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Abstract

There exists an extensive literature estimating idiosyncratic labor income processes. While a wide

variety of models are estimated, GMM estimators are almost always used. We examine the validity

of using likelihood based estimation in this context by comparing the small sample properties of a

Bayesian estimator to those of GMM. Our baseline studies estimators of a commonly used simple

earnings process. We extend our analysis to more complex environments, allowing for real world

phenomena such as time varying and heterogeneous parameters, missing data, unbalanced panels,

and non-normal errors. The Bayesian estimators are demonstrated to have favorable bias and

efficiency properties.
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1 Introduction

Measuring individual income risk is essential to answering a wide range of economic questions.

For the vast majority of individuals, labor income is overwhelmingly the largest component of total

income. Accordingly, accurate and precise estimation of labor earnings dynamics is important for

analyzing people’s consumption and savings behavior, designing fiscal policy, and understanding

the sources of and changes in inequality.

Dating back to Lillard and Willis (1978), Lillard and Weiss (1979), MaCurdy (1982), and Abowd

and Card (1989), there is a history of fitting ARMA models to panel data to understand the labor

income risk facing individuals. Error component models in which labor income is the sum of a

transitory and a persistent shock are extremely common.1 While no shortage of models have been

estimated, a striking feature of the literature is that, almost always, the estimation routine is based

on a minimum distance estimator, namely GMM.

Recent trends of increasing model complexity have led economists to depart from the sim-

ple GMM estimators that have dominated the literature. Sometimes these complex models are

estimated by techniques similar to traditional GMM, like the Simulated Method of Moments.2

However, sometimes a very different likelihood based approach, Bayesian estimation, is employed.

An early example using Bayesian estimation is Geweke and Keane (2000), who jointly estimate

earnings process parameters and marital status to analyze the transition probabilities between in-

come quartiles over the life cycle. More recently, Jensen and Shore (2010, 2011) estimate complex

labor income processes with a focus on heterogeneity in idiosyncratic risk and its evolution over

time. Given ongoing advances in computational power and Markov chain Monte Carlo (MCMC)

techniques, we are likely to see a growing use of these estimators.

While there exist decades of research that documents the properties of minimum distance es-

timators of labor income processes, there are no papers, to our knowledge, that systematically

examine the small sample properties of likelihood based estimators on these types of error com-

ponent models in panel settings.3 Although the benefits of Bayesian estimation are well known to

theoretical econometricians, they are not widely understood across fields in the context of estimat-

ing labor income processes. Thus, as the profession adopts widespread use of Bayesian estimators

for increasingly elaborate models, it is useful to document the properties of Bayesian estimators on

simple income processes. This will provide a clear explanation of the Bayesian estimation routine,

a better understanding of the source of estimation results, and a justification for its use in more

complicated settings.

In this paper, we examine the validity of using likelihood based estimation by comparing the

1Often the persistent component is assumed to follow a random walk as in MaCurdy (1982), Abowd and Card
(1989), Gottschalk and Moffitt (1994), Meghir and Pistaferri (2004), and Blundell, Pistaferri, and Preston (2008).

2For example, Browning, Ejrnaes, and Alvarez (2010) estimate a model with many dimensions of heterogeneity
using the Simulated Method of Moments.

3For example, a 1996 issue of the Journal of Business & Economic Statistics is dedicated to the small sample
properties of GMM estimators, featuring notable papers on estimating covariance structures like Altonji and Segal
(1996) and Clark (1996).
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small sample properties of a Bayesian estimator to those of GMM. First, as a stepping stone, we

derive the maximum likelihood estimator by translating the labor income process into linear Gaus-

sian state space (LGSS) form and applying standard filtering procedures. With this machinery

established in an easy-to-understand framework, we provide a concise, but self-contained, deriva-

tion of the Bayesian estimator. We then conduct a Monte Carlo analysis of a Bayesian estimator

and a GMM estimator on a commonly used simple labor income process. Although the asymp-

totic dominance of properly specified likelihood based estimators is textbook, we provide the first

systematic analysis of the small sample properties of likelihood based estimators of labor income

processes. While the difference between estimators is typically modest, the Bayesian estimator is

more efficient: parameter estimates are unbiased with smaller standard errors.

Although the initial findings demonstrate the better small sample properties of the Bayesian

estimator, the exercise was performed on a simple model with ideal dataset conditions. In Section

4, we extend the analysis to more complex specifications that capture real world phenomena. In

Section 4.1, we first look at an environment in which datasets are unbalanced panels and suffer

from missing data. We modify the estimators to accommodate these realistic features of the dataset

and study how the relative performance of the Bayesian estimator is affected. In Section 4.2, we

modify the labor income process to allow for time-variation in the shock variances. Time variation

in the variances of the labor income process has been documented in many papers and is essential in

understanding the changes in labor market risks.4 In Section 4.3, we allow parameter heterogeneity

across individuals. Many papers have found substantial heterogeneity in various aspects of the labor

income process and emphasized its importance for understanding the risks people face. Finally,

in Section 4.4, we extend the labor income process to allow for non-normal shocks. There is

empirical evidence that labor income shocks are non-normal and have fat tails.5 To both learn

about the shape of the error distributions and to address the concern of distribution misspecification,

we let shocks be distributed according to a mixture of normals, which allows for a very flexible

error distribution structure. These extensions establish that the beneficial small sample properties

of Bayesian estimators are maintained in more complicated scenarios—thus demonstrating the

usefulness of this estimator for applied economists.

We proceed in Section 2 to present the different estimators of the simple income process. Sec-

tion 3 discusses their small sample properties and Section 4 discusses extensions to the simple

income process, including time varying variances, missing data, unbalanced panels, heterogeneous

parameters, and distributional assumptions on errors. Section 5 concludes.

4See for example Gottschalk and Moffitt (1994), Heathcote, Perri, and Violante (2010), and Blundell, Pistaferri,
and Preston (2008) for GMM based estimations of the sequence of variances.

5See for example Hirano (1998) and Geweke and Keane (2000) for Bayesian estimations of income processes that
allow for non-normal shocks.
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2 Estimators of the Labor Income Process

It is well known from the labor economics literature (since Abowd and Card (1989)) that labor

income is well described by an error components model, where residual labor earnings are the sum

of a transitory and persistent shock. Often the transitory shock is i.i.d and the persistent shock

follows an AR(1) process. Because the model fits well and is relatively simple, it has become very

commonly used in the Labor and Macro literatures. Thus, we adopt this pervasive simple income

process and present the GMM and Bayesian estimators. These estimators are developed to be used

on panel data sets such as the PSID. Accordingly, our baseline labor income process is given by:

εi,t = ρεi,t−1 + Σ0.5
η ηi,t (1)

yi,t = εi,t + Σ0.5
ν νi,t (2)

where yi,t is the residual from a log income regression for an individual i ∈ {i, ..., N} at time

t ∈ {1, ..., T}.6 εi,t is the persistent component of income and is assumed to follow an AR(1) process.

While {yi,t}t=1,T
i=1,N is observed, {εi,t}t=1,T

i=1,N is not. νi,t is the transitory component of income. ηi,t is

the shock to the persistent component of income. νi,t and ηi,t are standard normal and Σν , Ση are

the variances of the transitory and persistent innovations, respectively. We also estimate properties

of the initial state, εi,0, which we assume is normally distributed with zero mean and variance

ΣZ0. νi,t, ηi,t, and εi,0 are independent of each other for all i and t. Thus the parameter vector

to be estimated is θ := (ρ,Σν ,Ση,ΣZ0). In the next subsections, we outline different techniques to

estimate these parameters.

2.1 GMM

The standard strategy in the literature for estimating labor income processes is to use GMM.

The goal of GMM estimation is to choose parameters that minimize the distance between empirical

and theoretical moments. Identification and estimation rely on moments constructed from cross-

sectional income autocovariances.7

We wish to estimate the system given by equations (1) and (2). There are T (T−1)
2 moments,

where T is the total number of time periods. The total number of individuals, N , does not affect

6There are many ways to obtain residual labor income. To remove predictable components that are associated
with the individual or the aggregate state of the economy, it is common to regress idiosyncratic labor income on a
vector of observables such as individual demographics and variables that control for aggregates. There are different
methods to remove aggregate components, such as using time dummy variables or a common correlated effect approach
(Pesaran (2006)). While important for the macro implications of the idiosyncratic labor earnings process, our paper
is concerned only with estimating the residual labor income process.

7This section develops the already well-understood GMM estimation routine. For other sources see Blundell,
Pistaferri, and Preston (2008), Heathcote, Perri, and Violante (2010), or Guvenen (2009). We present the general
case in which ρ is estimated.
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the number of moments because the expectations are taken cross-sectionally over individuals.

M(θ) = vec


E[yi,1 · yi,1] ... ... ...

E[yi,2 · yi,1] E[yi,2 · yi,2] ... ...

E[yi,3 · yi,1] E[yi,3 · yi,2] ... ...

...

E[yi,T · yi,1] E[yi,T · yi,2] ... E[yi,T · yi,T ]


where the upper right triangle of the matrix is redundant by symmetry. Particular entries in the

moment matrix M(θ) map into particular functions of the parameters θ = (ρ,Σν ,Ση,ΣZ0). Define

the cross-sectional moment mt,j(θ) between agents at time t and t+ j:

mt,j(θ) = E[yi,t · yi,t+j ]

= E[(εi,t + Σ0.5
ν νi,t)(εi,t+j + Σ0.5

ν νi,t+j)]

=

{
E[ε2i,t] + Σν if j = 0

ρjE[ε2i,t] if j > 0

where

E[ε2i,t] = ρ2tΣZ0 +
t∑

k=1

ρ2(t−k)Ση

Simple algebraic manipulation of the above equations reveal (over) identification of the param-

eters.8

Define the estimator as

θ̂GMM = min
θ

(M(θ)− M̂)′W (M(θ)− M̂)

where M̂ stacks the sample covariance from the data.

To implement the estimator, we need to choose the weighting matrix, W . Altonji and Segal

(1996) show that the Optimal Minimum Distance (OMD) estimator, where W is the optimal

weighting matrix, introduces significant small sample bias. They study the small sample properties

of the GMM estimator with several alternative weighting matrices and recommend using the Equally

8The moments are only slightly modified when variances are time varying as in Section 4.2:

E[yi,t · yi,t+j ] =

{
E[ε2i,t] + Σν,t if j = 0
ρjE[ε2i,t] if j > 0

E[ε2i,t] = ρ2tΣZ0 +
t∑

k=1

ρ2(t−k)Ση,k
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Weighted Minimum Distance (EWMD) estimator, where W is the identity matrix. In light of their

result, many papers in the literature use the EWMD estimator.9 Thus, we use the GMM estimator

with identity weighting matrix throughout the paper. Extensions to different weighting matrices

are straightforward.10

With all objects of the optimization problem defined, the estimates can be calculated computa-

tionally using an optimizer to choose parameters θ that minimize the distance between model and

sample moments.

2.2 Likelihood Based Estimation

The maximum likelihood estimator is presented before deriving the Bayesian estimator. This

establishes the linear Gaussian state space structure, which is used in both estimators. For the

simple income process, it is feasible to compute the maximum likelihood estimator. However, the

MLE estimator fails to scale with model complexity, as for more complicated specifications the

likelihood is difficult or impossible to write in closed form. Bayesian estimation becomes useful in

exactly these cases.

2.2.1 MLE

As its name suggests, the maximum likelihood estimate is defined as the parameter values that

maximize the likelihood function.

θ̂MLE = max
θ

L({yi,t}t=1,T
i=1,N |θ)

For the simple labor income process, we can analytically compute the likelihood for any given

θ, and thus it is feasible to solve this maximization problem. Analytical derivation of the likelihood

function is straightforward once we notice that the labor income process forms a linear Gaussian

state space (LGSS) system. We can draw from the time series econometrics literature to construct

the likelihood using the Kalman filter.

Define the canonical form of a LGSS as

St = AtSt−1 +Btvt (3)

Yt = Ctzt +DtSt + wt (4)

where

9An alternative used by Blundell, Pistaferri, and Preston (2008) is the Diagonally Weighted Minimum Distance
(DWMD) estimator, where W is the optimal weighting matrix with off-diagonal elements set to zero.

10We examined the performance of the OMD and DWMD estimators in unreported exercises and found that the
EWMD estimator tends to outperform the OMD and DWMD estimators across various data generating processes.
The OMD and DWMD estimators are sometimes slightly more efficient for the persistence parameter than the EWMD
estimator, but such improved efficiency in the estimate of the persistence parameter always comes with substantially
deteriorated efficiency in the estimates of other parameters.
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vt ∼ N(0, Qt)

wt ∼ N(0, Rt)

S0 ∼ N(S0|0, P0|0)

Equation (3) is the state equation (or transition equation) and equation (4) is the observation

equation (or measurement equation). St is a vector of latent state variables, and Yt is the vector of

observables. vt is a vector of innovations to latent state variables, and wt is a vector of measurement

error. zt is a vector of observed exogenous variables. To map this model into our labor income

process of an individual Yt is residual log income and St is the persistent component of income.11

For notational convenience, let θt be a vector containing all parameters of the model (At, Bt, Ct,

Dt, Qt, Rt, S0|0, P0|0). In many applications, parameters are time-invariant (θt = θ for all t), but

this is not a necessary requirement. All processes discussed in this paper will hold At, Bt, Ct, Dt

constant over time; later, when we discuss the time varying volatility case, Qt and Rt will vary.

Thus, our simple labor income process can be mapped into canonical form as

At = ρ, Bt = 1, Ct = 0,

Dt = 1, Qt = Ση, Rt = Σν ,

zt = 0, S0|0 = 0, P0|0 = ΣZ0

for all t, with parameter vector θ = (ρ,Σν ,Ση,ΣZ0) as before.

We can now use the Kalman filter to derive the log likelihood of a LGSS, which is provided

in Appendix A.1.12 As idiosyncratic shocks are defined to be uncorrelated across individuals, one

can obtain the log likelihood of the income data for all individuals by summing the log likelihood

of each individual (i.e., logL({yi,t}t=1,T
i=1,N |θ) =

∑N
i=1 logL({yi,t}t=1,T |θ)). One obvious advantage

of this methodology is the relative ease of estimating more complicated income processes, such as

ARMA(p,q) processes, since they allow a LGSS representation. Given that the likelihood is defined

in terms of canonical LGSS matrices, to estimate a different parameterization of the labor income

process, all that remains is to map the process into state space form. With the analytical likelihood

derived in Appendix A.1, we can now use an optimizer to numerically maximize the log likelihood

to produce the MLE estimates.

11For clarity of exposition, we set zt to be zero and assume Yt is residual income. However, zt could include all of
the traditional first stage conditioning variables like education, age, race, etc., to remove the predictable components
of Yt. This would allow estimation to be run in one step, instead of running a first-stage regression to recover
idiosyncratic residual income. The general case is presented in the Appendix.

12For a detailed analysis, see chapter 13.4 in Hamilton (1994).

7



2.2.2 Bayesian Estimation: Gibbs Sampling

In computing the maximum likelihood estimator, two conditions are crucial. One is that we

can compute the likelihood function analytically and the other is that the likelihood function is

well behaved.13 For the simple labor income process, these two conditions are satisfied and the

MLE estimates can be easily computed. However, they are not satisfied for more complex labor

income processes. Bayesian methods are useful in those cases either because they don’t require

an analytical likelihood function or because the prior distribution smooths local maxima. For

transparency of exposition, in this section we provide an overview of the Bayesian estimator for the

standard income process, without the complications that it is well equipped to handle.

The goal of the Bayesian estimation is to characterize the posterior distribution of parameters,

which is defined as the distribution of parameters conditional on data, p
(
θ|{yi,t}t=1,T

i=1,N

)
. The

posterior distribution is related to two objects, the prior distribution and the likelihood function,

by Bayes Theorem:

p
(
θ|{yi,t}t=1,T

i=1,N

)
∝ L({yi,t}t=1,T

i=1,N |θ)p(θ)

where p(θ) is the prior distribution of parameters, which the researcher specifies. When the

prior is uniform, the posterior is the same as the likelihood (as a function of parameters). The

tighter the prior, the less the posterior reflects information from the data. Comparing the posterior

to the prior provides a sense of how much the data informed the parameter estimates.14

To characterize the posterior distribution, the Bayesian estimator draws a large sample from

p
(
θ|{yi,t}t=1,T

i=1,N

)
, which can be used to compute statistics about the parameters of interest. Once

we characterize the posterior distribution, we can compute a point estimate according to some

loss function. Following other applied work in the Bayesian literature, we use the median of the

posterior distribution as the point estimate.15

To obtain this sample from the posterior, we use the Gibbs sampling algorithm. The Gibbs

sampling algorithm sequentially draws from the distribution of each parameter and latent variable

conditional on the previous draws for all other parameters. Since each draw is conditional on the

previous draws, the samples are not independent. However, the stationary distribution of the draws

thus generated can be shown to equal the joint posterior distribution of interest.16 This algorithm

is useful whenever the joint density of the parameters and data is unknown, but the conditional

distributions of each parameter is known. See Appendix A.2 for details about the Gibbs sampling

procedure.

To sequentially draw from the conditional distributions of interest, there are three techniques

13If there exist multiple local maxima, the optimization routine may struggle to find the global maximum, i.e.,
the MLE estimates. This is especially true if the likelihood function is high dimensional.

14See Geweke (2005) or Gelman, Carlin, Stern, and Rubin (2009) for a Bayesian statistics reference.
15There is no a priori “correct” statistic to use as the point estimate. For example, one could use the mode, mean,

or median of the posterior distribution. While the mode corresponds closely to the principle of maximum likelihood,
the median is more robust computationally when sample sizes are limited.

16See Robert and Casella (2004) for a comprehensive treatment of MCMC theory and practice.
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employed. The first is estimating the variance of a normal distribution with known mean. The

second is estimating a linear regression model. The third is sampling the latent states of a LGSS

model. To estimate Σν , realize yi,t − εi,t = Σ0.5
ν νi,t. Thus, conditioning on the epsilon sequence,

we have a sample distributed N(0,Σν). Given a conjugate prior, the posterior can be calculated

analytically, allowing this iteration’s Σν to be set equal to a draw from the conditional posterior. To

estimate ρ, realize from equation 1 that ρ is the coefficient in a linear regression model with known

independent and dependent regressors with error distributed N(0,Ση). Again, the conditional

posterior can be calculated analytically, allowing this iteration’s ρ to be set equal to a draw from

the posterior.

The most complicated Gibbs block of this estimation is drawing the sequence of unobserved

states in a LGSS. Given linearity and normality, the Kalman smoother provides the distribution of

each state at each time conditional on all available data. However, because there is persistence in

the states, knowing the particular draw of εi,t alters the conditional density of εi,t−1.
17 Carter and

Kohn (1994) develop an algorithm that recursively updates, backwards through time, the Kalman

smoothed conditional densities of each state at time t given the draw of the state at time t + 1.18

With these three tools, we are able to sequentially draw from the conditional distributions of the

parameters and latent variables of interest.

3 Small Sample Properties

Now that the different estimators have been presented, we proceed to analyze the small sample

properties of the estimators using Monte Carlo analysis. Our Monte Carlo simulation exercise

is designed as follows. Simulate 100 panel datasets using the baseline labor income processes

given by equations 1 and 2.19 In the benchmark simulation, each data set contains 500 people

and 10 time periods (i.e., N=500 and T=10). However, to mimic the features of available panel

datasets while also providing a more general depiction of the estimators’ performance, we consider

alternative values of N ∈ {100, 2000} and T ∈ {5, 20}. Motivated by Blundell, Pistaferri, and

Preston (2008), as a benchmark calibration we let the true parameter values be (ρ,Ση,Σν ,ΣZ0) =

(1.00, 0.02, 0.05, 0.15).20 For each of the 100 datasets generated, we compute the point estimates of

the model parameters based on the Bayesian method and the GMM. When required by optimization

or sampling, the same initial values are used across estimators.

For the Bayesian estimation, we need to specify prior distributions of parameters. We choose

17We could sample each εi,t as a separate block. This is the approach taken by Jacquier, Polson, and Rossi (1994)
when estimating a stochastic volatility model. However, this would lead to a highly auto-correlated, slowly converging
Markov chain.

18For some extensions, it is easy to replace the Carter and Kohn (1994) algorithm with the more computation-
ally efficient algorithm developed by Durbin and Koopman (2002). See the online technical appendix for detailed
description of the Durbin and Koopman (2002) algorithm.

19Monte Carlo analysis is often based on a large number of datasets. However, due to the computational intensity
of the Bayesian estimator, we present results with a smaller than usual number of simulations. A robustness check
on the baseline specification with a larger number of datasets (500) replicated the results of the 100 sample exercise.

20These parameter values are standard and similar to the estimates found throughout the traditional literature.
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prior parameters such that the variance of the prior distribution is very large and thus the posterior

distribution is mainly determined by the likelihood function. Specifically, we set the prior for ρ to

be Normal with mean 0 and an arbitrarily large variance, truncated at support [-1,1]. For ΣZ0, Ση,

and Σν we use the inverse-gamma distribution with degree of freedom 2 and location parameter

equal 0.01.

For each estimator, we then compute the mean, standard deviation, and the root mean square

error (RMSE) of the point estimates across the 100 datasets. The difference between the mean and

true parameter values measures the bias of the estimator, while the standard deviation measures

the efficiency. The root mean square error measures the average squared deviation of the estima-

tor from the true parameter value, combining information on the bias and standard deviation of

the estimator. Accordingly, we emphasize root mean square error as the overall measure of the

estimators’ efficiency.

Table 1 shows the small sample properties of the two estimators. For each parameter and

estimator, the first number is the mean of the point estimates across 100 simulated datasets, the

second number in the parentheses is the standard deviation of the point estimates, and the last

number in the square brackets is the RMSE.

The Bayesian estimator performs better than the GMM estimator in terms of RMSEs. For all

parameter estimates, the RMSEs of the Bayesian estimator are smaller than those of the GMM

estimator. While the differences tend to be small as both estimators have very low RMSEs, they are

sometimes non-trivial. For example, the RMSEs of the Bayesian estimator are about 30 percent and

50 percent smaller than the GMM estimator for Ση and Σν . The outperformance of the Bayesian

estimator comes from both smaller bias and smaller standard deviation. For all parameters, the

mean of the Bayesian estimator is closer to the true parameter values than that of the GMM

estimator and the standard deviation of the Bayesian estimator is smaller.

Improved efficiency could result from using better moment conditions or from using informative

priors. To demonstrate that the improved performance of the Bayesian estimator is not driven by

the priors, we first re-estimate the model, setting the prior mean of ρ to 0.5 and scaling up the

variances’ prior means by a factor of 10. This very different prior specification did not significantly

affect the posterior distribution. This means that the posterior distribution is mainly determined

by the likelihood function. Second, we know that the GMM estimator with optimal orthogonality

conditions is asymptotically and numerically equivalent to MLE, since the asymptotically optimal

GMM estimator uses the score for moment conditions. For the baseline specification, we present the

MLE estimates in Table 1, which have very similar RMSEs to the Bayesian estimates.21 Thus, effi-

ciency improvements come from using a likelihood based estimator, not from imposing informative

priors.

Outperformance of the Bayesian estimator is robust to different specifications of the data gen-

erating process. Table 2 reports the RMSEs for alternative values of N (=100,2000), T (=5,20),

21In comparing the MLE and Bayesian estimates, it should be noted that we use the median of the posterior as
the Bayesian point estimate, where the mode of the posterior more closely corresponds to the MLE estimate. This
difference becomes especially important when comparing truncated parameters, like ρ.
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and ρ (=0.8). In most cases, the RMSEs of the Bayesian estimators are smaller or roughly equal

for all parameter values. For ρ, the estimators give roughly equal RMSEs with alternative T and

N . However, with ρ = 0.8, the Bayesian estimator delivers smaller RMSEs. For ΣZ0, one estimator

does not consistently perform better than the other across different cases. For Ση and Σν , the

RMSEs of the Bayesian estimator are consistently smaller, sometimes by a large amount.

3.1 Robustness to Model Misspecification

While the Bayesian estimator performs well in small samples on a properly specified model, how

do its small sample properties compare to the GMM estimator when the model is misspecified?

We address this question with two exercises. First, we estimate the model given by equations (1)

and (2) assuming that ρ = 1, when the true data generating process has ρ = 0.95. As displayed in

Table 3, the Bayesian estimator has significantly lower RMSEs for both Ση (0.005 vs. 0.014) and

Σν (0.004 vs. 0.023) and a modestly lower RMSE for ΣZ0 (0.031 vs. 0.033).

Second, we estimate the same model assuming errors are normally distributed, when they are

in fact distributed according to a mixture of normals, using the data generating process detailed in

Section 4.4. As shown in Table 4, the Bayesian and GMM estimators perform similarly, with the

Bayesian estimator resulting in moderately smaller RMSEs on Ση (0.0021 vs. 0.0026), Σν (0.0026

vs. 0.0042), and ΣZ0 (0.0127 vs. 0.0135), and an identical RMSE for ρ (0.0048).

Thus, even though the Bayesian estimator heavily relies on parametric assumptions, it can still

have as good or better small sample properties when the model is misspecified.

4 Robustness to Extended Labor Income Processes

The previous section showed that the Bayesian estimator outperforms the GMM estimator in

finite samples on a simple labor income process. However, when using real data, researchers of-

ten need to modify the simple process to address unique features of the dataset or to incorporate

additional features into the model. Since some of these modifications are quite common or even

necessary, it would be useful to know how robust are the findings based on the simple labor in-

come process. Accordingly, this section considers four such modifications to the baseline earnings

model and documents the performance of the Bayesian estimator in each setting. The modifi-

cations we consider are (1) unbalanced panel with missing data, (2) time-varying volatilities, (3)

heterogeneous parameters, (4) non-normal shocks. Adjusting for an unbalanced panel with missing

data is necessary whenever one estimates the model using real data. Time-varying volatilities are

particularly common in the literature, regardless of the estimation methods used. Recent litera-

ture has documented evidence suggesting substantial heterogeneity in income process parameters

across individuals. While non-normality is often ignored in GMM estimation, previous studies

using Bayesian methods often estimated the income process allowing for non-normality and found

significant improvements in model fit.

Of course, there are many other interesting extensions to the labor income process. These
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include a richer modeling of volatility evolution (such as GARCH or stochastic volatility), time or

age variation in other parameters (such as the autoregressive coefficient), and a richer decomposition

of labor income (such as ARMA(p,q)).22 There has also been a growing interest in allowing for

different dimensions of heterogeneity, in income profiles, initial levels, autoregressive coefficients,

variances of idiosyncratic shocks, and more.23 Most of these extensions can be handled within

the LGSS structure and can thus be estimated given the methods previously discussed. However,

our purpose in this section is not to be comprehensive, but to investigate how some common

complications of the income processes may affect the relative performance of the Bayesian estimator.

Thus, we focus on the aforementioned four extensions.

4.1 Data Structure

Most panel datasets used for estimating labor income processes are unbalanced. That is, the

dataset contains different cohorts and does not necessarily measure the initial labor market expe-

riences of all cohorts. They are also known to contain many missing observations. This can be due

to a variety of reasons, such as misreporting, attrition of the participants, and top-coding.

To examine how the Bayesian estimator performs on an unbalanced panel dataset with missing

observations, we modify the baseline data generating process in two ways. First, we assign a 5

percent probability of being missing to each of the T*N observations. Second, we let a fraction (30

percent) of the population enter the dataset when they are age 4 and leave at age 10 to make the data

unbalanced. As in the benchmark calibration of the previous simple labor income process, we set

N=500 and T=10, and let the true parameter values be (ρ,Ση,Σν ,ΣZ0) = (1.00, 0.02, 0.05, 0.15).

The Gibbs sampling algorithm needs to be modified to take missing data into account, but the

estimation of a LGSS model with missing observations has been well studied and the modification

is straightforward. The details on how to modify the Gibbs sampling procedure are given in

Appendix A.3. Prior distributions are specified in the same way as in the baseline labor income

process.

Table 5 compares the Bayesian estimator and the GMM estimator with this data structure. The

Bayesian estimator continues to perform better than the GMM estimator. While the RMSEs for

ΣZ0 are roughly equal across the two estimators (0.0147 for the Bayesian estimator and 0.0157 for

the GMM estimator), the RMSEs associated with the Bayesian estimator are substantially smaller

than those from the GMM estimator for ρ, Ση, and Σν . As in the baseline exercise, the smaller

RMSEs of the Bayesian estimator comes from its smaller bias and smaller standard deviation. For

all parameters except ρ, the mean of the Bayesian estimator is closer to the true parameter values

than that of the GMM estimator. For all parameters, the standard deviation of the Bayesian

estimator is smaller.

The overall outperformance of the Bayesian estimator remains robust to different probabilities

of missing observations and different fractions of the second cohort, as well as to alternative values

22It is important to properly model measurement error, as documented by French (2004).
23See Browning, Hansen, and Heckman (1999) and Jensen and Shore (2010) for a discussion.
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of N , T , and ρ. These robustness results are available from the authors upon request.

4.2 Time Varying Variances

There is ample evidence that the variances of labor income shocks are time-varying. Many

authors have documented a significant low frequency rise in the variances of income shocks over

time. For example, Blundell, Pistaferri, and Preston (2008) and Gottschalk and Moffitt (1994)

analyze the PSID and find increasing variances of shocks during the 1980s. Heathcote, Perri, and

Violante (2010) conduct extensive analysis on wage inequality and show the continuous rise in

income volatility over the past 40 years. Others have found that there is a fluctuation in shock

volatility at the business cycle frequency. For example, using the PSID, Storesletten, Telmer, and

Yaron (2004) found that the variance of income shocks is larger during recessions than during

booms. Understanding the evolution of volatility in the labor income process is important in itself,

as it allows us to understand the change in the risk environment facing workers. It is also important

in analyzing many macroeconomic topics, such as the welfare cost of business cycles or the degree

of self-insurance and market incompleteness.

While there are many different ways to model time variation in the variances, the majority

of the literature models heteroskedasticity by treating the variance at each time as a different

parameter.24 We follow the literature and modify the baseline labor income process so that each

variance parameter is specific to the time period. That is, our new data generating process is

described by

εi,t = ρεi,t−1 + Σ0.5
η,tηi,t (5)

yi,t = εi,t + Σ0.5
ν,t νi,t (6)

where Σν,t, Ση,t are the variances of the transitory and persistent innovations at time t, respec-

tively. We focus on the case with T=10 and calibrate the variances according to the estimates of

Blundell, Pistaferri, and Preston (2008).25 As before, we set N=500 and let the true parameter

values for the rest of the parameters be (ρ,ΣZ0) = (1.00, 0.15).

The linear Gaussian state space structure is designed to allow parameters to vary over time.

The only critical modification in the estimation routine is to feed the correct parameter values into

the Kalman filter at the right times. To map our new process into a LGSS, we need to define At, Bt,

Ct, Dt, Qt, Rt for all t. We set At = ρ, Bt = 1, Ct = 0, Dt = 1 ∀ t, keeping these matrices constant

over time as in the benchmark simple labor income process. We set Q1 = Ση,1, ..., QT = Ση,T and

R1 = Σν,1, ..., RT = Σν,T . Estimation then proceeds as in the stationary variances case. Prior

distributions for ρ and ΣZ0 are specified in the same way as in the baseline labor income process.

24As a notable alternative, Meghir and Pistaferri (2004) model the evolution of the variance as a GARCH process.
25Since the timing convention in our model is slightly different from that of Blundell, Pistaferri, and Preston

(2008), Ση,1 and Ση,10 are not separately identified from ΣZ0 and Σν,10, respectively. Thus, we set Ση,1 and Ση,10 to
their true values in the estimation.
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For the prior distributions of Ση,t and Σν,t, we use the inverse-gamma distribution with degree of

freedom 2 and location parameter equal to 0.01 for all t.

Table 6 compares the performance of the two estimators. As in the previous cases, the Bayesian

estimator tends to deliver smaller RMSEs than the GMM estimator. For the time specific shock

variances, the Bayesian estimator delivers substantially—about 30-50 percent—smaller RMSEs

than the GMM estimator, except for Ση,2 and Σν,1 where the differences are small between two

estimators. The outperformance of the Bayesian estimator comes from both smaller bias and

standard deviation. For the Ση,2 and Σν,1 as well as ρ and ΣZ0, the RMSEs of the two estimators

are roughly the same. As before, these results are robust to alternative parameterizations of the

data generating process, and the robustness results are available from the authors upon request.

For both estimators, the estimates of each variance parameter are not as precise as in the

benchmark case. As an example, consider the RMSEs of Σν in the benchmark DGP and Σν,10 in

the DGP with time-varying variance. The true parameter values (0.05 and 0.0506) are roughly the

same. However, for both the Bayesian and GMM estimators, the RMSEs of Σν,10 are about three

times larger than those of Σν . The reduction in the precision of the estimators is not surprising

because we are estimating a larger number of parameters using the same number of observations.

Nevertheless, both estimators remain sufficiently precise to closely track the rise and fall of the

variances over time.

4.3 Heterogeneity

Understanding the heterogeneity in income process parameters is essential for answering ques-

tions with distributional aspects—across individuals and over the life cycle. Thus, many authors

have estimated labor income processes allowing for heterogeneity in parameters across individuals.

Lillard and Weiss (1979), Baker (1997), and Guvenen (2009) studied labor income processes in

which the deterministic growth rate of income is heterogeneous across people. Jensen and Shore

(2010, 2011) estimated models with heterogeneity in the variances of shocks to income processes.

Browning, Ejrnaes, and Alvarez (2010) went further and estimated labor income processes where

all parameters are allowed to be heterogeneous across individuals.

While many authors have stayed within the framework of the method-of-moment estimator

to handle heterogeneity, some have employed Bayesian methods. To obtain some idea about the

performance of the Bayesian estimator in the presence of heterogeneity, we modify our benchmark

labor income process to introduce heterogeneity in one parameter—the deterministic growth rate

of labor income. This modified process is often referred to as the labor income process with

heterogeneous income profiles (HIP), and is specified as follows:

εi,t = ρεi,t−1 + Σ0.5
η ηi,t (7)

yi,t = βit+ εi,t + Σ0.5
ν νi,t (8)
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where βi is normally distributed with mean zero and variance Σβ. Our benchmark labor income

process is a special case of this process with Σβ = 0. To estimate the parameters of this model,

the Gibbs sampler needs to be modified to include two additional blocks—one for drawing Σβ

and the other for drawing {βi}Ni=1. Appendix A.4 shows the details. We calibrate Σβ based on

the estimate from Guvenen (2009). As before, we set N=500 and T=10, and calibrate the other

parameters to be (ρ,Ση,Σν ,ΣZ0) = (1.00, 0.02, 0.05, 0.15). For the prior distribution of Σβ, we use

the inverse-gamma distribution with degree of freedom 2 and location parameter equal 0.01. Prior

distributions of the other parameters are the same as in the baseline labor income process.

Table 7 shows the results of the Monte Carlo experiment. The Bayesian estimator performs

favorably compared to the GMM estimator in the model with heterogeneous income profiles. While

both estimates are somewhat larger (0.0006) than the actual value (0.0004) for Σβ, the Bayesian

estimator is more efficient and has a lower RMSE. Estimating this additional parameter does not

alter the relative performance of the two estimators for other parameters. In particular, even though

the Bayesian estimator’s RMSE for ρ becomes somewhat larger than the GMM counterpart, the

Bayesian estimator continues to dominate the GMM estimator for all of the variance parameters.

4.4 Non-Normal Shocks

There is some evidence that shocks to the labor income process are not normally distributed.

Hirano (1998) and Geweke and Keane (2002) both find that labor income shocks are fat-tailed. Cap-

turing such non-normality is important in itself, but is also important for understanding earnings

mobility and the persistence of poverty.

Even if one is not interested in the higher moments of the shock distribution, modeling non-

normality is important as misspecification of the error distribution can reduce the efficiency of

the estimator. The main efficiency gains in MLE arise because the estimator takes advantage of

the parametric form of the shock distributions. The choice between GMM and likelihood-based

estimation can then be viewed as a trade-off between smaller standard errors vs. misspecified

distributions. To take advantage of increased efficiency, but to limit the possible damage from

assuming the wrong distribution, the aforementioned authors allow for shocks to be distributed

according to a mixture of normals. Mixtures of normal distributions are very flexible, allowing

for a more robust estimation procedure. Models with few mixture components have been shown

to perform well in small samples and can be viewed as a flexible parametric model that is an

alternative to non-parametric density estimation without the associated curse of dimensionality.26

In the following Monte Carlo analysis, we follow the previous papers and modify the baseline

DGP so that the shocks are distributed according to a mixture of normal distributions. For sim-

plicity of exposition, we use a mixture of two normal distributions. We also abstract from skewness

by fixing the means of the normal distributions to be zero. Thus, our new data generating process

26Norets (2010); Norets and Pelenis (forthcoming, 2012) document the theory and practice of approximating
continuous distributions using a finite number of mixtures of normal distributions. They show “that large classes of
conditional densities can be approximated in the Kullback-Leibler distance by different specifications of finite smooth
mixtures of normal densities or regressions.”
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is described as

εi,t = ρεi,t−1 + ηi,t (9)

yi,t = εi,t + νi,t (10)

With probability πη,1, ηi,t is drawn from a normal distribution with variance hη,1. With prob-

ability πη,2 = (1 − πη,1), ηi,t is drawn from a normal distribution with variance hη,2. Similarly,

νi,t is drawn from a normal distribution with variance hη,1 with probability πν,1, and νi,t is drawn

from a normal distribution with variance hν,2 with probability πν,2 = (1 − πν,1). Notice that we

have increased the number of parameters to describe the distribution of η and ν. In the benchmark

income process, we only needed to estimate four parameters, (ρ,ΣZ0,Ση,Σν). Here, we need to

estimate eight parameters, (ρ,ΣZ0, πη,1, hη,1, hη,2, πν,1, hν,1, hν,2). The added distributional flexi-

bility comes at the cost of additional parameters to estimate. With sufficient sample size, the gains

should outweigh the losses.

We calibrate the parameters of the mixture distribution so that both transitory and persistent

shocks are fat-tailed (positive excess kurtosis). We set N=500 and T=10, and calibrate the rest

of the parameters to be (ρ,ΣZ0) = (1.00, 0.15). The details on how to modify the Gibbs sampling

algorithm to handle non-normality is given in Appendix A.5. Prior distributions for ρ and ΣZ0 are

specified in the same way as in the baseline labor income process. Prior distributions of parameters

specific to the mixture normal model is discussed in Appendix A.5. Since it is not common to

estimate kurtosis in the GMM framework, we simply apply the unmodified GMM estimator.

Table 8 compares the finite sample properties of the Bayesian estimator and the GMM estimator.

For the Bayesian estimator, in addition to the estimates for all parameters, we report the second

and fourth moments of the shock distribution implied by the point estimates of the parameters

governing the mixture distribution. To concisely convey the results, we report the average of the

point estimates across 100 datasets for the parameters governing the mixture.

Even though the Bayesian estimator is now estimating a larger number of parameters, its

performance remains almost as good as in the benchmark case. The RMSEs of the Bayesian

estimator are roughly the same as those in the benchmark labor income process, except for Ση.

The RMSEs of the Bayesian estimators remain smaller than those of the GMM estimator for the

estimated second moments of η, ν, and the initial state εi,0. The Bayesian estimator also performs

well in estimating the parameters governing the mixture distribution. For parameters governing the

distribution of ν, the mean of the estimator comes very close to the true values, and thus, the implied

kurtosis estimate is very close to the true kurtosis. For parameters governing the distribution of η,

the means of the estimators are not as close to the true values as in the case for ν. For example,

the estimator overstates the probability that ν is drawn from the distribution with larger variance

by 4.4 percentage points. As a result, the implied kurtosis estimate is slightly downward biased,

but its average estimate (8.29) is reasonably close to the true value of 8.97. For both η and ν,
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the standard deviation and thus RMSEs for the kurtosis estimates are larger compared to other

parameters. This is not surprising given that they are identified from the realizations of very large

infrequent shocks.

Estimating the model with mixtures of normal distributions is substantially more computation-

ally intensive than estimating the models considered earlier. Thus, we are limited in examining how

robust these results are to alternative specifications of the parameters and priors. Nevertheless, our

Monte Carlo exercise suggests that the Bayesian estimator is useful in estimating the labor income

processes even when the errors are not normally distributed.

5 Conclusion

In this paper, we have examined the validity of performing Bayesian estimation on widely

used error component models of labor income processes. Although the differences are not large,

the Monte Carlo analysis reveals that Bayesian parameter estimates have favorable efficiency and

bias properties relative to GMM in small samples. After accounting for documented features of

the data—such as missing values, heteroskedasticity, parameter heterogeneity, and non-normal

errors—the beneficial small sample properties of the Bayesian estimator remain. The favorable

small sample properties provide a justification for employing Bayesian techniques in future research.

The detailed derivation of the estimators provides a clear exposition of the estimation routines and

a better understanding of the source of the estimation results. It is also designed to help applied

economists develop Bayesian estimation routines for related labor income processes. Our analysis

of the extensive Monte Carlo experiments suggests that Bayesian methods are appropriate for the

relevant types of processes and data typically used by applied labor economists.
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Tables

Table 1: Finite-Sample Properties of the Bayesian and GMM Estimators:
Benchmark Labor Income Process (N=500, T=10)

Parameter True Value Bayesian GMM MLE

ρ 1.0000 0.9953 0.9963 0.9995
(0.0032) (0.0047) (0.0037)
[0.0057] [0.0060] [0.0047]

ΣZ0 0.1500 0.1532 0.1543 0.1535
(0.0112) (0.0117) (0.0110)
[0.0116] [0.0125] [0.0115]

Ση 0.0200 0.0204 0.0210 0.0201
(0.0016) (0.0020) (0.0015)
[0.0016] [0.0023] [0.0015]

Σν 0.0500 0.0494 0.0481 0.0499
(0.0015) (0.0030) (0.0015)
[0.0016] [0.0035] [0.0015]

*For each parameter and each estimator, the top number is the mean of the estimates across samples, the number in

parentheses is the standard deviation, and the number in square brackets is the root mean square error.

Table 2: RMSEs of the Bayesian and GMM Estimators for Alternative Calibrations

N=500, T=5 N=500, T=20
Parameter Bayesian GMM Bayesian GMM

ρ 0.0121 0.0122 0.0028 0.0029
ΣZ0 0.0138 0.0133 0.0141 0.0152
Ση 0.0032 0.0050 0.0010 0.0017
Σν 0.0028 0.0048 0.0011 0.0042

N=100, T=10 N=2000, T=10
Parameter Bayesian GMM Bayesian GMM

ρ 0.0116 0.0116 0.0025 0.0024
ΣZ0 0.0305 0.0322 0.0063 0.0065
Ση 0.0035 0.0059 0.0007 0.0012
Σν 0.0037 0.0092 0.0008 0.0019

ρ = 0.8 (N=500, T=10)
Parameter Bayesian GMM

ρ 0.0140 0.0171
ΣZ0 0.0176 0.0165
Ση 0.0021 0.0025
Σν 0.0019 0.0025
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Table 3: Finite-Sample Properties of the Bayesian and GMM Estimators:
ρ-misspecified Model (N=500, T=10)

Parameter True Value Bayesian GMM

ΣZ0 0.1500 0.1203 0.1183
(0.0088) (0.0092)
[0.0310] [0.0326]

Ση 0.0200 0.0155 0.0055
(0.0012) (0.0014)
[0.0047] [0.0144]

Σν 0.0500 0.0537 0.0729
(0.0017) (0.0029)
[0.0041] [0.0230]

*The model defined by equations (1) and (2) is estimated assuming ρ = 1, but the true data generating process is

given by equations (1) and (2) with ρ = 0.95. For each parameter and each estimator, the top number is the mean of

the estimates across samples, the number in parentheses is the standard deviation, and the number in square brackets

is the root mean square error.

Table 4: Finite-Sample Properties of the Bayesian and GMM Estimators:
Mixture-misspecified Model (N=500, T=10)

Parameter True Value Bayesian GMM

ρ 1.0000 0.996 0.9998
(0.002) (0.0039)
[0.005] [0.0048]

ΣZ0 0.1500 0.149 0.1506
(0.013) (0.0135)
[0.013] [0.0135]

Ση 0.0200 0.021 0.0213
(0.002) (0.0023)
[0.002] [0.0026]

Σν 0.0500 0.050 0.0476
(0.003) (0.0035)
[0.003] [0.0042]

*The model defined by equations (1) and (2) is estimated assuming that the error terms are distributed according

to Normal distributions, but the true data generating process is given by equations (1) and (2) with the error terms

distributed as mixtures of Normal distributions, as outline in Section 4.4. Thus, the “True” variances are the implied

true variances of η and ν given the Mixture DGP. For each parameter and each estimator, the top number is the

mean of the estimates across samples, the number in parentheses is the standard deviation, and the number in square

brackets is the root mean square error.
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Table 5: Finite-Sample Properties of the Bayesian and GMM Estimators:
Unbalanced Panel Dataset with Missing Observations (N=500, T=10)

Parameter True Value Bayesian GMM

ρ 1.0000 0.9952 0.9955
(0.0025) (0.0056)
[0.0055] [0.0072]

ΣZ0 0.1500 0.1551 0.1551
(0.0139) (0.0148)
[0.0147] [0.0157]

Ση 0.0200 0.0205 0.0213
(0.0016) (0.0033)
[0.0017] [0.0036]

Σν 0.0500 0.0493 0.0478
(0.0017) (0.0036)
[0.0018] [0.0043]

*For each parameter and each estimator, the top number is the mean of the estimates across samples, the number in

parentheses is the standard deviation, and the number in square brackets is the root mean square error.
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Table 6: Finite-Sample Properties of the Bayesian and GMM Estimators:
Time-Varying Variances (N=500, T=10)

Mean RMSE
Parameter True Value Bayesian GMM Bayesian GMM

ρ 1.0000 0.9954 0.9970 0.0055 0.0050
ΣZ0 0.1500 0.1501 0.1497 0.0120 0.0121

Ση2 0.0207 0.0207 0.0213 0.0070 0.0068
Ση3 0.0301 0.0317 0.0325 0.0052 0.0081
Ση4 0.0274 0.0281 0.0282 0.0047 0.0063
Ση5 0.0293 0.0292 0.0284 0.0050 0.0077
Ση6 0.0222 0.0225 0.0240 0.0042 0.0074
Ση7 0.0289 0.0290 0.0288 0.0046 0.0067
Ση8 0.0157 0.0159 0.0181 0.0052 0.0080
Ση9 0.0185 0.0186 0.0202 0.0052 0.0081

Σν1 0.0415 0.0412 0.0399 0.0066 0.0070
Σν2 0.0318 0.0312 0.0300 0.0038 0.0067
Σν3 0.0372 0.0360 0.0351 0.0046 0.0070
Σν4 0.0286 0.0281 0.0275 0.0036 0.0062
Σν5 0.0286 0.0283 0.0265 0.0037 0.0067
Σν6 0.0351 0.0348 0.0338 0.0040 0.0070
Σν7 0.0380 0.0375 0.0354 0.0039 0.0072
Σν8 0.0544 0.0535 0.0520 0.0054 0.0087
Σν9 0.0369 0.0363 0.0354 0.0045 0.0087
Σν10 0.0506 0.0501 0.0509 0.0051 0.0096
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Table 7: Finite-Sample Properties of the Bayesian and GMM Estimators:
Labor Income Process with HIP (N=500, T=10)

Parameter True Value Bayesian GMM

ρ 1.0000 0.9936 0.9960
(0.0037) (0.0040)
[0.0074] [0.0062]

ΣZ0 0.1500 0.1530 0.1538
(0.0121) (0.0144)
[0.0124] [0.0149]

Ση 0.0200 0.0197 0.0195
(0.0021) (0.0045)
[0.0021] [0.0045]

Σν 0.0500 0.0498 0.0493
(0.0019) (0.0041)
[0.0019] [0.0041]

Σβ 0.0004 0.0006 0.0006
(0.0003) (0.0005)
[0.0003] [0.0005]

*For each parameter and each estimator, the top number is the mean of the estimates across samples, the number in

parentheses is the standard deviation, and the number in square brackets is the root mean square error.

24



Table 8: Finite-Sample Properties of the Bayesian and GMM Estimators:
Non-Normal Error Distributions (N=500, T=10)

Parameter True Value Bayesian GMM

ρ 1.0000 0.9960 0.9987
(0.0023) (0.0036)
[0.0047] [0.0045]

ΣZ0 0.1500 0.1490 0.1492
(0.0115) (0.0135)
[0.0115] [0.0135]

Ση 0.0200 0.0208 0.0214
(0.0014) (0.0024)
[0.0016] [0.0028]

Kurtosis of η 8.9743 8.2942 na
(1.1551) (na)
[1.3354] [na]

hη,1 0.0059 0.0054 na
hη,2 0.0766 0.0721 na
πη,1 0.8000 0.7560 na
πη,2 0.2000 0.2440 na

Σν 0.0500 0.0492 0.0479
(0.0023) (0.0035)
[0.0025] [0.0042]

Kurtosis of ν 9.0112 9.1119 na
(0.5790) (na)
[0.5848] [na]

hν,1 0.0146 0.0141 na
hν,2 0.1914 0.1902 na
πν,1 0.8000 0.7989 na
πν,2 0.2000 0.2011 na

*For each parameter and each estimator, the top number is the mean of the estimates across samples, the number in

parentheses is the standard deviation, and the number in square brackets is the root mean square error.
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A Online Technical Appendix

A.1 Log Likelihood of LGSS

Define the canonical linear Gaussian state space (LGSS) form.

St = AtSt−1 +Btvt

Yt = Ctzt +DtSt + wt

Then the log likelihood of parameter vector θ = (At, Bt, Ct, Dt, Qt, Rt, S0|0, P0|0) is given by:

ln p(Y T |θ)

= ln

T∏
t=1

p(Yt|Y t−1, θ)

=

T∑
t=1

ln p(Yt|Y t−1, θ)

=

T∑
t=1

ln[(2π)−0.5kdet[P−0.5t|t−1]exp[−0.5(Yt − Ctzt −DtSt|t−1)′P−1t|t−1(Yt − Ctzt −DtSt|t−1)]]

=

T∑
t=1

ln[(2π)−0.5kdetP−0.5t|t−1] +

T∑
t=1

ln[exp[−0.5(Yt − Ctzt −DtSt|t−1)′P−1t|t−1(Yt − Ctzt −DtSt|t−1)]]

= −0.5Tk ln(2π)− 0.5

T∑
t=1

ln[detPt|t−1] +

T∑
t=1

[−0.5(Yt − Ctzt −DtSt|t−1)′P−1t|t−1(Yt − Ctzt −DtSt|t−1)]

A.2 Bayesian Estimation Procedure

The labor income process we want to estimate is:

yi,t = Xi,tβ + εi,t + Σ0.5
ν νi,t

εi,t = ρεi,t−1 + Σ0.5
η ηi,t

for i = 1, ..., N and t = 1, ..., T . ηi,t and νi,t are independent across i and t, and are distributed as
standard normal:

ηi,t ∼ N(0, 1)

and

νi,t ∼ N(0, 1)

εi,0 is also distributed as normal:

εi,0 ∼ N (0,ΣZ0)

Xi,t consists of a polynomial of age, race, education, urban residence controls, etc.

Our goal is to draw from p
(
β, ρ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N |{yi,t}
t=1,T
i=1,N

)
.
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A.2.1 Prior Distribution

We specify the prior distributions for β and ρ to be normal with arbitrarily large variances, truncating
ρ ∈ [0, 1] to ensure stationarity.

β ∼ N (β0,Γ0,β)

ρ ∼ N (ρ0,Γ0,ρ) I[−1 ≤ ρ ≤ 1]

We specify the prior distributions for Ση, Σν , and ΣZ0 to be inverse-gamma.

Ση ∼ IG
(
T0,η, S

−1
0,η

)
Σν ∼ IG

(
T0,ν , S

−1
0,ν

)
ΣZ0 ∼ IG

(
T0,Z0, S

−1
0,Z0

)

A.2.2 Gibbs Sampling

We use Gibbs sampling with the following 6 blocks.

Block 1 : p
(
β|ρ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 2 : p

(
ρ|β,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 3 : p

(
Ση|β, ρ,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 4 : p

(
Σν |β, ρ,Ση,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 5 : p

(
ΣZ0|β, ρ,Ση,Σν , {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 6 : p

(
{εi,t}t=0,T

i=1,N |β, ρ,Ση,Σν ,ΣZ0, {yi,t}t=1,T
i=1,N

)

Throughout Block 1 to Block 4, the formulae are the same as in the standard case with one person,
except that we have T*N observations, instead of T observations.

Block 1: β

It is identical to the problem of drawing from the posterior of coefficients in a linear regression model. The
posterior distribution is normal, and its mean and variance are analytically computed (see Chapter 2 of
Geweke (2005)).

p
(
β|ρ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ N (µ1,β ,Γ1,β)

where27

27In the case of an informative prior, the formula is given by
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Γ1,β = Σν

[
N∑
i=1

T∑
t=1

Xi,tX
′
i,t

]−1

µ1,β = Γ1,β

[
1

Σν

N∑
i=1

T∑
t=1

Xi,t (yi,t − εi,t)′
]

Block 2: ρ

The same as in Block 1, except for truncation (see p.169 of Geweke (2005)).

p
(
ρ|β,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ N (µ1,ρ,Γ1,ρ) [−1 ≤ ρ ≤ 1]

where

Γ1,ρ = Ση

[
N∑
i=1

T∑
t=1

ε2i,t−1

]−1

µ1,ρ = Γ1,ρ

[
1

Ση

N∑
i=1

T∑
t=1

εi,t−1εi,t

]

Block 3: Σν

p
(

Σν |β, ρ,Ση,ΣZ0, {εi,t}t=0,T
i=1,N , {yi,t}

t=1,T
i=1,N

)
∼ IG

(
T1,ν , S

−1
1,ν

)
where

T1,ν = T0,ν + TN

S1,ν = S0,ν +

N∑
i=1

T∑
t=1

(yi,t −Xi,tβ − εi,t)2

Γ1 =

[
Γ−1
0 +

1

σ2
X ′X

]−1

µ1 = Γ1

[
Γ−1
0 µ0 +

1

σ2
X ′y

]

As Γ0 goes to infinity,

Γ1 → σ2 [X ′X]−1

µ1 →
[
X ′X

]−1 [
X ′y

]
which coincides with βols and var (βols).
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Block 4: Ση

p
(

Ση|β, ρ,Σν ,ΣZ0, {εi,t}t=0,T
i=1,N , {yi,t}

t=1,T
i=1,N

)
∼ IG

(
T1,η, S

−1
1,η

)
where

T1,η = T0,η + TN

S1,η = S0,η +

N∑
i=1

T∑
t=1

(εi,t − ρεi,t−1)
2

Block 5: ΣZ0

p
(

ΣZ0|β, ρ,Ση,Σν , {εi,t}t=0,T
i=1,N , {yi,t}

t=1,T
i=1,N

)
∼ IG

(
T1,Z0, S

−1
1,Z0

)
where

T1,Z0 = T1,Z0 +N

S1,Z0 = S0,Z0 +

N∑
i=1

ε2i,0

Block 6: {εt}
For each individual i, we apply the Carter-Kohn algorithm.28

Step 1: Specify S0|0 and P0|0

Step 2: Kalman-Filter
Starting from S0|0 and P0|0, compute {Pt|t−1, Pt|t}Tt=1 and {St|t}Tt=1 using the Kalman Filter.

St|t−1 = AtSt−1|t−1

Pt|t−1 = AtPt−1|t−1A
′
t +BQtB

′

Gt = DtPt|t−1D
′
t +Rt

Kt = Pt|t−1D
′
tG
−1
t

St|t = St|t−1 +Kt(Yt − Ctzt −DtSt|t−1)

Pt|t = (Ins −KtDt)Pt|t−1

where Ss|t ≡ E [Ss|Y t] and Ps|t ≡ V ar [Ss|Y t].

Step 3: Carter-Kohn’s backward recursion:
At each t=T through 1 going backward, compute

St−1|t = St−1|t−1 + Pt−1|t−1A
′
tP
−1
t|t−1(St −AtSt−1|t−1)

Pt−1|t = Pt−1|t−1 − Pt−1|t−1A′tP−1t|t−1AtPt−1|t−1

28For details see Carter and Kohn (1994).
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based on St, and draw St−1 from N
(
St−1|t, Pt−1|t

)
.

A.3 Bayesian Estimation Procedure with Missing Data

This section presents how to modify Gibbs Block 6 to handle missing observations. In terms of estimation,
unbalanced panel datasets can be seen as containing systematic missing observations and does not introduce
extra complication.

The LGSS with missing observations can be written as

St = AtSt−1 +Bvt

Yt = Ctzt +DtSt + wt

where

vt ∼ N (0, Qt)

wt ∼ N (0, Rt)

S0 ∼ N
(
S0|0, P0|0

)
When working with missing data, it is convenient to let Yt denote a vector containing the incomes of

multiple individuals at time t.29 Note that some elements of Yt may be missing, i.e., Yi,t = ‘NaN ′. Let nm,t
be the number of missing observations at time t. Let Wt be a (ny − nm,t)− by − ny matrix that selects the
elements of Yt that are not missing. For example, suppose Yt is 6-by-1, and the second and fourth elements
are missing.

Yt =


3.5

‘NaN ′

2.1
‘NaN ′

3.2
5.9


Then, Wt is a 4-by-6 matrix with the following structure.

Wt =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


so that

Ȳt ≡WtYt =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




3.5
‘NaN ′

2.1
‘NaN ′

3.2
5.9

 =


3.5
2.1
3.2
5.9


When no value is missing, Wt is a ny − by − ny identity matrix, and Ȳt = Yt.
Using this variable Wt, we transform the observation equation for each t to obtain

29In all other sections, Yt refers to the income of a single individual.
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St = AtSt−1 +Bvt

WtYt = WtCtzt +WtDtSt +Wtwt

Finally, create an indicator variable φt which takes the value 0 when all values of Yt are missing, and 1
otherwise. If φt = 0, set Wt = Iny .

A.3.1 Estimation Algorithm

To modify Block 6: Gibbs Sampling, we must only modify Step 2. Other steps are unmodified.

Step 2: Kalman-Filter
Starting from S0|0 and P0|0, compute {Pt|t−1, Pt|t}Tt=1 and {St|t}Tt=1 using Kalman Filter.

St|t−1 = AtSt−1|t−1

Pt|t−1 = AtPt−1|t−1A
′
t +BQtB

′

Gt = WtDtPt|t−1D
′
tW
′
t +WtRtW

′
t

Kt = Pt|t−1D
′
tW
′
tG
−1
t

St|t = St|t−1 + φtKt(WtYt −WtCtzt −WtDtSt|t−1)

Pt|t = (Ins −KtWtDt)Pt|t−1

where Ss|t ≡ E [Ss|Y t] and Ps|t ≡ V ar [Ss|Y t]. In case where all values of Yt are missing, simply set

St|t−1 = AtSt−1|t−1

Pt|t−1 = AtPt−1|t−1A
′
t +BQtB

′

St|t = St|t−1

Pt|t = Pt|t−1

A.4 Bayesian Estimation Procedure with Heterogeneous Income Profiles

The labor income process we want to estimate is:

yi,t = Xi,tβi + εi,t + Σ0.5
ν νi,t

εi,t = ρεi,t−1 + Σ0.5
η ηi,t

for i = 1, ..., N and t = 1, ..., T . ηi,t and νi,t are independent across i and t, and are distributed as
standard normal. εi,0 is distributed as normal with variance ΣZ0. For each i, βi is distributed as mean zero
and variance Σβ :

βi ∼ N (0,Σβ)

Xi,t consists of a polynomial of age, race, education, urban residence controls, etc. We use βN to denote

{βi}Ni=1. Our goal is to draw from p
(
βN , ρ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N |{yi,t}
t=1,T
i=1,N

)
.
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A.4.1 Prior Distribution

Select the prior distribution for ρ to be normal and the distributions for Ση, Σν , and ΣZ0 to be inverse-
gamma. We specify the prior distributions for Σβ to be inverse-gamma.

Σβ ∼ IG
(
T0,β , S

−1
0,β

)

A.4.2 Gibbs Sampling

We use Gibbs sampling with the following 7 blocks.

Block 1 : p
(
βN |ρ,Σβ ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 2 : p

(
Σβ |ρ, βN ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 3 : p

(
ρ|βN ,Σβ ,Ση,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 4 : p

(
Ση|βN , ρ,Σβ ,Σν ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 5 : p

(
Σν |βN , ρ,Σβ ,Ση,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 6 : p

(
ΣZ0|βN , ρ,Σβ ,Ση,Σν , {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 7 : p

(
{εi,t}t=0,T

i=1,N |β
N ,Σβ , ρ,Ση,Σν ,ΣZ0, {yi,t}t=1,T

i=1,N

)

Modification of Blocks 3–7 are straightforward. We focus on block 1 and 2.

Block 1: βN

As in the previous case, the posterior is normally distributed. However, we now need to compute the posterior
mean and variance for each individual.

p
(
βi|ρ,Ση,Σν ,ΣZ0,Σβ , {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ N (µi,1,β ,Γi,1,β)

where

Γi,1,β =

[
Σ−1β +

1

Σν
X ′iXi

]−1
µi,1,β = Γi,1,β

[
1

Σν
X ′i (yi − εi)

]

Block 2: Σβ

p
(

Σβ |βN , ρ,Ση,Σν ,ΣZ0, {εi,t}t=1,T
i=0,N , {yi,t}

t=1,T
i=1,N

)
∼ IG

(
T1,β , S

−1
1,β

)
where
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T1,β = T0,β +N

S1,β = S0,β +

N∑
i=1

(βi)
2

A.5 Bayesian Estimation Procedure with a Mixture of Normal Distributions

The labor income process we want to estimate is:

yi,t = Xi,tβ + εi,t + νi,t

εi,t = ρεi,t−1 + ηi,t

for i = 1, ..., N and t = 1, ..., T .

ηi,t and νi,t are independent across i and t. They are distributed according to a mixture of mη and mν

number of normals, respectively.

ηi,t|sη,i,t=j ∼ N
(
0, hηh

j
η

)
p (sη,i,t = j) = πjη ∀j ∈ 1, 2, ...,mη

νi,t|sν,i,t=j ∼ N
(
0, hνh

j
ν

)
p (sν,i,t = j) = πjν ∀j ∈ 1, 2, ...,mν

For the shock k ∈ {η, ν}, hkhjk is the variance of distribution j, and πjk is the probability weight for
distribution j.3031 sk,i,t indicates from which distribution of the mixture the innovation for individual i in
time t came.

As before, εi,0 is distributed as normal:

εi,0 ∼ N (0,ΣZ0)

Our goal is to draw from

p
(
β, ρ, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N |{yi,t}
t=1,T
i=1,N

)
A.5.1 Prior

We specify the prior for β and ρ to be normal with arbitrarily large variance.

30Note: h and hj are not identified separately. Since we are only interested in h times hj the lack of identification
is inconsequential. h is added for numerical/computational reasons. See Gelman, Carlin, Stern, and Rubin (2009).

31The likelihood function of the mixture model is invariant to permutation of the components of the mixture. In
our application, we simply label the component with a smaller variance as the first component and the component
with a larger variance as the second component. For more detailed discussions, see Geweke (2007).

33



β ∼ N (β0,Γ0,β)

ρ ∼ N (ρ0,Γ0,ρ) I [−1 ≤ ρ ≤ 1]

We specify the prior for ΣZ0, hν , {hjν}
mν
j=1, hη, and {hjη}

mη
j=1 to be inverse-gamma.

ΣZ0 ∼ IG
(
T0,Z0, S

−1
0,Z0

)
hν ∼ IG

(
Thν ,0, S

−1
hν ,0

)
hjν ∼ IG

(
Thjν ,0, S

−1
hjν ,0

)
hη ∼ IG

(
Thη,0, S

−1
hη,0

)
hjη ∼ IG

(
Thjη,0, S

−1
hjη,0

)
We specify the prior for {πjν}

mν
j=1 and {πjη}

mη
j=1 to be Dirichlet.

p
(
{πjη}

mη
j=1

)
∼ D (r, r, ..., r)

p
(
{πjν}

mν
j=1

)
∼ D (r, r, ..., r)

In the estimation of the model with two normal mixtures in Section 4.4, the true value for hη and hν
are set to one. For prior distributions, we set Thν ,0 = Th1

ν ,0
= Th2

ν ,0
= 2, Shν ,0 = 1, Sh1

ν ,0
= Sh2

ν ,0
= 0.01,

Thη,0 = Th1
η,0

= Th2
η,0

= 2, Shη,0 = 1, Sh1
η,0

= Sh2
η,0

= 0.01. For the parameter of the Dirichlet distribution,
we set r = 0.5 for both πη and πν .

A.5.2 Estimation Algorithm

Gibbs sampling consists of the following 6 main blocks:
Block 1:

p
(
β|ρ, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 2:

p
(
ρ|β, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 3.1:

p
(
hν |β, ρ, {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 3.2:

p
(
{hjν}

mν
j=1|β, ρ, hν , {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 3.3:

p
(
{πjν}

mν
j=1|β, ρ, hν , {h

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
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Block 3.4:

p
(
{sν,i,t}t=1,T

i=1,N |β, ρ, hν , {h
j
ν}
mν
j=1, {π

j
ν}
mν
j=1, hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 4.1:

p
(
hη|β, ρ, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 4.2:

p
(
{hjη}

mη
j=1|β, ρ, hν , {h

j
ν}
mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 4.3:

p
(
{πjη}

mη
j=1|β, ρ, hν , {h

j
ν}
mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 4.4:

p
(
{sη,i,t}t=1,T

i=1,N |β, ρ, hν , {h
j
ν}
mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
Block 5:

p
(

ΣZ0|β, ρ, hν , {hjν}
mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N , {εi,t}

t=0,T
i=1,N , {yi,t}

t=1,T
i=1,N

)
Block 6:

p
(
{εi,t}t=0,T

i=1,N |β, ρ, hν , {h
j
ν}
mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {yi,t}t=1,T

i=1,N

)
Notation

Let (NT )
j
ν be the number of i-t pairs that have a ν innovation drawn from the jth distribution in the ν

mixture. That is,

(NT )
j
ν =

N∑
i=1

T∑
t=1

δ (sν,i,t, j)

where, δ is the Kronecker delta function: δ (a, b) = 1 if a = b and δ (a, b) = 0 if a 6= b.

Block 1

It is identical to the problem of drawing from the posterior of coefficients in a linear regression model.
The posterior distribution is normal, and its mean and variance are analytically computed.

p
(
β|ρ, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ N (µ1,β ,Γ1,β)

where

Γ1,β =

[
N∑
i=1

T∑
t=1

1

hνh
sν,i,t
ν

Xi,tX
′
i,t

]−1

µ1,β = Γ1,β

[
N∑
i=1

T∑
t=1

1

hνh
sν,i,t
ν

Xi,t (yi,t − εi,t)′
]
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Block 2

p
(
ρ|β, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ N (µ1,ρ,Γ1,ρ) [−1 ≤ ρ ≤ 1]

where

Γ1,ρ =

[
N∑
i=1

T∑
t=1

1

hηh
sη,i,t
ν

ε2i,t−1

]−1

µ1,ρ = Γ1,ρ

[
N∑
i=1

T∑
t=1

1

hνh
sν,i,t
ν

εi,t−1εi,t

]

Block 3.1

p
(
hν |β, ρ, {hjν}

mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mν
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ IG

(
S−1hν ,1, Thν ,1

)
where

Thν ,1 = Thν ,0 +mν +NT

Shν ,1 = Shν ,0 +

N∑
i=1

T∑
t=1

1

h
sν,i,t
ν

(yi,t −Xi,tβ − εi,t)2

Block 3.2

p
(
{hjν}

mν
j=1|β, ρ, hν , {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mν
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ IG

(
S−1
hjν ,1

, Thjν ,1

)
where

Thjν ,1 = T jν,0 + (NT )
j
ν

Shjν ,1 = Shjν ,0 +
1

hν

N∑
i=1

T∑
t=1

δ (sν,i,t, j) (yi,t −Xi,tβ − εi,t)2

for all 1 ≤ j ≤ mν .
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Block 3.3

p
(
{πjν}

mν
j=1|β, ρ, hν , {h

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mν
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ D (bν,1, bν,2, ..., bν,mν )

where

bν,j = r + (NT )
j
ν

for all 1 ≤ j ≤ mν .

Block 3.4

p
(
sν,i,t = j|β, ρ, hν , {hjν}

mν
j=1, {π

j
ν}
mν
j=1, hη, {h

j
η}
mη
j=1, {π

j
η}
mν
j=1, {sη,i,t}

t=1,T
i=1,N ,ΣZ0, {εi,t}t=0,T

i=1,N , {yi,t}
t=1,T
i=1,N

)
∼ πjν

(
hjν
)−0.5

exp

[
− (yi,t −Xi,tβ − εi,t)2

2hνh
j
ν

]

for all 1 ≤ t ≤ T , 1 ≤ i ≤ N .

Block 4

This block is analogous to Block 3. Replace each ν subscript with η and yi,t−Xi,tβ−εi,t with εi,t−ρεi,t−1.

Block 5

p
(

ΣZ0|β, ρ, hν , {hjν}
mν
j=1, {π

j
ν}
mν
j=1, {sν,i,t}

t=1,T
i=1,N , hη, {h

j
η}
mη
j=1, {π

j
η}
mη
j=1, {sη,i,t}

t=1,T
i=1,N , {εi,t}

t=0,T
i=1,N , {yi,t}

t=1,T
i=1,N

)
∼ IG

(
T1,Z0, S

−1
1,Z0

)
where

T1,Z0 = T1,Z0 +N

S1,Z0 = S0,Z0 +

N∑
i=1

ε2i,0

Block 6

For each individual i, we apply the Carter-Kohn algorithm. To cast our labor income processes into our
canonical form,

At = ρ, Bt = 1, Ct = β,

Dt = 1, Qt = hηh
sη,i,t
η , Rt = hνh

sν,i,t
ν ,

zt = Xi,t, S0|0 = 0, P0|0 = ΣZ0
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