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Abstract 
This paper provides an extensive analysis of the predictive ability of financial volatility 
measures for economic activity. We construct monthly measures of stock and bond market 
volatility from daily returns and model volatility as composed of a long-run component that 
is common across all series, and a set of idiosyncratic short-run components. Based on 
powerful in-sample predictive ability tests, we find that the stock volatility measures and 
the common factor significantly improve short-term forecasts of conventional financial 
indicators. A real-time out of sample assessment yields a similar conclusion under the 
assumption of noisy revisions in macroeconomic data. In a non-linear extension of the 
dynamic factor model for volatility series, we identify three regimes that describe the joint 
volatility dynamics: low, intermediate and high-volatility. We also find that the non-linear 
model performs remarkably well in tracking the Great Recession of 2007-2009 in real-
time.  
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1. Introduction 
The predictive ability of financial variables such as term spreads, stock returns and credit 

spreads for economic activity has been extensively studied, see for example Fama (1990), 

Estrella and Mishkin (1998), Ang et al. (2006), and Gilchrist and Zakrajsek (2012), among 

others. Recently, using the information content of second moment of stock returns for 

predicting economic activity has also attracted attention. For example, Fornari and Mele 

(2009) study the predictive ability of aggregate stock market volatility combined with 

other commonly used financial indicators. Bakhsi et al. (2011) provide a similar analysis 

for the forward variances extracted from option portfolios while Allen et al. (2012) 

construct an aggregate systemic risk measure that has predictive value for economic 

downturns. 

The relation between financial volatility and economic activity has solid theoretical 

foundations. Schwert (1989a, 1989b) shows that measures of return volatility proxy for the 

uncertainty surrounding future cash flows and discount rates according to the standard 

present value model of stock prices. According to the rational valuation framework of 

Mele (2007), investors require higher returns during relatively bad times and increases in 

risk premia are larger in magnitude than declines in good times, leading to counter-cyclical 

return volatility. Bloom (2009) investigates the impact of shocks to economic uncertainty 

under stochastically evolving business conditions and finds that uncertainty shocks 

generate sharp recessions and recoveries.  Christiano et al. (2010), Arellano et al. (2011) 

and Bloom et al. (2012) study uncertainty shocks in the context of dynamic stochastic 

general equilibrium models and argue that models incorporating uncertainty shocks 

provide a better fit in matching business cycle dynamics.   

In this paper, we analyze the predictive value of various financial volatility 

measures as a proxy for anticipated real uncertainty. We consider the volatility of a broadly 

defined stock market portfolio as well as an aggregated volatility measure from industry 

portfolios. Moreover, we include a measure of volatility from the Treasury bond market to 

capture potential uncertainty arising from monetary policy, future interest rates, and term 

premia. We use daily data to construct the financial volatility measures at monthly 
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frequency from January 1985 to June 2012.1 We then use a variety of linear and nonlinear 

methods to assess the predictive power of these volatility measures for macroeconomic 

activity using both revised and real-time data. 

Our paper makes several important contributions to the literature that focuses on 

the relation between real activity and volatility of financial asset returns. First, we consider 

multiple volatility measures in a unified framework. Second, we explicitly consider 

components of volatility that have potentially different linkages with the underlying 

economic fundamentals. Third, in our assessment of predictive ability of the volatility 

measures, we rely on recently developed in-sample tests that focus on finite-sample 

predictive ability, which also allows us to analyze sub-samples. Moreover, we implement 

out-of-sample tests that explicitly incorporate real-time data revisions. Finally, we identify 

distinct states of volatility and shed light on their relationship with macroeconomic 

activity.  

We first show that the aforementioned volatility measures are significantly 

correlated with growth in industrial production and non-farm employment. These volatility 

measures also exhibit strong co-movement, which we capture in a dynamic factor 

framework motivated by the ICAPM model of Adrian and Rosenberg (2008). 

Decomposing volatility allows us to filter out the noisy short-run component and identify 

the long-run component of volatility that is presumably more strongly tied to underlying 

economic fundamentals. We then implement the in-sample predictive ability tests of Clark 

and McCracken (2012) for individual volatility measures as well as the common long-run 

component volatilities. We find that stock volatility measures and the common factor 

perform similar to conventional financial indicators, namely the term spread, the credit 

spread and the return on a broadly defined stock portfolio. Moreover, the volatility 

measures improve forecasts from conventional indicators, especially over relatively short 

forecast horizons. Test results obtained from dividing the sample into approximately equal 

                                                           
1 Ex-post sample variances that are computed from higher frequency return data as lower frequency volatility 
measures have been extensively used in the empirical finance literature, see for example the early work of 
Poterba and Summers (1986) and French, Schwert and Stambaugh (1987). More recently, Andersen et al. 
(2001a, 2001b, 2003, and 2005) showed the empirical success of realized volatility for measuring and 
modeling underlying return variability. 
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sub-samples reveal that volatility measures, similar to conventional financial indicators, 

have predictive power only over the period from 1998 to 2012, which is characterized by 

several episodes of global and domestic financial turmoil.     

 We also provide an out-of-sample analysis with real-time data. We adopt the 

framework proposed by Clark and McCracken (2009), which take into account effects of 

data revisions on the distribution of test statistics. We find that mean squared forecast error 

for industrial production and employment growth from models using volatility measures 

are not significantly different from those using conventional financial indicators under 

noisy data revisions, especially over short forecast horizons. This result holds using both 

initial and final data releases to evaluate forecasts produced in real-time. According to the 

nested model comparisons, the stock volatility measures and the common factor 

significantly improve short-term forecasts from conventional financial indicators, 

assuming presence of noise in data revisions.    

When we allow for nonlinear dynamics in the common factor of volatility 

measures, we find that three-regimes are necessary to adequately capture the joint volatility 

dynamics: low, intermediate, and high volatility. The regime classification from this model 

implies that the expansionary periods during which the economy performs well are also the 

periods that exhibit low financial volatility. The intermediate volatility regime is associated 

with either episodes of uncertainty during economic expansions or mild recessions. The 

high-volatility regime typically leads NBER recessions and periods of economic 

slowdowns slightly and prevails during the entire Great Recession. As a robustness check, 

we also estimate the model recursively and calculate regime probabilities as one would do 

in real-time. We find that all our findings from the full-sample hold, and that the model 

performs remarkably well in tracking the most recent recession in real-time. 

The rest of the paper is organized as follows. The next section explains 

construction of the volatility measures. Section 3 introduces the data set and provides some 

preliminary analysis. Section 4 contains a comprehensive analysis of the predictive power 

of various volatility measures for macroeconomic activity in the context of predictive 

regressions as well as Markov-switching dynamic factor models. Section 5 concludes. 
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2. Volatility Measures 
We construct three measures of realized volatility: volatility of a broad stock market 

portfolio, an aggregated measure of volatility from industry portfolios, and a bond market 

volatility measure from spot Treasury yields.  

Let 𝑟𝑚𝑠 denote the daily excess return over the risk free rate for the value-weighted 

market portfolio, where s denotes the trading days in a given month, which is indexed by 𝑡. 

Our log-transformed realized volatility measure for the market portfolio, 𝑅𝑉𝑀, is defined 

as follows 

 

(1)          𝑅𝑉𝑀𝑡 =
1
2

ln �� 𝑟𝑚𝑠2
𝑛𝑡

𝑠∈𝑡
� ,    𝑡 = 1, … ,𝑇, 

 

where ln(. ) is the natural-logarithm function, 𝑛𝑡  denotes the number of trading days in 

month 𝑡, and 𝑇 denotes the total number of months in the sample.2 

Following Campbell et al. (2001), we also consider a stock volatility measure 

which is obtained by aggregating information from industry portfolios. Let 𝑟𝑖𝑠 denote the 

daily value-weighted return of all firms in industry 𝑖 and define 𝑒𝑖𝑠 = 𝑟𝑖𝑠 − 𝑟𝑚𝑠.  Then our 

second stock volatility measure, 𝑅𝑉𝐼, is given by 

 

(2)          𝑅𝑉𝐼𝑡 =
1
2

ln �� 𝑤𝑖𝑡� 𝑒𝑖𝑠2
𝑛𝑡

𝑠∈𝑡

𝑚𝑖

𝑖=1
� ,         𝑡 = 1, … ,𝑇, 

 

where 𝑤𝑖𝑡 is the weight of industry 𝑖 with respect to market capitalization, and 𝑚𝑖 denotes 

the total number of industries. This definition of volatility stands between the systemic 

volatility as measured by the volatility of the market portfolio, and the idiosyncratic firm 

level volatility. Campbell et al. (2001) document strong correlation between this measure 

and GDP growth. 

                                                           
2 A realized volatility measure taking into account the first order autocorrelation in daily returns can be 
calculated similarly. We also consider this alternative in our calculations and find that the results are 
qualitatively similar. 
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Our last volatility measure is obtained from the Treasury bond market.  Let 𝑦𝑠 

denote the continuously compounded yield of the 10-year zero coupon T-bond. The daily 

bond return is given by 𝑟𝑏𝑠 = 10(𝑦𝑠−1 − 𝑦𝑠). We then construct the bond market volatility 

measure, 𝑅𝑉𝐵, based on this daily return as follows 

 

(3)          𝑅𝑉𝐵𝑡 =
1
2

ln �� 𝑟𝑏𝑠2
𝑛𝑡

𝑠∈𝑡
� ,         𝑡 = 1, … ,𝑇. 

 

The realized volatility approach provides directly observable return volatility 

measures, which are fully nonparametric and incorporate the inherent information in the 

higher-frequency data. We exploit these properties to understand the extent of the relation 

between financial return volatility and aggregate economic activity. 

 

3. Data and Preliminary Analysis 
The daily stock returns are retrieved from Kenneth French’s online Data Library. We 

consider 48 industries in our data set. The bond data are obtained from Gurkaynak et al. 

(2007). 3  We consider the growth in the U.S. industrial production index and non-

agricultural payroll employment as measures of macroeconomic activity at the monthly 

frequency.4 The conventional financial indicators that we consider are the term spread, the 

difference between the 10-year Treasury note yield and the 3-month Treasury bill yield, the 

credit spread, the difference between Moody’s seasoned BAA and AAA corporate bond 

yield indices, and the return on the value weighted NYSE portfolio.5 

                                                           
3 For a complete list of the industries and classification procedures refer to Kennett French’s data library 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Gurkaynak et al. (2007) dataset 
can be downloaded from the Board of Governors of the Federal Reserve System at 
http://www.federalreserve.gov/pubs/feds/2006/index.html. 
4  Industrial production series is obtained from the Board of Governors of the Federal Reserve System 
(http://www.federalreserve.gov/releases/G17/default.htm) and payroll data are from the Bureau of Labor 
Statistics (http://www.bls.gov/data/#employment).  
5 Treasury and corporate yield data are obtained from the economic database of the Federal Reserve Bank of 
St. Louis (FRED®) available at http://research.stlouisfed.org/fred2/ and the value-weighted market return is 
from Kennett French’s data library (see Footnote 3 above). 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.federalreserve.gov/pubs/feds/2006/index.html
http://www.federalreserve.gov/releases/G17/default.htm
http://www.bls.gov/data/#employment
http://research.stlouisfed.org/fred2/
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The full sample runs from January 1985 to June 2012. There are three main reasons 

for our choice of the starting date of the sample. The first is the change in broader U.S. 

monetary policy beginning from early 1980s. Second, there is a structural break in the 

volatility of output growth in the first half of 1984, documented by McConnell and Perez-

Quiroz (2000). Third, capital markets have played an increasingly important role in 

financial intermediation beginning from mid-1980s.  

Figure 1 plots the three realized volatility measures as described above. The 

volatility series are individually quite noisy, but a somewhat similar pattern can be 

observed; volatilities are generally higher during recessions and lower during expansions. 

The aggregated industry volatility moves closely with the market volatility. Notice that 

both series increased considerably from mid-1990s to early 2000s. This was followed by a 

very low volatility period that lasted until the beginning of the recent financial crisis in 

2007-2008. The bond market measure is fairly correlated with the stock market measures, 

although its dynamics were noticeably different during the second half of 1990s. 

We start with a simple correlation analysis to get some insight into the relationship 

between these financial volatility measures and the macroeconomic aggregates. Table 1 

summarizes the results. Over the full-sample period, all volatility series are negatively 

correlated with the growth in industrial production, but the reported point estimates are 

significant only for the stock market measures according to the HAC p-values (Panel A). 

When we divide the sample into approximately equal two sub-periods, we observe that 

from January 1985 to December 1996 the correlation estimates are near-zero and 

insignificant while the period from January 1997 to June 2012 is characterized by 

significant and strongly negative correlations. Similar observations apply to the 

correlations between volatility series and the employment growth in the full-sample as well 

as the sub-samples (Panel B). One notable difference is that the correlations between the 

market and bond volatility series with employment growth are larger in magnitude 

compared to those between the same volatility series and industrial production growth. 

Overall, the correlation estimates in Table 1 suggest that there is a negative association 

between financial volatility measures and macroeconomic activity over the full-sample that 

is mostly driven by the dynamics in the second sub-sample, a period characterized with 
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episodes of financial distress and the severe recession that followed the financial crisis of 

2007-2008.         

The similarities in the dynamics of the volatility measures and their relationship to 

macroeconomic aggregates suggest that combining information from these series could 

improve our understanding of how financial volatility and the macroeconomy are related. 

Therefore, we consider a simple common factor specification that filters out the inherent 

noise in individual volatility series and summarizes the common information that is more 

likely to be correlated with economic fundamentals. This approach is also motivated by the 

ICAPM model of Adrian and Rosenberg (2008), which decomposes aggregate stock return 

volatility into a relatively persistent long-term component and a transitory short-term 

component.  

Let 𝑦𝑡 = (𝑅𝑉𝑀𝑡,𝑅𝑉𝐼𝑡,𝑅𝑉𝐵𝑡)′, then a simple dynamic factor model of volatility 

dynamics can be represented as follows: 

 

(4)         𝑦𝑖,𝑡 = 𝜆𝑖𝑉𝐹𝑡 + 𝑢𝑖,𝑡,     𝑢𝑖,𝑡 = 𝜙𝑖𝑢𝑖,𝑡−1 + 𝜀𝑖,𝑡,     𝜀𝑖,𝑡~ 𝑁𝐼𝐷(0,𝜎𝑖2),  

 

(5)        𝑉𝐹𝑡 = 𝛼 + 𝜓𝑉𝐹𝑡−1 + 𝜖𝑡,       𝜖𝑡~ 𝑁𝐼𝐷(0, 𝜏2). 

 

Hence, 𝑉𝐹  represents the common factor and 𝜆s denote the loadings, which show the 

degree of correlation between individual volatility series and the common factor. The 

common factor is assumed to be uncorrelated with idiosyncratic terms at all leads and lags 

to ensure identification. The model is estimated using the Kalman filter, and the maximum 

likelihood estimates are reported in Table 2. Over the full sample, the extracted volatility 

factor is highly persistent and has an autoregressive coefficient estimate of around 0.8. All 

factor loadings are positive and highly significant indicating positive correlation between 

the individual volatility measures and the extracted factor. The volatility of the market 

portfolio has the largest loading on the common factor and also the least persistent 

idiosyncratic component. The other two volatility measures, especially the one obtained 

from industry portfolios, have more persistent idiosyncratic components and smaller factor 

loadings. Therefore, the parameter estimates suggest that the extracted common factor is 
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essentially a systemic volatility measure. The estimates show some variability over the two 

sub-samples but the results are qualitatively very similar. Figure 2 plots the extracted 

common volatility factor.  

 

4. Predicting Macroeconomic Activity using Financial Volatility 
We employ two different approaches to assess predictive ability of the financial volatility 

measures for macroeconomic aggregates. The first is the in-sample testing framework 

proposed by Clark and McCracken (2012). This methodology is designed to evaluate the 

marginal significance of a variable – or a set of variables – by taking into account the 

trade-off between the signal provided by the variable(s) of interest and the noise introduced 

by parameter estimation in a finite sample. Our second evaluation method is based on the 

out-of-sample testing framework of Clark and McCracken (2009), which takes into 

account effects of data revisions on the asymptotic distribution of test statistics. We also 

conduct an event-timing analysis and estimate a Markov switching version of the dynamic 

factor model of realized volatilities outlined above and analyze the relationship between 

volatility and economic cycles.  

4.1 In-sample Tests 
We start our predictive analysis by augmenting simple autoregressive models of industrial 

production and payroll employment growth with a financial predictor and apply the in-

sample tests of Clark and McCracken (2012) to test the significance of the corresponding 

predictive coefficient. The predictive model is given by, 

 

(6)      𝑔𝑡+ℎ = 𝛽0 + 𝛽1𝑔𝑡 + (𝑇−1/2𝛽2)𝑥𝑡 + 𝑢𝑡+ℎ, 

  

where 𝑔𝑡+ℎ is the cumulative growth in the macro aggregate under consideration from time 

𝑡 to 𝑡 + ℎ , 𝑇 is the sample size, and 𝑥𝑡 denotes the financial predictor. The local-to-zero 

specification reflects the inherent trade-off between the signal provided by 𝑥𝑡 and the noise 

introduced by imprecise estimation of its coefficient in a finite sample. The Clark and 

McCracken (2012) statistic tests the null hypothesis that these two factors offset each other 
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and including 𝑥𝑡 does not provide any significant gains in squared error loss. Under the 

alternative, signal dominates noise and the marginal predictor is useful.6 This specification 

informs us whether the predictor is useful for projecting macroeconomic aggregates over 

the entire sample, as well as the sub-samples.  

We also consider an alternative version of the test in which the conventional 

financial predictors are assumed to have non-zero predictive coefficients in the population 

and the volatility measures are treated as marginal predictors. Formally, we have   

 

(7)      𝑔𝑡+ℎ = 𝛽0 + 𝛽1𝑔𝑡 + 𝛽2𝑥1,𝑡 + (𝑇−1/2𝛽3)𝑥2,𝑡 + 𝑢𝑡+ℎ, 

 

where 𝑥1,𝑡 is a conventional financial predictor and 𝑥2,𝑡 is a volatility measure.  Note that 

this is a fairly conservative approach to assess the marginal predictive content of financial 

volatility measures since we are assuming that the baseline predictor has predictive power 

in population.    

 Table 3 reports the results for predicting industrial production growth over the full-

sample. We report both the asymptotic p-values based on non-central normal distribution 

and the bootstrap p-values, which are obtained from a fixed-design wild bootstrap. 7 Both 

stock volatility measures are significant predictors of industrial production growth for the 

one-month horizon according to the asymptotic and bootstrap p-values. The predictive 

power of stock volatility measures are reflected in the common volatility factor as well. 

Among the conventional financial predictors, only the default spread provides useful 

information beyond the lagged industrial production growth for the one-month horizon. 

For longer forecast horizons, the stock volatility measures are typically significant 

according to the asymptotic p-values, but not according to the more conservative bootstrap 

p-values. Only the return on the market portfolio is found to be a significant predictor of 

industrial production growth for horizons beyond one-month. When we augment 

conventional predictors with the volatility measures, we find that the stock market based 

                                                           
6 See the technical appendix for more details on this testing framework.  
7 We are grateful to Todd Clark and Michael McCracken for making their RATS program for the bootstrap 
procedure available. 
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volatility measures and the common factor usually provide a useful supplementary signal 

according to the asymptotic p-values. The bootstrapped p-values indicate significance only 

for the one and three-month horizons.    

The in-sample test results for predicting industrial production growth are strikingly 

different across the two sub-samples (Tables 4 and 5). Over the first period, which runs 

from January 1985 to December 1996, only the term spread is significant for the one and 

three-month horizons.  All other financial predictors, including volatility measures, do not 

provide any additional information over lagged growth for any of the forecast horizons. 

Moreover, none of the volatility measures can improve upon the term spread in instances 

when the latter is significant. Turning to the second sub-sample, the period from January 

1997 to June 2012, provides an appreciably different perspective regarding the predictive 

content of conventional financial predictors and volatility measures. The results are 

qualitatively similar to those obtained from the full-sample, but the case for the marginal 

information content of stock volatility measures is strengthened. 

The test results for payroll employment growth are reported in Tables 6 – 8. Over 

the full-sample period, stock volatility measures and the extracted factor are significant for 

all horizons according to the asymptotic p-values. Bootstrap p-values also support this 

conclusion with the exception of the 12-month horizon. Among the conventional 

predictors, return on the market portfolio is always significant under both testing schemes. 

The default spread helps improve short term forecasts while the term spread is significant 

only for the 12-month horizon. In terms of the marginal predictive power, the stock market 

measures and the common factor have the potential to improve employment growth 

forecasts in most instances.  The sub-sample results are similar to the case of industrial 

production growth in the sense that no variable can systematically improve simple 

autoregressive forecasts in the first sub-sample. Moreover, the results from the second sub-

sample closely resemble those from the full-sample.     

4.2 Out-of-sample Tests in Real-time 
We now turn to an out-of sample evaluation based on real-time data. This analysis allows 

us to assess relative and marginal predictive power of the financial volatility measures in a 
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realistic setting. We evaluate predictive performance with respect to mean squared error 

(MSE) loss function using Diebold and Mariano (1995) type tests by taking into account 

the effects of real-rime data revisions on the distribution of test statistics. Specifically, we 

adopt the real-time out-of-sample testing framework of Clark and McCracken (2009) and 

consider two types of comparisons. 8 The first focuses on non-nested models that use either 

a conventional predictor or a volatility measure, while the second evaluates nested models 

in which volatility measures are treated as marginal predictors. Lagged growth rates of 

industrial production and employment are included in both cases. We evaluate real-time 

forecasts with respect to both initial and final data releases. The former is relevant as it is 

of interest to practitioners and policy makers who try to anticipate the initial data release, 

while the latter informs us about the ability to predict an ultimately more accurate measure 

of economic activity in real-time. We adopt a recursive forecasting scheme and evaluate 

the forecasts over the period from January 1996 to June 2012.9  

 The non-nested model comparison results for industrial production growth based 

on initial data release are reported in Table 9. The stock volatility measures and the 

common factor perform better than both the term spread and the market return over the 

one-month horizon, leading to reductions of up to 9% in the MSE. Moreover, they perform 

only slightly worse than the default spread. The bond volatility outperforms the term 

spread but provides a somewhat larger MSE than the default spread and the market return. 

The loss differences are significant in some instances when volatility measures perform 

better under the assumption of no noise in data revisions, but this no longer holds if one 

assumes that data revisions are driven by both news and noise. For the three-month 

horizon, all volatility measures beat the default spread substantially. However, they 

perform worse than the term spread and about the same as the market return on average. 

Assuming noise in data revisions imply that loss differences between the volatility 

measures and the default spread are typically significant at conventional levels. In other 

cases, differences are generally insignificant under both noisy and purely news driven data 

                                                           
8 See the technical appendix for a detailed exposition of this testing framework.  
9 We have also implemented a rolling forecasting scheme and found that the results are qualitatively similar. 
Those results are available from the corresponding author upon request. 
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revisions. The results for the six-month horizon are broadly in line with those from the 

three-month horizon. Over the 12-month horizon, loss differences provide a similar 

depiction, but they are typically insignificant under noisy revisions. When we use the final 

release to evaluate forecasts that are produced using real-time data, we find that the results 

closely resemble those obtained using the first release (see Table 10). 

 Tables 11 and 12 report the non-nested model comparison results for employment 

growth. Overall, the results are in line with those for the industrial production growth with 

one exception: the term spread typically beats volatility measures for horizons beyond 3-

months and the loss differences are significant regardless of the assumption one makes 

about possible noise in data revisions.  

 Nested model evaluation results for industrial production growth based on initial 

data release are reported in Table 13. For the one-month forecast horizon, the volatility 

measures usually improve on the performance of smaller models containing conventional 

predictors.  For example, the common factor provides an 8% reduction in MSE over the 

model containing only lagged industrial production growth and the term spread with an 

associated p-value of 0.03. A similar result is obtained from the comparison with the 

market return. A slight improvement over the default spread is observed but the difference 

is marginally insignificant, with a p-value of 0.11. For longer horizons, adding the 

volatility measures does not improve forecasting performance and the MSE deteriorates 

somewhat.  Evaluations based on final data release yield a similar conclusion (see Table 

14). 

 When we add the volatility factor to predictive regressions for employment growth 

and use initial data to evaluate forecasts, we observe that MSE is reduced by 5% to 7% for 

the one-month horizon and that the gains are highly statistically significant (see Table 15). 

There are also improvements in MSE over the default spread and the market return for the 

three-month horizon. Beyond three months, the volatility measures can improve only the 

forecasts based on the default spread. Results are qualitatively identical when we use final 

data to evaluate the forecasts (see Table 16). 
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4.3 Event-timing Analysis with Regime Switching 
The recent financial crisis and economic recession have revived widespread interest in 

predicting business cycle turning points rather than just focusing on point forecasts. 

Therefore, we estimate a nonlinear version of the dynamic factor model outlined in Section 

2 and explore the relationship between volatility regimes and different states of the 

economy. Specifically, we allow for both the drift and the variance of the common factor 

to switch across different regimes according to an unobservable Markov process. Thus, the 

transition equation for the factor volatility (5) is now replaced with the following equation: 

 

(5′)         𝑉𝐹𝑡 = 𝛼𝑆𝑡 + 𝜓𝑉𝐹𝑡−1 + 𝜖𝑡,       𝜖𝑡 ~ 𝑁𝐷(0, 𝜏𝑆𝑡
2 ), 

 

where 𝑆𝑡 is the state variable that governs the regimes, which evolves according to a first 

order Markov process with transition probabilities given by 𝑝𝑖𝑗 = Pr [𝑆𝑡 = 𝑗|𝑆𝑡−1  = 𝑖] 

where 𝑖, 𝑗 ∈ {0, 1, … ,𝑀− 1} . 10  Hence, there are M different regimes characterized by 

different levels and variances of the volatility factor.  As a result, we have 𝛼𝑆𝑡 = 𝛼𝑖1(𝑆𝑡 =

𝑖) and 𝜏𝑆𝑡
2 = 𝜏𝑖21(𝑆𝑡 = 𝑖), 𝑖 = 0,1, … ,𝑀 − 1, where 1(. ) represents the standard indicator 

function.   

We consider two specifications featuring two and three states respectively. The two 

state model (𝑀 = 2) corresponds to the conventional bull/bear taxonomy of the financial 

markets, while the three state model (𝑀 = 3) introduces an additional state to provide a 

possibly more realistic approximation to the true underlying data generating process. In 

determining the optimal number of regimes, we follow Guidolin and Timmermann (2006) 

and rely on the Davies (1987) upper bound for the p-value of the likelihood ratio test 

statistic as well as the Hannan-Quinn information criterion. We find that both approaches 

strongly favor the three regime specification.  

                                                           
10 This model is closely related to the model proposed in Chauvet (1998) for business cycle analysis.  
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Table 17 presents the maximum-likelihood estimates of the nonlinear common 

factor model of volatilities.11 The model distinguishes between three different levels of 

volatility: high, intermediate, and low. The expected value of the common factor in the 

high-volatility regime is about twice as large as that in the low-volatility regime, while the 

intermediate-volatility regime is approximately midway between the two regimes in terms 

of the expected level of the common factor. The variance of the common factor takes its 

largest value in the high-volatility regime, suggesting that the volatility of volatility is 

strongly positively correlated with the level of volatility. The transition probability 

estimates reveal that the persistence of each regime is inversely correlated with the level of 

volatility in the corresponding regime. In particular, the high-volatility regime has an 

expected duration of about 5 months compared to 40 months for the low-volatility regime. 

The intermediate-volatility regime has an expected duration of 8 months. As in the case of 

the linear model, all volatility series are positively correlated with the common factor with 

statistically significant factor loadings. The idiosyncratic persistence parameters are 

comparable to those obtained under the linearity assumption.  

The smoothed probabilities of regimes from the nonlinear dynamic factor model of 

volatilities are plotted in Figure 3. The low-volatility regime is strongly correlated with 

periods of robust economic expansion. The intermediate volatility regime is associated 

with either episodes of uncertainty during economic expansions or recessions. The 1990-

1991 and 2001 recessions, which are usually regarded as mild recessions compared to the 

other post-war US recessions, as well as the prevailing uncertainty following the 2001 

recession are classified as intermediate volatility regimes. The high-volatility regime 

typically leads the NBER recessions and periods of economic slowdowns slightly and 

prevails during the entire Great Recession.  

According to the smoothed probabilities, the second half of 1980s was associated 

with low and intermediate-volatility regimes, with a brief interruption in October 1987 due 

to the Black Monday. The common factor enters into the high-volatility regime at the onset 

                                                           
11 The models are estimated via numerical optimization of the likelihood function. In particular, we combine 
a nonlinear discrete version of the Kalman filter with Hamilton’s (1989) filter using Kim’s (1994) 
approximate maximum likelihood method.  
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of the 1990-1991 recession and then shifts to the intermediate-volatility regime for the rest 

of the recession. Following the end of the recession, the low-volatility regime dominates 

until 1997. 

The period from early 1997 to mid-2003 is characterized by switches between 

intermediate and high volatility regimes. The Asian crisis of 1997 appears to have resulted 

in moderate volatility in U.S. asset markets. Starting from mid-1998, the probabilities of 

the high-volatility regime rise above 0.5 and remain high until the end of the first quarter 

of 1999. The notable event of this period was the 1998 Russian debt crisis and the LTCM 

default, which led to fears of a U.S. recession and transitory weakening of the economic 

conditions. The probabilities of the high-volatility regime rise again in early 2000 as the 

tech-bubble burst and remain elevated until the beginning of the 2001 recession. The 

smoothed regime probabilities classify the second half of 2002 as a high-volatility period. 

Over that time frame, U.S. economic activity slowed down amid corporate accounting 

scandals, declining confidence levels among households and businesses, and falling stock 

prices. A double-dip recession was averted according to the NBER Business Cycle Dating 

Committee, but the committee’s announcement that the recession had ended in 2001 was 

not made until mid-2003. Interestingly, this timing coincides with the end of the high-

volatility regime. The low-volatility regime persisted for four years beginning from mid-

2003. 

There is a steep increase in the probabilities of the high-volatility regime in the 

summer of 2007, when first signs of distress in the financial markets due to housing market 

problems made headlines. The probabilities remain elevated until June 2009, the end of the 

Great Recession according to the NBER. The sluggish recovery following the crisis is 

mostly captured by the intermediate volatility regime, with a brief shift to a high volatility 

regime from August to November 2011 as the economy slowed down. The U.S. 

government debt ceiling crisis and the increased stress in short-term U.S. Dollar funding 

markets contributed to elevated uncertainty during this time. The decline in economic 

activity and increased uncertainty were quite concerning that it led the Federal Reserve to 

announce that the federal funds rate would stay exceptionally low at least two more years, 

a first in its history.    
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As a robustness check, we also estimate the model recursively and calculate regime 

probabilities as one would do in real-time. We first estimate the model using data up to 

January 1997 and calculate regime probabilities for that month. We then expand the 

sample each subsequent month, re-estimate the model and calculate the corresponding 

regime probabilities for the remaining part of the sample. Figure 4 plots the recursive 

filtered probabilities of volatility regimes. The real-time performance of the dynamic factor 

model of volatilities is strikingly similar to that in the full-sample summarized above. 

 

5. Concluding Remarks 
We construct monthly measures of financial volatility from daily returns on market and 

industry portfolios as well as Treasury bonds and analyze the predictive value of such 

volatility measures for economic activity using both real time and revised data.  

We model log realized volatility as composed of a long-run component that is 

common across all measures and transitory idiosyncratic components in a dynamic factor 

framework. We find that the stock market volatility measures as well as the common 

volatility factor help predict growth in industrial production and employment according to 

the in-sample tests of Clark and McCracken (2012).  Moreover, these volatility measures 

improve forecasts from conventional financial indicators such as the term spread, the credit 

spread and the return on a broadly defined stock portfolio, especially over short forecast 

horizons. Our out-of-sample analysis with real-time data, which takes into account effects 

of data revisions, also shows that the stock volatility measures and the common factor 

significantly improve short-term forecasts from conventional financial indicators. 

By estimating a nonlinear version of the dynamic factor model, we identify three 

distinct states of volatility dynamics. We find that economic expansions are usually 

characterized by the low-volatility regime. The intermediate-volatility regime characterizes 

episodes of increased uncertainty during economic expansions and mild recessions, 

whereas the high-volatility regime slightly leads the NBER recessions economic 

slowdowns. This model performs remarkably well in tracking the Great Recession in real-

time. 
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Tables 
 

Table 1: Correlations between Financial Volatility Measures  
and Macroeconomic Aggregates 

 
Panel A  

Industrial Production Growth 
Panel B 

Employment Growth 
RVM RVI RVB RVM RVI RVB 

Full-sample Full-sample 
-0.220 -0.284 -0.126 -0.440 -0.414 -0.202 
(0.08) (0.01) (0.25) (0.00) (0.01) (0.16) 

Sub-sample I Sub-sample I 
-0.029 0.005 0.042 -0.112 -0.169 0.227 
0.83 0.97 (0.67) (0.53) (0.29) (0.03) 

Sub-sample II Sub-sample II 
-0.281 -0.360 -0.225 -0.464 -0.364 -0.490 
(0.04) (0.00) (0.10) (0.00) (0.04) (0.00) 

 
Notes: Simple correlation estimates are reported. The full sample runs from 
January 1985 to June 2012, the first sub-sample is from January 1985 to 
December 1996, and the second sub-sample is from January 1997 to June 2012. 
Asymptotic p-values in parentheses are based on Newey-West (1987) HAC 
standard deviations. 
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Table 2: Parameter Estimates for the Dynamic Factor Model of Volatilities 
 

Parameter Full-sample Sub-sample I Sub-sample II 

𝛼 1.102 1.859 1.445 
 (0.00) (0.00) (0.00) 
𝜓 0.790 0.544 0.783 
 (0.00) (0.00) (0.00) 
𝜆1 

 
0.262 0.274 0.237 

 (0.00) (0.00) (0.00) 
𝜆2 
 

0.194 0.182 0.195 
 (0.00) (0.00) (0.00) 
𝜆3 
 

0.059 0.082 0.045 
 (0.00) (0.00) (0.00) 

𝜙1 0.194 -0.031 0.410 
 (0.04) (0.86) (0.00) 
𝜙2 0.982 0.990 0.972 

 (0.00) (0.00) (0.00) 
𝜙3 0.537 0.459 0.575 

 (0.00) (0.00) (0.00) 
𝜎1 0.041 0.039 0.041 
 (0.00) (0.00) (0.00) 
𝜎2 0.004 0.003 0.004 
 (0.01) (0.07) (0.09) 
𝜎3 0.064 0.067 0.059 
 (0.00) (0.00) (0.00) 

 
Notes: The full sample runs from January 1985 to June 2012, the first sub-sample 
is from January 1985 to December 1996, and the second sub-sample is from 
January 1997 to June 2012. Asymptotic p-values in parentheses are based on the 
standard deviations based on the inverse hessian, which is obtained through 
numerical calculation. The variance of the common factor is set to unity for 
identification (i.e. 𝜏 = 1 in the model stated in Section 3). 
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Table 3: In-sample Tests for Industrial Production Growth 
(January 1985 – June 2012) 

 

Baseline 
Predictors 

Tested 
Predictor 

Forecast Horizon 
1-month 3-month 6-month 12-month 
pN pB pN pB pN pB pN pB 

AR TERM 0.52 0.53 0.42 0.45 0.38 0.39 0.18 0.23 
AR DEF 0.00 0.00 0.06 0.27 0.21 0.48 0.51 0.56 
AR MKTR 0.25 0.31 0.02 0.09 0.02 0.15 0.01 0.08 
AR RVM 0.02 0.03 0.05 0.15 0.04 0.17 0.05 0.14 
AR RVI 0.00 0.00 0.05 0.17 0.10 0.30 0.13 0.26 
AR RVB 0.37 0.38 0.36 0.47 0.57 0.58 0.78 0.67 
AR VF 0.00 0.01 0.03 0.11 0.05 0.19 0.06 0.15 
AR, TERM RVM 0.02 0.03 0.05 0.14 0.04 0.17 0.04 0.14 
AR, TERM RVI 0.00 0.01 0.07 0.25 0.12 0.37 0.14 0.27 
AR, TERM RVB 0.18 0.20 0.13 0.21 0.24 0.34 0.42 0.45 
AR, TERM VF 0.00 0.01 0.03 0.13 0.04 0.19 0.06 0.21 
AR, DEF RVM 0.58 0.61 0.10 0.15 0.08 0.16 0.09 0.19 
AR, DEF RVI 0.01 0.01 0.05 0.18 0.11 0.34 0.18 0.37 
AR, DEF RVB 0.99 1.00 0.96 0.93 0.98 0.94 0.97 0.89 
AR, DEF VF 0.32 0.35 0.05 0.10 0.07 0.18 0.10 0.27 
AR, MKTR RVM 0.04 0.04 0.09 0.14 0.07 0.15 0.15 0.25 
AR, MKTR RVI 0.01 0.01 0.06 0.16 0.12 0.27 0.24 0.32 
AR, MKTR RVB 0.44 0.46 0.43 0.53 0.69 0.68 0.87 0.74 
AR, MKTR VF 0.01 0.01 0.03 0.10 0.06 0.14 0.11 0.23 

 
Notes: AR stands for the autoregressive term, TERM is the term spread, DEF is the credit 
spread, MKTR is the return on the market portfolio, and pN (pB) is the asymptotic (bootstrap) 
p-value of the Clark and McCracken (2012) test. The p-values are associated with the tested 
predictor while baseline predictors are assumed to have nonzero coefficients in the 
population. 

  
 
 
 

 
 
 
 
 
 
 
 
 



23 
 

Table 4: In-sample Tests for Industrial Production Growth 
(January 1985 – December 1996) 

 

Baseline 
Predictors 

Tested 
Predictor 

Forecast Horizon 
1-month 3-month 6-month 12-month 
pN pB pN pB pN pB pN pB 

AR TERM 0.09 0.10 0.06 0.08 0.22 0.31 0.49 0.58 
AR DEF 0.16 0.17 0.43 0.46 0.58 0.60 0.66 0.69 
AR MKTR 0.96 0.96 0.56 0.65 0.60 0.82 0.18 0.31 
AR RVM 0.81 0.80 0.59 0.69 0.57 0.70 0.55 0.59 
AR RVI 0.94 0.94 0.90 0.90 0.98 0.96 1.00 1.00 
AR RVB 0.96 0.96 0.86 0.82 0.98 0.94 0.84 0.70 
AR VF 0.51 0.55 0.45 0.68 0.54 0.73 0.55 0.64 
AR, TERM RVM 0.76 0.76 0.52 0.64 0.53 0.65 0.53 0.59 
AR, TERM RVI 0.85 0.86 0.82 0.85 0.95 0.94 1.00 0.99 
AR, TERM RVB 0.95 0.95 0.82 0.76 0.97 0.92 0.72 0.57 
AR, TERM VF 0.44 0.49 0.37 0.64 0.50 0.71 0.55 0.64 
AR, DEF RVM 0.99 0.99 0.78 0.78 0.69 0.76 0.61 0.58 
AR, DEF RVI 0.92 0.90 0.88 0.90 0.97 0.93 1.00 1.00 
AR, DEF RVB 0.99 0.99 0.96 0.91 1.00 0.99 0.96 0.85 
AR, DEF VF 0.90 0.91 0.60 0.71 0.63 0.77 0.60 0.61 
AR, MKTR RVM 0.69 0.73 0.67 0.73 0.64 0.70 0.68 0.73 
AR, MKTR RVI 0.91 0.91 0.94 0.94 1.00 0.98 1.00 1.00 
AR, MKTR RVB 0.95 0.95 0.90 0.89 0.99 0.97 0.88 0.77 
AR, MKTR VF 0.37 0.41 0.48 0.68 0.58 0.72 0.65 0.76 

 
Notes: AR stands for the autoregressive term, TERM is the term spread, DEF is the credit 
spread, MKTR is the return on the market portfolio, and pN (pB) is the asymptotic (bootstrap) 
p-value of the Clark and McCracken (2012) test. The p-values are associated with the tested 
predictor while baseline predictors are assumed to have nonzero coefficients in the 
population. 
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Table 5: In-sample Tests for Industrial Production Growth  
(January 1997 – June 2012) 

 

Baseline 
Predictors 

Tested 
Predictor 

Forecast Horizon 
1-month 3-month 6-month 12-month 
pN pB pN pB pN pB pN pB 

AR TERM 0.80 0.82 0.70 0.72 0.59 0.59 0.25 0.30 
AR DEF 0.00 0.00 0.15 0.38 0.38 0.62 0.70 0.62 
AR MKTR 0.20 0.26 0.02 0.07 0.01 0.10 0.00 0.04 
AR RVM 0.03 0.06 0.06 0.16 0.03 0.08 0.01 0.04 
AR RVI 0.00 0.00 0.03 0.09 0.02 0.08 0.01 0.05 
AR RVB 0.25 0.29 0.34 0.47 0.50 0.54 0.69 0.65 
AR VF 0.01 0.02 0.05 0.17 0.05 0.16 0.02 0.10 
AR, TERM RVM 0.02 0.04 0.05 0.14 0.02 0.07 0.00 0.04 
AR, TERM RVI 0.01 0.01 0.04 0.14 0.03 0.14 0.00 0.04 
AR, TERM RVB 0.11 0.14 0.09 0.21 0.11 0.20 0.26 0.47 
AR, TERM VF 0.01 0.01 0.04 0.13 0.03 0.15 0.02 0.09 
AR, DEF RVM 0.36 0.37 0.07 0.12 0.06 0.09 0.03 0.07 
AR, DEF RVI 0.01 0.01 0.01 0.06 0.02 0.08 0.03 0.11 
AR, DEF RVB 0.95 0.96 0.88 0.83 0.85 0.75 0.76 0.72 
AR, DEF VF 0.22 0.23 0.05 0.09 0.06 0.15 0.07 0.19 
AR, MKTR RVM 0.06 0.09 0.09 0.17 0.04 0.08 0.18 0.23 
AR, MKTR RVI 0.01 0.01 0.01 0.06 0.01 0.06 0.07 0.14 
AR, MKTR RVB 0.26 0.28 0.29 0.41 0.50 0.52 0.74 0.67 
AR, MKTR VF 0.02 0.02 0.03 0.08 0.04 0.12 0.06 0.15 

 
Notes: AR stands for the autoregressive term, TERM is the term spread, DEF is the credit 
spread, MKTR is the return on the market portfolio, and pN (pB) is the asymptotic (bootstrap) 
p-value of the Clark and McCracken (2012) test. The p-values are associated with the tested 
predictor while baseline predictors are assumed to have nonzero coefficients in the 
population. 
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Table 6: In-sample Tests for Employment Growth 
(January 1985 – June  2012) 

 

Baseline 
Predictors 

Tested 
Predictor 

Forecast Horizon 
1-month 3-month 6-month 12-month 
pN pB pN pB pN pB pN pB 

AR TERM 0.90 0.88 0.55 0.47 0.19 0.20 0.04 0.06 
AR DEF 0.00 0.00 0.01 0.05 0.10 0.23 0.58 0.54 
AR MKTR 0.02 0.02 0.01 0.02 0.00 0.05 0.00 0.03 
AR RVM 0.01 0.01 0.01 0.04 0.01 0.05 0.03 0.12 
AR RVI 0.00 0.00 0.01 0.04 0.02 0.11 0.04 0.16 
AR RVB 0.22 0.23 0.40 0.43 0.63 0.62 0.90 0.80 
AR VF 0.00 0.00 0.00 0.01 0.01 0.05 0.03 0.10 
AR, TERM RVM 0.01 0.01 0.01 0.03 0.01 0.06 0.02 0.08 
AR, TERM RVI 0.00 0.00 0.01 0.06 0.03 0.16 0.06 0.20 
AR, TERM RVB 0.22 0.25 0.28 0.35 0.33 0.36 0.47 0.47 
AR, TERM VF 0.00 0.00 0.00 0.01 0.01 0.07 0.03 0.13 
AR, DEF RVM 0.11 0.12 0.06 0.10 0.04 0.12 0.05 0.17 
AR, DEF RVI 0.00 0.00 0.01 0.04 0.02 0.11 0.04 0.17 
AR, DEF RVB 0.91 0.92 0.98 0.96 0.99 0.96 0.99 0.96 
AR, DEF VF 0.02 0.03 0.02 0.05 0.03 0.11 0.05 0.17 
AR, MKTR RVM 0.05 0.06 0.04 0.06 0.05 0.10 0.11 0.22 
AR, MKTR RVI 0.01 0.01 0.01 0.04 0.02 0.09 0.06 0.19 
AR, MKTR RVB 0.30 0.32 0.51 0.56 0.78 0.75 0.94 0.90 
AR, MKTR VF 0.00 0.00 0.00 0.01 0.02 0.07 0.06 0.16 

 
Notes: AR stands for the autoregressive term, TERM is the term spread, DEF is the credit 
spread, MKTR is the return on the market portfolio, and pN (pB) is the asymptotic (bootstrap) 
p-value of the Clark and McCracken (2012) test. The p-values are associated with the tested 
predictor while baseline predictors are assumed to have nonzero coefficients in the 
population. 
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Table 7: In-sample Tests for Employment Growth 
 (January 1985 – December 1996) 

 

Baseline 
Predictors 

Tested 
Predictor 

Forecast Horizon 
1-month 3-month 6-month 12-month 
pN pB pN pB pN pB pN pB 

AR TERM 0.49 0.53 0.29 0.36 0.24 0.37 0.17 0.34 
AR DEF 0.54 0.54 0.53 0.56 0.68 0.64 0.84 0.77 
AR MKTR 0.46 0.46 0.20 0.23 0.10 0.13 0.07 0.15 
AR RVM 0.75 0.77 0.64 0.61 0.64 0.67 0.67 0.66 
AR RVI 0.34 0.36 0.70 0.70 0.92 0.85 1.00 0.95 
AR RVB 0.94 0.94 0.94 0.91 0.98 0.94 0.98 0.93 
AR VF 0.31 0.38 0.29 0.40 0.45 0.59 0.56 0.61 
AR, TERM RVM 0.74 0.75 0.60 0.53 0.56 0.53 0.57 0.55 
AR, TERM RVI 0.27 0.33 0.58 0.64 0.82 0.79 0.95 0.89 
AR, TERM RVB 0.94 0.93 0.93 0.87 0.97 0.91 0.95 0.88 
AR, TERM VF 0.30 0.36 0.22 0.33 0.35 0.47 0.48 0.49 
AR, DEF RVM 0.87 0.87 0.82 0.71 0.70 0.64 0.59 0.60 
AR, DEF RVI 0.29 0.34 0.65 0.68 0.91 0.82 1.00 0.96 
AR, DEF RVB 0.97 0.96 0.98 0.95 1.00 0.97 0.99 0.97 
AR, DEF VF 0.43 0.46 0.38 0.46 0.43 0.57 0.43 0.53 
AR, MKTR RVM 0.85 0.85 0.84 0.78 0.83 0.80 0.82 0.78 
AR, MKTR RVI 0.47 0.49 0.82 0.84 0.97 0.94 1.00 0.99 
AR, MKTR RVB 0.95 0.95 0.97 0.93 0.99 0.96 0.98 0.96 
AR, MKTR VF 0.46 0.53 0.49 0.58 0.61 0.72 0.69 0.73 

 
Notes: AR stands for the autoregressive term, TERM is the term spread, DEF is the credit 
spread, MKTR is the return on the market portfolio, and pN (pB) is the asymptotic (bootstrap) 
p-value of the Clark and McCracken (2012) test. The p-values are associated with the tested 
predictor while baseline predictors are assumed to have nonzero coefficients in the 
population. 
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Table 8: In-sample Tests for Employment Growth 
(January 1997 – June 2012) 

 

Baseline 
Predictors 

Tested 
Predictor 

Forecast Horizon 
1-month 3-month 6-month 12-month 
pN pB pN pB pN pB pN pB 

AR TERM 0.94 0.94 0.81 0.71 0.52 0.43 0.14 0.15 
AR DEF 0.00 0.01 0.03 0.18 0.10 0.35 0.37 0.44 
AR MKTR 0.02 0.04 0.00 0.02 0.01 0.07 0.00 0.03 
AR RVM 0.03 0.04 0.04 0.12 0.03 0.07 0.02 0.07 
AR RVI 0.03 0.04 0.01 0.04 0.01 0.07 0.02 0.11 
AR RVB 0.09 0.12 0.27 0.33 0.43 0.48 0.62 0.49 
AR VF 0.01 0.02 0.03 0.09 0.03 0.17 0.05 0.19 
AR, TERM RVM 0.03 0.05 0.05 0.10 0.02 0.07 0.01 0.04 
AR, TERM RVI 0.01 0.02 0.02 0.07 0.02 0.11 0.03 0.11 
AR, TERM RVB 0.07 0.10 0.21 0.31 0.25 0.36 0.29 0.42 
AR, TERM VF 0.01 0.01 0.03 0.10 0.03 0.16 0.03 0.15 
AR, DEF RVM 0.10 0.12 0.11 0.14 0.11 0.17 0.09 0.21 
AR, DEF RVI 0.03 0.05 0.02 0.07 0.02 0.09 0.03 0.12 
AR, DEF RVB 0.46 0.47 0.76 0.77 0.85 0.83 0.81 0.68 
AR, DEF VF 0.11 0.11 0.11 0.18 0.12 0.28 0.12 0.30 
AR, MKTR RVM 0.09 0.11 0.12 0.15 0.06 0.07 0.10 0.19 
AR, MKTR RVI 0.08 0.11 0.01 0.03 0.01 0.04 0.02 0.10 
AR, MKTR RVB 0.08 0.10 0.26 0.35 0.42 0.46 0.58 0.50 
AR, MKTR VF 0.02 0.03 0.03 0.06 0.03 0.11 0.06 0.17 

 
Notes: AR stands for the autoregressive term, TERM is the term spread, DEF is the credit 
spread, MKTR is the return on the market portfolio, and pN (pB) is the asymptotic (bootstrap) 
p-value of the Clark and McCracken (2012) test. The p-values are associated with the tested 
predictor while baseline predictors are assumed to have nonzero coefficients in the 
population. 
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Table 9: Out-of-sample Tests for Industrial Production Growth: Non-nested Model 
Evaluation based on Initial Data Release  

 
 Volatility Measure 
  RVM RVI RVB VF 
Competing 
Predictor 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

 
1-month horizon 

TERM 0.94 0.31 0.13 0.93 0.38 0.09 0.98 0.37 0.22 0.91 0.21 0.08 
DEF 1.03 0.66 0.65 1.03 0.75 0.72 1.07 0.38 0.43 1.01 0.93 0.92 
MKTR 0.98 0.60 0.34 0.97 0.66 0.21 1.02 0.64 0.31 0.96 0.32 0.12 

 
3-month horizon 

TERM 1.07 0.53 0.51 1.18 0.34 0.12 1.08 0.29 0.22 1.07 0.61 0.59 
DEF 0.63 0.02 0.13 0.69 0.22 0.24 0.63 0.01 0.18 0.63 0.01 0.11 
MKTR 1.00 0.99 0.99 1.10 0.59 0.11 1.01 0.88 0.84 1.00 0.98 0.98 

 
6-month horizon 

TERM 1.17 0.31 0.33 1.45 0.09 0.02 1.09 0.32 0.31 1.21 0.32 0.28 
DEF 0.67 0.07 0.14 0.83 0.54 0.53 0.62 0.04 0.19 0.69 0.07 0.14 
MKTR 0.97 0.75 0.65 1.21 0.41 0.06 0.91 0.27 0.10 1.00 0.98 0.97 

 
12-month horizon 

TERM 1.15 0.48 0.42 1.63 0.10 0.07 1.08 0.56 0.52 1.20 0.45 0.32 
DEF 0.83 0.47 0.09 1.18 0.59 0.40 0.78 0.23 0.08 0.86 0.59 0.17 
MKTR 0.99 0.93 0.86 1.41 0.20 0.07 0.93 0.39 0.12 1.03 0.83 0.67 
 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the mean 
squared error loss from the volatility based model to that from the competing model. p1 (p2) is the 
asymptotic p-value associated with the Clark and McCracken (2009) test for non-nested models under 
the assumption of noisy (purely news driven) data revisions. 
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Table 10: Out-of-sample Tests for Industrial Production Growth: Non-nested Model 
Evaluation based on Final Data Release 

 
 Volatility Measure 
  RVM RVI RVB VF 
Competing 
Predictor 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

 
1-month horizon 

TERM 0.95 0.35 0.18 0.94 0.37 0.11 0.98 0.33 0.23 0.93 0.28 0.13 
DEF 1.02 0.73 0.74 1.01 0.90 0.90 1.05 0.49 0.53 1.00 0.99 0.99 
MKTR 1.00 0.90 0.82 0.98 0.76 0.42 1.03 0.54 0.16 0.98 0.58 0.37 

 
3-month horizon 

TERM 1.07 0.54 0.54 1.16 0.38 0.17 1.08 0.27 0.23 1.07 0.61 0.62 
DEF 0.64 0.02 0.14 0.69 0.18 0.24 0.64 0.01 0.19 0.64 0.01 0.11 
MKTR 1.00 0.98 0.98 1.09 0.61 0.14 1.01 0.89 0.86 1.00 0.97 0.97 

 
6-month horizon 

TERM 1.18 0.28 0.31 1.45 0.09 0.02 1.10 0.28 0.28 1.22 0.28 0.26 
DEF 0.67 0.08 0.14 0.83 0.52 0.52 0.63 0.04 0.19 0.70 0.08 0.15 
MKTR 0.97 0.77 0.69 1.20 0.41 0.07 0.91 0.25 0.09 1.01 0.92 0.90 

 
12-month horizon 

TERM 1.21 0.34 0.25 1.70 0.08 0.05 1.12 0.40 0.32 1.26 0.35 0.20 
DEF 0.83 0.49 0.11 1.17 0.61 0.42 0.77 0.22 0.08 0.87 0.61 0.20 
MKTR 1.00 0.98 0.96 1.40 0.21 0.07 0.92 0.32 0.10 1.04 0.81 0.64 
 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the mean 
squared error loss from the volatility based model to that from the competing model. p1 (p2) is the 
asymptotic p-value associated with the Clark and McCracken (2009) test for non-nested models under 
the assumption of noisy (purely news driven) data revisions. 
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Table 11: Out-of-sample Tests for Employment Growth: Non-nested Model Evaluation 
based on Initial Data Release  

 
 Volatility Measure 
  RVM RVI RVB VF 
Competing 
Predictor 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

 
1-month horizon 

TERM 0.94 0.16 0.03 0.94 0.14 0.01 0.99 0.51 0.41 0.93 0.10 0.03 
DEF 1.00 0.96 0.94 1.01 0.87 0.81 1.06 0.09 0.07 1.00 0.92 0.89 
MKTR 0.97 0.45 0.12 0.98 0.61 0.28 1.03 0.42 0.07 0.97 0.41 0.16 

 
3-month horizon 

TERM 1.08 0.18 0.07 1.06 0.44 0.07 1.08 0.03 0.00 1.06 0.22 0.27 
DEF 0.84 0.16 0.07 0.83 0.13 0.07 0.85 0.22 0.12 0.83 0.10 0.04 
MKTR 1.00 0.97 0.96 0.98 0.83 0.60 1.01 0.77 0.74 0.99 0.70 0.75 

 
6-month horizon 

TERM 1.14 0.07 0.04 1.18 0.10 0.00 1.10 0.08 0.01 1.15 0.04 0.07 
DEF 0.88 0.26 0.13 0.91 0.44 0.31 0.85 0.28 0.14 0.89 0.19 0.11 
MKTR 1.02 0.63 0.57 1.05 0.54 0.05 0.99 0.71 0.57 1.03 0.52 0.63 

 
12-month horizon 

TERM 1.22 0.08 0.03 1.33 0.04 0.01 1.14 0.20 0.06 1.24 0.05 0.03 
DEF 0.96 0.74 0.47 1.05 0.55 0.40 0.90 0.06 0.15 0.98 0.89 0.76 
MKTR 1.03 0.63 0.51 1.12 0.27 0.00 0.96 0.43 0.12 1.05 0.23 0.43 
 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the mean 
squared error loss from the volatility based model to that from the competing model. p1 (p2) is the 
asymptotic p-value associated with the Clark and McCracken (2009) test for non-nested models under 
the assumption of noisy (purely news driven) data revisions. 
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Table 12: Out-of-sample Tests for Employment Growth: Non-nested Model Evaluation 
based on Final Data Release 

 
 Volatility Measure 
  RVM RVI RVB VF 
Competing 
Predictor 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

MSE 
Ratio p1 p2 

 
1-month horizon 

TERM 0.92 0.09 0.02 0.92 0.06 0.00 0.98 0.34 0.15 0.91 0.07 0.02 
DEF 1.02 0.61 0.46 1.02 0.74 0.62 1.10 0.06 0.04 1.01 0.78 0.69 
MKTR 0.97 0.46 0.15 0.97 0.47 0.13 1.04 0.32 0.04 0.96 0.39 0.15 

 
3-month horizon 

TERM 1.09 0.13 0.04 1.06 0.47 0.09 1.09 0.03 0.00 1.07 0.19 0.23 
DEF 0.84 0.18 0.09 0.82 0.13 0.07 0.84 0.22 0.12 0.83 0.11 0.04 
MKTR 1.01 0.75 0.69 0.99 0.85 0.66 1.01 0.64 0.60 0.99 0.90 0.92 

 
6-month horizon 

TERM 1.14 0.08 0.04 1.18 0.11 0.00 1.11 0.07 0.01 1.15 0.04 0.07 
DEF 0.88 0.25 0.13 0.91 0.43 0.30 0.85 0.28 0.14 0.89 0.19 0.11 
MKTR 1.02 0.64 0.59 1.05 0.55 0.07 0.99 0.74 0.61 1.03 0.53 0.64 

 
12-month horizon 

TERM 1.25 0.06 0.02 1.36 0.03 0.01 1.16 0.18 0.04 1.28 0.03 0.02 
DEF 0.97 0.78 0.55 1.05 0.53 0.39 0.90 0.06 0.15 0.99 0.94 0.86 
MKTR 1.03 0.56 0.45 1.12 0.26 0.00 0.96 0.37 0.06 1.05 0.12 0.40 
 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the mean 
squared error loss from the volatility based model to that from the competing model. p1 (p2) is the 
asymptotic p-value associated with the Clark and McCracken (2009) test for non-nested models under 
the assumption of noisy (purely news driven) data revisions. 
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Table 13: Out-of-sample Tests for Industrial Production Growth: Nested Model Evaluation 
based on Initial Data Release 

 
 Volatility Measure 
 RVM RVI RVB VF 
Baseline 
Predictor 

MSE 
Ratio p-value MSE 

Ratio p-value MSE 
Ratio p-value MSE 

Ratio p-value 

 
1-month horizon 

TERM 0.95 0.10 0.95 0.18 0.97 0.07 0.92 0.03 
DEF 0.99 0.36 0.96 0.08 1.00 0.57 0.98 0.11 
MKTR 0.97 0.09 0.96 0.18 0.99 0.22 0.95 0.01 

 
3-month horizon 

TERM 1.00 0.15 1.12 0.84 1.03 0.81 1.01 0.64 
DEF 1.00 0.55 1.10 1.00 0.99 0.03 0.98 0.01 
MKTR 1.01 1.00 1.12 0.92 1.01 0.63 1.01 0.64 

 
6-month horizon 

TERM 1.06 0.90 1.32 1.00 1.03 0.82 1.10 0.91 
DEF 1.01 0.89 1.24 1.00 0.99 0.01 1.02 1.00 
MKTR 1.03 0.99 1.30 1.00 1.00 0.45 1.07 0.94 

 
12-month horizon 

TERM 1.00 0.49 1.43 1.00 1.01 0.59 1.05 0.67 
DEF 1.04 1.00 1.41 1.00 0.96 0.00 1.07 0.96 
MKTR 1.04 0.93 1.51 1.00 0.98 0.26 1.08 0.84 

 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the 
mean squared error loss from the unrestricted model including a volatility measure to that from the 
restricted model. The reported  p-value is associated with the Clark and McCracken (2009) test for 
nested models under the assumption noisy data revisions.  
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Table 14: Out-of-sample Tests for Industrial Production Growth: Nested Model Evaluation 
based on Final Data Release 

 
 Volatility Measure 
 RVM RVI RVB VF 
Baseline 
Predictor 

MSE 
Ratio p-value MSE 

Ratio p-value MSE 
Ratio p-value MSE 

Ratio p-value 

 
1-month horizon 

TERM 0.96 0.12 0.96 0.19 0.98 0.07 0.94 0.05 
DEF 0.99 0.35 0.96 0.06 1.00 0.42 0.98 0.12 
MKTR 0.98 0.16 0.97 0.19 0.99 0.28 0.96 0.04 

 
3-month horizon 

TERM 1.01 0.74 1.11 0.83 1.03 0.88 1.01 1.00 
DEF 1.00 0.49 1.09 1.00 1.00 0.22 0.98 0.03 
MKTR 1.02 1.00 1.11 0.92 1.02 0.70 1.02 0.87 

 
6-month horizon 

TERM 1.06 0.92 1.31 1.00 1.02 0.81 1.11 0.94 
DEF 1.01 0.94 1.24 1.00 0.99 0.00 1.02 1.00 
MKTR 1.04 0.99 1.30 1.00 1.00 0.47 1.07 0.97 

 
12-month horizon 

TERM 1.03 0.71 1.46 1.00 1.00 0.53 1.07 0.73 
DEF 1.05 1.00 1.41 1.00 0.96 0.00 1.08 0.96 
MKTR 1.04 0.97 1.51 1.00 0.98 0.26 1.08 0.86 

 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the 
mean squared error loss from the unrestricted model including a volatility measure to that from the 
restricted model. The reported  p-value is associated with the Clark and McCracken (2009) test for 
nested models under the assumption noisy data revisions.  
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Table 15: Out-of-sample Tests for Employment Growth: Nested Model Evaluation based 
on Initial Data Release 

 
 Volatility Measure 
 RVM RVI RVB VF 
Baseline 
Predictor 

MSE 
Ratio p-value MSE 

Ratio p-value MSE 
Ratio p-value MSE 

Ratio p-value 

 
1-month horizon 

TERM 0.94 0.01 0.95 0.02 0.99 0.17 0.93 0.00 
DEF 0.96 0.03 0.94 0.00 1.00 0.04 0.96 0.00 
MKTR 0.96 0.01 0.96 0.01 0.99 0.11 0.95 0.00 

 
3-month horizon 

TERM 1.01 0.92 1.00 0.49 1.02 0.94 1.00 0.49 
DEF 0.97 0.05 1.00 0.38 0.99 0.00 0.94 0.00 
MKTR 1.00 0.64 0.99 0.35 1.00 0.48 0.98 0.00 

 
6-month horizon 

TERM 1.04 1.00 1.08 1.00 1.03 0.90 1.05 0.99 
DEF 0.98 0.09 1.07 1.00 0.99 0.00 0.97 0.00 
MKTR 1.03 1.00 1.07 0.99 0.99 0.29 1.03 0.99 

 
12-month horizon 

TERM 1.05 1.00 1.16 1.00 1.03 0.92 1.07 0.95 
DEF 0.99 0.22 1.14 1.00 0.99 0.01 1.00 0.41 
MKTR 1.03 1.00 1.15 1.00 0.97 0.10 1.05 0.95 

 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the 
mean squared error loss from the unrestricted model including a volatility measure to that from the 
restricted model. The reported  p-value is associated with the Clark and McCracken (2009) test for 
nested models under the assumption noisy data revisions.  
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Table 16: Out-of-sample Tests for Employment Growth: Nested Model Evaluation based 
on Final Data Release 

 
 Volatility Measure 
 RVM RVI RVB VF 
Baseline 
Predictor 

MSE 
Ratio p-value MSE 

Ratio p-value MSE 
Ratio p-value MSE 

Ratio p-value 

 
1-month horizon 

TERM 0.93 0.00 0.93 0.00 0.99 0.23 0.92 0.00 
DEF 0.96 0.01 0.92 0.00 1.00 0.09 0.95 0.00 
MKTR 0.96 0.01 0.95 0.00 1.00 0.33 0.95 0.00 

 
3-month horizon 

TERM 1.02 1.00 1.00 0.50 1.02 0.95 1.01 0.82 
DEF 0.97 0.05 0.99 0.36 0.99 0.00 0.94 0.00 
MKTR 1.01 0.94 0.99 0.36 1.00 0.52 0.99 0.00 

 
6-month horizon 

TERM 1.04 1.00 1.08 1.00 1.02 0.91 1.05 0.99 
DEF 0.98 0.09 1.06 1.00 0.99 0.00 0.97 0.00 
MKTR 1.03 1.00 1.07 0.99 0.99 0.29 1.03 0.99 

 
12-month horizon 

TERM 1.06 1.00 1.17 1.00 1.03 0.92 1.09 0.97 
DEF 1.00 0.46 1.15 1.00 0.99 0.00 1.01 0.70 
MKTR 1.04 1.00 1.16 1.00 0.97 0.09 1.06 0.97 

 
Notes: The evaluation sample runs from January 1995 to June 2012. MSE ratio is the ratio of the 
mean squared error loss from the unrestricted model including a volatility measure to that from the 
restricted model. The reported  p-value is associated with the Clark and McCracken (2009) test for 
nested models under the assumption noisy data revisions.  
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Table 17: Parameter Estimates of the Nonlinear Dynamic Factor Model of Volatilities 
 

Parameter Estimate Parameter Estimate 
𝛼0 8.943 𝜆1 0.366 

 (0.00)  (0.00) 

𝛼1 6.372 𝜆2 0.323 
 (0.00)  (0.00) 

𝛼2 4.547 𝜆3 0.123 
 (0.00)  (0.00) 

𝜓 0.227 𝜙1 0.242 
 (0.01)  (0.00) 

𝜏0 1.918 𝜙2 0.987 
 (0.00)  (0.00) 

𝜏1 0.894 𝜙3 0.535 
 (0.00)  (0.00) 

𝑝00 0.820 𝜎1 0.435 
 (0.00)  (0.00) 

𝑝11 0.875 𝜎2 0.136 
 (0.00)  (0.00) 

𝑝22 0.974 𝜎3 0.780 
 (0.00)  (0.00) 

 
Notes: The sample runs from January 1985 to June 2012. Asymptotic p-values in 
parentheses are based on the standard deviations based on the inverse hessian, which 
is obtained through numerical calculation. The variance of the common factor in 
regime 2 is set to unity for identification (i.e. 𝜏2 = 1 in the model stated in Section 
4.3). 
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Figures 
Figure 1: Volatility Measures 

 

Notes: See the main text for variable definitions. The shaded areas represent recessions 
according to the business cycle dating committee of the NBER.  
 

Figure 2: Common Volatility Factor  

 

Notes: The shaded areas represent recessions according to the business cycle dating 
committee of the NBER. 
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Figure 3:  Smoothed Probabilities of Volatility Regimes 
 

Panel a: Low-volatility regime 

 
 
 

Panel b: Intermediate-volatility regime 
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Figure 3:  Volatility Regimes (Cont’d) 
 

Panel c: High-volatility regime 
  

 
 

Notes: Filtered and smoothed probabilities of regimes from the dynamic factor Markov-switching 
model of financial volatilities are reported. The sample runs from January 1985 to June 2012. See the 
main text for characterization of regimes. 
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Figure 4: Recursive Real-time Probabilities of the Volatility Regimes 
 

Panel a: Low-volatility regime 
 

 
 
 

Panel b: Intermediate-volatility regime 
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Figure 4: Recursive Real-time Probabilities of the Volatility Regimes (Cont’d) 
 

Panel c: High-volatility regime 
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Technical Appendix 
A. In-sample Tests of Clark and McCracken (2012)  
The tests are based on the following DGP: 

 

(𝐴. 1)     𝑦𝑇,𝑡+𝜏 = 𝑥𝑇,2,𝑡
′ 𝛽2,𝑇 + 𝑢𝑇,𝑡+𝜏 = 𝑥𝑇,1,𝑡

′ 𝛽1,𝑇 + 𝑥𝑇,22,𝑡
′ (𝑇−1/2𝛽22) + 𝑣𝑇,𝑡+𝜏, 

 

where 𝑥𝑇,1,𝑡  is 𝑘1 × 1 , 𝑥𝑇,22,𝑡  is 𝑘2 × 1 , and 𝐸𝑥𝑇,2,𝑡𝑢𝑇,𝑡+𝜏 = 0 , for all 𝑡 = 1, … ,𝑇 . The 

models can be characterized weakly nested because the unrestricted model is the true 

model, but as the sample size grows large, the DGP converges to the smaller model. As 

argued by CM, this setup captures the practical reality that the predictive content of the 

marginal predictor(s) can be low.  Notice that the dependent variable as well as the 

predictors and the error DEF depend on 𝑇 , the forecast origin. The sequence 

�𝑦𝑇,𝑡, 𝑥𝑇,2,𝑡
′ �

𝑡=1
𝑇

 is used to generate 𝜏–step forecasts from the restricted and unrestricted 

models,  𝑥𝑇,1,𝑡
′ 𝛽1,𝑇 and 𝑥𝑇,2,𝑡

′ 𝛽2,𝑇 respectively. The parameters are estimated via ordinary 

least squares. Let 𝑢�𝑇,𝑖,𝑇+𝜏
2 ,  𝑖 = 1, 2 denote the loss associated with the 𝜏–step forecasts 

form the restricted and the unrestricted models, respectively. For our applications we will 

focus on the case where 𝑘2 = 1 . In addition, let 𝐵2(𝑇) = �𝑇−1 ∑ 𝑥𝑇,2,𝑡𝑥𝑇,2,𝑡
′𝑇−𝜏

𝑡=1 �
−1

, 

𝐽2 = �01×𝑘1 , 1�′ , and 𝑡(𝑇) = 𝑇1/2𝐽2′𝛽�2,𝑇

�𝐽2′𝐵2(𝑇)𝑉(𝑇)𝐵2(𝑇)𝐽2�
1/2 , where 𝑉(𝑇)  is the nonparametric 

kernel-based estimator of the relevant long-run covariance matrix. Hence, 𝑡(𝑇)  is the 

HAC-robust t-statistic for testing the null hypothesis that lim𝑇→∞ 𝑇.𝐸�𝑢1,𝑇+𝜏
2 − 𝑢2,𝑇+𝜏

2 � =

0. Note that under the null, the increase in the mean square error due to the omitted 

variable bias is exactly offset by the decrease arising from imprecise estimation of the 

marginal predictive coefficients. Under certain regularity conditions, it can be shown that 

𝑡(𝑇) → 𝑁(sign(𝛽22), 1). Therefore, as long as we have a priori information regarding the 

direction of the predictive relationship, standard normal critical values can be used for 

inference. Moreover, for improved finite sample performance CM propose a fixed-design 

wild bootstrap procedure that imposes the null hypothesis via restricted least squares. 
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B. Out-of-sample Tests of Clark and McCracken (2009) 
This out-of-sample evaluation framework is based on real-time data and assumes that the 

observables are subject to revisions over a finite number of periods, 𝑟. Let 𝑦𝑠(𝑡) denote the 

value of the time 𝑡 vintage of the observation 𝑠 realization of 𝑦, where 𝑡 ≥ 𝑠. When the 

revision process is complete – or when the series is not subject to revisions –  we simply 

use 𝑦𝑠 to denote the time 𝑠 value of 𝑦. The sample of observations, {{𝑦𝑠(𝑡), 𝑥𝑠′(𝑡)}𝑠=1𝑡 }𝑡=𝑅𝑇�  

include a scalar random variable 𝑦𝑠(𝑡)  – to be predicted – and a (𝑘 × 1)  vector of 

predictors, 𝑥𝑠(𝑡). In case of nested models we have 𝑥𝑠(𝑡) = 𝑥2,𝑠(𝑡) = (𝑥1,𝑠
′ (𝑡), 𝑥22,𝑠

′ (𝑡))′, 

with 𝑥𝑖,𝑠(𝑡) being the (𝑘𝑖 × 1) vector of predictors associated with model 𝑖. When models 

are non-nested 𝑥1,𝑠(𝑡) and 𝑥2,𝑠(𝑡) denote distinct sub-vectors of 𝑥𝑠(𝑡).  

For each forecast origin 𝑡 = 𝑅, … ,𝑇 ≡ 𝑅 + 𝑃 − 𝜏 we predict 𝑦𝑡+𝜏(𝑡′), where 𝜏  is 

the forecast horizon and 𝑡′ is the vintage used for evaluating the forecasts, and 𝑟′ = 𝑡′ −

(𝑡 + 𝜏)  is the vintage horizon so that 𝑇� = 𝑇 + 𝜏 + 𝑟′ . Let 𝑢�𝑖,𝑡+𝜏(𝑡′) = 𝑦𝑡+𝜏(𝑡′) −

𝑥𝑖,𝑡′ (𝑡)𝛽̂𝑖,𝑡 for 𝑖 = 1,2 denote the sequence of forecast errors from models 1 and 2, where 

𝛽̂𝑖,𝑡  denotes the recursive OLS estimator of the pseudo parameter vector  𝛽𝑖⋆  from data 

vintage 𝑡 . Let ℎ𝑖,𝑡+𝜏(𝑡′) = �𝑦𝑡+𝜏(𝑡′) − 𝑥𝑖,𝑡′ (𝑡)𝛽𝑖⋆�𝑥𝑖,𝑡(𝑡) , ℎ𝑖,𝑠+𝜏 = �𝑦𝑠+𝜏 − 𝑥𝑖,𝑠′ 𝛽𝑖⋆�𝑥𝑖,𝑠 , 

𝐵𝑖 = �𝐸𝑥𝑖,𝑠𝑥𝑖,𝑠′ �
−1

, and 𝑑𝑡+𝜏(𝑡′) = 𝑢1,𝑡+𝜏
2 (𝑡′) − 𝑢2,𝑡+𝜏

2 (𝑡′). Furthermore, in case of non-

nested models, let ℎ𝑡+𝜏(𝑡′) = �ℎ1,𝑡+𝜏
′ (𝑡′),ℎ2,𝑡+𝜏

′ (𝑡′)� ′ and ℎ𝑠+𝜏 = �ℎ1,𝑠+𝜏
′ ,ℎ2,𝑠+𝜏

′ �′ and for 

nested models let ℎ𝑡+𝜏(𝑡′) = ℎ2,𝑡+𝜏(𝑡′) and ℎ𝑠+𝜏 = ℎ2,𝑠+𝜏. 

The test statistic is based on the average square loss differential as in Diebold and 

Mariano (1995). In particular, CM show that in case of non-nested models 𝑃1/2𝑑̅ →

𝑁(0,Ω) where Ω = 𝑆𝑑𝑑 + 2�1 − 𝜋−1ln(1 + 𝜋)�(𝐹𝐵𝑆𝑑ℎ + 𝐹𝐵𝑆ℎℎ𝐹′), 𝑆𝑑𝑑  is the long-run 

variance of 𝑑𝑡+𝜏(𝑡′), 𝑆ℎℎ is the long-run variance of ℎ𝑡+𝜏, 𝑆𝑑ℎ is the long-run covariance 

between 𝑑𝑡+𝜏(𝑡′)  and ℎ𝑡+𝜏 , 𝜋 = lim𝑅,𝑃→∞ 𝑃/𝑅 > 0 , 𝐹 = 2�−𝐸𝑢1,𝑡+𝜏(𝑡′)𝑥1,𝑡
′ (𝑡),

𝐸𝑢2,𝑡+𝜏(𝑡′)𝑥2,𝑡
′ (𝑡)�, and 𝐵 is a block-diagonal matrix with block-diagonal elements 𝐵1 and 

𝐵2. The expression for the asymptotic variance matrix is very similar to that provided in 

West (1996). However, with unrevised data and the quadratic loss function for estimation 
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and forecast comparison we would have 𝐹 = 0  since 𝐸𝑢𝑖,𝑡+𝜏𝑥𝑖,𝑡′ = 0. However, with 

revised data 𝐸�𝑦𝑡+𝜏(𝑡′) − 𝑥𝑖,𝑡′ (𝑡)𝛽𝑖⋆�𝑥𝑖,𝑡(𝑡) = 0  does not hold due to the presence of 

measurement noise inherent in real-time data. Therefore, one needs to estimate the 

additional DEFs to obtain an accurately sized test-statistic. 

In case of nested models, CM show that 𝑃1/2𝑑̅ → 𝑁(0,Ω)  where Ω = 𝑆𝑑𝑑 +

2�1 − 𝜋−1ln(1 + 𝜋)�𝐹(−𝐽𝐵1𝐽′ + 𝐵2)𝑆ℎℎ(−𝐽𝐵1𝐽′ + 𝐵2)𝐹′ , 𝐽′ = �𝐼𝑘1×𝑘1 , 0𝑘1×(𝑘2−𝑘1)�  and 

the other DEFs are defined above.  This result stands in sharp contrast to those presented in 

Clark and McCracken (2005) and McCracken (2007), which show that asymptotic 

distributions are non-standard for nested model comparisons using unrevised data. 

The tests are made operational by replacing the long-run variance and covariance 

DEFs with consistent estimators. CM use standard kernel-based HAC estimators as in 

Newey and West (1987) and set the bandwidth equal to 2𝜏, which allows for noise in data 

revisions to generate serial correlation even in one-step ahead forecast errors.                  

    

    

 
 


