk modeling

We now apply the two expansion methods to the widely-used default intensity class of models for
pricing credit-sensitive corporate bonds and credit default swaps. In these models, a firm’s default
occurs at the first event of a non-explosive counting process. Under the business-time clock, the
intensity of the counting process is λt. The intuition driving the model is that λtdt is the probability
of default before business time t + dt, conditional on survival to business time t. We define Xt as
the time-integral of λt, which is also known as the compensator.

Let τ̃ denote the calendar default time, and let τ = Tτ̃ be the corresponding time under the
business clock. Current time is normalized to zero under both clocks. The probability of survival
to future business time t is

S(t; `) = Pr(τ > t|λ0 = `) = E [exp(−Xt)|λ0 = `] = E

[
exp

(
−
∫ t

0
λsds

) ∣∣∣∣λ0 = `

]
Maintaining our assumption that Xt and Tt are independent, the calendar-time survival probability
function is

S̃(t; `) ≡ Pr(τ̃ > t|λ0 = `) = Pr(τ > Tt|λ0 = `) = E [Pr(τ > Tt|Tt, λ0 = `)|λ0 = `] = E [S(Tt; `)]
(4.1)

It is easily seen that time-changing the default time is equivalent to time-changing the compensator,

i.e., that the survival probability in calendar time is equal to E
[
exp(−X̃t)|λ0 = `

]
, where X̃(t) =

12



X(Tt). In application, we are often interested in the calendar time default intensity. When Tt is
the time-integral of an absolutely continuous activity rate process ν(t), we can apply a change of
variable as in Mendoza-Arriaga et al. (2010, §4.2):

X̃t =

∫ T (t)

0
λ(s) ds =

∫ t

0
λ(Ts)ν(s) ds

from which it is clear that the default intensity in calendar time is simply λ̃(t) = ν(t)λ(Tt). Observe
that if νt and λt are both bounded nonnegative, then λ̃(t) is bounded nonnegative as well.

When Tt is a Lévy subordinator, the Tt process is not differentiable, so the change of variable
cannot be applied. We have so far fixed the current time to zero to minimize notation. To
accommodate analysis of time-series behavior, let us define

S̃t(s; `) = Pr(τ̃ > t+ s|Tt, λ(Tt) = `, τ > Tt).

The default intensity under calendar time can then be obtained as λ̃(t) = −S̃′t(0;λ(Tt)).
9 Assume

that λt is bounded nonnegative. Since Tt is nondecreasing,

X̃(t+ δ)− X̃(t) =

∫ T (t+δ)

T (t)
λsds

must be nonnegative for any δ ≥ 0, so

S̃t(δ;λ(Tt)) = Pr(τ̃ > t+ δ|Tt, λ(Tt), τ > Tt)

= E
[
exp

(
−(X̃(t+ δ)− X̃(t))

)
|Tt, λ(Tt)

]
≤ 1 = S̃t(0;λ(Tt)).

Since this holds for any nonnegative δ, we must have S̃′t(0;λ(Tt)) ≤ 0 which implies λ̃(t) ≥ 0. Thus,
the bound on λt is preserved under time-change.

We acknowledge that the assumption of independence between Xt and Tt may be strong. In the
empirical literature on stochastic volatility in stock returns, there is strong evidence for dependence
between the volatility factor and stock returns (e.g., Andersen et al., 2002; Jones, 2003; Jacquier
et al., 2004). In the credit risk literature, however, the evidence is less compelling. Across the firms
in their sample, Jacobs and Li (2008) find a median correlation of around 1% between the default
intensity diffusion and the volatility factor. Nonetheless, for a significant share of the firms, the
correlation appears to be material. We hope to relax the independence assumption in future work.

We re-introduce the basic affine process, which we earlier defined in Section 3. Under the
business clock, λt follows the stochastic differential equation

dλt = κx(θx − λt)dt+ σx
√
λtdW

x
t + dJxt (4.2)

where Jx is a compound Poisson process, independent of the diffusion W x
t . The arrival intensity of

jumps is ζx and jump sizes are exponential with mean ηx. We assume κxθx > 0 to ensure that the
default intensity is nonnegative. The generalized Laplace transform for the basic affine process is

E [exp (wXt + uλt)] = exp (Axt (u,w) + Bx
t (u,w)λ0) (4.3)

9The negative derivative −S′t(s;λt) is the density of the distribution of business-clock default time τ at business
time t+s given information at t, so −S′t(0;λt) is the instantaneous hazard rate in business time, i.e., λt = −S′t(0;λt).
By the same logic, the instantaneous hazard rate at calendar time t is −S̃′t(0;λ(Tt)).
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for functions {Axt (u,w),Bx
t (u,w)} with explicit solution given in Appendix B. Defining the func-

tions Ax(t) ≡ Axt (0,−1) and Bx(t) ≡ Bx
t (0,−1), we arrive at the survival probability function

S(t;λ0) = exp(Ax(t) +Bx(t)λ0).

We digress briefly to consider whether the method of Carr and Wu (2004) can be applied in this
setting. The compensator X(t) is not Lévy, but can be expressed as a time-changed time-integral
of a constant intensity, where the time change in this case is the time-integral of the basic affine
process in (4.2). Thus, we can write X̃(t) as X∗(T ∗(t)) where X∗(t) = t is trivially a Lévy process
and T ∗(t) is a compound time change. However, this approach leads nowhere, because T ∗(t) is
equivalent to X̃(t). Put another way, we are still left with the problem of solving the Laplace
transform for X̃(t).

To apply our expansion in exponential functions, we show that Assumption 4 is satisfied when
κx > 0 and Assumption 4’ is always satisfied. In Appendix C, we prove

Proposition 5. Assume λt follows a basic affine process. Then S(t) has the series expansion

S(t; `) = exp(at)

∞∑
n=0

βn(`) (1− 2 exp(−γt))n (i)

For the case κx > 0, S(t) has the series expansion

S(t; `) = exp(at)
∞∑
n=0

βn(`) exp(−nγt) (ii)

In each case, a < 0 and γ > 0, and the series
∑∞

n=0 |βn| is convergent.

The appendix provides closed-form solutions for a, γ, and the sequence βn.
When κx > 0 and in the absence of jumps (ζx = 0), the expansion in (ii) is equivalent to

the eigenfunction expansion in Davydov and Linetsky (2003, §4.3).10 Therefore, the associated
solution to S̃(t) under a Lévy subordinator is identical to the solution in Mendoza-Arriaga and
Linetsky (2012). Our result is more general in that it permits non-stationarity (i.e., κx ≤ 0) in
expansion (i) and accommodates the presence of jumps in the intensity process in expansions (i)
and (ii). Furthermore, it is clear in our analysis that our expansions can be applied to non-Lévy
specifications of time-change as well, such as the mean-reverting activity rate model in (3.2).

Subject to the technical caveat at the end of Section 3, Assumptions 1 and 4’ are together
sufficient for application of expansion in derivatives without restrictions on κx. To implement,
we need an efficient algorithm to obtain derivatives of S(t). Let Ωn(t) be the family of functions
defined by

Ωn(t) = E [exp(−Xt)λ
n
t ] =

∂n

∂un
exp (Axt (u,−1) + Bx

t (u,−1)λ0)

∣∣∣∣
u=0

These functions have closed-form expressions, which we provide in Appendix D. Using Itô’s Lemma,
we prove in Appendix E:

10Specifically, our βn is equal to cnϕn(λ0) in the notation of Davydov and Linetsky (2003, Proposition 9).
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Proposition 6. For all n ≥ 0,

Ω′n(t) =

(
nκxθx +

1

2
n(n− 1)σ2

x

)
Ωn−1(t)− nκxΩn(t)− Ωn+1(t) + ζxΞn(t)

where Ω−1(t) ≡ 0, Ξ0(t) = 0 and

Ξn+1(t) = (n+ 1)η(Ξn(t) + Ωn(t)).

Proposition 6 points to a general strategy for iterative computation of the derivatives of S(t).
We began with S(t) = Ω0(t). We then apply Proposition 6 to obtain

S′(t) = Ω′0(t) = −Ω1(t).

We differentiate again to get

S′′(t) = DS′(t) = −(κxθxΩ0(t)−κxΩ1(t)−Ω2(t) + ζxΞ1(t)) = Ω2(t) +κxΩ1(t)− (ζxηx+κxθx)Ω0(t)

and so on. In general, DnS(t) can be expressed as a weighted sum of Ω0(t),Ω1(t), . . . ,Ωn(t). While
the higher derivatives of S(t) would be tedious to write out, the recurrence algorithm is easily
implemented. The incremental cost of computing DnS(t) is dominated by the cost of computing
Ωn(t), assuming that the lower order Ωj(t) have been retained from computation of lower order
derivatives of S(t).

5 Numerical examples

We explore the effect of time-change on the behavior of the model, as well as the efficacy of our two
series solutions. To fix a benchmark model, we assume that λt follows a CIR process in business
time with parameters κx = 0.2, θx = 0.02 and σx = 0.1. This calibration is consistent in a stylized
fashion with median parameter values under the physical measure as reported by Duffee (1999).
Our benchmark specification adopts inverse Gaussian time change. In all the examples discussed
below, the behavior under gamma time-change is quite similar.

The survival probability function is falling monotonically and almost linearly, so is not scaled
well for our exercises. Instead, following the presentation in Duffie and Singleton (2003, §3), we
work with the forward default rate, h̃(t) ≡ −S̃′(t)/S̃(t).11 In our benchmark calibration, we set
starting condition λ0 = 0.01 well below its long-run mean θx in order to give reasonable variation
across the term structure in the forward default rate. Both X(t) and T (t) are scale-invariant
processes, so we fix the scale parameter ξ = 1 with no loss of generality.

Figure 1 shows how the term structure of the forward default rate changes with the precision
parameter α. We see that lower values of α flatten the term-structure, which accords with the
intuition that the time-changed term-structure is a mixture across time of the business-time term-
structure. Above α = 5, it becomes difficult to distinguish h̃(t) from the term structure h(t) for
the CIR model without time-change.

Finding that time-change has negligible effect on the term structure h̃(t) for moderate values
of α does not imply that time-change has a small effect on the time-series behavior of the default
intensity. For a given time-increment δ, we obtain by simulation the kurtosis of calendar time

11In a deterministic intensity model, the forward default rate would equal the intensity.
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Figure 1: Effect of time-change on forward default rate
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CIR model under business time with parameters κx = .2, θx = .02, σx = .1, starting condition λ0 =
θx/2 = .01, and inverse Gaussian time-change with ξ = 1. When α = ∞, the model is equivalent to
the CIR model without time-change. Term-structures calculated with the series expansion in exponential
functions of Proposition 3 with 12 terms.
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increments of the default intensity (that is, λ̃(t + δ) − λ̃(t)) under the stationary law. For the
limiting CIR model without time-change, moments for the increments λ(t+ δ)− λ(t) have simple
closed-form solutions provided by Gordy (2012). The kurtosis is equal to 3(1 + σ2

x/(2κxθx)), which
is invariant to the time-increment δ.

In Figure 2, we plot kurtosis as a function of α on a log-log scale. Using the same baseline
model specification as before, we plot separate curves for a one day horizon (δ = 1/250, assuming
250 trading days per year), a one month horizon (δ = 1/12), and an annual horizon (δ = 1). As
we expect, kurtosis at all horizons tends to its asymptotic CIR limit (dotted line) as α → ∞.
For fixed α, kurtosis also tends to its CIR limit as δ → ∞. This is because an unbiased trend
stationary time-change has no effect on the distribution of a stationary process far into the future.
For intermediate values of α (say, between 1 and 10), we see that time-change has a modest impact
on kurtosis beyond one year, but a material impact at a one month horizon, and a very large impact
at a daily horizon.

Figure 2: Kurtosis of increments under IG time-change
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Stationary CIR model under business time with parameters κx = .2, θx = .02, σx = .1, and inverse
Gaussian time-change with ξ = 1. Dotted line plots the limiting CIR kurtosis. Both axes on log-scale.
Moments of the calendar time increments are obtained by simulation with 5 million trials.

Next, we explore the convergence of the series expansion in exponentials. Let h̃n(t) denote the
estimated forward default rate using the first n terms of the series for S̃(t) and the corresponding
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expansion for S̃′(t). Figure 3 shows that the convergence of h̃n(t) to h̃(t) is quite rapid. We proxy
the series solution with n = 12 terms as the true forward default rate, and plot the error h̃n(t)−h̃(t)
in basis points (bp). The error is decreasing in t, as the series in Proposition 5 is an asymptotic
expansion. With only n = 3 terms, the error is 0.25bp at t = 0, which corresponds to a relative
error under 0.25%. With n = 6 terms, relative error is negligible (under 0.0005%) at t = 0.

Figure 3: Convergence of expansion in exponentials
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CIR model under business time with parameters κx = .2, θx = .02, σx = .1, starting
condition λ0 = θx/2 = .01, and inverse Gaussian time-change with α = 1 and ξ = 1.

We turn now to the convergence of the expansion in derivatives. In Figure 4, we plot the
error against the benchmark for M = 2, 3, 4 terms in expansion (2.10). The benchmark curve
is calculated, as before, using the series expansion in exponential functions with 12 terms. The
magnitude of the relative error is generally largest at small values of t. For M = 2, the forward
default rate is off by nearly 0.5bp at t = 0. Observed bid-ask spreads in the credit default swap
market are an order of magnitude larger, so this degree of accuracy is already likely to be sufficient
for empirical application. For M = 4, the gap is never over 0.025bp at any t.

In Figure 5, we hold fixed M = 2 and explore how error varies with α. As the expansion is in
powers of 1/α, it is not surprising that error vanishes as α grows, and is negligible (under 0.005bp
in absolute magnitude) at α = 5. Experiments with other model parameters suggest that absolute
relative error increases with σx and θx and decreases with κx.
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Figure 4: Expansion in derivatives: Varying M
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CIR model under business time with parameters κx = .2, θx = .02, σx = .1, starting
condition λ0 = θx/2 = .01, and inverse Gaussian time-change with α = 1, ξ = 1.
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Figure 5: Expansion in derivatives: Convergence in 1/α
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condition λ0 = θx/2 = .01, and inverse Gaussian time-change with ξ = 1. Number of
terms in expansion is fixed to M = 2.
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6 Options on credit default swaps

In the previous section, we observe that stochastic time-change has a negligible effect on the term
structure of default probability for moderate values of α, which implies that introducing time-
change should have little impact on the term-structure of credit spreads on corporate bonds and
credit default swaps (CDS). Nonetheless, time-change has a large effect on the forecast density of
the default intensity at short horizon. Consequently, introducing time-change should have material
impact on the pricing of short-dated options on credit instruments.12 In this section, we develop a
pricing methodology for European options on single-name CDS in the time-changed CIR model.

At present, the CDS option market is dominated by index options. The market for single-name
CDS options is less liquid, but trades do occur. A payer option gives the right to buy protection
of maturity y at a fixed spread K (the “strike” or “pay premium”) at a fixed expiry date δ. A
payer option is in-the-money if the par CDS spread at date δ is greater than K. A receiver option
gives the right to sell protection. We focus here on the pricing of payer options, but all results
extend in an obvious fashion to the pricing of receiver options. An important difference between the
index and single-name option markets is that single-name options are sold with knock-out, i.e., the
option expires worthless if the reference entity defaults before δ. As we will see, this complicates
the analysis. Willemann and Bicer (2010) provide an overview of CDS option trading and its
conventions.

To simplify the analysis and to keep the focus on default risk, we assume a constant risk free
interest rate r and a constant recovery rate R. In the next section, we generalize our methods
to accommodate a multi-factor model governing both the short rate and default intensity. The
assumption of constant recovery can be relaxed by adopting the stochastic recovery model of Chen
and Joslin (2012) in business time. We assume that λt follows a mean-reverting (κx > 0) CIR
process in business time, and that the clock Tt is a Lévy process satisfying Assumption 1 with
Laplace exponent Ψ(u). All probabilities and expectations are under the risk-neutral measure.

In the event of default at date τ̃ , the receiver of CDS protection receives a single payment of
(1−R) at τ̃ . Therefore, the value at date s of the protection leg of a CDS of maturity y is

(1−R)

∫ y

0
e−rtq(t;λT (s))dt

where q̃(t; `) = −S̃′(t; `) is the density of the remaining time to default (relative to date s) condi-
tional on λT (s) = `. From Proposition 3, we have

S̃(t; `) =
∞∑
n=0

βn(`) exp(tΨ(a− nγ))

for a < 0 and γ > 0. We differentiate, insert into the expression for the protection leg, apply
Fubini’s theorem, and integrate term-by-term to get

(1−R)

∞∑
n=0

βn(λT (s))
Ψ(a− nγ)

Ψ(a− nγ)− r
(1− exp((Ψ(a− nγ)− r)y)) (6.1)

12We abstract here from the distinction between the risk-neutral measure that governs pricing and the physical
measure that governs the empirical time-series of returns. Our statement continues to hold if one adopts the change
of measure for the CIR process that is most commonly seen in the literature (called “drift change in the intensity”
by Jarrow et al., 2005).
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To price the premium leg, we make the simplifying assumption that the spread ς is paid con-
tinuously until default or maturity. The value at date s of the premium leg of a CDS of maturity
y is then

ς

∫ y

0
e−rtS̃(t;λT (s))dt

We again substitute the expansion for S̃(t) and integrate to get

ς
∞∑
n=0

βn(λT (s))
1

r −Ψ(a− nγ)
(1− exp((Ψ(a− nγ)− r)y)) (6.2)

The par spread ςpar equates the protection leg value (6.1) to the premium leg value (6.2).
To simplify exposition, we assume that CDS are traded on a running spread basis.13 Let p(`, ς)

be the net value of the CDS for the buyer of protection at time s given λT (s) = ` and the spread ς,
i.e., p is the difference in value between the protection leg and the premium leg. Note that p does
not depend directly on time s. This simplifies to

p(`, ς) =
∞∑
n=0

βn(`)
(1−R)Ψ(a− nγ) + ς

Ψ(a− nγ)− r
(1− exp((Ψ(a− nγ)− r)y))

Given the strike spread K and default intensity λT (δ), the payoff to the payer option at expiry is

1{τ̃>δ}max{0, p(λT (δ),K)} (6.3)

The value at time 0 of the payer option is the expectation of expression (6.3) over the joint
distribution of (λT (δ), 1{τ̃>δ}) under the risk-neutral measure:

G(K, δ;λ0) = E
[
1{τ̃>δ}max{0, p(λT (δ),K)}|λ0

]
= E

[
E
[
1{τ>T (δ)}max{0, p(λT (δ),K)}|T (δ), λ0

]
|λ0

]
= E

[
E
[
E
[
1{τ>T (δ)}|T (δ), λT (δ), λ0

]
·max{0, p(λT (δ),K)}|T (δ), λ0

]
|λ0

]
Let Lt(u;λ0, λt) be the Laplace transform of Xt conditional on (λ0, λt). This is given by Broadie
and Kaya (2006, Eq. 40) for the CIR process in business time. Since

E
[
1{τ>t}|λ0, λt

]
= Lt(1;λ0, λt),

we have
G(K, δ;λ0) = E

[
E
[
LT (δ)(1;λ0, λT (δ)) ·max{0, p(λT (δ),K)}|T (δ), λ0

]
|λ0

]
(6.4)

This expectation is most easily obtained by Monte Carlo simulation. In each trial i = 1, . . . , I,
we draw a single value of the business clock expiry date ∆i from the distribution of T (δ). Next,
we draw Λi from the noncentral chi-squared transition distribution for λ∆(i) given ∆i and λ0. The
transition law for the CIR process is given by Broadie and Kaya (2006, Eq. 8). The option value
is estimated by

Ĝ(K, δ;λ0) =
1

I

I∑
i=1

L∆(i)(1;λ0,Λi) ·max{0, p(Λi,K)} (6.5)

13That is, the quoted spread specifies the coupon paid by buyer of protection to seller. Since the so-called Big Bang
of April 2009, CDS have been traded at standard coupons of 100 and 500 basis points with compensating upfront
payments between buyer and seller. See Leeming et al. (2010) on the recent evolution of the CDS market.
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Observe that we can efficiently calculate option values across a range of strike spreads with the
same sample of {∆i,Λi}.

Figure 6 depicts the effect of α on the value of a one month payer option on a five year CDS.
Model parameters are taken from the baseline values of Section 5. The riskfree rate is fixed at 3%
and the recovery rate at 40%. Depending on the choice of α, the par spread is in the range of
115–120bp (marked with circles). For deep out-of-the-money options, i.e., for K � ςpar, we see
that option value is decreasing in α. Stochastic time-change opens the possibility that the short
horizon to option expiry will be greatly expanded in business time, and so increases the likelihood
of extreme changes in the intensity. The effect is important even at large values of α for which
the term-structure of forward default rate would be visually indistinguishable from the CIR case
in Figure 1. For example, at a strike spread of 200bp, the value of the option is nearly 700 times
greater for the time-changed model with α = 10 than for the CIR model without time-change.

Perhaps counterintuitively, the value of the option is increasing in α for near-the-money options.
Because the transition variance of λt is concave in t, introducing stochastic time-change actually
reduces the variance of the default intensity at option expiry even as it increases the higher moments.
Relative to out-of-the-money options, near-the-money options are more sensitive to the variance
and less sensitive to higher moments.

The effect of time to expiry on option value is depicted in Figure 7. The solid lines are for the
model with stochastic time-change (α = 1), and the dashed lines are for the CIR model without
time-change. Relative to the case of the short-dated (one month) option, stochastic time-change
has a small effect on the value of the long-dated (one year) option. This is consistent with our
observation in Figure 2 that the kurtosis of λ̃(t + δ) − λ̃(t) converges to that of λ(t + δ) − λ(t)
as δ grows large. Because the Lévy subordinator lacks persistence, stochastic time-change simply
washes out at long horizon.

7 Multi-factor affine models

We have so far taken the business-time default intensity to be a single-factor basic affine process.
In this section, we show that our methods of Sections 2 and 3 can be applied to a much wider class
of multi-factor affine jump-diffusion models. For the sake of brevity, we limit our analysis here to
stationary models.

Let Zt be a d-dimensional affine jump-diffusion, and let the default intensity at business time t
be given by an affine function λ(Zt). We now obtain a convergent series expansion of

S(t; z) = E

[
exp

(
−
∫ t

0
λ(Zs)ds

) ∣∣∣∣Z0 = z

]
As in Duffie et al. (2000, §2), we assume that the jump component of Zt is a Poisson process with
time-varying intensity ζ(Zt) that is affine in Zt, and that jump sizes are independent of Zt.

By Proposition 1 of Duffie et al. (2000, §2), S(t; z) has exponential-affine solution S(t; z) =
exp(A(t) + B(t) · z), where · denotes the inner product. Functions A(t) and B(t) satisfy complex-
valued ODEs which we represent simply as{

Ḃ(t) = G1(B(t))

Ȧ(t) = G0(B(t)); A(0) = 0
(7.1)
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Figure 6: Effect of α on option value
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Value of one-month (δ = 1/12) payer option on a 5 year CDS as function of strike spread. CIR model
under business time with parameters κx = .2, θx = .02, σx = .1, starting condition λ0 = θx/2 = .01, and
inverse Gaussian time-change with ξ = 1. Riskfree rate r = 0.03. Recovery R = 0.4. Circles mark par
spread at date 0. When α =∞, the model is equivalent to the CIR model without time-change.
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Figure 7: Effect of time to expiry on option value
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Value of CDS payer option. CIR model under business time with parameters κx = .2, θx = .02, σx = .1,
starting condition λ0 = θx/2 = .01. Solid lines for model with inverse Gaussian time-change with α = 1
and ξ = 1, and dashed line for the CIR model without time-change. Riskfree rate r = 0.03. Recovery
R = 0.4. Circles mark par spread at date 0.
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where t ≥ 0; A(t) ∈ C,B(t) ∈ Cd. In typical application, B(t) tends to zero as t → ∞, which
indicates the existence of an attracting critical point. Less restrictively, we assume there is an
attracting critical point B0 ∈ Cd such that G1(B0) = 0, and analyze the system in a neighborhood
of such a point. The functions G0 : Cd → C and G1 : Cd → Cd are assumed to be analytic in a
neighborhood of B0, which is a mild restriction of the setting in Duffie et al. (2000).14 With the
changes of variables

B(t) = B0 + y(t); G1(B0 + y) = Ξy + F(y)

where Ξ is the Jacobian of G1 at B0, the first equation in (7.1) becomes

ẏ = Ξy + F(y); t ≥ 0; y ∈ Cd; F(y) = o(y) as y→ 0 (7.2)

which we study under assumptions guaranteeing stability of the equilibrium.

Assumption 7.

(i) F is analytic in a polydisk centered at zero.

(ii) Ξ is a diagonalizable matrix of constants. Its eigenvalues ξ1, ..., ξd are nonresonant, i.e., for
k1, ..., kd nonnegative integers with |k| := k1 + k2 + ... + kd ≥ 2, we have ξj − k · ξ 6= 0 for
j = 1, ..., d.

(iii) ξ1, ..., ξd are in the left half plane, <(ξi) < 0, i = 1, 2, ..., d.

Part (i) is a fairly weak restriction on the Laplace transform of the jump size distribution. Part (ii)
is quite weak, as it holds everywhere on the parameter space except on a set of measure zero. Part
(iii) is a stationarity condition. Under this assumption, the eigenvalues of Ξ are in the Poincaré
domain, i.e., the domain in Cd in which zero is not contained in the closed convex hull of ξ1, ..., ξd.
It ensures that the solutions of the linearized part, ẏ = Ξy, decay as t→∞.

The following is a classical theorem due to Poincaré (see e.g., Ilyashenko and Yakovenko, 2008).

Theorem 1 (Poincaré). Under Assumption 7, there is a positive tuple δi > 0 s.t. in the polydisk
Dδ = {y : |yi| < δi, i = 1, ..., d} (7.2) is analytically equivalent to

ẇ = Ξw (7.3)

with a conjugation map tangent to the identity.

Analytic equivalence means that there exists a function h analytic in Dδ with h = O(w2) such that
y satisfies (7.2) if and only if w defined by

y = w + h(w) (7.4)

satisfies (7.3). Tangent to the identity simply means the fact that the linear part of the conjugation
map is the identity, as seen in (7.4).

Let D∗ denote the common polydisk of analyticity of h and F.

14Comparing our system to the corresponding ODE system (2.5) and (2.6) in Duffie et al. (2000), our restriction
merely imposes that the “jump transform” θ(u) is analytic in a neighborhood of B0. Note here that we have reversed
the direction of time. Duffie et al. (2000) fix the horizon T and vary current time t, whereas we fix current time at 0
and vary the horizon t.
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Proposition 7. The general solution of (7.2) with initial condition

y(0) = c (7.5)

where c = (c1, ..., cd) ∈ D∗, is

y(t) =
∑
|k|>0

Υkcke(k·ξ)t (7.6)

where ck = ck11 c
k2
2 · · · c

kd
d and Υk ∈ Cd are the Taylor coefficients of w + h(w).

Proof. The general solution of (7.3) is

w = c1e
ξ1te1 + c2e

ξ2te2 + ...+ cde
ξdted (7.7)

where ci ∈ C are arbitrary. The rest follows from Theorem 1, (7.4), the fact that c ∈ D∗, and the
analyticity of h which implies that its Taylor series at zero converges.

Let B̂ be a ball in which F is analytic and

‖F(y)‖ < −‖y‖max
i
<(ξi) (7.8)

The existence of B̂ is guaranteed by Assumption 7(i) and by the property F(y) = o(y) as y→ 0 in
(7.2). Condition (7.8) implies that B̂ is an invariant domain under the flow. This is an immediate
consequence of the much stronger Proposition 8 below, but it has an elementary proof: By Cauchy-
Schwartz and the assumption on F,

< 〈y,F(y)〉 ≤ ‖y‖ · ‖F(y)‖ < −‖y‖2 max
i
<(ξi).

Since

< 〈y,Ξy〉 = <

(
d∑
i=1

ξi|yi|2
)
≤ ‖y‖2 max

i
<(ξi),

there exists some ε > 0 for which

〈y, ẏ〉 = < (〈y,Ξy〉+ 〈y,F(y)〉) < −ε‖y‖2

We can also write the inner product as

〈y, ẏ〉 =
1

2

d

dt
‖y‖2 =

1

2
<
(
d

dt
|y|2

)
which implies ‖y(t)‖2 ≤ ‖y(0)‖2e−2εt. Thus, if the initial condition c is in B̂, then the solution y(t)
remains in B̂ for all t ≥ 0.

Proposition 8. Under Assumption 7, the domain of analyticity of h includes B̂ and the exponential
expansion (7.6) converges absolutely and uniformly for all t ≥ 0 and c ∈ B̂.

Proof. Condition (7.8) ensures that the Arnold (1969, §5) transversality condition and Theorem
2.1 of Carletti et al. (2005) apply, which guarantees the convergence of the Taylor series of h in B̂.
The result follows in the same way as Proposition 7.
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We turn now to the second equation in the ODE system (7.1). Assume, without loss of general-
ity, that g0(y) = G0(B0 + y) is analytic in the same polydisk as G1, i.e., in D∗, which implies that
the expansion converges uniformly and absolutely inside B̂. Imposing Assumption 7, we substitute
(7.6) to obtain a uniformly and absolutely convergent expansion in t, and integrate term-by-term
to get

A(t) = G0(B0)t+
∑
|k|>0

υk(k · ξ)−1cke(k·ξ)t (7.9)

where υk are the Taylor coefficients of g0.
The absolute and uniform convergence of the expansions of A(t) and B(t) extends to the expan-

sion of exp(A(t) + B(t) · z), which is the multi-factor extension of Proposition 5(ii). Thus, subject
to Assumption 7 and c ∈ B̂, expansion in exponentials can be applied to the multi-factor model.
Furthermore, the construction in (3.1) of a finite signed measure satisfying Assumption 2 extends
naturally, so expansion in derivatives also applies.

The multi-factor extension can be applied to a joint affine model of the riskfree rate and de-
fault intensity. Let rt be the short rate in business time and let Rt be the recovery rate as a
fraction of market value at τ−. We assume that Yt ≡ rt + (1 − Rt)λt is an affine function of
the affine jump-diffusion Zt, and solve for the business-time default-adjusted discount function

E

[
exp

(
−
∫ t

0 Y (Zs)ds
) ∣∣∣∣Z0 = z

]
. Subject to the regularity conditions in Assumption 7, we can

thereby introduce stochastic time-change to the class of models studied by Duffie and Singleton
(1999) and estimated by Duffee (1999). The possibility of handling stochastic interest rates in our
framework is also recognized by Mendoza-Arriaga and Linetsky (2012, Remark 4.1).

Conclusion

We have derived and demonstrated two new methods for obtaining the Laplace transform of a
stochastic process subjected to a stochastic time change. Each method provides a simple way to
extend a wide variety of constant volatility models to allow for stochastic volatility. More generally,
we can abstract from the background process, and view our methods simply as ways to calculate the
expectation of a function of stochastic time. The two methods are complements in their domains of
application. Expansion in derivatives imposes strictly weaker conditions on the function, whereas
expansion in exponentials imposes strictly weaker conditions on the stochastic clock. We have
found both methods to be straightforward to implement and computationally efficient.

Relative to the earlier literature, the primary advantage of our approach is that the background
process need not be Lévy or even Markov. Thus, our methods are especially well-suited to applica-
tion to default intensity models of credit risk. Both of our methods apply to the survival probability
function under the ubiquitous basic affine specification of the default intensity. The forward default
rate is easily calculated as well. Therefore, we can easily price both corporate bonds and credit
default swaps in the time-changed model. In a separate paper, a time-changed default intensity
model is estimated on panels of CDS spreads (across maturity and observation time) using Bayesian
MCMC methods.

In contrast to the direct approach of modeling time-varying volatility as a second factor, stochas-
tic time-change naturally preserves important properties of the background model. In particular,
so long as the default intensity is bounded nonnegative in the background model, it will be bounded
nonnegative in the time-changed model. In numerical examples in which the business-time default
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intensity is a CIR process, we find that introducing a moderate volatility in the stochastic clock
has hardly any impact on the term-structure of credit spreads, yet a very large impact on the
intertemporal variation of spreads. Consequently, the model preserves the cross-sectional behavior
of the standard CIR model in pricing bonds and CDS at a fixed point in time, but allows for much
greater flexibility in capturing kurtosis in the distribution of changes in spreads across time. The
model also has a first-order effect on the pricing of deep out-of-the-money CDS options.

A Identities for the Bell polynomials

Bell polynomial identities arise frequently in our analysis, so we gather the important results to-
gether here for reference. In this appendix, a and b are scalar constants, and x and y are infinite
sequences (x1, x2, . . .) and (y1, y2, . . .). Unless otherwise noted, results are drawn from Comtet
(1974, §3.3), in some cases with slight rearrangement.

We begin with the incomplete Bell polynomials, Yn,k(x). The homogeneity rule is

Yn,k(abx1, ab
2x2, ab

3x3, . . .) = akbnYn,k(x1, x2, x3, . . .). (A.1)

From Mihoubi (2008, Example 2), we can obtain the identity

Yn,k((z)0, (2z)1, (3z)2, (4z)3, . . .) =

(
n− 1

k − 1

)
(zn)n−k (A.2)

for any z ∈ R+. Recall here that (z)j denotes the falling factorial (z)j = z · (z − 1) · · · (z − j + 1).
We also make use of the recurrence rules

n!

(n+m)!
Yn+m,n(x1, x2, . . .) =

1

m!

m∑
j=1

(n)jx
n−j
1 Ym,j

(x2

2
,
x3

3
, . . .

)
(A.3)

k Yn,k(x1, x2, . . .) =
n−k+1∑
j=1

(
n

j

)
xjYn−j,k−1(x1, x2, . . .) (A.4)

For n ≥ 0, the complete Bell polynomials, Yn(x), are obtained from the incomplete Bell poly-
nomials as

Yn(x) =

n∑
k=0

Yn,k(x). (A.5)

Note that Y0(x) = Y0,0(x) = 1 and that Yn,0(x) = 0 for n ≥ 1. Riordan (1968, §5.2) provides the
recurrence rule

Yn+1(x1, x2, . . .) =
n∑
k=0

(
n

k

)
xk+1Yn−k(x1, x2, . . .) (A.6)

B Generalized transform for the basic affine process

In this appendix, we set forth the closed-form solution to functions At(u,w),Bt(u,w) in the gen-
eralized transform

E

[
exp

(
w

∫ t

0
λsds+ uλt

)]
= exp (At(u,w) + Bt(u,w)λ0) (B.1)
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The process λt is assumed to follow a basic affine process as in equation (4.2). If we replace λt by νt,
then the results here apply to equation (3.2) as well with Aνt (u) = Aνt (0, u) and Bν

t (u) = Bν
t (0, u).

In this appendix we drop the subscripts in the BAP parameters (κ, θ, σ, ζ, η).
We follow the presentation in Duffie (2005, Appendix D.4), but with slightly modified notation.

All functions and parameters associated with the generalized transform are written in Fraktur
script. Let

c̆1 =
1

2w
(κ+

√
κ2 − 2wσ2)

f̆1 = σ2u2 − 2κu+ 2w

d̆1 = (1− c̆1u)
σ2u− κ+

√
(σ2u− κ)2 − σ2f̆1

f̆1

ă1 = (d̆1 + c̆1)u− 1

b̆1 =
d̆1(−κ+ 2wc̆1) + ă1(σ2 − κc̆1)

ă1c̆1 − d̆1

ă2 =
d̆1

c̆1

b̆2 = b̆1

c̆2 = 1− η

c̆1

d̆2 =
d̆1 − ηă1

c̆1

We next define for i = {1, 2}

h̆i =
ăic̆i − d̆i

b̆ic̆id̆i
(B.2)

and the functions

ği(t) =
c̆i + d̆i exp(b̆it)

c̆i + d̆i
. (B.3)

Then the functions Ă and B̆ are

Ăt(u,w) = κθh̆1 log(ğ1(t)) +
κθ

c̆1
t+ ζh̆2 log(ğ2(t)) + ζ

1− c̆2
c̆2

t (B.4a)

B̆t(u,w) =
1 + ă1 exp(b̆1t)

c̆1 + d̆1 exp(b̆1t)
, (B.4b)

The discount function is S(t) = exp(A(t) + B(t)λ0) where A(t) = Ăt(0,−1) and B(t) =
B̆t(0,−1). To obtain these, let ai be the value of ăi when u = 0 and w = −1 for i = {1, 2},
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and similarly define bi, ci, etc. These simplify to

a1 = −1

b1 = b2 = −
√
κ2 + 2σ2

c1 =
1

2
(b1 − κ)

d1 =
1

2
(b1 + κ)

a2 = d1/c1

c2 = 1− η

c1

d2 =
d1 + η

c1

For the special case of u = 0 and w = −1, the h̆i simplify to

h1 = −2/σ2 (B.5a)

h2 = −2η/(σ2 − 2η(κ+ η)) (B.5b)

The gi(t) do not simplify dramatically. We obtain

A(t) = κθh1 log(g1(t)) +
κθ

c1
t+ ζh2 log(g2(t)) + ζ

1− c2
c2

t (B.6a)

B(t) =
1− exp(b1t)

c1 + d1 exp(b1t)
. (B.6b)

C Expansion of the BAP survival probability function

We draw on the notation and results of Appendix B, and begin with the expansion in (i) of
Proposition 5. Let γ = −b1 = −b2, and introduce the change of variable y = 1− 2 exp(−γt). Then
for i = 1, 2, we can expand

log(gi(t)) = log

(
ci + di exp(−γt)

ci + di

)
= log

(
ci + di(1− y)/2

ci + di

)
= log

(
ci + di/2− ydi/2

ci + di/2

)
+ log

(
ci + di/2

ci + di

)
= log(1− ϕiy) + log

(
1− di/2

ci + di

)
(C.1)

where

ϕi =
di

2ci + di

For i = 1, we find ϕ1 = (γ − κ)/(3γ + κ). Since σ2 > 0, we have γ > |κ| ≥ 0, which implies
0 < ϕ1 < 1. For i = 2, we find

ϕ2 =
d1 + η

2c1 + d1 − η
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Since η ≥ 0, we have −1 < ϕ2 ≤ ϕ1. Since |y| ≤ 1, and since log(1 + x) is analytic for |x| < 1, the
expansion in (C.1) is absolutely convergent. Finally, since c1 < 0 and d1 < 0 for all κ and η ≥ 0,
we have

1− d2/2

c2 + d2
= 1− 1

2

d1 + η

c1 + d1
≥ 1− 1

2

d1

c1 + d1
> 0

so the logged constant in (C.1) is real-valued.
Using the same change of variable, the function B(t) has expansion

B(t) =
1 + y

2c1 + d1 − d1y
=

1

2c1 + d1

(
1 + y

1− ϕ1y

)
=
ϕ1

d1
(1 + y)

∞∑
n=0

ϕn1y
n =

ϕ1

d1
+

1

d1
(1 + ϕ1)

∞∑
n=1

ϕn1y
n (C.2)

Again, since 1/(1− x) is analytic for |x| < 1, this expansion is absolutely convergent.
We combine these results to obtain

A(t)+B(t)λ0 = at−κθh1 log

(
1− d1/2

c1 + d1

)
−ζh2 log

(
1− d2/2

c2 + d2

)
+
ϕ1

d1
λ0+

∞∑
n=1

qn(1−2 exp(−γt))n

(C.3)
where

a =
κθ

c1
+ ζ

1− c2
c2

< 0

and

qn =

[
1 + ϕ1

d1
λ0 −

κθh1

n

]
ϕn1 −

ζh2

n
ϕn2

The expansion in (C.3) is absolutely convergent for t ≥ 0.
Since the composition of two analytic functions is analytic, a series expansion of S(t) in powers

of y is absolutely convergent for |y| ≤ 1 (equivalently, t ≥ 0). Thus, Proposition 5 holds with

βn =

(
1− d1/2

c1 + d1

)−κθh1 (
1− d2/2

c2 + d2

)−ζh2
exp

(
ϕ1

d1
λ0

)
1

n!
Yn(q11!, q22!, . . . , qnn!) (C.4)

These coefficients are most conveniently calculated via a recurrence rule easily derived from (A.6):

βn =

n∑
k=1

k

n
qkβn−k (C.5)

We now assume κ > 0 and derive the expansion in (ii) of Proposition 5. Here we introduce the
change of variable z = exp(−γt). Following the same steps as above, we find that log(gi(t)) for
i = {1, 2} can be expanded as

log(gi(t)) = − log(1 + di/ci)−
∞∑
n=1

(
−di
ci

)n zn
n

(C.6)

Since b1 < 0 < κ, we see that c1 < d1 ≤ 0. Since η > 0 we have |d2| ≤ max( d1c1 ,−
η
c1

) < c2. Thus,
|di/ci| < 1 for i = 1, 2. Since |z| ≤ 1 as well, the expansion in (C.6) is absolutely convergent.
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Using the same change of variable, the function B(t) has expansion

B(t) =
1− z

c1 + d1z
=

1

c1
+

(
1

c1
+

1

d1

) ∞∑
n=1

(
−d1

c1

)n
zn (C.7)

Again, since 1/(1 + x) is analytic for |x| < 1, this expansion is absolutely convergent.
We combine these results to obtain

A(t) +B(t)λ0 = at− κθh1 log(1 + d1/c1)− ζh2 log(1 + d2/c2) + λ0/c1 +

∞∑
n=1

qn exp(−nγt) (C.8)

where a is defined as before and where

qn =

[
λ0

(
1

c1
+

1

d1

)
− κθh1

n

](
−d1

c1

)n
− ζh2

n

(
−d2

c2

)n
The expansion in (C.8) is absolutely convergent for t ≥ 0. Proposition 5 holds with

βn = (1 + d1/c1)−κθh1(1 + d2/c2)−ζh2 exp(λ0/c1)
1

n!
Yn(q11!, q22!, . . . , qnn!) (C.9)

Recurrence rule (C.5) applies in this case as well.

D Derivatives of the generalized transform

Here we provide analytical expressions for Ωn(t). As in the previous appendix, the process λt is
assumed to follow a basic affine process with parameters (κ, θ, σ, ζ, η). Recall that

Ωn(t) =
∂n

∂un
exp(Ăt(u,−1) + B̆t(u,−1)λ0)

∣∣
u=0

Let Aj(t) and Bj(t) denote the functions

Aj(t) =
∂j

∂uj
Ăt(u,−1)

∣∣∣∣
u=0

Bj(t) =
∂j

∂uj
B̆t(u,−1)

∣∣∣∣
u=0

Then by Faà di Bruno’s formula,

Ωn(t) = S(t) · Yn(A1(t) +B1(t)λ0, A2(t) +B2(t)λ0, . . . , An(t) +Bn(t)λ0), (D.1)

where Yn denotes the complete Bell polynomial. Given solutions to the functions {Aj(t), Bj(t)}, it
is straightforward and efficient to calculate the Ωn(t) sequentially via recurrence rule (A.6).

The functions A1(t) and B1(t) appear to be quite tedious (and the higher order Aj(t) and Bj(t)

presumably even more so), as they depend on partial derivatives of ăj , b̆j , and so on. Fortunately,
these derivatives simplify dramatically when evaluated at u = 0. Define

ȧi =
∂

∂u
ăi

∣∣∣∣
u=0
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and similarly define ḃi, ċi, etc. We find

ḃi = ċi = 0, i ∈ {1, 2}
ḋ1 = −κd1 − σ2

ȧ1 = b1

ḋ2 =
ḋ1 − ηȧ1

c1

ȧ2 =
ḋ1

c1

An especially useful result is

ḣi =
∂

∂u
h̆i

∣∣∣∣
u=0

= 0, i ∈ {1, 2}.

Last, we can show

ġ1(t) =
∂

∂u
ğ1(t)

∣∣∣∣
u=0

=
1− exp(b1t)

−h1b1

ġ2(t) =
∂

∂u
ğ2(t)

∣∣∣∣
u=0

= η
1− exp(b2t)

−h2b2

We arrive at

A1(t) = κθh1
ġ1(t)

g1(t)
+ ζh2

ġ2(t)

g2(t)

B1(t) =
exp(b1t)

c1 + d1 exp(b1t)

(
ȧ1 −B(t)ḋ1

)
Perhaps surprisingly, there are no further complications for Aj(t) and Bj(t) for j > 1. Proceed-

ing along the same lines, we find

Aj(t) = (j − 1)!

(
(−1)j+1κθh1

(
ġ1(t)

g1(t)

)j
+ ζh2

[
ηj −

(
η − ġ2(t)

g2(t)

)j])
(D.4a)

Bj(t) = j!(B(t)/h1)j−1B1(t) (D.4b)

These expressions imply that the cost of computing {Aj(t), Bj(t)} does not vary with j.

E Differentiation of the Ωn(t) functions

As in the previous appendix, the process λt is assumed to follow a basic affine process with param-
eters (κ, θ, σ, ζ, η). Let us define

gn(λt, t) = exp

(
−
∫ t

0
λs ds

)
λnt

so that Ωn(t) = E [gn(λt, t)]. The extended Itô’s Lemma (Protter, 1992, Theorem II.32) implies

dgn =

(
∂gn
∂t

+ κ(θ − λt)
∂gn
∂λt

+
1

2
σ2λt

∂2gn
∂λ2

t

)
dt+ σ

√
λtdWt + gn(λt, t)− gn(λt− , t)
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The first term is

∂gn
∂t

+ κ(θ − λt)
∂gn
∂λt

+
1

2
σ2λt

∂2gn
∂λ2

t

= − exp

(
−
∫ t

0
λs ds

)
λn+1
t +nκ(θ−λt) exp

(
−
∫ t

0
λs ds

)
λn−1
t +

1

2
n(n−1)σ2λt exp

(
−
∫ t

0
λs ds

)
λn−1
t

= −gn+1(λt, t) + nκθgn−1(λt, t)− nκgn(λt, t) +
1

2
n(n− 1)σ2gn−1(λt, t)

=

(
nκθ +

1

2
n(n− 1)σ2

)
gn−1(λt, t)− nκgn(t)− gn+1(λt, t).

Taking expectations,

Ω′n(t) = E

[
d

dt
gn(λt, t)

]
=

(
nκθ +

1

2
n(n− 1)σ2

)
E [gn−1(λt, t)]− nκE [gn(λt, t)]− E [gn+1(λt, t)]

+ σE
[√

λtdWt

]
+ E [gn(λt, t)− gn(λt− , t)]

=

(
nκθ +

1

2
n(n− 1)σ2

)
Ωn−1(t)− nκΩn(t)− Ωn+1(t) + ζΞn(t)

where we define
Ξn(t) ≡ E [gn(λt, t)− gn(λt− , t)|dJt > 0] .

Note that the E
[√
λtdWt

]
term vanishes because dWt is independent of λt.

We interpret Ξn(t) as the expected jump in gn conditional on a jump in Jt at time t. Let
Z = dJt be the jump at time t. Noting that Z is distributed exponential with parameter 1/η, we
have

Ξn(t) = E

[
exp

(
−
∫ t

0
λs ds

)
((λt− + Z)n − λnt−)

]
= E

[
exp

(
−
∫ t

0
λs ds

)∫ ∞
0

((λt− + z)n − λnt−) (1/η) exp(−z/η) dz

]
For n = 0, we have Ξn(t) = 0. Assuming n > 0, conditioning on λt− and expanding (λt− + z)n, the
integral is

1

η

n∑
i=1

(
n

i

)
λn−i
t−

∫ ∞
0

zi exp(−z/η) dz =
1

η

n∑
i=1

(
n

i

)
λn−i
t− ηi+1i! =

n∑
i=1

(n)iη
iλn−i
t−

where we substitute
(
n
i

)
i! = (n)i. This implies that

Ξn(t) =
n∑
i=1

(n)iη
iE

[
exp

(
−
∫ t

0
λs ds

)
λn−i
t−

]
=

n∑
i=1

(n)iη
iΩn−i(t)
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To confirm the recurrence rule, note that

Ξn+1(t)− (n+ 1)ηΞn(t) =

n+1∑
i=1

(n+ 1)iη
iΩn+1−i(t)− (n+ 1)η

n∑
i=1

(n)iη
iΩn−i(t)

= (n+ 1)ηΩn(t) +
n+1∑
i=2

(n+ 1)iη
iΩn+1−i(t)− η

n∑
i=1

(n+ 1)(n)iη
i+1Ωn−i(t)

= (n+ 1)ηΩn(t) +
n∑
i=1

(n+ 1)i+1η
i+1Ωn−i(t)−

n∑
i=1

(n+ 1)i+1η
i+1Ωn−i(t) = (n+ 1)ηΩn(t).
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cesses. Mathematical Finance, 13(3):345–382, July 2003.
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