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1 Introduction

The recent financial crisis has provoked an interest in tail risk hedging strategies

that are structured to generate positive payoffs in bad states of the world in which

asset values plunge, market volatility soars, funding/market liquidity drops, and in-

stitutional investors are forced to deleverage their risk exposures because of higher

margin and haircut rates. Despite the growing interest in tail risk hedges, little is

known about their risk premiums and thus their expected returns. The financial me-

dia expresses skepticism about the efficacy of tail risk hedges because the increased

demand following the 2008 financial crisis has made them more expensive.2 Against

this backdrop, the objective of this paper is to propose a new measure of marketwide

tail risk and examine its relation to expected returns on two popular forms of tail

risk hedges: the out-of-the-money (OTM) S&P 500 (SPX) put options and the OTM

VIX call options.

As a new measure of tail risk, this paper suggests using a model-free, risk-neutral

measure of the volatility of volatility, which we call the VVIX index, that is obtained

by applying the approach of Bakshi, Kapadia, and Madan (2003) to a cross section of

the VIX options. The market’s perception of tail risk can affect stock index dynamics

through two stochastic channels: a jump process and a stochastic volatility process

with a leverage effect, which is a negative correlation between changes of prices and

volatility. Whereas most of the existing papers identify tail risk through the lens of

a jump process, this paper takes the distinct perspective that tail risk information

can be impounded into the volatility of stochastic volatility as even a small change

in that variable can have a critical influence on left tails of return distributions. In

addition, we provide evidence that the VVIX index is more relevant for measuring

tail risk than the VIX index, which is commonly called the Wall Street fear index.

A central hypothesis tested in this paper is the negative relation between tail risk

and expected returns on tail risk hedging strategies. When tail risk is high, investors,

whether risk-averse representative agents or financially constrained intermediaries,

will be willing to pay a higher price for a tail risk hedging asset. That is, a higher

level of tail risk increases the current prices of tail risk hedges, and thus, lowers their

subsequent returns over the next period. The negative relation is consistent with the

2 For example, Barclays’ exchange-traded note on the first two front-month VIX futures lost
more than one half of its value in the first half of 2012.
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rare disaster literature predicting a positive relation between rare disaster risk and

future stock index returns (see, for example, Barro (2006); Gabaix (2008); and Chen,

Joslin, and Ni (2013)). When tail risk is high, investors will charge higher tail risk

premiums on stock indices because their returns are positively correlated with tail

risk.

Our empirical evidence is statistically strong and economically large for each tail

risk hedging strategy. Consistent with the hypothesis, a higher level of the VVIX in-

dex predicts lower tail risk hedge returns three to four weeks into the future, implying

that the tail risk hedging assets become more expensive when tail risk is high. A one

standard deviation increase in the current VVIX index is associated with a 1.32% to

2.19% decrease in the next day’s SPX put returns and a 0.68% to 1.01% decrease in

the next day’s VIX call returns. This empirical result is robust to five other tail risk

measures that have been developed in the literature, including the VIX index, the

high-frequency jump variation (JV) of Barndorff-Nielsen and Shephard (2004), the

jump/tail index (JTIX) of Du and Kapadia (2012), the fear index (FI) of Bollerslev

and Todorov (2011), and the tail risk index (TAIL) of Kelly (2011).

As the VVIX index compounds both information on volatility of volatility risk

and its associated risk premium, the true source of the predictability of the VVIX

index is not clear. To uncover the true source we introduce an approach to sepa-

rating the VVIX index into a physical measure of volatility of volatility (RVV) and

a volatility of volatility risk premium (VVRP). RVV is obtained by computing the

realized variance of five-minute front-month VIX future returns over the past one

month. VVRP is then defined as the difference between the squared VVIX index and

RVV. By running bivariate regressions of future tail risk hedge returns against RVV

and VVRP, we find that they both significantly contribute to the forecasting power of

the VVIX index, although the former is more statistically significant than the latter.

The VVIX index is comprised of two stochastic components: the variation at-

tributable to diffusive movements, which we refer to as the integrated volatility of

volatility (IVV), and the variation attributable to volatility jumps (VJUMP). We

now take a deeper examination into which of the two components is truly responsible

for the predictability of the VVIX index. Following the decomposition approach of

Du and Kapadia (2012), IVV is obtained by applying the approach of Demeterfi,

Derman, Kamal, and Zou (1999) to the VIX options, and VJUMP is defined as the
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difference between the squared IVV and the squared VVIX. By running bivariate re-

gressions of future tail risk hedge returns against IVV and VJUMP, we find that the

predictability largely stems from IVV rather than VJUMP; VJUMP loses statistical

significance for the SPX put returns regardless of moneyness.

Our empirical findings add to the literature showing that tail risk has a cru-

cial impact on asset returns. For example, Rietz (1988) and Barro (2006) show that

introducing a tail risk factor to the standard asset pricing model can explain the eq-

uity premium puzzle with reasonable levels of risk aversion. Gourio (2008), Gabaix

(2008, 2012), and Wachter (2011) extend the literature to versions of time-varying

rare disaster models to resolve the well-known asset pricing puzzles such as return pre-

dictability and high stock market volatility. Jurek (2009) and Burnside, Eichenbaum,

Kleshchelski, and Rebelo (2011) argue that positive excess returns to carry trades

are associated with risk compensation for a rare disaster in currency rates. Collin-

Dufresne, Goldstein, and Yang (2010) emphasize the importance of catastrophic risk

in the pricing of super-senior CDO (collateralized debt obligation) tranches. Kelly

(2011) and Kelly and Hao (2012) find that tail risk is a priced factor in cross sectional

stock and hedge fund returns, respectively.

The rest of the paper is organized as follows. In Section 2, we introduce the

VVIX index as a tail risk indicator. Section 3 examines tail risk premiums in tail risk

hedging strategies. Further applications are presented in Section 4. Finally, Section

5 concludes.

2 Measuring tail risk

Measuring or predicting tail risk is challenging because a tail risk factor is latent and

a tail risk event is rare by definition. The existing tail risk methodologies are based on

different data sources. While Barro (2006) and Barro and Ursua (2008) compute the

macroeconomic disaster risk from a cross-country data set of the consumptions and

GDPs, others attempt to identify tail risk from financial market data. In particular,

the option market offers a promising environment in which to measure tail risk, as

options contain forward-looking information about future market returns. In light of

this fact, Bollerslev and Todorov (2011) develop a new fear index from the deep OTM

SPX puts, and Du and Kapadia (2012) devise an index of jump and tail risk from a
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cross section of the OTM SPX options. Alternatively, Kelly (2011) proposes a measure

of tail risk that is implied in extreme cross-sectional stock returns. Researchers such

as Barndorff-Nielsen and Shephard (2004) introduce a model-free estimate of jump

risk by using high-frequency asset returns.

Despite the substantive progress, a definitive measure of tail risk is still lacking

and under debate. In this section, we will intuitively explain how tail risk information

can be impounded into the dynamics of volatility of volatility, develop a methodology

for backing out such information from a cross section of the VIX options, and analyze

the empirical behavior of the VVIX index as a tail risk measure. Additionally, we

will introduce two decomposition methods of the VVIX, with one separating it into

RVV and VVRP and the other into IVV and VJUMP.

2.1 How is volatility of volatility related to tail risk?

This subsection aims to understand how volatility of volatility can be a proper mea-

sure of tail risk by using an affine stochastic volatility model, which allows for an

analytic solution to skewness and kurtosis. Given a probability space (Ω,F ,P) and

information filtration {Ft}, the log stock index price, st = log(St), is assumed to

follow the affine stochastic volatility model:

dst = αtdt+
√
htdW1,t

dht = κ(h− ht)dt+ σt
√
htdW2,t,

(1)

where αt is the drift rate, ht is the volatility state, σt is the volatility of volatility at

time t, κ is the persistence of volatility, h is the long-run mean of volatility, and W1,t

and W2,t refer to the standard Brownian motions, with a correlation of ρ. Note that

σt is time-inhomogeneous unlike other parameters.

We will now show that volatility of volatility is a critical determinant of both

skewness and kurtosis of return distributions and thus tails of return distributions.

Specifically, under the affine framework, it can be shown that the negative skewness

is proportional to the volatility of volatility (note that ρ is negative), and that the

excess kurtosis is proportional to the squared volatility of volatility:
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SKEWt(τ) ∝ σtρ

KURTt(τ) ∝ σ2
t (ρ

2 + constant),
(2)

where SKEWt(τ) and KURTt(τ) denote the τ -horizon skewness and excess kurtosis

at time t, respectively.

To further illustrate that σt has a significant impact on tails of return distri-

butions, we compute volatility smirks of SPX index options for different levels of

σt under the affine stochastic volatility framework. The relevant parameters, except

for σt, are obtained by taking the averages of those reported by Christoffersen, He-

ston, and Jacobs (2009). That is, κ = 2.5971, ρ = −0.6850, and h = 0.0531. The

low, mean, and high σt correspond to the lowest (0.3796), mean (0.6151), and high-

est (0.8516) values of their estimates of the volatility of volatility, respectively. The

initial volatility state, ht, is assumed to be equal to the long-run volatility. Lastly,

αt = rft − ht
2

under the risk-neutral Q measure where rft is assumed to be 2%.

The four panels of Figure 1 plot the computed volatility smirks with 1, 3, 6, and

12 months to maturity where the moneyness is defined as strike prices divided by

spot prices. OTM puts with moneyness of less than 1 are more expensive in times

of high volatility of volatility than those of low volatility of volatility, whereas OTM

calls with moneyness of greater than 1 are more expensive in times of low volatility of

volatility than those of high volatility of volatility. This result implies that a higher

level of volatility of volatility makes the left tail thicker, while making the right tail

thinner, resulting in more left-skewed return distributions.

2.2 Constructing the VVIX index

The idea of linking volatility of volatility to tail risk sets this paper apart from other

papers that introduce tail risk measures, such as Bollerslev and Todorov (2011);

Backus, Chernov, and Martin (2011); and Du and Kapadia (2012). While a jump

process has often been used as a tail risk modeling device, it has a critical shortcoming

in practice. It is highly difficult to obtain precise estimates of jump-induced tail

risk due to the limited availability of deep OTM SPX options. In other words, the

precision of the jump-induced tail risk heavily relies on the existence and accuracy of

often missing deep OTM SPX put options. Liu, Pan, and Wang (2005) express such
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a measurement, or inferential, issue about a rare jump, and develop an equilibrium

model in which ambiguity over a jump process substantially affects the volatility

smirk of option prices. In a related paper, Chen, Joslin, and Tran (2012) study the

effect of disagreements about disaster risk on asset returns and risk sharing.

A nice feature of the VVIX index is that it is less prone to the issue of mea-

surement errors than are other jump-induced tail risk measures. Note that the VVIX

index is the second moment of VIX return distributions so its computation is heavily

weighted toward the prices of slight and moderate OTM VIX options, which are more

readily observable and more actively traded than deep OTM VIX options. As such,

the accuracy of the VVIX index will not be affected as much by missing deep OTM

options.

The computation of model-free, option-implied moments has been addressed by

a number of researchers, including Bakshi, Kapadia, and Madan (2003); Carr and

Wu (2009); Jiang and Tian (2005); Demeterfi, Derman, Kamal, and Zou (1999); and

Britten-Jones and Neuberger (2000). Among these, we choose to use the approach of

Bakshi, Kapadia, and Madan (2003) because it provides a more accurate measure of

the quadratic variation when jump risk is significant than the CBOE VIX method-

ology (see Du and Kapadia (2012)). The procedure for computing the VVIX index

follows.

The model-free, option-implied moments are derived in terms of the prices of

three hypothetical securities that pay quadratic, cubic, and quartic payoffs. The

time-t prices of such hypothetical securities, H1(t, τ), H2(t, τ), and H3(t, τ), are given

by

H1(t, τ) =

∫ ∞
FV
t (τ)

2
(

1− ln
(

K
FV
t (τ)

))
K2

CVt (τ,K)dK

+

∫ FV
t (τ)

0

2
(

1 + ln
(
FV
t (τ)
K

))
K2

P Vt (τ,K)dK, (3)

H2(t, τ) =

∫ ∞
FV
t (τ)

6 ln
(

K
FV
t (τ)

)
− 3

(
ln
(

K
FV
t (τ)

))2

K2
CVt (τ,K)dK

−
∫ FV

t (τ)

0

6 ln
(
FV
t (τ)
K

)
+ 3

(
ln
(
FV
t (τ)
K

))2

K2
P Vt (τ,K)dK, (4)
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and

H3(t, τ) =

∫ ∞
FV
t (τ)

12
(

ln
(

K
FV
t (τ)

))2
− 4

(
ln
(

K
FV
t (τ)

))3

K2
CVt (τ,K)dK

+

∫ FV
t (τ)

0

12
(

ln
(
FV
t (τ)
K

))2
+ 4

(
ln
(
FV
t (τ)
K

))3

K2
P Vt (τ,K)dK, (5)

where CV
t (τ,K) and P V

t (τ,K) are the prices of OTM VIX call and put options with

time to maturity τ and strike price K and F V
t (τ) denotes the VIX future price. The

τ -horizon risk-neutral variance of VIX futures returns at time t is then given by:

VARt(τ) =
exp(rft τ)H1(t, τ)− µt(τ)2

τ
, (6)

where

µt(τ) = exp(rft τ)− 1− exp(rft τ)

2
H1(t, τ)− exp(rft τ)

6
H2(t, τ)− exp(rft τ)

24
H3(t, τ). (7)

Similar to the VIX index, we use the two closest times to maturity greater than eight

days in order to interpolate a series of the 30-day VVIX index:

VVIXt =
(τ2 − 30)

√
VARt(τ1) + (30− τ1)

√
VARt(τ2)

τ2 − τ1
, (8)

where τ1 and τ2 are the two shortest terms to maturity.

2.3 Empirical behavior of the VVIX index

Although VIX options trading began on February 24, 2006, it was inactive in the

very first few months. The sample thus starts on May 1, 2006 and ends on January

31, 2012. Jiang and Tian (2007) report the possibility of large truncation errors in

computing model-free moments because deep OTM options are often missing. To

reduce such errors, we assume a wide grid of strike prices with $1 increments beyond

the observed range of VIX option strike prices. Specifically, we extrapolate each of the

missing implied volatilities by equating it to the nearest observed implied volatility

and then convert the extrapolated volatility to the option price by using the Black–

Scholes formula.
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A market crash is usually accompanied by a stock market decline, a volatility

increase, and a liquidity dry-up. Empirical behavior of the VVIX index is consistent

with those typical characteristics of a market crash. Let us compute the SPX, VIX,

VVIX, and liquidity changes as

∆SPXt = log
(

St
St−1

)
− rft N

365

∆VIXt = log
(

VIXt
VIXt−1

)
∆VVIXt = log

(
VVIXt

VVIXt−1

)
∆LIQUIDt = LIQUIDt − LIQUIDt−1,

(9)

where LIQUID is the stock market liquidity factor as measured by Pastor and Stam-

baugh (2003) and N is the number of calendar days over the next trading period.

Table 1 presents a correlation matrix among the four market factor changes.

∆VVIX is negatively correlated with ∆SPX with a correlation of −0.45, positively

correlated with ∆VIX with a correlation of 0.62, and negatively correlated with

∆LIQUID with a correlation of −0.12. These correlations indicate that as the VVIX

index rises, the stock market index tends to decline; market volatility tends to grow;

and market liquidity tends to drop.

As further evidence for the potential of the VVIX index as a tail risk indicator,

the spikes of the VVIX index correspond well with some of the recent crisis episodes.

Panel B of Figure 2 presents the history of the VVIX index and its comparison

with the VIX index. The VVIX index exhibits the four pronounced crisis periods,

which are associated with Bear Stearns two hedge funds suspension, Lehman Brothers

bankruptcy, Freddie Mac/Fannie Mae crisis, and European debt crisis, respectively.3

Compared with the VIX index, a distinct feature of the VVIX index is that it uncovers

a high level of fear risk for the New Century Financial Corporation bankruptcy in

April 2007, which is one of the precursors to the subsequent disaster.

3 The first spike occurred on August 16, 2007 when the Federal Reserve Board cut the discount
rate by 50 basis points down to 5.75 percent; the second spike took place on October 9, 2008, and the
day before that date, the FOMC (Federal Open Market Committee) reduced its federal funds target
rate by 50 basis points down to 1.50 percent; the third spike happened on May 7, 2010 when Freddie
Mac and Fannie Mae reported enormous net losses; and the fourth spike occurred on August 8, 2011,
and one day later, the FOMC decided to keep the federal funds target rate at 0 to 1/4 percent as
economic growth turned out to be considerably slower than expected.
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2.4 Decomposing the VVIX index into RVV and VVRP

As the VVIX index represents a risk-neutral expectation of future volatility of volatil-

ity, it compounds both information on a physical expectation of future volatility of

volatility and its associated risk premium. In this subsection, we propose an ap-

proach to separating the VVIX index into RVV and VVRP. First, we obtain RVV

by computing the annualized realized variance of the five-minute front-month VIX

future returns over the past 21 trading days, based on Andersen, Bollerslev, Diebold,

and Ebens (2001); Andersen, Bollerslev, Diebold, and Labys (2003); and Barndorff-

Nielsen and Shephard (2002):

RVVt ≡ 12
21∑
i=1

1/∆∑
j=1

(
fVt−i+j∆ − fVt−i+(j−1)∆

)2
, (10)

where fVt denotes the log front-month VIX future price and ∆ is the sampling interval

for the intraday data. We take RVV as a proxy for the physical expectation of

volatility of volatility as it is highly autocorrelated with a one-day serial correlation

of 0.993, as seen in Table 2.

We now turn to defining a volatility of volatility risk premium. VVRP is defined

as the difference between risk-neutral and physical quadratic variations. On one hand,

Du and Kapadia (2012) show that the Bakshi, Kapadia, and Madan (2003) method

approximates well the risk-neutral quadratic variation when a stochastic drift term is

negligible at short horizons. On the other hand, Andersen, Bollerslev, Diebold, and

Labys (2003) show that the realized variance converges almost surely to the physical

quadratic variation as ∆ decreases. Accordingly, VVRP can be computed as

VVRPt ≡ VVIX2
t − RVVt. (11)

Table 2 shows the summary statistics for RVV and VVRP, and Figure 3 presents

their time series plots. Similar to the VVIX index, RVV also corresponds with the four

recent crisis episodes. VVRP takes positive values most of the time, with an average

of 0.358, implying that volatility of volatility is negatively priced. The negative

pricing of volatility of volatility is not surprising because volatility of volatility tends

to increase during market downturns, playing a role of hedging against the stock

market.
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2.5 Decomposing the VVIX index into IVV and VJUMP

Provided that the VIX future price is driven by both diffusive and jump processes,

the quadratic variation can be expressed as the sum of the integrated variance and

jump variation:

QV(t,t+τ ] =

∫ t+τ

t
ηsds︸ ︷︷ ︸

integrated variance

+

∫ t+τ

t

∫
R0

x2ν(dx× ds),︸ ︷︷ ︸
jump variation

(12)

where QV(t,t+τ ] stands for the quadratic variation over the (t, t + τ ] time interval, ηt

is the instantaneous diffusive volatility of the VIX future price, ν(dx× dt) is a Levy

counting measure for volatility jumps, and R0 refers to the real line excluding zero.

In this equation, we refer to the first term on the right-hand side as the integrated

variance of volatility and the second term as volatility jumps. A risk-neutral expecta-

tion of the integrated volatility of volatility can be computed by using the approach

of Demeterfi, Derman, Kamal, and Zou (1999):

IVV2
t =

2er
f
t τ

τ

[∫ ∞
FV
t (τ)

CVt (τ,K)

K2
dK +

∫ FV
t (τ)

0

P Vt (τ,K)

K2
dK

]
− 2(er

f
t τ − 1− rft τ)

τ
.

(13)

VJUMP is defined as the difference between the squared IVV and the squared

VVIX:

VJUMPt ≡ IVV2
t −VVIX2

t . (14)

Notice that we subtract the squared VVIX from the squared IVV but not the

other way around. Because of this way of subtraction, positive (negative) values of

VJUMP imply positive (negative) volatility jumps.

Table 2 shows the summary statistics for IVV and VJUMP, and Figure 4 presents

their time series plots. Similar to the VVIX index, IVV also corresponds with the

four recent crisis episodes. VJUMP takes positive values most of the time, implying

that volatility tends to jump in a positive direction. Interestingly, the figure exhibits

low levels of volatility jump risk during the Lehman bankruptcy in 2008. A potential

explanation for this would be that a strong mean reversion property of volatility may

reduce the likelihood of positive volatility jumps in periods of high volatility.
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3 Tail risk premiums in tail risk hedging strategies

3.1 Tail risk hedging strategies

As traditional risk management, such as diversification, reveals its limit due to in-

creased correlations during stressful periods, traumatized investors have become more

interested in strategic tail risk management that makes use of the derivatives mar-

kets.4 Strategic tail risk management varies across asset classes. For example, equity

risk can be hedged by taking a long position in the stock index put options or volatil-

ity derivatives such as VIX futures and options. The CDX tranches can be used as

a means to hedge credit risk. As interest rates tend to decrease during economic

depressions, a fixed-income investor may enter a fixed receiver swaption.

In particular, our empirical analysis looks at the OTM SPX puts and the OTM

VIX calls. Stock index put options allow investors to safeguard against their equity

portfolios’ losses beyond a certain threshold level with a small amount of capital. It is

well recognized that index put buyers will benefit from stock index declines in times

of crisis, but this understanding is not complete. In fact, there is another mechanism

that makes SPX puts effective tail risk hedges. Volatility, another important driver

of option values, tends to increase dramatically during market crashes. For example,

the VIX index more than quadrupled from 18.8% (lowest) to 80.9% (highest) in the

second half of 2008. Taken together, both a stock market decline and a volatility

increase would result in higher stock index put prices in times of crisis.

Recently, the market has seen a proliferation of the VIX derivatives, including

the VIX futures, VIX options, and VIX-related exchange-traded funds and notes.

For instance, the VIX option dollar volume has grown dramatically from 0.7 billion

dollars in 2006 to 16 billion dollars in 2011, as seen in Figure 5. Moreover, the VIX

calls are more actively traded than the VIX puts. The financial press points to the

use of VIX derivatives as tail risk hedges to explain their increasing popularity.5

4 According to the September 2012 survey by State Street Global Advisors, nearly three quarters
of the respondents—including institutions, pension funds, asset managers, private banks, and insur-
ance funds—expect a tail risk event to occur in the next 12 months (see the survey report entitled
“Managing investments in volatility markets”).

5 Researchers such as Alexander and Korovilas (2012) and Engle and Figlewski (2012) point out
the risk management functioning of the VIX derivatives.
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3.2 Computing residual option returns

Analyzing risk premiums on options poses two challenges. First, options are levered

investments with nonlinear payoffs so their return distributions are far from normality.

Emphasizing a statistical difficulty in analyzing option returns, Broadie, Chernov, and

Johannes (2009) argue that normality-based standard statistical tools can mislead a

hypothesis test of interest, and they find that the large returns to writing put options

are not inconsistent with the Black–Scholes or the affine stochastic volatility models.

Second, option returns are largely driven by innovations in the underlying asset price

and volatility. It is therefore necessary to isolate the effect of a variable of interest—

tail risk in this paper—from the effects of the two underlying risks.

To alleviate the difficulties, we obtain and analyze the so-called residual option

returns that are immune to the underlying asset’s price and volatility risks. In fact,

this idea is borrowed from Christoffersen, Goyenko, Jacobs, and Karoui (2012) who

examine illiquidity premiums in options. Let us explain how we compute residual

option returns. First, we compute an option’s excess delta-hedged return:

RO
t+1(k, τ) =

Ot+1(k, τ)−Ot(k, τ)−∆t(Ft+1(τ)− Ft(τ))

Ot(k, τ)
− rftN

365
, (15)

where, with an abuse of notation, Ot(k, τ) means either the SPX option price or the

VIX option price with an expiration of τ and a moneyness of k depending on the

context of analysis, Ft(τ) indicates either the SPX future price or the VIX future

price, and ∆t refers to the corresponding option delta that is directly obtained from

OptionMetrics.6 Moneyness k is defined as:

k =
K

Ft(τ)
. (16)

With respect to options’ maturities, we focus on relatively short-term options

with 8 to 90 days to expiration.7 With respect to moneyness, we define a triple of

6 Notice that the denominator of equation (15) is Ot(k, τ) but not (Ot(k, τ)−∆tFt(τ)), implying
that we do not account for the required capital for investing in the futures. The reason is that the
associated margin rate has been quite low historically; for example, the margin rate on the SPX
futures has been around 6% on average. Frazzini and Pedersen (2011) also disregard the required
capital for a stock position in computing delta-hedged option returns.

7 Our empirical results are weaker for long-term options, although not reported in this paper.
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moneyness bins for each of the SPX puts and the VIX calls. Specifically, the SPX

OTM puts are classified into the slight OTM (0.95 < k < 1.00), the medium OTM

(0.90 < k < 0.95), and the deep OTM (0.85 < k < 0.90). We use wider ranges

of moneyness for the VIX calls than the SPX puts because volatility of volatility

is more volatile than volatility. The VIX OTM calls are classified into the slight

OTM (1.0 < k < 1.1), the medium OTM (1.1 < k < 1.2), and the deep OTM

(1.2 < k < 1.3). The delta-hedged returns are equally averaged across all options

that belong to the ith moneyness bin, which is denoted by RO
i,t. The weighting scheme,

whether equally weighted or price weighted, does not affect our empirical findings.

Although delta hedging attenuates the price sensitivity in option returns, it is still

not ideal for studying the effect of tail risk on option returns. RO
i,t is not completely free

of the underlying price risk because the Black–Scholes delta used in this paper causes

hedging errors, and because delta hedging by itself fails to account for the second-

order (gamma) effect of price changes. More important, RO
i,t is now largely driven by

changes in underlying asset volatility. For these reasons, we obtain the residual option

returns by running the quadratic regressions of the delta-hedged returns onto changes

of underlying asset price and volatility for each of the SPX and VIX options. That

is, to obtain the residual SPX option returns we run the following form of regression

for each moneyness bin:

ROi,t = βi,0 + βi,1∆SPXt + βi,2∆VIXt + βi,3∆SPX2
t + βi,4∆VIX2

t + βi,5∆SPXt ×∆VIXt + εi,t,

(17)

where the five variables on the right-hand side are associated with delta, vega, gamma,

vomma, and vanna risks in the SPX options, respectively.

Similarly, to obtain the residual VIX option returns we run the following form

of regression for each moneyness bin:

ROi,t = βi,0 + βi,1∆VIXt + βi,2∆VVIXt + βi,3∆VIX2
t + βi,4∆VVIX2

t + βi,5∆VIXt ×∆VVIXt + εi,t,

(18)

where the five variables on the right-hand side are associated with delta, vega, gamma,

vomma, and vanna risks in the VIX options, respectively.

Finally, the residual option returns are defined by summing the constant term

and residual error of the regressions (17) and (18):

R̃Oi,t = β̂i,0 + ε̂i,t, (19)
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where, with an abuse of notation, R̃O
i,t indicates residual returns on either the SPX or

the VIX options for the ith moneyness bin, depending on the context of analysis.

It is important to note that the residual option returns are virtually free of the

underlying price and volatility risks up to the second order, while affected by any

other risk factors such as tail risk. Because of this feature, the residual option returns

allow us to look at the negative relation between tail risk and tail risk hedge returns

in isolation. In what follows, we will study tail risk premiums by running predictive

regressions of the residual returns onto the VVIX index and other control variables.

3.3 Summary statistics for residual option returns

This subsection examines the statistical characteristics of daily residual option returns

across different moneyness levels. Table 3 records the summary statistics including

the means, bootstrapped p values, minimums, maximums, standard deviations, skew-

ness, kurtosis, one-day autocorrelations, and Sharpe ratios. The residual returns are

positively skewed and fat-tailed for each options market. For this reason, we use

bootstrapped p values with 250,000 sample draws when testing a null hypothesis of

zero mean returns.

Panel A of Table 3 shows that the SPX puts lose 3.34 to 5.47% per day. The p

values of near zero indicate that the mean of residual SPX put returns is significantly

different from zero at a 99% confidence level. Similarly, the VIX calls lose 2.27 to

2.44% per day, as can be seen in Panel B of Table 3. The corresponding p values of

near zero mean that the mean of residual VIX call returns is significantly different

from zero at a 99% confidence level. It is interesting that even though the average

of the residual SPX put returns is lower than that of the residual VIX call returns,

they have very similar Sharpe ratios, close to −0.4, with the implication that there

is some consistency in the pricing between the SPX puts and the VIX calls.

Given the fact that both tail risk hedges yield significantly negative returns,

their prices seem to be excessive after the underlying price and volatility risks are

appropriately adjusted for. The result is consistent with the well-known overpricing

puzzle of the SPX options (see, for example, Bondarenko (2003) and Constantinides,

Jackwerth, and Perrakis (2009)). There is, however, a caveat for this argument.

Generally, tail risk hedges perform poorly most of the time but offer positive payoffs
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on the very few days when investors’ marginal utilities are highest. Simply put, a

one-dollar gain in bad times is more valuable than an equal amount of loss in good

times. It could be rather premature to conclude that tail risk hedges are overpriced

just because they generate negative returns on average. Besides, the efficacy or fair

pricing of tail risk hedges should be judged based on a long sample period that includes

a sufficiently large number of stressful moments.

3.4 Predicting option returns using the VVIX index

Papers on rare disasters—for example, Barro (2006) and Gabaix (2008)—shed light

on the relation between tail risk and expected asset returns. A main prediction of

the literature is that an increase in tail risk results in higher subsequent stock index

returns as risk-averse investors ask for higher risk premiums for taking on tail risk

when it is high. In a related paper, Chen, Joslin, and Ni (2013) show that financially

constrained intermediaries charge higher disaster risk premiums as crash risk rises.

The relation between tail risk and expected stock index returns is therefore positive.

Drawing on the literature, we posit that the relation between tail risk and ex-

pected tail risk hedge returns is negative. When tail risk is high, risk-averse investors

are willing to pay higher prices for buying tail risk hedges, resulting in lower sub-

sequent returns over the next period. To investigate the negative relation we take

the realized residual returns as a proxy for the expected residual returns, following

French, Schwert, and Stambaugh (1987) and Amihud (2002), and then run predictive

regressions of the residual returns onto the VVIX index and control variables for each

moneyness and each tail risk hedging strategy:

R̃Oi,t = βi,0 + βi,1R̃
O
i,t−1 + βi,2VVIXt−1 + βi,3OTHER TAILt−1 + βi,4TEDt−1 + εi,t. (20)

Notice that we include two basic control variables: the one-day-lagged residual re-

turns, R̃O
i,t−1, and the TED spreads. The former are included because the residual

returns are serially correlated, as seen in Table 3. Bollen and Whaley (2004) and

Gârleanu, Pedersen, and Poteshman (2009) find that limits of arbitrage affect the

pricing of the SPX puts. When arbitrage is highly implausible, tail risk hedging as-

sets might become more costly, resulting in lower subsequent returns over the next

period. Thus, we include the TED spreads, which are associated with funding liquid-

ity, as a proxy for limits of arbitrage in the regressions. In addition, we include other
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tail risk measures, OTHER TAILt, that may have an effect on tail risk premiums.

Table 4 presents the regression results for the SPX puts and the VIX calls. Each

explanatory variable is divided by its standard deviation so each regression coefficient

can be interpreted as the impact of a one standard deviation change in that variable,

and statistical significance is computed by Newey and West (1987) robust t-statistics

with an optimal lag.

Regression 1 is the baseline regression that only includes the VVIX index and

the two basic control variables. Consistent with the hypothesis, the negative relation

is statistically significant for the SPX puts, with an expected sign. Specifically, a one

standard deviation increase in the VVIX index results in a 1.32% to 2.19% decrease

in the next day’s SPX put returns. The result is statistically significant at 99%

confidence levels with t-statistics of −4.48 to −5.54. Besides, the coefficients of the

VVIX index are more negative for the deep OTM SPX puts than the slight ones, as

the former are more sensitive to tail risk than the latter.

The negative relation is statistically significant for the VIX calls as well. Specif-

ically, a one standard deviation increase in the VVIX index results in a 0.68% to

1.01% decrease in the next day’s VIX call returns. The result is statistically signifi-

cant at 99% confidence levels, with t-statistics of −3.55 to −4.44. Furthermore, the

coefficients are more negative for the deep OTM VIX calls than the slight ones, as

the former are more sensitive to tail risk than the latter.

In fact, it is the expected VVIX index that truly matters in predicting tail risk

hedge returns. For this reason, we run the predictive regressions with the expected

VVIX index that is obtained by assuming that the VVIX index follows an autore-

gressive process of order 1, and find that the expected VVIX index yields very similar

empirical results to the current VVIX index, although the results are not reported in

this paper.

In sum, the tail risk measured by the VVIX index is a priced factor in tail risk

hedging strategies such as the SPX puts and the VIX calls, and thus an important

driver of their expected returns. In particular, when investors fear tail risk more, tail

risk hedges become more costly and thus their subsequent returns are lower. This

finding contributes to a large body of literature showing that tail risk has a critical

influence on asset returns. In a loosely related paper, Baltussen, Van Bekkum, and

Van Der Grient (2012) take individual options’ implied volatility of volatility as a
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proxy for Knightian uncertainty, and they find that it is priced in cross-sectional

stock returns.

3.5 Predicting option returns using other tail risk measures

A variety of tail risk measures have been developed by using financial market data.

In this subsection, we will look at whether the predictability of the VVIX index is

robust to other tail risk measures and whether they have incremental information for

future tail risk hedge returns beyond the VVIX index. In particular, we cover five

alternative tail risk measures: VIX, JV, JTIX, FI, and TAIL.8 The detailed procedures

for computing JV and TAIL are provided in Appendix B, and the JTIX and the FI

data were generously provided by Du and Kapadia (2012) and Bollerslev and Todorov

(2011), respectively. Table 2 provides the summary statistics and correlation matrix

for those variables. Figures 6 and 7 plot the time series of the tail risk measures and

their comparisons with the VVIX index.

Regressions 2 through 6 in Table 4 show the regression results with each of

VIX, JV, JTIX, FI, and TAIL included as a control variable on top of the VVIX

index. Collectively, two empirical features are notable. First, the predictability of

the VVIX index is robust to the other tail measures. The coefficients of the VVIX

index are statistically significant and negative for each tail risk hedge returns, even

after controlling for the other tail risk measures.9 Second, none of the other tail risk

measures show forecasting power for future tail risk hedge returns after the VVIX

index is accounted for.10

Note that some of the tail risk measures such as JV, JTIX, and FI are based on

jump structures, and we find that these measures show little ability to forecast tail

risk hedge returns compared with the VVIX index. We do not interpret this result

as implying that jump risk has no impact on tail risk premiums because jump risk

is known to be priced in the option literature. Rather, we interpret this evidence

8 VIX index is included as it is commonly referred to as the Wall Street fear index even though
it is intended to measure volatility risk rather than tail risk.

9 In Regression 5, the coefficients of the VVIX index lose some statistical significance for the
medium OTM VIX calls. This insignificant result arises because Regression 5 uses a shorter sample
period from May 2006 through December 2008.

10 In fact, the other tail risk measures have no explanatory power for future tail risk hedge returns
regardless of whether the VVIX index is included in the regressions.
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as implying that it is difficult to estimate jump-based tail risk measures with high

precision.

3.6 Persistence of predictability

The regression results that we have looked at so far are based on one-day ahead

predictive regressions. This subsection investigates how persistent predictability is

over multi-week horizons. Table 5 shows the multi-week ahead predictive regression

results of daily tail risk hedge returns. Each explanatory variable is divided by its

standard deviation, and Newey and West (1987) robust t-statistics with an optimal

lag are shown in parentheses.

Regression 1 shows that one-week ahead predictability is quite decisive for all

moneyness levels, with t-statistics of −2.45 to −4.22 for the SPX puts and −3.00 to

−3.29 for the VIX calls. Regression 3 suggests that the predictability for the SPX

put returns can persist over the next three weeks, regardless of moneyness levels, at

95% or 99% confidence levels. Regression 4 indicates that the predictability for the

medium and deep VIX call returns can persist over the next four weeks at 95% and

99% confidence levels, respectively.

In sum, the current VVIX index is capable of forecasting tail risk hedge returns

three to four weeks into the future. In fact, this long-run predictability does not come

as a surprise given the fact that a future VVIX index is predictable over the next few

weeks. Table 2 shows that the VVIX index has a weekly autocorrelation of 0.759,

which corresponds to a half-life of 2.51 weeks. Simply put, the persistence of the

VVIX index is being translated into its multi-week predictability for tail risk hedge

returns.

3.7 RVV versus VVRP

Table 6 presents the predictive regression results of tail risk hedge returns onto RVV

and VVRP, with Newey and West (1987) robust t-statistics with an optimal lag

in parentheses. Regression 1 only includes RVV as an explanatory variable. The

coefficients of RVV are statistically significant with t-statistics of −3.23 to −4.56 for

the SPX puts and −2.01 to −3.28 for the VIX calls. The negative signs are consistent

19



with the hypothesis that higher volatility of volatility is associated with higher tail

risk, inducing lower subsequent returns on tail risk hedging assets.

Regression 2 only includes VVRP as an explanatory variable. The coefficients

of VVRP are statistically significant at 99% confidence levels for the SPX puts, with

t-statistics of −2.70 to −3.32. The negative signs imply that higher levels of VVRP

are associated with lower future returns on the SPX puts. In contrast, we do not find

evidence that VVRP is associated with future returns on the VIX calls.

Regression 3 shows that RVV and VVRP both have forecasting power for future

tail risk hedge returns, although the coefficients of the former are more statistically

significant than those of the latter, except for the deep VIX calls. Regression 3 shows

more statistically significant coefficients of the VVIX index and larger adjusted R2

than each of Regressions 1 and 2. Overall, based on these empirical results, we argue

that RVV and VVRP both significantly contribute to the forecasting power of the

VVIX index.

3.8 IVV versus VJUMP

Table 7 presents the predictive regression results of tail risk hedge returns onto IVV

and VJUMP, with Newey and West (1987) robust t-statistics with an optimal lag

in parentheses. Regression 1 shows the univariate regression results with IVV only

included. The coefficients of IVV are statistically significant at 99% confidence levels

for both SPX puts and VIX calls, regardless of moneyness. Similar to those of the

VVIX index, the coefficients of IVV are all negative, implying that a higher level of

IVV is associated with lower future tail risk hedge returns.

Regression 2 shows the univariate regression results with VJUMP only included.

The coefficients of VJUMP are statistically significant at 99% confidence levels for

most of the cases except for the slight SPX puts. The coefficients of VJUMP are all

negative, implying that higher volatility jump risk increases the current prices of tail

risk hedges and thus lowers their subsequent returns over the next period.

Regression 3 shows the bivariate regression results with both IVV and VJUMP

included. IVV still remains statistically significant except for the medium VIX calls,

whereas VJUMP loses statistical significance for all SPX puts and slight VIX calls.

Based on these empirical results, we argue that the forecasting power of the VVIX in-
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dex largely results from integrated volatility of volatility rather than volatility jumps,

especially for the SPX puts.

3.9 Robustness to sample periods

This subsection investigates whether the negative relation between the VVIX index

and tail risk hedge returns is robust to a larger sample period starting in November

1997, with an alternative measure of the volatility of volatility.11 Because there are

no VIX options data prior to February 2006, we are unable to compute the VVIX

index for the entire sample period. Instead, as a proxy for volatility of volatility, we

use a sample standard deviation of the log VIX returns, rVt = log(VIXt/VIXt−1), with

a 21-day rolling window:

σ̂t
V =

√√√√ 1

20

21∑
i=1

(
rVt−i+1 − rtV

)2
, (21)

where rt
V = 1

21

∑21
i=1 r

V
t−i+1.

Table 8 presents the predictive regression results of the residual SPX put returns

onto σ̂t
V , with Newey and West (1987) robust t-statistics with an optimal lag in

parentheses. Regression 1 shows that the negative relation is still valid, regardless of

moneyness. The result is statistically significant at a 99% confidence level. Regression

2 shows the full regression results with every explanatory variable included. The

coefficients of the VVIX index are still statistically significant at a 99% confidence

level, regardless of moneyness levels. In contrast, according to our analysis, none of

the control variables can explain future SPX put returns.

4 Further applications

This section extends our empirical analysis to three more asset classes in which tail

risk may be an important priced factor: (1) the VIX futures, (2) the SPX index, and

(3) the SPX calls.

11 November 1997 is the earliest month for which the E-mini SPX future data are available from
Thomson Reuters Tick History.
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4.1 VIX futures

The VIX futures are another form of tail risk hedging. This subsection examines

whether there is a negative relation between the VVIX index and the expected VIX

future returns. Table 9 presents the results of long-run predictive regressions of the

VIX future returns for 3-, 6-, and 12-month horizons. Price-earning ratios (P/E),

price-dividend ratios (P/D), default spreads (DFSP), and term spreads (TMSP) are

included as control variables because these variables turned out to be significant in

predicting long-run stock index returns. P/E and P/D are downloaded from Shiller’s

website; DFSP is defined as the difference between Moody’s BAA and AAA corporate

yields; and TMSP is defined as the difference between 10-year and 3-month Treasury

yields. As the regressions involve overlapping data, we apply the robust t-statistics

of Hodrick (1992).

Consistent with the expectation, the coefficients of the VVIX index have negative

signs for every horizon, but statistical significance varies across horizons. When the

control variables are included, the negative coefficient is statistically significant at a

90% confidence level for a 6-month horizon, but not for 3- and 12-month horizons.

Additionally, we look at whether variance risk premiums (VRP), as measured by

Bollerslev, Tauchen, and Zhou (2009), can forecast subsequent VIX future returns.

Interestingly, VRP has statistically significant forecasting power for the VIX future

returns for all horizons when the control variables are not included and 3- and 6-

month horizons when the control variables are included. Expectedly, the coefficients

of VRP take negative signs because a higher level of VRP is associated with a higher

VIX future price, resulting in lower subsequent returns on the VIX futures.

4.2 SPX index

The rare disaster literature predicts a positive relation between tail risk and expected

stock index returns. This subsection examines whether there is such a positive relation

between the VVIX index and the expected SPX index returns. Table 10 presents the

results of long-run predictive regressions of the SPX index returns for 3-, 6-, and 12-

month horizons. Similar to the preceding subsection, P/E, P/D, DFSP, and TMSP

are included as control variables, and the robust t-statistics of Hodrick (1992) are

reported in parentheses.
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Expectedly, the coefficients of the VVIX index have positive signs for all of

the cases but they are not statistically significant when the control variables are

included; it may be difficult to obtain statistical significance because our sample

period, from May 2006 through January 2011, may be too short to run long-run

predictive regressions.

Interestingly, similar to VRP, VVRP is capable of predicting future stock index

returns for all horizons even after controlling for every control variable. The coef-

ficients of VVRP are positive, implying that a higher level of the VVRP forecasts

higher subsequent SPX index returns over the next period. It would be worthwhile

to investigate the economic drivers of the forecasting ability of VVRP for stock index

returns.

4.3 SPX calls

The SPX calls are often considered as tail risk taking assets that pay positive payoffs

in good states of the world. If this is the case, one would expect a positive relation

between tail risk and expected returns on such securities. A high level of tail risk

reduces their current prices, resulting in higher subsequent returns over the next

period.

Table 11 presents the predictive regression results of the residual SPX call returns.

The table shows that the VVIX index has no significant impact on returns on the

SPX calls. In fact, it is unclear whether or not the SPX calls are tail risk taking

assets because their two underlying factors affect them in opposite directions in times

of crisis. For example, volatility tends to increase in periods of crisis, which could

drive up SPX call prices. That is, the SPX call prices can either increase or decrease

during a crisis depending on the relative changes in the underlying asset price and

volatility.

5 Conclusion

This paper examines the pricing of tail risk in the SPX puts and the VIX calls. As

a new measure of tail risk, we propose using a model-free, risk-neutral measure of

the volatility of volatility implied by the VIX options, which we call the VVIX index.
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The VVIX index is associated with tail risk because volatility of volatility is a critical

determinant of the likelihood of occurrences of extremely low returns. Specifically, a

higher level of the volatility of volatility makes the left tail thicker, while making the

right tail thinner, resulting in more left-skewed return distributions.

Drawing on the literature on rare disasters, we hypothesize that there is a neg-

ative relation between tail risk and expected returns on tail risk hedges. Consistent

with this hypothesis, our measure of tail risk, the VVIX index, has a statistically

significant and economically large impact on expected returns on both SPX puts and

VIX calls. A positive shock to tail risk increases the current prices of tail risk hedges

and lowers their subsequent returns over the next three to four weeks. The economic

impact is large. A one standard deviation increase in the VVIX index results in a

1.32% to 2.19% decrease in the next day’s SPX put returns and a 0.68% to 1.01%

decrease in the next day’s VIX call returns. These findings add to a large body of

literature showing that tail risk has a critical influence on asset returns.

Furthermore, this paper investigates the true source of the predictability of the

VVIX index in two ways. First, separating the VVIX index into a physical measure

of volatility of volatility and a volatility of volatility risk premium, we find that they

both significantly contribute to the forecasting power of the VVIX index. Second,

separating the VVIX index into the integrated volatility of volatility and volatility

jumps, we find that the predictability largely results from the former rather than the

latter.

As a final remark, the jump-based tail risk measures considered in this paper

show little ability to forecast tail risk hedge returns unlike the VVIX index. We

interpret this result as implying that it is difficult to estimate jump-based tail risk

measures with high precision because of often missing deep OTM SPX options, rather

than implying that jump risk has no impact on tail risk premiums.
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A Futures and options data

The high-frequency SPX futures data are used to compute delta-hedged SPX op-

tion returns and high-frequency-based jump variations. In particular, we use small-

denomination (E-mini) SPX future prices because Hasbrouck (2003) finds that price

information is discovered in the E-mini market as opposed to the regular market or

exchange-traded funds. The E-mini SPX futures data come from Thomson Reuters

Tick History. Although the E-mini futures trade overnight in the electronic Globex

venue, we include the five-minute interval returns for 8:30 a.m. to 3:15 p.m. only

when the CBOE option market is open.

We make use of the front-month VIX futures returns when computing RVV, and

match the maturities of the VIX futures to those of the VIX options when constructing

delta-hedged VIX options. The high-frequency VIX futures data for 8:30 a.m. to 3:15

p.m. are obtained from Thomson Reuters Tick History.

The options data come from OptionMetrics. Option prices are taken from the

bid-ask midpoint on each day’s close of the option market. With respect to the SPX

options, the CBOE option market closes 15 minutes later than the SPX spot market.

To address the issue of nonsynchronous trading hours, we back out the spot price

for each of the first three pairs of near-the-money SPX put and call options by using

the put-call parity (see, for example, Ait-Sahalia and Lo (1998) and Ait-Sahalia and

Lo (2000)) and take the average of the three extracted prices. Then, we eliminate

options violating the usual lower bound constraints:

CSt (τ,K) ≥ max(0, St(τ) exp(−qtτ)−K exp(−rft τ))

PSt (τ,K) ≥ max(0,K exp(−rft τ)− St(τ) exp(−qtτ)),
(22)

where CS
t (τ,K) and P S

t (τ,K) are the time t prices of SPX call and put options with

time to maturity τ and strike price K, St(τ) is the time t implied SPX price with time

to maturity τ , and qt is the dividend payout rate. Treasury bill rates and dividend

rates are also obtained from OptionMetrics.

In addition, when running our regression analysis, we apply a rather tight filtering

scheme for inaccurate or illiquid options. Specifically, we delete the SPX options for

which the mid price is less than 0.5, the implied volatility is lower than 5% or higher

than 100%, or the relative bid-ask spread is larger than 0.5, where the relative bid-ask
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spread is defined as 2(ask−bid)
(ask+bid)

. We also delete the VIX options for which the mid price

is less than 0.2, the implied volatility is lower than 10% or higher than 150%, or the

relative bid-ask spread is larger than 0.5.

B Computation of alternative tail risk measures

This appendix details the procedures for computing JV and TAIL.

B.1 High-frequency jump variation

Our regression analyses use a monthly measure of jump variation. To compute this

variable, we first obtain daily realized volatility by summing the squared intraday

returns over each day, following Andersen, Bollerslev, Diebold, and Ebens (2001);

Andersen, Bollerslev, Diebold, and Labys (2003); and Barndorff-Nielsen and Shephard

(2002):

RV
(d)
t ≡

1/∆∑
j=1

(
fSt−1+j∆ − fSt−1+(j−1)∆

)2
, (23)

where fSt = log(F S
t ) means the log SPX future price, and ∆ is the sampling interval

for the intraday data.

Next, we compute the daily bipower variation by using the approach of Barndorff-

Nielsen and Shephard (2004):

BV
(d)
t ≡

π

2

1/∆∑
j=2

∣∣∣fSt−1+j∆ − fSt−1+(j−1)∆

∣∣∣ ∣∣∣fSt−1+(j−1)∆ − f
S
t−1+(j−2)∆

∣∣∣ . (24)

The daily jump variation is then defined by subtracting the daily bipower vari-

ation from the daily realized volatility, with a floor of zero, JV
(d)
t ≡ max(RV

(d)
t −

BV
(d)
t , 0). Finally, monthly jump variation is obtained by summing daily jump varia-

tions over the past 21 trading days: JVt =
∑21

i=1 JV
(d)
t−i+1.
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B.2 TAIL index

Following the approach of Kelly (2011) and Chollete and Lu (2012), stock returns

exceeding a threshold level ut are assumed to have the following tail distribution:

Pt(−ri,t+1 > r| − ri,t+1 > ut,Ft) ∼
(
r

ut

)−aiςt
, (25)

where Ft means the time-t information filtration. The tail exponent −aiςt is associ-

ated with tail risk, with a higher value of −aiςt indicating fatter tails.

Let r(1) ≤ r(2) ≤ ... ≤ r(Nt) be the sample order statistics of the stock returns

over the past one month where Nt indicates the number of stock returns at time t.

TAIL can be estimated by applying the Hill (1975) estimator to the order statistics

on each date. The Hill (1975) estimator takes the form of

1

ςHill
t

=
1

Kt

Kt∑
k=1

(
log |r(k)| − log |r(Kt+1)|

)
, (26)

where Kt is the observation that corresponds to the fifth percentile of the sample

order statistics.

As a higher level of −ςHill
t is associated with a higher level of tail risk, Kelly

(2011) introduces the following standardized index, which is increasing in tail risk,

via a sign change:

TAILt = −ς
Hill
t −mean(ςHill

t )

std(ςHill
t )

, (27)

where “mean” and “std” refer to the mean and the standard deviation, respectively.

The returns data are obtained from the CRSP daily stock files, with share codes

of 10 and 11 and exchange codes of 1, 2, and 3.
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Table 1: Correlations among market factor changes

SPX denotes the S&P 500 index; VIX denotes the CBOE VIX index; VVIX denotes a risk-neutral
expectation of the volatility of volatility implied by a cross section of the VIX options; LIQUID
denotes the Pastor and Stambaugh (2003) liquidity factor. ∆SPX, ∆VIX, and ∆VVIX refer to the
SPX, VIX, and VVIX returns, respectively, as defined in Equation (9). The SPX, VIX, and VVIX
data are of daily frequency, whereas the LIQUID data are of monthly frequency.

∆VVIX ∆SPX ∆VIX ∆LIQUID

∆VVIX 1.00 -0.45*** 0.62*** -0.12
∆SPX 1.00 -0.77*** 0.24*
∆VIX 1.00 -0.19
∆LIQUID 1.00
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Table 2: Summary statistics for explanatory variables

The sample period is May 2006 through January 2012 on a daily basis. VVIX denotes a risk-neutral
expectation of the volatility of volatility implied by a cross section of the VIX options; RVV denotes
the realized volatility of volatility impied by intraday VIX future returns; VVRP denotes a volatility
of volatility risk premium, which is defined as the difference between the squared VVIX and RVV;
IVV denotes the integrated volatility of volatility; VJUMP denotes a measure of volatility jumps
implied by the VIX options; VIX denotes the CBOE VIX index; JV denotes the Barndorff-Nielsen
and Shephard (2004) jump variation; JTIX denotes the Du and Kapadia (2012) tail risk measure
implied by the SPX options; FI denotes the Bollerslev and Todorov (2011) fear index; TAIL denotes
the Kelly (2011) tail index; and TED denotes the TED spreads.

VVIX RVV VVRP IVV VJUMP VIX JV JTIX FI TAIL TED

Panel A: Summary statistics
Mean 0.835 0.360 0.358 0.871 0.063 0.242 0.003 0.006 -0.020 -0.000 0.681
Median 0.809 0.280 0.357 0.849 0.061 0.217 0.002 0.002 -0.011 0.107 0.451
Min. 0.390 0.106 -0.337 0.447 -0.110 0.099 0.000 0.000 -0.127 -3.470 0.088
Max. 1.530 1.408 1.502 1.510 0.222 0.809 0.032 0.068 -0.002 1.776 4.579
Std. 0.147 0.237 0.185 0.148 0.035 0.113 0.004 0.010 0.028 1.000 0.645
Skew. 1.012 2.167 0.294 0.886 0.204 1.750 4.055 3.859 -2.682 -0.999 2.178
Kurt. 4.909 8.090 6.228 4.399 4.334 6.906 22.403 19.507 9.253 4.090 9.441
AR(1) 0.924 0.993 0.834 0.929 0.893 0.979 0.991 0.999 0.995 0.981 0.992
AR(5) 0.759 0.917 0.491 0.768 0.773 0.934 0.951 0.980 0.964 0.900 0.954

Panel B: Correlation matrix
VVIX 1.00 0.72 0.52 0.99 0.23 0.54 0.40 0.37 -0.51 -0.61 0.31
RVV 1.00 -0.20 0.69 0.00 0.64 0.60 0.56 -0.77 -0.69 0.49
VVRP 1.00 0.54 0.28 -0.02 -0.14 -0.16 0.16 0.02 -0.14
IVV 1.00 0.35 0.48 0.34 0.33 -0.46 -0.58 0.23
VJUMP 1.00 -0.34 -0.41 -0.27 0.43 -0.03 -0.56
VIX 1.00 0.83 0.84 -0.93 -0.66 0.54
JV 1.00 0.82 -0.88 -0.46 0.64
JTIX 1.00 -0.96 -0.50 0.44
FI 1.00 0.72 -0.67
TAIL 1.00 -0.24
TED 1.00
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Table 3: Summary statistics for residual tail risk hedge returns

The table presents the summary statistics for residual tail risk hedge returns in percentage terms.
Panel A corresponds to the residual SPX put returns, whereas Panel B corresponds to the residual
VIX call returns. The sample period is May 2006 through January 2012 on a daily basis. The
bootstrapped p values are computed with 250,000 sample draws.

Mean p-val Min. Max. Std. Skew. Kurt. AR(1) Sharpe

Panel A: SPX puts
deep SPX put -5.38 (0.00) -77.05 191.62 13.22 2.36 41.94 -0.13 -0.41
med. SPX put -5.47 (0.00) -80.77 235.82 14.66 4.76 80.92 -0.10 -0.37
slight SPX put -3.34 (0.00) -54.53 132.86 9.45 2.33 38.25 -0.17 -0.35

Panel B: VIX calls
slight VIX call -2.44 (0.00) -61.00 80.04 6.10 1.17 37.57 -0.15 -0.40
med. VIX call -2.40 (0.00) -35.41 33.88 6.18 0.31 7.87 -0.09 -0.39
deep VIX call -2.27 (0.00) -36.34 58.84 7.69 0.83 11.00 -0.08 -0.30

35



Table 4: Predictive regressions of tail risk hedge returns

The table presents the one-day ahead predictive regression results of tail risk hedge returns onto
the VVIX index and other control variables. The sample period is May 2006 through January 2012.
R̃O

lag refers to the one-day-lagged residual returns; VVIX denotes a risk-neutral expectation of the
volatility of volatility implied by a cross section of the VIX options; VIX denotes the CBOE VIX
index; JV denotes the Barndorff-Nielsen and Shephard (2004) jump variation; JTIX denotes the
Du and Kapadia (2012) tail risk measure implied by the SPX options; FI denotes the Bollerslev
and Todorov (2011) fear index; TAIL denotes the Kelly (2011) tail index; and TED denotes the
TED spreads. *, **, and *** indicate statistical significance at 90, 95, and 99% confidence levels,
respectively. Newey and West (1987) robust t-statistics with an optimal lag are shown in parentheses.

moneyness const R̃O
lag VVIX VIX JV JTIX FI TAIL TED R2

Regression 1: Baseline regression

deep SPX put 5.15** -2.01*** -2.03*** 0.47 3.77

(2.45) (-5.24) (-5.54) (0.83)

med. SPX put 6.05** -1.79*** -2.19*** 0.47 2.93

(2.19) (-6.03) (-4.48) (0.98)

slight SPX put 3.28** -1.79*** -1.32*** 0.43 4.67

(2.03) (-7.08) (-4.72) (1.53)

slight VIX call 1.24 -1.00*** -0.69*** 0.21 3.40

(1.07) (-4.17) (-3.72) (1.17)

med. VIX call 1.12 -0.61*** -0.68*** 0.42** 2.04

(0.91) (-2.99) (-3.55) (2.07)

deep VIX call 2.88** -0.72** -1.01*** 0.66* 2.41

(2.07) (-2.40) (-4.44) (1.94)

Regression 2: Controlling for VIX

deep SPX put 5.08** -2.01*** -1.99*** -0.12 0.52 3.71

(2.42) (-5.27) (-5.10) (-0.34) (0.86)

med. SPX put 6.24** -1.79*** -2.32*** 0.31 0.34 2.89

(2.26) (-6.03) (-4.52) (0.86) (0.73)

slight SPX put 3.21** -1.80*** -1.27*** -0.11 0.47 4.61

(1.98) (-7.08) (-4.29) (-0.45) (1.60)

slight VIX call 1.28 -1.00*** -0.74*** 0.13 0.16 3.36

(1.09) (-4.17) (-3.52) (0.66) (0.84)

med. VIX call 1.13 -0.61*** -0.69*** 0.02 0.41* 1.97

(0.91) (-2.99) (-3.35) (0.10) (1.93)

deep VIX call 2.92** -0.71** -1.03*** 0.06 0.63* 2.34

(2.12) (-2.40) (-4.39) (0.20) (1.77)

Regression 3: Controlling for JV

deep SPX put 5.09** -2.01*** -2.02*** -0.05 0.50 3.70

(2.38) (-5.27) (-5.41) (-0.14) (0.76)

med. SPX put 6.00** -1.79*** -2.18*** -0.04 0.49 2.86

(2.20) (-6.03) (-4.48) (-0.09) (0.92)

slight SPX put 3.18* -1.79*** -1.30*** -0.09 0.48 4.61

(1.90) (-7.07) (-4.50) (-0.37) (1.42)

continued on the next page
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continued from the previous page
moneyness const R̃O

lag VVIX VIX JV JTIX FI TAIL TED R2

slight VIX call 1.11 -1.00*** -0.66*** -0.16 0.28 3.38

(1.00) (-4.21) (-3.65) (-0.53) (1.25)

med. VIX call 1.12 -0.61*** -0.68*** 0.00 0.42** 1.97

(0.98) (-2.98) (-3.78) (0.01) (2.06)

deep VIX call 3.13** -0.72** -1.06*** 0.23 0.54 2.39

(2.46) (-2.41) (-5.03) (0.60) (1.53)

Regression 4: Controlling for JTIX

deep SPX put 4.73** -2.02*** -1.96*** -0.29 0.58 3.74

(2.08) (-5.31) (-5.01) (-0.71) (0.88)

med. SPX put 6.10** -1.79*** -2.20*** 0.03 0.45 2.86

(2.15) (-6.03) (-4.37) (0.09) (0.86)

slight SPX put 3.13* -1.79*** -1.29*** -0.10 0.47 4.61

(1.79) (-7.07) (-4.28) (-0.39) (1.43)

slight VIX call 1.36 -1.00*** -0.71*** 0.08 0.18 3.34

(1.10) (-4.16) (-3.51) (0.37) (0.90)

med. VIX call 1.08 -0.61*** -0.68*** -0.03 0.43** 1.97

(0.88) (-2.99) (-3.52) (-0.13) (2.05)

deep VIX call 2.86** -0.72** -1.01*** -0.01 0.66* 2.33

(2.20) (-2.40) (-4.73) (-0.03) (1.78)

Regression 5: Controlling for FI

deep SPX put 2.23 -1.55*** -1.77*** 0.48 0.33 1.96

(0.85) (-3.10) (-3.78) (0.62) (0.27)

med. SPX put 6.08* -1.57*** -2.73*** 0.32 0.74 2.18

(1.68) (-2.98) (-3.74) (0.53) (0.81)

slight SPX put 2.99 -1.47*** -1.47*** 0.16 0.43 2.91

(1.42) (-3.56) (-3.53) (0.34) (0.66)

slight VIX call 1.04 -0.93** -0.82** 0.25 0.25 2.30

(0.58) (-2.51) (-2.43) (0.52) (0.65)

med. VIX call -0.58 -0.06 -0.46 0.22 0.50 0.04

(-0.36) (-0.20) (-1.59) (0.52) (1.14)

deep VIX call 2.09 -0.04 -1.16*** 0.12 0.94 1.09

(1.11) (-0.10) (-2.94) (0.17) (1.35)

Regression 6: Controlling for TAIL

deep SPX put 6.11** -2.01*** -2.20*** -0.28 0.45 3.73

(2.36) (-5.23) (-4.80) (-0.83) (0.80)

med. SPX put 8.00** -1.80*** -2.52*** -0.57 0.43 2.96

(2.44) (-6.07) (-4.35) (-1.51) (0.91)

slight SPX put 4.86** -1.80*** -1.58*** -0.46* 0.39 4.76

(2.43) (-7.12) (-4.62) (-1.83) (1.42)

slight VIX call 1.41 -1.00*** -0.72*** -0.05 0.21 3.33

(0.95) (-4.17) (-3.03) (-0.29) (1.13)

med. VIX call 0.99 -0.61*** -0.66*** 0.04 0.42** 1.97

(0.66) (-3.00) (-2.84) (0.18) (2.06)

deep VIX call 3.05* -0.71** -1.04*** -0.05 0.65* 2.34

(1.78) (-2.40) (-3.75) (-0.19) (1.91)
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Table 5: Persistence of predictability

The table presents the multi-week ahead predictive regressions of daily tail risk hedge returns.
R̃O

lag refers to the one-day-lagged residual returns; VVIX denotes a risk-neutral expectation
of the volatility of volatility implied by a cross section of the VIX options; JV denotes the
Barndorff-Nielsen and Shephard (2004) jump variation; JTIX denotes the Du and Kapadia (2012)
tail risk measure implied by the SPX options. *, **, and *** indicate statistical significance at
90, 95, and 99% confidence levels, respectively. Newey and West (1987) robust t-statistics with an
optimal lag are shown in parentheses.

moneyness const R̃O
lag VVIX JV JTIX Adj. R2

Regression 1: One-week ahead
deep SPX put 2.35 -1.96*** -1.50*** 1.09 -1.05 2.96

(1.09) (-5.29) (-4.22) (1.24) (-1.40)
med. SPX put 2.03 -1.64*** -1.43*** 0.37 -0.19 1.65

(0.77) (-4.95) (-3.21) (0.43) (-0.24)
slight SPX put -0.36 -1.69*** -0.62** 0.44 -0.47 3.25

(-0.24) (-6.21) (-2.45) (0.94) (-1.12)
slight VIX call 1.37 -0.86*** -0.70*** 0.21 0.09 2.77

(0.96) (-4.11) (-3.00) (0.29) (0.16)
med. VIX call 1.22 -0.70*** -0.66*** 0.52 -0.37 2.08

(0.96) (-3.63) (-3.29) (1.03) (-0.82)
deep VIX call 2.65 -0.72** -0.89*** 0.35 -0.03 1.56

(1.58) (-2.32) (-3.26) (0.43) (-0.05)

Regression 2: Two-week ahead
deep SPX put 0.77 -1.87*** -1.19*** 0.40 -0.50 2.38

(0.43) (-4.92) (-4.14) (0.69) (-0.97)
med. SPX put 0.89 -1.58*** -1.22*** 0.21 -0.03 1.40

(0.39) (-4.70) (-3.23) (0.26) (-0.04)
slight SPX put -1.32 -1.66*** -0.44* 0.15 -0.25 3.00

(-0.99) (-5.96) (-1.96) (0.41) (-0.72)
slight VIX call -1.60 -0.82*** -0.22 0.28 -0.01 1.76

(-1.62) (-4.10) (-1.36) (0.93) (-0.05)
med. VIX call 0.06 -0.69*** -0.48*** 0.34 0.02 1.60

(0.05) (-3.62) (-2.72) (1.13) (0.05)
deep VIX call 2.28 -0.69** -0.81*** -0.03 0.31 1.32

(1.48) (-2.29) (-3.33) (-0.04) (0.51)

Regression 3: Three-week ahead
deep SPX put 0.65 -1.87*** -1.18*** 0.38 -0.46 2.39

(0.29) (-4.98) (-3.31) (0.68) (-0.84)
med. SPX put 0.01 -1.57*** -1.08*** 0.27 -0.09 1.26

(0.00) (-4.55) (-2.59) (0.45) (-0.15)
slight SPX put -0.90 -1.67*** -0.53** 0.46 -0.48 3.13

(-0.60) (-5.99) (-2.19) (1.56) (-1.59)
slight VIX call -1.25 -0.83*** -0.27* 0.10 0.12 1.77

(-1.34) (-4.09) (-1.77) (0.41) (0.41)
med. VIX call -0.06 -0.71*** -0.45** 0.33 -0.02 1.58

(-0.05) (-3.72) (-2.54) (1.05) (-0.06)
deep VIX call 1.76 -0.68** -0.76*** 0.28 0.29 1.35

(1.12) (-2.26) (-2.98) (0.39) (0.41)

Regression 4: Four-week ahead
deep SPX put -3.19* -1.82*** -0.47 0.02 -0.37 1.82

(-1.71) (-4.71) (-1.57) (0.05) (-0.80)
med. SPX put -4.38** -1.52*** -0.28 0.22 -0.31 0.84

(-1.99) (-4.42) (-0.77) (0.51) (-0.74)
slight SPX put -2.93** -1.65*** -0.16 0.14 -0.30 2.82

(-2.20) (-5.85) (-0.73) (0.51) (-0.97)
slight VIX call -1.43 -0.83*** -0.24 0.12 0.11 1.75

(-1.52) (-4.15) (-1.56) (0.39) (0.28)
med. VIX call -0.52 -0.69*** -0.38** 0.14 0.23 1.45

(-0.56) (-3.63) (-2.50) (0.42) (0.67)
deep VIX call 0.50 -0.68** -0.55*** 0.61 -0.09 1.06

(0.40) (-2.20) (-2.71) (1.16) (-0.17)
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Table 6: Volatility of volatility risk versus its risk premium

The table presents the bivariate regression results of tail risk hedge returns onto RVV and VVRP.
The sample period is May 2006 through January 2012. R̃O

lag refers to the one-day-lagged residual
returns; RVV denotes the realized volatility of volatility impied by intraday VIX future returns;
VVRP denotes a volatility of volatility risk premium, which is defined as the difference between
the squared VVIX and RVV. *, **, and *** indicate statistical significance at 90, 95, and 99%
confidence levels, respectively. Newey and West (1987) robust t-statistics with an optimal lag are
shown in parentheses.

moneyness const R̃O
lag RVV VVRP Adj. R2

Regression 1: RVV only
deep SPX put -4.04*** -1.89*** -1.37*** 2.70

(-6.79) (-4.81) (-4.56)
med. SPX put -3.93*** -1.65*** -1.41*** 1.85

(-5.63) (-5.03) (-3.69)
slight SPX put -2.92*** -1.69*** -0.66*** 3.37

(-7.23) (-6.26) (-3.23)
slight VIX call -1.97*** -0.98*** -0.53*** 2.97

(-7.06) (-4.12) (-3.28)
med. VIX call -1.73*** -0.60*** -0.58** 1.56

(-4.45) (-3.00) (-2.49)
deep VIX call -1.47*** -0.66** -0.63** 1.16

(-3.16) (-2.12) (-2.01)

Regression 2: VVRP only
deep SPX put -4.09*** -1.82*** -1.04*** 2.25

(-4.70) (-4.75) (-2.70)
med. SPX put -3.60*** -1.60*** -1.26*** 1.66

(-3.63) (-5.13) (-2.79)
slight SPX put -2.07*** -1.72*** -0.96*** 3.89

(-3.35) (-6.63) (-3.32)
slight VIX call -2.31*** -0.95*** -0.25 2.38

(-6.04) (-4.06) (-1.27)
med. VIX call -2.42*** -0.55*** -0.10 0.69

(-5.60) (-2.63) (-0.56)
deep VIX call -1.63*** -0.62** -0.41 0.78

(-2.67) (-2.03) (-1.60)

Regression 3: RVV and VVRP
deep SPX put -0.69 -2.01*** -1.72*** -1.45*** 3.77

(-0.62) (-5.08) (-5.35) (-3.97)
med. SPX put -0.05 -1.81*** -1.82*** -1.69*** 3.03

(-0.04) (-6.06) (-4.52) (-3.69)
slight SPX put -0.15 -1.80*** -0.96*** -1.19*** 4.79

(-0.17) (-7.29) (-4.22) (-4.12)
slight VIX call -0.83 -1.01*** -0.67*** -0.45** 3.40

(-1.51) (-4.10) (-3.61) (-2.22)
med. VIX call -0.94 -0.61*** -0.68*** -0.31* 1.73

(-1.51) (-3.05) (-2.71) (-1.75)
deep VIX call 0.09 -0.68** -0.82** -0.64*** 1.74

(0.13) (-2.19) (-2.51) (-2.92)
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Table 7: Integrated volatility of volatility versus volatility jumps

The table presents the bivariate regression results of residual SPX put and VIX call returns onto
IVV and VJUMP. The sample period is May 2006 through January 2012. R̃O

lag refers to the
one-day-lagged residual returns; IVV denotes the integrated volatility of volatility; VJUMP denotes
a measure of volatility jumps implied by the VIX options. *, **, and *** indicate statistical
significance at 90, 95, and 99% confidence levels, respectively. Newey and West (1987) robust
t-statistics with an optimal lag are shown in parentheses.

moneyness const R̃O
lag IVV VJUMP Adj. R2

Regression 1: IVV only
deep SPX put 5.87*** -2.02*** -2.00*** 3.90

(2.70) (-5.17) (-5.65)
med. SPX put 6.82** -1.80*** -2.16*** 3.07

(2.38) (-5.95) (-4.65)
slight SPX put 3.70** -1.79*** -1.27*** 4.66

(2.21) (-7.07) (-4.67)
slight VIX call 1.59 -1.00*** -0.69*** 3.49

(1.44) (-4.14) (-3.73)
med. VIX call 1.61 -0.60*** -0.67*** 1.85

(1.23) (-2.99) (-3.25)
deep VIX call 3.38** -0.69** -0.94*** 1.99

(2.30) (-2.23) (-3.89)

Regression 2: VJUMP only
deep SPX put -3.74*** -1.88*** -1.33*** 2.64

(-3.68) (-4.87) (-3.01)
med. SPX put -3.57*** -1.63*** -1.37*** 1.80

(-3.18) (-4.93) (-2.75)
slight SPX put -2.53*** -1.70*** -0.77** 3.54

(-3.66) (-6.14) (-2.36)
slight VIX call -1.67*** -1.00*** -0.59*** 3.15

(-4.43) (-4.27) (-3.82)
med. VIX call -1.19*** -0.64*** -0.75*** 2.17

(-2.67) (-2.99) (-3.66)
deep VIX call -0.79 -0.72** -0.87*** 1.77

(-1.42) (-2.37) (-3.76)

Regression 3: IVV and VJUMP
deep SPX put 5.45** -2.04*** -1.75*** -0.61 4.01

(2.49) (-5.27) (-4.25) (-1.39)
med. SPX put 6.43** -1.82*** -1.92*** -0.59 3.13

(2.24) (-6.01) (-3.79) (-1.25)
slight SPX put 3.48** -1.79*** -1.15*** -0.27 4.66

(2.06) (-7.05) (-3.70) (-0.84)
slight VIX call 1.14 -1.02*** -0.53* -0.31 3.60

(0.88) (-4.28) (-1.95) (-1.34)
med. VIX call 0.84 -0.65*** -0.38 -0.56** 2.38

(0.64) (-3.10) (-1.54) (-2.22)
deep VIX call 2.81* -0.74** -0.68** -0.55* 2.31

(1.84) (-2.43) (-2.22) (-1.84)
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Table 8: Regressions of SPX put returns over a longer sample period

The table presents the predictive regression results of residual SPX put returns onto σ̂t
V and

other control variables, where σ̂t
V is a historical standard deviation of the VIX index returns

over a 21-day rolling window. The sample period covers from September 1997 through January
2012. R̃O

lag refers to the one-day-lagged residual returns; VIX denotes the CBOE VIX index; JV
denotes the Barndorff-Nielsen and Shephard (2004) jump variation; JTIX denotes the Du and
Kapadia (2012) tail risk measure implied by the SPX options; and TAIL denotes the Kelly (2011)
tail index. *, **, and *** indicate statistical significance at 90, 95, and 99% confidence levels,
respectively. Newey and West (1987) robust t-statistics with an optimal lag are shown in parentheses.

moneyness const R̃O
lag σ̂V VIX JV JTIX TAIL Adj. R2

Regression 1: Baseline regression
deep SPX put -3.07*** -1.28*** -1.11*** 2.01

(-5.48) (-5.92) (-5.12)
med. SPX put -2.72*** -1.16*** -1.25*** 1.67

(-4.01) (-6.48) (-4.64)
slight SPX put -1.82*** -0.99*** -0.66*** 2.18

(-4.43) (-6.05) (-4.21)

Regression 2: controlling for every explanatory variable
deep SPX put -1.22 -1.38*** -0.90*** -1.04*** 0.89 -0.87 -0.45 2.79

(-1.06) (-6.44) (-3.26) (-2.75) (1.29) (-1.64) (-1.31)
med. SPX put -1.30 -1.22*** -1.21*** -0.59 0.59 -0.89 -0.61 2.10

(-0.98) (-6.63) (-3.73) (-1.47) (0.77) (-1.64) (-1.54)
slight SPX put -1.36* -1.01*** -0.55*** -0.28 0.24 -0.39* -0.13 2.36

(-1.88) (-6.22) (-3.06) (-1.20) (1.08) (-1.72) (-1.00)
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Table 9: Regressions of the VIX futures returns

The table presents the predictive regression results of VIX future returns across varying horizons.
The sample period is May 2006 through January 2012. R̃O

lag refers to the one-day-lagged residual
returns; VVIX denotes a risk-neutral expectation of the volatility of volatility implied by a cross
section of the VIX options; VVRP denotes a volatility of volatility risk premium, which is defined
as the difference between the squared VVIX and RVV; VRP denotes the variance risk premium
as defined by Bollerslev, Tauchen, and Zhou (2009); P/E denotes the price-earning ratios; P/D
denotes the price-dividend ratios; DFSP denotes the default spread, which is the difference between
Moody’s BAA and AA corporate yields; TMSP denotes the term spread, which is the difference
between Treasury 10-year and 3-month yields. *, **, and *** indicate statistical significance at
90, 95, and 99% confidence levels, respectively. The robust t-statistics of Hodrick (1992) are in
parentheses.

const VVIX VVRP VRP log(P/E) log(P/D) DFSP TMSP Adj. R2

Regression 1: Three-month horizon
41.09 -5.92 2.57
(1.40) (-1.28)
6.34 -1.77 -1.20

(0.70) (-0.55)
17.91** -12.70*** 17.43
(2.31) (-2.97)

-311.06 -6.00 -0.29 16.44 6.69 3.35 7.31
(-0.54) (-1.20) (-0.03) (0.68) (0.40) (0.59)
-456.91 -4.53 4.62 20.96 5.72 3.30 5.91
(-0.78) (-1.47) (0.43) (0.84) (0.34) (0.58)
-81.42 -11.77** 1.22 4.31 -1.14 4.08 14.52
(-0.14) (-2.42) (0.11) (0.17) (-0.07) (0.71)

Regression 2: Six-month horizon
84.65* -12.06* 7.54
(1.96) (-1.89)
7.27 0.43 -1.63

(0.38) (0.07)
32.45** -21.79*** 24.07
(2.03) (-2.74)

-1053.77 -12.48* 6.35 51.22 25.60 6.94 30.89
(-1.14) (-1.74) (0.31) (1.34) (0.96) (0.62)

-1157.23 -6.50 13.00 52.05 18.61 6.09 24.14
(-1.25) (-1.10) (0.65) (1.35) (0.71) (0.55)
-826.49 -14.73* 11.29 36.89 13.69 7.59 28.82
(-0.89) (-1.78) (0.56) (0.96) (0.52) (0.68)

Regression 3: One-year horizon
123.51** -17.44** 12.70

(2.02) (-2.37)
7.21 3.10 -1.44

(0.18) (0.22)
48.98 -31.35** 40.25
(1.43) (-2.24)

-869.29 -13.19 12.56 43.95 10.21 -11.24 65.27
(-1.14) (-1.54) (0.50) (1.31) (0.38) (-0.42)
-966.47 -7.66 19.67 44.33 2.46 -12.56 59.95
(-1.21) (-0.55) (0.79) (1.25) (0.09) (-0.47)
-605.29 -13.63 16.88 27.91 -3.42 -11.09 62.43
(-0.76) (-1.33) (0.69) (0.80) (-0.14) (-0.42)
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Table 10: Regressions of the SPX index returns

The table presents the predictive regression results of SPX index returns across varying horizons.
The sample period is May 2006 through January 2012. R̃O

lag refers to the one-day-lagged residual
returns; VVIX denotes a risk-neutral expectation of the volatility of volatility implied by a cross
section of the VIX options; VVRP denotes a volatility of volatility risk premium, which is defined
as the difference between the squared VVIX and RVV; VRP denotes the variance risk premium
as defined by Bollerslev, Tauchen, and Zhou (2009); P/E denotes the price-earning ratios; P/D
denotes the price-dividend ratios; DFSP denotes the default spread, which is the difference between
Moody’s BAA and AA corporate yields; TMSP denotes the term spread, which is the difference
between Treasury 10-year and 3-month yields. *, **, and *** indicate statistical significance at
90, 95, and 99% confidence levels, respectively. The robust t-statistics of Hodrick (1992) are in
parentheses.

const VVIX VVRP VRP log(P/E) log(P/D) DFSP TMSP Adj. R2

Regression 1: Three-month horizon
-0.69 0.11 -1.55

(-0.08) (0.08)
-5.41* 2.97*** 6.50
(-1.74) (2.91)
-4.21* 3.61** 10.51
(-1.83) (2.03)
179.77 1.62 2.62 -8.81 -10.02 -2.36 7.86
(1.00) (1.17) (0.73) (-1.17) (-1.58) (-1.53)
256.55 3.33*** 0.61 -11.80 -10.45 -2.56 15.69
(1.38) (3.22) (0.17) (-1.51) (-1.64) (-1.64)
72.37 4.99*** 2.51 -3.56 -7.08 -2.74* 21.20
(0.40) (2.73) (0.70) (-0.47) (-1.13) (-1.74)

Regression 2: Six-month horizon
-14.45 2.19 -0.03
(-0.91) (0.87)
-7.87 4.03* 3.13

(-1.13) (1.83)
-8.95** 7.52** 14.65
(-2.00) (2.54)
307.13 3.76 2.03 -15.24 -12.41 -3.94 7.03
(1.13) (1.61) (0.30) (-1.36) (-1.41) (-1.44)
403.08 5.52*** -1.33 -18.50 -11.31 -4.06 11.36
(1.45) (2.83) (-0.19) (-1.61) (-1.29) (-1.49)
174.09 8.91*** 0.31 -7.98 -7.89 -4.81* 16.19
(0.64) (2.90) (0.04) (-0.72) (-0.92) (-1.75)

Regression 3: One-year horizon
-26.67 3.99* 0.87
(-1.43) (1.69)
-11.62 5.75 2.74
(-0.75) (1.13)
-14.30 11.23** 17.28
(-1.43) (2.57)

587.54** 4.14 -4.93 -27.37** -15.43 -0.09 12.25
(2.38) (1.34) (-0.56) (-2.66) (-1.63) (-0.01)

779.75*** 9.83** -10.48 -34.88*** -15.83* -0.56 22.43
(2.89) (2.10) (-1.26) (-2.99) (-1.68) (-0.08)

455.77* 7.71* -6.45 -20.12* -10.41 -0.73 14.92
(1.72) (1.87) (-0.77) (-1.79) (-1.24) (-0.11)
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Table 11: Regressions of SPX call returns

The table presents the results of predictive regressions of residual SPX call returns. The sample
period is May 2006 through January 2012. R̃O

lag refers to the one-day-lagged residual returns; VVIX
denotes a risk-neutral expectation of the volatility of volatility implied by a cross section of the
VIX options; JV denotes the Barndorff-Nielsen and Shephard (2004) jump variation; JTIX denotes
the Du and Kapadia (2012) tail risk measure implied by the SPX options. *, **, and *** indicate
statistical significance at 90, 95, and 99% confidence levels, respectively. Newey and West (1987)
robust t-statistics with an optimal lag are shown in parentheses.

moneyness const R̃O
lag VVIX JV JTIX Adj. R2

Regression 1: VVIX only
slight SPX call -2.57* -1.91*** -0.07 4.11

(-1.88) (-6.65) (-0.31)
med. SPX call -7.67*** -1.74*** 0.51 1.43

(-2.87) (-3.12) (1.13)
deep SPX call -9.99*** -2.69*** 1.05* 3.11

(-3.25) (-5.11) (1.89)

Regression 2: JV only
slight SPX call -2.54*** -1.94*** -0.63** 4.56

(-9.10) (-6.83) (-2.33)
med. SPX call -4.45*** -1.76*** -0.24 1.33

(-9.50) (-3.15) (-0.61)
deep SPX call -3.71*** -2.71*** -0.53 2.78

(-5.66) (-5.08) (-1.15)

Regression 3: JTIX only
slight SPX call -2.46*** -1.99*** -0.98*** 5.23

(-9.32) (-7.01) (-3.41)
med. SPX call -4.14*** -1.79*** -0.81* 1.62

(-8.95) (-3.19) (-1.89)
deep SPX call -3.61*** -2.72*** -0.75 2.90

(-5.43) (-5.13) (-1.23)
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Figure 1: The impact of the volatility of volatility on volatility smirks.
Each panel shows volatility smirks with different levels of volatility of volatility, σt, under the
affine stochastic volatility framework. The parameters are obtained by taking the averages
of those reported by Christoffersen, Heston, and Jacobs (2009) except for σt. That is,
the persistence, the leverage effect, and the long-run volatility are set at 2.5971, -0.6850,
and 0.0531, respectively. The low, mean, and high σt correspond to the lowest (0.3796),
mean (0.6151), and highest (0.8516) values of their estimates of the volatility of volatility,
respectively. The initial volatility state and the interest rate are set at the long-run volatility
and 2%, respectively.
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Figure 2: The S&P 500 index (top) and the VVIX index versus the VIX index
(bottom).
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Figure 3: Realized volatility of volatility (top) and volatility of volatility risk premium
(bottom).
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Figure 4: Integrated volatility of volatility (top) and volatility jumps (bottom).
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Figure 5: Dollar trading volume of the VIX options.
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Figure 6: VVIX versus JV (top) and versus JTIX (bottom).
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Figure 7: VVIX versus FI (top) and versus TAIL (bottom).
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