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Abstract

This paper develops a method to approximate arbitrage-free bond yields

within a term structure model in which the short rate follows a Gaussian process

censored at zero (a �shadow-rate model� as proposed by Black, 1995). The

censoring ensures that model-implied yields are constrained to be positive, but

it also introduces non-linearity that renders standard bond pricing formulas

inapplicable. In particular, yields are not linear functions of the underlying state

vector as they are in a�ne term structure models (see Piazzesi, 2010). Existing

approaches towards computing yields in shadow-rate models su�er from high

computational burden or low accuracy. In contrast, I show that the technique

proposed in this paper is su�ciently fast for single-step estimation of a three-

factor shadow-rate term structure model, and su�ciently accurate to evaluate

yields to within approximately half a basis point.

∗Federal Reserve Board, Washington D.C., marcel.a.priebsch@frb.gov. The analysis and
conclusions set forth in this paper are those of the author and do not indicate concurrence by other
members of the research sta� or the Board of Governors of the Federal Reserve System.
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1 Introduction

In late-2008, short-term nominal interest rates in the U.S. fell to their e�ective �zero

lower bound� (see Bernanke et al., 2004). Since standard Gaussian term structure

models do not rule out the possibility of negative model-implied yields, they provide

a poor approximation to the behavior of nominal yields when the lower bound is

binding (Kim and Singleton, 2012; Christensen and Rudebusch, 2013; Bauer and

Rudebusch, 2013). Kim and Singleton (2012) �nd that shadow-rate models in the

spirit of Black (1995) successfully capture yield-curve properties observed near the

zero lower bound. However, arbitrage-free multi-factor versions of these models tend

to be computationally intractable (Christensen and Rudebusch, 2013). Gorovoi and

Linetsky (2004) show that bond prices in a one-factor shadow-rate model can be

computed analytically by an eigenfunction expansion, but their approach does not

generalize to multiple dimensions. Kim and Singleton (2012) and Ichiue and Ueno

(2007) successfully estimate shadow-rate models with up to two factors, but they

compute bond prices using discretization schemes that are subject to the curse of

dimensionality. Christensen and Rudebusch (2013) use a yield formula proposed

by Krippner (2012) to estimate shadow-rate Nelson-Siegel models with up to three

factors, but Krippner's derivation deviates from the usual no-arbitrage approach.

Bauer and Rudebusch (2013) evaluate bond prices by Monte Carlo simulation for

given model parameters from an unconstrained Gaussian term structure model, but

they do not estimate a shadow-rate version of the model due to the computational

burden.

This paper develops and applies a new technique for fast and accurate approxima-

tion of arbitrage-free zero-coupon bond yields in multi-factor Gaussian shadow-rate

models of the term structure of interest rates. The computational complexity of the
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method does not increase with the number of yield curve factors, and, empirically, it

produces yields that are accurate to within about half a basis point. The method is

su�ciently fast to estimate a �exible, arbitrage-free, three-factor term structure model

in which the shadow rate follows a Gaussian process. For illustration purposes, I esti-

mate such a model by quasi-maximum likelihood on a sample of U.S. Treasury yields,

using the unscented Kalman �lter to account for the non-linear mapping between

factors and yields.

2 Model

Consider �rst the standard, continuous-time N -factor Gaussian term structure model.

In particular, let W P
t be N -dimensional standard Brownian motion on a complete

probability space (Ω,F ,P) with canonical �ltration {Ft}t≥0. Assume there is a pric-

ing measure Q on (Ω,F) that is equivalent to P, and denote byWQ
t Brownian motion

under Q as derived from Girsanov's Theorem (Karatzas and Shreve, 1991). Sup-

pose N latent factors (or states) representing uncertainty underlying term-structure

securities follow the multivariate Ornstein-Uhlenbeck process

dXt = (Kµ
0 +Kµ

1Xt)dt+ ΣdW µ
t (1)

were µ ∈ {P,Q}. Let the short rate be

rt = ρ0 + ρ1 ·Xt. (2)

Then by de�nition, the arbitrage-free time t price of a zero-coupon bond maturing at

time T is given by

P T
t = EQ

t

[
exp

(
−
ˆ T

t

rs ds

)]
(3)
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with associated zero-coupon bond yield

yTt = − logP T
t

T − t
. (4)

Bond prices (and hence yields) can equivalently be de�ned in terms of forward rates:

P T
t = exp

(
−
ˆ T

t

f st ds

)
⇔ fTt = − d

dT
logP T

t (5)

where fTt denotes the instantaneous time T forward rate e�ective at time t.

SinceXt is a Gaussian process (Karatzas and Shreve, 1991), it follows from (2) that

the short rate rt takes on strictly negative values with strictly positive probability. To

modify the model in a way that accounts for the zero lower bound on nominal yields,

Black (1995) proposes to think of rt as a shadow short rate (and, analogously, of P T
t ,

yTt , and f
T
t as shadow bond price, shadow yield, and shadow instantaneous forward

rate, respectively) and de�ne the observed short rate as the shadow rate censored at

zero:

rt = max {rt, 0} . (6)

With the observed short rate rt in place of the shadow rate rt, the observed bond

price P T
t , yield y

T
t , and instantaneous forward rate fTt are then de�ned as in (3)�(5).

3 Parameterizing the Lower Bound

The theoretical argument for a lower bound at zero on the nominal short rate (and

hence on nominal yields) is based on arbitrage between bonds and currency (Black,

1995). In practice, the two assets may not be perfect substitutes for reasons such as

convenience, default risk, or legal requirements. This may push the empirical lower
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bound into slightly negative or slightly positive territory. The derivations in Section 2

are easily modi�ed to accommodate a lower bound at rmin 6= 0. In particular, suppose

rt = max{rt, rmin} = rmin + max{rt − rmin, 0}.

Then,

yTt = − 1

T − t
EQ
t

[
exp

(
−
ˆ T

t

rs ds

)]
= rmin −

1

T − t
EQ
t

[
exp

(
−
ˆ T

t

max{rs − rmin, 0} ds
)]

.

The last term is equal to the expression for the yield when the lower bound is zero,

except that rmin is subtracted from the shadow rate. Therefore, since rs = ρ0 +ρ1 ·Xs,

when the lower bound is nonzero we can compute zero-coupon yields as if the bound

were zero, with ρ0 − rmin in place of ρ0, and then add rmin to the �nal result. The

lower bound rmin can be set to a speci�c value based on a priori reasoning, or treated

as a free parameter in estimation.

4 Bond Price Computation

A central task in term-structure modeling is the (analytical and/or numerical) com-

putation of arbitrage-free bond prices (and hence yields) based on equation (3). Sec-

tion 4.1 reviews the standard approach using di�erential equations formalized by

Du�e and Kan (1996), best suited to a�ne models. While it can be adapted to

the shadow-rate framework, it loses much of its analytical tractability, and becomes

computationally infeasible as the number of factors increases. Section 4.2 discusses

an alternative method proposed by Krippner (2012). It de�nes a pseudo�forward rate
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that satis�es the lower bound (though di�ers from the arbitrage-free forward rate),

and uses relationship (5) to approximate bond prices. Finally, Section 4.3 proposes

a new approximation technique for yields in the shadow-rate model based on the

expansion of a cumulant-generating function.

4.1 Partial Di�erential Equation

Like any conditional expectation of an FT -measurable random variable, e−
´ t
0 rs dsP T

t

(the time t price of a zero-coupon bond maturing at time T in the unconstrained

Gaussian model, discounted to time 0) follows a martingale under Q. This is an

immediate consequence of the de�nition of a martingale, after an application of the

Law of Iterated Expectations. Using It	o's Lemma and the Martingale Representation

Theorem, we can therefore represent P T
t by the function D(Xt, T − t), where D solves

the partial di�erential equation (PDE)

Dτ (x, τ) = D>x (x, τ)(KQ
0 +KQ

1 x) +
1

2
tr
(
Σ>Dxx(x, τ)Σ

)
− (ρ0 + ρ1 · x)D(x, τ) (7)

with boundary condition D(x, 0) = 1. Using a separation-of-variables argument, it

can be veri�ed that

D(x, τ) = eA(τ)+B(τ)·x (8)

solves (7), where A and B in turn solve ordinary di�erential equations (ODEs) in

terms of the model parameters,

A′(τ) = KQ
0 ·B(τ) +

1

2
B(τ)>ΣΣ>B(τ)− ρ0 (9)

B′(τ) = (KQ
1 )>B(τ)− ρ1 (10)
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with A(0) = 0, B(0) = 0. Reducing problem (7) to the system of ODEs (9)�(10)

simpli�es the numerical computation of bond prices substantially as it reduces the

dimensionality of the problem from N + 1 to 1 (the time dimension). Direct compu-

tation reveals that

B(τ) = ((KQ
1 )−1)>(IN − e(KQ

1 )>τ )ρ1, (11)

assuming KQ
1 is invertible.

A PDE analogous to (7) can be set up for the observed bond price in the shadow-

rate model, P T
t . The only required modi�cation is to replace the expression for the

shadow short rate, r = ρ0+ρ1 ·x, by that for the observed short rate, r = max{ρ0+ρ1 ·

x, 0}. Unfortunately, when this non-linearity is introduced, the separation-of-variables

procedure no longer applies, and no solution as straightforward as (8) is available. It

is possible to solve the modi�ed version of (7) directly by numerical methods. This is

the approach taken by Kim and Singleton (2012). It requires discretizing τ and x on

a multidimensional grid, which is computationally intensive and subject to the curse

of dimensionality. Kim and Singleton (2012) therefore do not estimate models with

more than two factors.

4.2 Forward Rate Approximation

Krippner (2012) proposes an alternative approach to computing yields in shadow-rate

models, which is implemented empirically by Christensen and Rudebusch (2013). It

is based on an approximation to the forward rate fTt . Substituting for P T
t from the

shadow-rate version of (3), and di�erentiating, we obtain

fTt = EQ
t

[
e−
´ T
t rs ds

P T
t

rT

]
= E

Q
T

t [rT ] = E
Q

T
t [max{rT , 0}] (12)
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where Q
T
, de�ned by the Radon-Nikodym derivative

dQ
T

dQ
=

e−
´ T
0 rs ds

EQ
[
e−
´ T
0 rs ds

] ,
is referred to as the �T -forward measure.� Equation (12) says that today's time T

forward rate is equal to today's expectation under the T -forward measure of the time

T short rate. It can be veri�ed directly from (12) and the Law of Iterated Expectations

that fTt is a martingale under Q
T
(note that rT ≡ fTT by de�nition). Note also that

(12) implies that the forward rate is subject to the same lower bound (6) as the short

rate, by monotonicity of the mathematical expectation.

Analogously,

fTt = EQ
t

[
e−
´ T
t rs ds

P T
t

rT

]
= EQT

t [rT ] (13)

expresses the shadow forward rate as the expectation under the shadow T -forward

measure of the future shadow short rate. Again, fTt is a martingale under QT . Unlike

the observed forward rate, it is not, however, constrained to be non-negative.

The distribution of the shadow forward rate fTt under QT can be derived more

explicitly. First, from (5) and (8),

fTt = −A′(T − t)−B′(T − t) ·Xt.

Therefore, by It	o's Lemma and the Martingale Representation Theorem,

fTT = fTt −
ˆ T

t

B′(T − s)>Σ dWQT
s . (14)
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Thus, fTT is Gaussian under QT conditional on Ft, with

EQT
t [fTT ] =fTt

Var
Q

T
t [fTT ] =EQT

t

[(ˆ T

t

B′(T − s)>Σ dWQT
s

)2
]

]

= ρ>1

(ˆ T

t

e(KQ
1 )>(T−s)ΣΣ>eK

Q
1 (T−s) ds

)
ρ1︸ ︷︷ ︸

ω(T−t)

. (15)

The �nal equality uses the It	o Isommetry and (11).1

Krippner (2012) takes advantage of this distributional property of fTT ≡ rT . He

de�nes a pseudo�forward rate as a hybrid between observed forward rate (12) and

shadow forward rate (13):

˙
fTt = EQ

t

[
e−
´ T
t rs ds

P T
t

rT

]
= EQT

t [rT ] = EQT
t [max{rT , 0}] . (16)

This is the expectation under the shadow T -forward measure of the observed time T

short rate (while the shadow-model-implied forward rate consistent with the absence

of arbitrage is given by (12) as the expectation under the observed T -forward measure

of the observed time T short rate).2 This rate is, by monotonicity, subject to lower

bound (6). It is, moreover, relatively straightforward to compute: Lemma A.1 in

1The integral in (15) has the same form as (A.2) in Appendix A and therefore can be computed
analytically as in (A.3).

2Krippner (2012) motivates his derivation in terms of options on shadow bonds. To derive (16)
from his equations (12) and (13), replace the call option price by

EQ
t

[
e−
´ T
t

rs ds max
{
EQ

T

[
e−
´ T+δ
T

rs ds
]
− 1, 0

}]
.

Then interchange the limit operations and expectation, and evaluate.
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Appendix A implies that

˙
fTt = EQT

t

[
max{fTT , 0}

]
= fTt Φ

(
fTt

ω(T − t)

)
+ ω(T − t)φ

(
fTt

ω(T − t)

)
. (17)

This is formula (32) in Krippner (2012).3 Note from (17) that
˙
fTt /f

T
t → 1 as fTt

increases or ω(T − t) decreases. That is, as the lower bound becomes less binding,

the wedge between
˙
fTt and the shadow forward rate fTt (which is the arbitrage-free

forward rate in a Gaussian model without lower bound) shrinks.

Zero-coupon bond prices
˙
P T
t and yields

˙
yTt can be approximated by substituting

˙
fTt from (17) into (5) and (4).

4.3 Cumulants

Since the PDE approach to pricing bonds in shadow-rate models becomes computa-

tionally intractable as the number of factors increases, and the approach proposed

by Krippner (2012) relies on a forward rate that is not equal to the arbitrage-free

forward rate, I propose a new cumulant-based technique to approximating yields in

Gaussian shadow-rate models.

The quantity logP T
t = logEQ

t

[
exp

(
−
´ T
t
rs ds

)]
appearing in the shadow-rate

version of (4) is the conditional cumulant-generating function4 under Q, evaluated at

3Krippner (2012) uses the parametrization proposed by Chen (1995) and hence obtains his
formula (31) for ω as a special case of (15). Similarly, the results derived by Christensen and Rude-
busch (2013) are (essentially) special cases of (15) and (17) under their Nelson-Siegel parametrization
(where some of the derivations must be modi�ed appropriately to account for the fact that their
matrix KQ

1 is singular). Don Kim (personal communication) independently derives the general
expression for ω in (15) by generalizing Krippner's (2012) computations directly.

4The cumulant-generating function of a random variable X is de�ned as the logarithm of its
moment-generating function (for example, see Severini, 2005).
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−1, of the random variable RT
t ≡
´ T
t
rs ds. It has the series representation

logEQ
t

[
exp

(
−RT

t

)]
=
∞∑
j=1

(−1)j
κQj
j!

(18)

where κQj is the jth cumulant of RT
t under Q. An approximation to the zero-coupon

yield yTt can therefore be computed based on a �nite number of terms in the series in

(18). Below, I consider the �rst-order approximation

ỹTt =
1

τ
κQ1 =

1

T − t
EQ
t

[ˆ T

t

rs ds

]
(19)

and the second-order approximation

˜̃yTt =
1

T − t

(
κQ1 −

1

2
κQ2

)
=

1

T − t

(
EQ
t

[ˆ T

t

rs ds

]
− 1

2
VarQt

[ˆ T

t

rs ds

])
(20)

where I make use of the fact that the �rst two cumulants of any random variable

coincide with its �rst two centered moments.5

The �rst-order approximation (19) is equivalent to the method proposed indepen-

dently and contemporaneously by Ichiue and Ueno (2013). I present it here both for

comparison and to assess its relative performance in Section 5 below. I will, however,

mostly focus on the second-order approximation (20), which I argue is particularly

promising a priori because it is exact in the Gaussian benchmark case.6 It can there-

fore be expected to perform well both for short maturities (where the higher-order

terms in (18) are relatively small), and for long maturities as long as Qt[rT < 0] is

small for large T (in which case rt = max{rt, 0} will behave approximately like a

5Higher-order approximations following the same general logic are possible, but they are increas-
ingly computationally costly while generating decreasing marginal bene�ts in terms of precision.

6The third- and higher-order cumulants of a Gaussian random variable are zero, so that (20)
coincides with the usual a�ne-Gaussian yield formula in that case.
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Gaussian process over su�ciently long horizons). Indeed, empirically, the second-

order approximation turns out to be highly accurate across maturities both during

normal times and when rates are low (see Section 5).

4.3.1 Computation of the First Moment

Evaluating the �rst- and second-order approximations (19) and (20) to zero-coupon

yields requires computation of the �rst two cumulants (equivalently, centered mo-

ments) of RT
t =

´ T
t
rs ds. This subsection will be concerned with the �rst moment.

As an initial step,

EQ
t

[ˆ T

t

rs ds

]
=

ˆ T

t

EQ
t [rs] ds (21)

by an application of Fubini's Theorem. Since rs = max {rs, 0} and rs ∼ N(µt→s, σ
2
t→s)

with known expressions for µt→s and σ
2
t→s in terms of the model parameters (as shown

in Appendix A), it follows from Lemma A.1 in Appendix A that

EQ
t

[ˆ T

t

rs ds

]
=

ˆ T

t

[
µt→sΦ

(
µt→s
σt→s

)
+ σt→sφ

(
µt→s
σt→s

)]
ds (22)

where φ and Φ denote the standard normal probability density function (pdf) and

cumulative distribution function (cdf), respectively. That is, we can compute EQ
t [rs]

analytically up to the standard normal cdf, which software such as Matlab is able to

evaluate precisely and e�ciently. The �rst cumulant of RT
t can then be computed by

numerical integration of EQ
t [rs] over the time dimension, as in (22).
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4.3.2 Computation of the Second Moment

Once we know the �rst moment of RT
t =
´ T
t
rs ds, it remains to evaluate

EQ
t

[(ˆ T

t

rs ds

)2
]

= 2

ˆ T

t

ˆ s

t

EQ
t [rurs] du ds (23)

where the equality uses Fubini's Theorem and symmetry of the integrand. Since

ru = max {ru, 0} and rs = max {rs, 0}, and (ru, rs) are jointly normally distributed

with mean (µt→u, µt→s), variances (σ2
t→u, σ

2
t→s), and covariance σt→u×s (see Appendix

A), we obtain from Lemma A.2 in Appendix A:

EQ
t

[(ˆ T

t

rs ds

)2
]

=2

ˆ T

t

ˆ s

t

{
(µt→uµt→s + σt→u×s)Φ

d
2 (−ςt→u,−ςt→s;χt→u×s)

+ σt→sµt→uφ (ςt→s) Φ

(
ςt→u − χt→u×sςt→s√

1− χ2
t→u×s

)

+ σt→uµt→sφ (ςt→u) Φ

(
ςt→s − χt→u×sςt→u√

1− χ2
t→u×s

)

+ σt→uσt→s

√
1− χ2

t→u×s

2π
φ

(√
ς2
t→u − 2χt→u×sςt→uςt→s + ς2

t→s
1− χ2

t→u×s

)}
du ds (24)

where ςt→j =
µt→j

σt→j
, j ∈ {u, s}, χt→u×s = σt→u×s

σt→uσt→s
, and Φd

2 denotes the decumulative

bivariate normal cdf.

That is, we can compute EQ
t [rurs] analytically up to the bivariate normal cdf, and

we can then integrate this expression numerically over u and s to obtain the second

cumulant of RT
t .
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4.3.3 Numerical Implementation

The following steps summarize the approximation procedure for zero-coupon yields

for a given set of parameters (KQ
0 , K

Q
1 , ρ0, ρ1,Σ) and state vector Xt:

1. Compute the conditional mean and covariance matrix of (ru, rs), for u, s ≥ t,

using (A.4) and (A.5).

2. Using the results from step 1, compute EQ
t [rs] and EQ

t [rurs], for u, s ≥ t, as

described in 4.3.1 and 4.3.2.

3. Integrate EQ
t [rs] numerically to obtain EQ

t

[
RT
t

]
, and integrate EQ

t [rurs] numer-

ically to obtain EQ
t [
(
RT
t

)2
].

4. Using the moments computed in step 3, approximate yTt by ỹTt or ˜̃yTt as de�ned

in (19) and (20).

In terms of numerical implementation, step 1 is straightforward. Step 2 requires

evaluation of the univariate and bivariate normal cdf's. A high-precision, e�cient

approximation to the univariate normal cdf is built into most computational software

packages, so numerically evaluating the �rst integrand does not pose a challenge. For

the bivariate normal cdf, I implement a vectorized version of an algorithm proposed

by Genz (2004) which achieves double machine precision.7 Step 3 is straightforward

in principle, though a favorable tradeo� between precision and computational burden

requires careful choice of quadrature rule and grid. I use composite Gauss-Legendre

and Gauss-Lobatto rules with 2�20 points per maturity (and corresponding product

rules for the double integral in (24)), selected to evaluate ỹTt or ˜̃yTt to an approximate

minimum numerical precision of 1/100
th of a basis point. With fully vectorized Matlab

7Matlab's built-in function mvncdf uses adaptive numerical integration to compute the bivariate
normal cdf. This is slower by several orders of magnitude than the algorithm I use.
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code,8 I am able to evaluate a full representative sample of model-implied zero coupon

yields (approximately 20 years of monthly data across eight maturities) within a

fraction of a second.

Note that the complexity of the algorithm does not depend on the number of yield

curve factors N , so it is not subject to the curse of dimensionality in the same way

that some other methods are.9

For illustration purposes, in Appendix B I apply the second-order approxima-

tion method to estimate a three-factor shadow-rate model of the U.S. Treasury term

structure.

5 Accuracy of Yield Approximation Methods

Section 4.3 argued intuitively that the second-order yield approximation (20) should

be relatively precise. This section quanti�es that claim. To get an initial sense of

the relative numerical accuracy, I consider the stylized model used for illustration

by Gorovoi and Linetsky (2004), and replicated for the same purpose in Krippner

(2012). It is a one-factor model with ρ0 = 0.01, ρ1 = 1, KQ
0 = 0, KQ

1 = −0.1,

and Σ = 0.02. Gorovoi and Linetsky (2004) derive model-implied yield curves

for states Xt ∈ {−0.06,−0.02,−0.01, 0} corresponding to shadow short rates rt =

{−0.05,−0.01, 0, 0.01}. The four panels of Figure 1 plot the model-implied yield

curves for each initial state. Within each panel, I compare four di�erent yield ap-

proximation schemes: Solving PDE (7) numerically (which, in a one-factor setting,

8That is, without for-loops that grow with the number of quadrature points, states, dates, or
maturities in the sample.

9The general approximation methodology I propose has its own curse of dimensionality in that
the second-order approximation is substantially more computationally involved than the �rst-order
approximation (and any higher-order approximation will be substantially more involved than the
second-order approximation). In practice, the second-order approximation appears to strike an
acceptable balance between precision and computational complexity for many cases of interest, see
Section 5 below.
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is computationally feasible and can be considered the �exact� solution for compar-

ison purposes), Krippner's (2012) approach described in Section 4.2, and the �rst-

and second-order approximations proposed in Section 4.3. As the �gure shows, the

second-order approximation matches the exact PDE solution most closely, and con-

sistently across states. The yield approximation error is uniformly less than one basis

point. The �rst-order approximation generally overstates yields (an implication of

the alternating nature of series expansion (18)), with approximation errors increasing

both in yield maturity and the level of the shadow short rate (in both cases, the �rst-

order approximation is o� by an increasingly large convexity adjustment arising from

Jensen's inequality). Krippner's (2012) method generally undershoots yields, and is

relatively more accurate when the shadow short rate is higher. Why this is the case

can be seen intuitively by comparing the Q-measure expressions for the arbitrage-free

forward rate (12) and Krippner's (2012) approximate forward rate (16): While both

use the same time T short rate rT , Krippner's (2012) formula discounts by the shadow

rate rather than the observed short rate. This means the discount factor tends to be

larger than it should be when rT is low, reducing the covariance between discount

factor and rT , and thus lowering the expectation of their product,
˙
fTt .

To compare the relative performance of the di�erent yield approximations in a

more realistic empirical setting, I use the estimated model parameters and smoothed

states from Appendix B.3 to compute model-implied yield curves for all dates in

the sample.10 Since this is a three-factor model, solving PDE (7) numerically is no

longer practicable. I therefore replace this benchmark by a simulated yield ŷTt that

consistently estimates the true yield yTt based on n = 1,000,000 randomly drawn

10The sample consists of end-of-month observations from January 1990 through December 2012.
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(b) Yield curves for rt = −1%.
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(c) Yield curves for rt = 0%.
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(d) Yield curves for rt = 1%.

Figure 1: Yield curves (zero-coupon yield against maturity in years) implied by a one-
factor shadow-rate model with ρ0 = 0.01, ρ1 = 1, KQ

0 = 0, KQ
1 = −0.1, and Σ = 0.02.

The di�erent panels correspond to di�erent initial shadow short rates. Within each
panel, the yield curve is computed using four methods: Numerical solution of PDE
(7), Krippner's (2012) approach described in Section 4.2, and the �rst- and second-
order approximations proposed in Section 4.3.
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short-rate paths per sample date.11,12 Table 1 shows the mean simulation error of

ŷTt , and the root-mean-square errors (RMSE) against ŷTt of the yield
˙
yTt computed by

Krippner's (2012) method, the �rst-order approximation ỹTt de�ned in (19), and the

second-order approximation ˜̃yTt de�ned in (20). The table is divided into two panels.

The top panel shows errors for the sub-sample Jan 1990�Nov 2008 (when interest

rates were at normal levels), and the bottom panel shows errors for the sub-sample

Dec 2008�Dec 2012 (when the lower bound on nominal yields was binding at the short

end of the yield curve). All methods are generally more precise at shorter maturities.

As the �rst column in both panels shows, the simulated yields are accurate to within

approximately one �fth of a basis point at the ten-year maturity point. As shown in

the second column of the tables, Krippner's (2012) method produces ten-year yields

that are accurate to about one basis point during normal times, and to within four

basis points when the lower bound is binding. While the �rst-order method is more

accurate when rates are low (the bottom panel), its errors remain substantial at the

long end. The second-order method, the �nal column in the tables, produces ten-year

yields that are accurate to approximately half a basis point, both during normal times

and when the lower bound is binding.

To further illustrate the time-varying relative performance of the three approxima-

tion schemes, Figure 2 plots the di�erence over time between the simulated ten-year

yield and the three approximated yields. Krippner's (2012) method and the second-

order approximation appear to be equally precise in the �rst few years of the sample,

11I simulate (1) under Q based on moments (A.1)�(A.2) on a uniformly-spaced grid with ∆t =

1/360. For each simulated path i, I compute RT
t (i) =

´ T
t
rs(i) ds by the trapezoidal method. I then

de�ne P̂T
t = 1

n

∑n
i=1 exp(−RT

t (i)) and ŷTt = − 1
T−t log P̂T

t . The simulation error for P̂T
t is computed

as n−1/2 times the sample standard deviation, and the simulation error for ŷTt is derived from the

simulation error for P̂T
t by the delta method.

12The simulation takes several hours to complete for the given parameter estimates and smoothed
states. This approach would not, therefore, be feasible as part of an estimation strategy.
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Maturity se(ŷTt ) RMSE(
˙
yTt ) RMSE(ỹTt ) RMSE(˜̃yTt )

6m 0.04 0.04 0.05 0.04

1y 0.06 0.06 0.18 0.06

2y 0.09 0.10 0.88 0.10

3y 0.12 0.14 2.26 0.13

4y 0.14 0.18 4.22 0.15

5y 0.16 0.27 6.60 0.17

7y 0.19 0.47 12.22 0.21

10y 0.21 0.93 21.81 0.35

(a) Sub-sample Jan 1990�Nov 2008

Maturity se(ŷTt ) RMSE(
˙
yTt ) RMSE(ỹTt ) RMSE(˜̃yTt )

6m 0.01 0.01 0.01 0.01

1y 0.02 0.04 0.04 0.02

2y 0.05 0.19 0.33 0.05

3y 0.07 0.51 1.07 0.07

4y 0.10 0.94 2.31 0.09

5y 0.12 1.42 3.99 0.12

7y 0.15 2.43 8.38 0.23

10y 0.17 3.87 16.63 0.52

(b) Sub-sample Dec 2008�Dec 2012

Table 1: The mean standard error of simulated yields ŷTt (n = 1,000,000 draws per
sample date) for the model estimated in Appendix B, and the root-mean-square errors
(RMSE) against the simulated yields of Krippner's (2012) yield approximation

˙
yTt ,

the �rst-order yield approximation ỹTt , and the second-order yield approximation ˜̃yTt .
All errors are in basis points.
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with �uctuations presumably largely due to simulation error.13 The discrepancy be-

tween simulated yield and Krippner's (2012) method increases over time as the level

of yields declines, and exceeds �ve basis points by December 2012. The discrepancy

between simulated yield and second-order approximation remains small and appears

to show little systematic variation over time, perhaps trending up modestly towards

the end of the sample. The �rst-order approximation has a large negative discrepancy

initially, which shrinks over time but remains at a high absolute level even at the end

of the sample.

Figure 2 also con�rms that, just like in the simple one-factor model in Figure 1,

the approximation errors under Krippner's (2012) method and the �rst-order scheme

are largely systematic (rather than mere noise), in that the �rst-order approximation

overstates arbitrage-free yields while Krippner's (2012) method tends to understate

them.

In sum, the analysis above suggests that, empirically, the second-order yield ap-

proximation ˜̃yTt is accurate to within about one half of a basis point at maturities up

to ten years, both during normal times and when the lower bound is binding. The

approximation error is one order of magnitude smaller than both the model-implied

observation error in yields (see Table 3) and the next best approximation method pro-

posed by Krippner (2012). In contrast, the �rst-order approximation is acceptable at

most at the very short end of the yield curve.

To add perspective, the approximation error in ˜̃yTt is no greater than commonly

accepted �tting error in the derivation of constant-maturity zero-coupon bond yields

from observed coupon-bearing Treasuries (e.g., Gürkaynak et al., 2006). This puts

the second-order approximation roughly on par with the numerical accuracy achieved

13Recall that when there is no lower bound, both methods produce yields equal to the exact
arbitrage-free yield. In the early 1990s, the overall level of yields was su�ciently high for the e�ect
of the lower bound to be negligible.
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Figure 2: Deviation from simulated ten-year yield ŷt+10
t of Krippner's (2012) yield

approximation
˙
yt+10
t , the �rst-order yield approximation ỹt+10

t , and the second-order

yield approximation ˜̃yt+10
t . Model parameters and �ltered states are taken from Ap-

pendix B.
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by �exact� bond pricing methods in standard a�ne models, to the extent that they

rely on numerical methods (say, to solve the system of ODEs (9)�(10)).14

6 Conclusion

This paper develops an approximation to arbitrage-free zero coupon bond yields in

Gaussian shadow-rate term structure models. The complexity of the scheme does not

depend on the number of factors. Further, I demonstrate that the method is computa-

tionally feasible by estimating a three-factor shadow-rate model of the U.S. Treasury

yield curve. Based on Monte Carlo simulation, I also show that the yield approxima-

tion is approximately as precise as conventional approaches that are considered to be

�exact.�

14Empirically, the second-order approximation ˜̃yTt is exact to an absolute tolerance of approxi-

mately 5 × 10−5 (see Table 1). The default tolerance for numerical methods in Matlab is typically
between 10−4 and 10−6, depending on the complexity of the method.
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A Useful Mathematical Results

A.1 Moments of Xt

Consider the continuous time stochastic process Xt de�ned in (1). The following

derivations hold under both the P-measure and the Q-measure, hence for notational

simplicity I will suppress dependence of moments and parameters on the measure.

Since Xt is a Gaussian process, all its �nite-dimensional distributions are Gaussian

(Karatzas and Shreve, 1991). In particular, for u, s ≥ t, the vectors (Xu, Xs) are

jointly conditionally Gaussian, with

Et [Xu] = eK1(u−t)Xt + (IN − eK1(u−t))K−1
1 K0 (A.1)

Covt [Xu, Xs] =

ˆ u∧s

t

eK1(u−v)ΣΣ>eK
>
1 (s−v) dv. (A.2)

If K1 is invertible, the integral on the right-hand side of (A.2) can be evaluated

analytically using integration by parts and formula (10.2.15) in Hamilton (1994),

vec(Covt [Xu, Xs]) (A.3)

= (K1 ⊕K1)−1vec(eK1(u−t)ΣΣ>eK
>
1 (s−t) − eK1(u−u∧s)ΣΣ>eK

>
1 (s−u∧s)),

where �⊕� denotes the Kronecker sum. Since rt as de�ned in (2) is a linear function

of the Gaussian random vector Xt, it is itself Gaussian, with

µt→u = Et[ru] = ρ0 + ρ1 · Et[Xu] (A.4)

and

σt→u×s = Covt[ru, rs] = ρ>1 Covt[Xu, Xs]ρ1. (A.5)
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A.2 Moments of Censored Gaussian Random Variables

This section derives two useful mathematical results involving the moments of cen-

sored Gaussian random variables.

Lemma A.1. If X ∼ N(µ, σ2), then

E[max{X, 0}] = µΦ
(µ
σ

)
+ σφ

(µ
σ

)

where Φ denotes the standard normal cdf, and φ denotes the standard normal pdf.

Proof. First, note that

E[max{X, 0}] = µ+ σE

[
max

{
X − µ
σ

,−µ
σ

}]
. (A.6)

Thus, it only remains to compute E [max {Z, a}] where Z is a standard normal random

variable, for arbitrary a ∈ R. By direct computation of the integral de�ning the

expectation,

E [max {Z, a}] = aΦ(a) +
1√
2π

ˆ ∞
a

z exp

(
−1

2
z2

)
dz, (A.7)

where Φ is the standard normal cdf. Further,

ˆ ∞
a

z exp

(
−1

2
z2

)
dz =

[
− exp

(
−1

2
z2

)]∞
a

= exp

(
−1

2
a2

)
=
√

2πφ(a). (A.8)

Recursively substituting from (A.8) into (A.7), and �nally into (A.6), establishes the

result.
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Lemma A.2. If X1

X2

 ∼ N


µ1

µ2

 ,

σ2
1 σ12

σ12 σ2
2




then

E[max{X1, 0}max{X2, 0}] = (µ1µ2 + σ12)Φd
2 (−ς1,−ς2;χ)

+ σ2µ1φ (ς2) Φ

(
ς1 − χς2√

1− χ2

)
+ σ1µ2φ (ς1) Φ

(
ς2 − χς1√

1− χ2

)

+ σ1σ2

√
1− χ2

2π
φ

(√
ς2
1 − 2χς1ς2 + ς2

2

1− χ2

)
(A.9)

where ςj =
µj
σj
, j ∈ {1, 2}, χ = σ12

σ1σ2
, φ denotes the univariate standard normal pdf, Φ

denotes the univariate standard normal cdf, φ2(z1, z2;χ) denotes the bivariate normal

pdf when both variables have zero means, unit variances, and correlation χ, and Φ2 and

Φd
2 denote the corresponding cumulative and decumulative bivariate Gaussian distri-

bution functions, where in particular Φd
2(z1, z2;χ) = 1−Φ (z1)−Φ (z2)+Φ2 (z1, z2;χ).

Proof. Write

E [max {X1, 0}max {X2, 0}]

= σ1σ2E

[
max

{
X1 − µ1

σ1

,−µ1

σ1

}
max

{
X2 − µ2

σ2

,−µ2

σ2

}]
+ µ2E [max {X1, 0}] + µ1E [max {X2, 0}]− µ1µ2. (A.10)

The second and third terms can be evaluated using Lemma A.1. For the �rst term,

it su�ces to be able to compute E [max {Z1, a}max {Z2, b}] for random variables Z1

and Z2 that are bivariate normal with zero means, unit variances, and correlation

χ, and for arbitrary a, b ∈ R. Using the properties of φ2, this expectation can be
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expanded as follows:

E [max {Z1, a}max {Z2, b}]

=

ˆ ∞
−∞

ˆ ∞
−∞

max {z1, a}max {z2, b}φ2(z1, z2;χ) dz1 dz2

= ab

ˆ b

−∞

ˆ a

−∞
φ2(z1, z2;χ) dz1 dz2 + a

ˆ ∞
b

ˆ ∞
−a

z2φ2(z1, z2;−χ) dz1 dz2

+ b

ˆ ∞
−b

ˆ ∞
a

z1φ2(z1, z2;−χ) dz1 dz2 +

ˆ ∞
b

ˆ ∞
a

z1z2φ2(z1, z2;χ) dz1 dz2. (A.11)

The �rst double integral is simply Φ2(a, b;χ), the bivariate normal cdf. The second

and third double integrals correspond to expected values of truncated bivariate normal

random variables, and the last integral is the expected cross product of a truncated

bivariate normal random vector. These expected values are known up to the univari-

ate standard normal cdf and the bivariate normal cdf, respectively (see Rosenbaum,

1961). Using the formulas in Rosenbaum (1961) to evaluate the integrals in (A.11),

and substituting into (A.10), we obtain (A.9) after simpli�cation.
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B Empirical Implementation

This appendix empirically estimates a three-factor Gaussian shadow-rate term struc-

ture model using the yield approximation methodology proposed in Section 4.3. The

main purpose is to demonstrate the computational tractability of the method in the

context of a realistic application. For more in-depth discussion and empirical analysis,

see Kim and Priebsch (2013).

B.1 Data

I use end-of-month zero-coupon U.S. Treasury yields from January 1990 through

December 2012, for maturities of 6 months, 1�5, 7, and 10 years. I derive the 6-

month yield from the corresponding T-bill quote, while longer-maturity zero yields

are extracted from the CRSP U.S. Treasury Database using the unsmoothed Fama

and Bliss (1987) methodology.15

I augment the yield data with survey forecasts from Blue Chip, interpolated to

constant horizons of 1�4 quarters (available monthly), as well as annually out to

5 years and for 5-to-10 years (available every six months).16 Model-implied survey

forecasts are subject to the same lower-bound constraint as yields,17 but their compu-

tation is substantially simpler: Forecasters report their expectation of the arithmetic

mean of future observed short rates, EP
t

[
1
τ

´ t+τ
t

max {rs, 0} ds
]
. This is exactly (19)

with the data-generating measure P in place of pricing measure Q. Therefore, the

�rst-order method described in Section 4.3 produces exact model-implied survey fore-

casts. Intuitively, unlike yields, survey forecasts are not subject to compounding, so

15I am grateful to Anh Le for providing the code for this procedure.
16As discussed by Kim and Orphanides (2005), this potentially leads to more precise estimates

of the parameters governing the data-generating distribution P.
17This follows from equivalence of the measures P and Q, and more fundamentally from the

absence of arbitrage.
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there are no higher-order Jensen's inequality terms to consider.

B.2 Filtering and Estimation

Since the statistical properties of the term structure model laid out in Section 2 are

formulated in terms of the latent state vectorXt, but the data actually observed by the

econometrician consist of yields, yt, and survey expectations, zt (see Appendix B.1),

I set up a joint estimation and �ltering problem to obtain estimates of the model's

parameters θ = (KP
0 , K

P
1 , K

Q
0 , K

Q
1 , ρ0, ρ1,Σ).18 When discretely sampled at intervals

∆t > 0, the state vector X follows a �rst-order Gaussian vector autoregression,

Xt+∆t = m0,∆t +m1,∆tXt + εt (B.1)

where εt ∼ N(0,Ω∆t), and m0,∆t, m1,∆t, and Ω∆t can be computed from (A.1) and

(A.2). Equation (B.1) represents the transition equation of the �ltering problem.

Next, denote by Hy : RN × Θ 7→ RMY
+ the (non-linear) mapping from states

X and parameters θ to model-implied yields y, and by Hz : RN × Θ 7→ RMZ
+ the

analogous mapping from states and parameters to model-implied survey forecasts z.

For estimation purposes, I compute Hy through the second-order approximation (20),

and Hz through the exact �rst-order method discussed in Appendix B.1. To simplify

notation, denote the stacked mapping
(
H>y , H

>
z

)>
by H. If we assume that all yields

and survey expectations are observed with iid additive Gaussian errors, we obtain the

observation equation yt
zt

 = H(Xt) + et. (B.2)

18See Duan and Simonato (1999) for an early reference discussing this approach towards term
structure model estimation.
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Together, equations (B.1) and (B.2) form a non-linear �ltering problem.

The simple (linear) Kalman �lter�optimal when measurement and observation

equation are linear and all shocks are Gaussian�has been modi�ed in a number of

ways to accommodate nonlinearity as in (B.2). The unscented Kalman �lter, pro-

posed by Julier et al. (1995), aims to deliver improved accuracy and numerical sta-

bility relative to the more traditional extended Kalman �lter, without substantially

increasing the computational burden.19,20 The algorithm is described in detail in

Wan and van der Merwe (2001). As a by-product of the �ltering procedure, it conve-

niently produces estimates of the mean and covariance matrix of (yt, zt) conditional

on the econometrician's information set as of time t − 1. I use these to set up a

quasi�maximum likelihood function based on (B.2),21 which I maximize numerically

to obtain estimates of the parameters θ as well as their asymptotic standard errors

(following Bollerslev and Wooldridge, 1992).

B.3 Estimation Results

To achieve econometric identi�cation of the parameters θ in light of invariant trans-

formations resulting in observationally equivalent models with di�erent parameters

(see Dai and Singleton, 2000), I follow Joslin et al. (2011) and impose the normaliza-

tions ρ1 = (1, . . . , 1)>, KQ
0 = 0, KQ

1 is diagonal and therefore completely determined

by its ordered eigenvalues λQ, and Σ is lower triangular.

I estimate the model on the data set described inAppendix B.1, using the quasi�

maximum likelihood (QML) procedure discussed in Appendix B.2. Table 2 displays

the estimated model parameters θ̂, as well as their asymptotic standard errors.

Table 3 shows the QML-estimated standard deviations of the measurement errors

19A detailed treatment of the unscented Kalman �lter, and a comparison to the extended Kalman
�lter, can be found in Wan and van der Merwe (2001).

20Christo�ersen et al. (2012) and Wu (2010) con�rm that the unscented Kalman �lter performs
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ρ0 0.0738 rmin 0.0010

(0.0043) (0.0001)

λQ −0.1038 Σ 0.0268

(0.0226) (0.0084)

−0.3566 −0.0324 0.0416

(0.1177) (0.0110) (0.0295)

−0.8574 0.0068 −0.0397 0.0090

(0.2876) (0.0100) (0.0302) (0.0007)

KP
0 −0.0193 KP

1 −0.4679 −0.3415 0.3785

(0.0052) (0.1574) (0.1490) (0.6798)

−0.0099 −0.5752 −1.1881 −1.1875
(0.0224) (0.6303) (1.1335) (0.5740)

0.0278 0.8908 1.3060 0.3990

(0.0233) (0.6982) (1.0641) (1.3561)

Table 2: Quasi�maximum likelihood parameter estimates (asymptotic standard er-
rors) for the three-factor shadow-rate model.

in yields and survey variables (et in equation (B.2)). The average yield error is 8

basis points, and the average error in surveys is 21 basis points. For both yields and

surveys, errors follow a U-shaped pattern, being largest at the short and long ends.

Figure 3 plots the model-implied shadow short rate rt over the sample period,

based on the states implied by the Kalman smoother (that is, incorporating all in-

formation up to December 2012, the end of the sample). The shadow rate turned

negative in December 2008, after the FOMC established a target federal funds rate

range of 0 to 0.25 percent and the e�ective lower bound became binding, and has

stayed negative through the end of the sample.

better than the extended Kalman �lter in the speci�c setting of term structure model estimation.
21This estimation approach is described and analyzed in Lund (1997).
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Maturity σY

6m 0.0017

1y 0.0014

2y 0.0006

3y 0.0003

4y 0.0004

5y 0.0003

7y 0.0006

10y 0.0015

Average 0.0008

Maturity σZ

1q 0.0014

2q 0.0002

3q 0.0009

4q 0.0014

2y 0.0028

3y 0.0026

4y 0.0027

5y 0.0031

5y�10y 0.0034

Average 0.0021

Table 3: Estimated standard deviations of observation errors in yields, σY , and survey
forecasts, σZ .

‐4%

‐2%
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Figure 3: Model-implied shadow short rate rt based on smoothed states Xt|T .
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