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Abstract

This paper studies measurement errors that subtract signal from true variables
of interest, labeled lack of signal errors (LoSE). The effect on OLS regression of
LoSE is opposite the conventional wisdom about classical measurement errors,
with LoSE in the dependent variable, not the explanatory variables, causing at-
tenuation bias under some conditions. The paper provides evidence of LoSE in
US GDP growth during the period known as the Great Moderation (roughly the
mid-1980s to the mid-2000s), illustrating attenuation bias in regressions of GDP
growth on asset prices. These biases may have contributed to conventional macroe-
conomic analysis missing the severity of the adverse shocks hitting the economy
in the Great Recession.
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1 Introduction

This paper examines a simple generalization of the classical measurement error model

and studies its implications for ordinary least squares (OLS) regression. The usual model

starts with the true variable of interest and adds noise, or classical measurement error

(CME); see Klepper and Leamer (1984), Griliches (1986), Fuller (1987), Leamer (1987),

Angrist and Krueger (1999), Bound, Brown and Mathiowetz (2001) or virtually any

econometrics textbook. The generalization discussed here incorporates measurement

error that subtracts signal from the true variable of interest, a type of measurement

error that this paper calls Lack of Signal Error, or LoSE, for short.

The implications of LoSE for OLS regression are opposite the usual intuition about

measurement error, which is applicable to CME only. The CME intuition says that,

in a regression, measurement error in the dependent variable Y poses no real problems

for standard estimation and inference, with parameter estimates unbiased and consis-

tent. It is CME in the explanatory variables X that causes the real problems, namely

attenuation bias and inconsistency. However with LoSE these results are reversed. For

the baseline case considered here, LoSE in the explanatory variables X does not lead to

bias or inconsistency, similar to CME in Y . It is LoSE in the dependent variable Y that

introduces an attenuation-type bias and inconsistency into the regression under some

circumstances, namely, when the explanatory variables contain some signal missing from

the dependent variable.

This point is obvious when we consider the extreme case of maximum LoSE, an

error-ridden estimate Y of the true variable Y ⋆ that is just a constant equal to the

unconditional mean of Y ⋆. Then if Y ⋆ = Xβ + U for some X with positive variance, a

standard OLS regression of Y onX recovers β̂ = cov(X,Y )
var(X)

= 0 regardless of the true β. All
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of the variation in Y ⋆ from X is missing from the estimate Y , so the parameter estimate

is biased all the way to zero. In addition, the LoSE in Y shrinks the variance of the

regression residuals U and thus the standard errors, which are zero in this extreme case,

raising serious concerns about the robustness of hypothesis tests. Indeed, parameter

estimates that have been attenuated and estimated with false precision due to LoSE

easily could have led to the rejection of hypotheses that are actually true. The paper

derives instrumenting strategies to eliminate bias from LoSE, strategies not derived in

the previous literature.

Is LoSE just a curiosity, interesting because it runs contrary to conventional wisdom

about the effect of measurement error on regression estimates, but not relevant for the

type of work economists actually do? It has long been known that the initial releases of

macroeconomic quantities like US gross domestic product (GDP) are contaminated with

LoSE; see Mankiw and Shapiro (1986), who show that revisions to GDP growth add

news missing from its initial estimates, implying they lack signal. However, it has always

been an open question as to whether all of the news, or close to all of the news, about true

output growth eventually becomes incorporated through revisions. This paper provides

evidence that, over the period known as the Great Moderation (roughly the mid-1980s

to the mid-2000s), the answer is no: GDP growth still appears to be contaminated with

substantial LoSE even after it has passed through all of its revisions.

Regressions of GDP growth and its subcomponents on asset prices are widespread

in macroeconomics and finance, and if asset prices capture some of the signal missing

from these quantities, the estimated coefficients are biased. The paper examines this

hypothesis over the Great Moderation period by regressing different measures of output

growth on a fixed set of stock or bond prices. As expected, the regression coefficients
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increase when we switch the dependent variable from the initial GDP growth estimates

based on limited source data to the revised GDP growth estimates reflecting news from

more-comprehensive source data, consistent with LoSE in the initial GDP growth esti-

mates. Tellingly, the coefficients increase again when we switch the dependent variable

from latest, revised GDP growth to an alternative and likely superior measure of US

output growth, GDI growth.1 This increase in the coefficients is consistent with the

hypothesis that LoSE remains in GDP growth even after it has passed through all of

its revisions. Finally, the paper implements the instrumenting strategies derived here

for producing unbiased and consistent parameter estimates when the dependent vari-

able of a regression is contaminated with LoSE. The instrumental variables estimates,

which do not employ GDI growth at all, provide independent corroborating evidence of

substantial LoSE in latest, revised GDP growth over the Great Moderation period.

The attenuation biases from LoSE discussed here can lead applied macroeconomic

analysis astray in ways not fully appreciated by the prior literature. For example, the

paper illustrates how these biases may have contributed to conventional analysis underes-

timating the size of the shocks hitting the economy at the height of the Great Recession,

leading to some prominent and widely-discussed forecast errors. A better understanding

of the implications of LoSE in GDP growth might help avoid such forecasting mistakes

in the future.

Section 2 discusses the relation of the work here to the previous literature. After

providing a brief introductory motivation for the generalized measurement error model

in section 3, section 4 shows the implications of LoSE for OLS regression and derives

1On the superiority of GDI, see Nalewaik (2010) and Aruoba, Diebold, Nalewaik, Schorfheide, and
Song (2012, 2013).
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valid instruments for dealing with LoSE-induced bias. Section 5 discusses the data

and choice of instruments. Section 6 shows regression-based tests and instrumental

variables estimates providing evidence for LoSE in GDP growth. Section 7 shows how

the attenuation biases from LoSE in GDP growth may have contributed to conventional

macroeconomic analysis missing the severity of the shocks hitting the economy at the

height of the Great Recession. Section 8 concludes the paper.

2 Relation to Previous Literature

Much of the econometrics literature on non-classical measurement error has focused

on binary or categorical response data, for which the classical measurement error as-

sumptions cannot hold; see Card (1996), Bollinger (1996), and Kane, Rouse and Staiger

(1999). In a more general linear regression context, Berkson (1950) was an early paper

tackling some of the issues addressed here; see the discussion in Durbin (1954), Griliches

(1986, section 4), and Fuller (1987, section 1.6.4). Berkson had in mind a regression

using “controlled” measurements as the explanatory variable X , readings from a scien-

tific experiment where the unobserved true values of interest X⋆ fluctuate around the

observed controlled measurements in a random way. Berkson showed that if the unob-

served fluctuations X⋆ −X are uncorrelated with the measurements X , then regression

parameter estimates are unbiased. The literature following Berkson has generally fo-

cused on extending his results to regressions employing non-linear functions of X ; see

Geary (1953), Federov (1974), Carroll and Stefanski (1990), Huwang and Huang (2000),

and Wang (2003, 2004). This literature has focused less on the implications of “con-

trolled” measurements of the dependent variable Y .
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Use of measurement equations has a long history in economics, with Friedman (1957)

being a famous and notable early example, and several papers discuss different LoSE-

related estimation issues. These include Sargent (1989), who uses measurement equa-

tions in state space models to discuss optimally filter estimates, Bound, Brown and

Mathiowetz (2001), Koenig, Dolmas and Piger (2003), and Kimball, Sahm and Shapiro

(2008), Kishor and Koenig (2011), Jacobs and van Norden (2011) and Clements and Gal-

vao (2013). Following the pioneering work of Koenig, Dolmas and Piger (2003), many of

these papers, such as Clements and Galvao (2013), focus on the implications for forecast-

ing of LoSE in initial macroeconomic estimates (so later revisions yield “news”). In this

context, using the LoSE-biased parameter estimates often can yield the most accurate

forecasts (especially of the initial estimates), although section 7 below points out some

previously-unknown pitfalls of using LoSE-biased parameter estimates in a structural

model.

Perhaps the closest paper to this one is Hyslop and Imbens (HI, 2001), which shows

some of the major implications of LoSE, while simultaneously considering some other

measurement error biases. The results in this paper are distinct from those in HI in at

least four ways. First, in defining the LoSE in a variable as the difference between its

true value and a conditional expectation of that true value, this paper considers arbitrary

conditioning information sets Z, while HI consider more specialized information sets in a

univariate regression context.2 Second, when variables are mismeasured with LoSE, this

2A estimate may be informed by many different variables, as government statistical agencies draw
on vast information sets in producing their estimates. However, the examples in HI are stylized ones
meant to make a point, and they do acknowledge the importance of the conditioning information set:
“A crucial ingredient ... is the information set. It may be that the respondent had only a single unbiased
measurement of the underlying true variable. Alternatively, other variables, which themselves may enter
the econometric model of interest, may be used to produce this estimate.”
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paper derives precise conditions under which instrumental variables produce consistent

estimates. The previous literature has not derived valid instrumenting strategies. Third,

the previous literature does not discuss the problems that LoSE-shrunken standard errors

pose for hypothesis testing. And fourth, this paper shows evidence of LoSE in US GDP

growth even after it has passed through all of its revisions, both by comparing GDP

growth with an alternative measure of output, GDI growth, and by implementing the

instrumenting strategies derived here. These are important contribution of the paper.

A large body of empirical work has now accumulated on mismeasurement of mi-

croeconomic survey data, which generally rejects the CME assumptions and points to

negative correlation between the measurement errors and the true variables of inter-

est; see Bound and Krueger (1991), Bound, Brown, Duncan and Rodgers (1994), Pis-

chke (1995), Bollinger (1998), Bound, Brown and Mathiowetz (2001) and the references

therein, and Escobal and Laszlo (2008). Such negative correlation is an implication of

LoSE, although other measurement error models may generate such a result as well,

such as those considered in the appendix of this paper. Some of the problems of impu-

tation in microeconomic surveys are very much related to LoSE as well; see Hirsch and

Schumacher (2004) and Bollinger and Hirsch (2006).
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3 A Generalization of the Classical Measurement

Error Model

Let Y ⋆
t be the true variable of interest and Yt be a mismeasured estimate of that variable.

The generalized model of mismeasurement considered here is:

Yt = Y ⋆
t − ζt + εt.(1)

The term εt is “noise” or the classical measurement error (CME) in the estimate, with

εt and Y ⋆
t independent. The CME may arise from estimation errors or other sources.

Since many estimates Yt are based on surveys, survey sampling errors are often thought

to be a source of CME. The other measurement error is defined as:

ζt = Y ⋆
t − E (Y ⋆

t |Zt) .(2)

Zt is a (1× l) vector of possibly stochastic variables used to construct Yt, with εt and Zt

independent. In many cases a government statistical agency or some other organization

computes Yt based on information from surveys, administrative records, and other data

sources (source data for short); then Zt is functions of the source data. We place no

restrictions on Zt; it may be arbitrarily large, unlike the stylized examples of LoSE

studied in HI.3

The ζt represents the information about Y ⋆
t not contained in Zt—i.e. mismea-

3However, Zt need not be an exhaustive information set - i.e. it need not contain all available
relevant pieces of information about unobserved Y ⋆

t
. Resource and other constraints certainly preclude

this from being the case, and the sections below considering the implications of LoSE allow for this
possibility.
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surement from lack of signal about Y ⋆
t in the information used to construct Yt. As

such, ζt may be labelled the Lack of Signal Error, or LoSE for short. The LoSE

is uncorrelated with all functions of Zt, so cov (E (Y ⋆
t |Zt) , ζt) = 0 and cov (Y ⋆

t , ζt) =

cov (E (Y ⋆
t |Zt) + ζt, ζt) = var (ζt), so:

var (Yt) = var (Y ⋆
t ) + var (ζt)− 2 cov (Y ⋆

t , ζt) + var (εt)

= var (Y ⋆
t )− var (ζt) + var (εt) .(3)

Depending on whether the variance of the LoSE is greater than or less than the variance

of the CME, the variance of the estimate Yt may be greater than or less than the variance

of true Y ⋆
t . With CME alone, the variance of the estimate Yt must exceed the variance of

the true variable, but it is easy to think of counterexamples, such as when Y ⋆
t has positive

variance but the estimate Yt is just a constant. Note that while the generalized model

here is less restrictive than the CME model, some restrictions do remain. In particular,

zero covariance between ζt and Yt is a restriction violated by systematic biases in the

estimates. Appendix A considers some measurement error models of this form.

4 Implications for OLS Estimation

Consider ordinary least squares estimation of the relation between a mismeasured vari-

able Yt and a (1× k) set of explanatory variables Xt, using a sample of length T . When

stacking together the T observations, time subscripts are dropped for convenience. The

results below are for the case in which Yt follows the generalized model of section 3, and

Xt is measured without error, as is the case in the empirical work below. The most

interesting empirical results show through to this specialialized case of no measurement
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error in Xt; the more general case, in which both Xt and Yt follow the generalized model

of section 3, is analyzed in an appendix.

Our full set of assumptions follows:

Assumption 1 Y ⋆
t = X⋆

t β + U⋆
t . U⋆

t is i.i.d., mean zero, with var (U⋆
t ) = σ2

U⋆ and U⋆
s

independent of X⋆
t , ∀t, s. Measured Yt = E (Y ⋆

t |Zy
t ) + εt, with:

• The CME εt is i.i.d., mean zero, and independent of X⋆
t and Zy

t , with var (εt) = σ2
ε .

• The LoSE ζt = (X⋆
t − E (X⋆

t |Zy
t ))β + (U⋆

t − E (U⋆
t |Zy

t )) = ζxyt β + ζut . ζut is i.i.d.,

independent of X⋆
t , and mean zero with var (ζut ) = σ2

ζ,u, while ζxyt is i.i.d. and

mean zero with var (ζxyt ) = σ2
ζ,xy, a k × k matrix.

Measured Xt = X⋆
t , with:

• 1
T
(X⋆)′ X⋆ p−→ Qxx

• 1
T
(E (X⋆|Zy))′ E (X⋆|Zy)

p−→ Qzy
xx = Qxx − σ2

ζ,xy

All relevant fourth moments exist.

We impose the i.i.d. assumptions because they are approximately met in the applications

below, and because it allows discussion of bias as well as consistency.4 However, for other

time series applications, the i.i.d. assumption will be overly restrictive, and relaxing it

could be a topic for future research.

4The time series of latest GDP growth estimates over the Great Moderation sample studied here has
an AR1 coefficient of only 0.2, and the errors from the GDP growth regressions in section 6 are even
less persistent, with Breusch-Godfrey tests not rejecting independence of the errors across various lag
lengths.
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Given assumption 1, Yt can be written as:

Yt = E (Xt|Zy
t ) β + E (U⋆

t |Zy
t ) + εt(4)

= Xtβ + (E (X⋆
t |Zy

t )−Xt)β + E (U⋆
t |Zy

t ) + εt

= Xtβ − ζxyβ + U⋆
t − ζut + εt.

The OLS regression estimator is:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ (−ζxyβ + U⋆ − ζu + ε) .(5)

It is well known that the CME in Y introduces no bias and inconsistency, since ε is

independent of X . The LoSE in U⋆ introduces no bias or inconsistency either, since it

is uncorrelated with X . However, X = E (X|Zy) + ζxy is clearly not independent of

−ζxyβ, and:

E
(
β̂
)

= β − E
(
(X ′X)

−1
X ′ζxy

)
β(6)

β̂
p−→ β − (Qxx)

−1 σ2
ζ,xyβ(7)

The inconsistency of β̂ tends towards zero, since some variation in X that appears in Y ⋆

is missing from mismeasured Y , essentially driving down the covariance between X and

Y and the parameter estimates as well since the variance of X is not biased down. If X

is univariate, the inconsistency of β̂ is unambiguously towards zero, similar to standard

attenuation bias from CME in the explanatory variable of a regression.

The inconsistency of β̂ can be corrected by instrumenting with a (1×m) set of
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instruments Wt, with m ≥ k, if the instruments meet the following set of assumptions:

Assumption 2 With PW = W (W ′W )−1W ′, 1
T
X ′PWX

p−→ Qw
xx, a positive semi-

definite matrix, and 1
T
X ′PW (−ζxyβ + U⋆ − ζu + ε)

p−→ 0. All relevant fourth moments

exist.

The instruments must be uncorrelated with −ζxy, for example if Wt ∈ Zy
t , so that Wt is

independent of the information about Xt missing from Yt. With valid instruments, we

have:

β̂ =
(
X ′PWX

)
−1

X ′PWY

= β +
(
X ′PWX

)
−1

X ′PW (−ζxyβ + U⋆ − ζu + ε) ,(8)

and β̂
p−→ β.

The asymptotic distribution of the IV estimate β̂ is:

√
T
(
β̂ − β

)
d−→ N

(
0, (Qw

xx)
−1 (σ2

U⋆ − σ2
ζ,u + σ2

ε + β ′σ2
ζ,xyβ

))
,

where
d−→ denotes convergence in distribution as T −→ ∞, and N (a, b) is a Gaussian

distribution with mean a and variance b. The usual estimator of the variance of the

error term is:

s2 =
1

T

(
E (X|Zy) β + E (U⋆|Zy) + ε−Xβ̂

)
′
(
E (X|Zy)β + E (U⋆|Zy) + ε−Xβ̂

)

=
1

T
E (U⋆|Zy)′E (U⋆|Zy) +

1

T
ε′ε+

1

T
β ′E (X|Zy)′E (X|Zy)β − 1

T
β ′E (X|Zy)′Xβ̂

− 1

T
β̂ ′X ′E (X|Zy)β +

1

T
β̂ ′X ′Xβ̂ +

1

T
cross terms.

The first two terms converge in probability to σ2
U⋆ − σ2

ζ,u + σ2
ε , and the cross terms
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converge in probability to zero. The terms involving β and β̂ simplify in the limit since

β̂
p−→ β, producing a consistent estimate of the asymptotic error variance:

s2
p−→ σ2

U⋆ − σ2
ζ,u + σ2

ε + β ′σ2
ζ,xyβ.

The ζu component of the LoSE in Y decreases the variance of the regression residuals

and standard errors (whether or not the estimator is consistent), and the LoSE in Y

can be particularly pernicious when it both attenuates parameter estimates and shrinks

the regression standard errors. In these circumstances, the econometrician runs a high

risk of rejecting a candidate hypothesis β = β0, as long as β0 is non-zero, even when

the hypothesis is actually true. Regressions with such LoSE in Y will tend to show

an estimated relation between Y and X that is smaller in absolute value than the true

relation, with the true size of the relation appearing implausible because of excessively

small standard errors.

5 Data: US Macroeconomic Quantities

The decision to test for LoSE in US GDP growth over the Great Moderation period is

motivated by several considerations. GDP is estimated in a bottom-up, component-by-

component fashion using government survey data to estimate spending for each category

(consumption, investment, etc.) and then aggregating.5 But, goverment survey data at

the quarterly frequency is unavailable for many categories comprising a large share of

5The BEA does not use the information in stock or bond prices to make any direct or indirect
adjustments to this bottom-up estimation procedure, to the author’s knowledge.
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GDP, including most services categories of personal consumption expenditures.6 Growth

rates for these categories are typically interpolated or extrapolated using related indi-

cators, or estimated as a “trend extrapolation.” It is difficult to imagine how this lack

of hard information would not introduce some LoSE into GDP growth, and that LoSE

may have become more consequential over time as the share of services in US output

has increased.

Several comparisons with an alternative measure of output growth, GDI growth, are

also consistent with LoSE in GDP growth over the Great Moderation.7 The output

growth estimates are plotted in Figure 1 over this period, from the mid-1980s to the

mid-2000s.8 GDI growth has higher variance than GDP growth over this sample, which,

under the generalized measurement error model in section 3, may stem from some com-

bination of: (1) a relatively large amount of CME in GDI growth, boosting its variance,

and (2) a relatively large amount of LoSE in GDP growth, damping its variance.

The upcoming evidence in section 6 favors placing more weight on the second ex-

planation. Earlier research on revisions—see Fixler and Nalewaik (2007)—supports this

notion as well. Briefly, Table 1 shows that the variance of GDI growth becomes relatively

large only after the data pass through its sequence of annual revisions (GDI is unavail-

able when the “advance” estimates are released for each quarter about a month after the

quarter ends, but is always available when the “3rd” estimates are released about three

6This situation has begun to change with the introduction of the Quarterly Services Survey (QSS)
in 2002, but these data have no material affect on the Great Moderation period.

7GDI is also estimated in a bottom up fashion, estimating income from various categories (wages
and salaries, profits, etc.) and then aggregating. Most of the income-side data is ultimately based on
tax and adminstrative records, rather than samples as is the case for GDP.

8The “latest” time series employed in this paper are as they appeared close to the end of the Great
Moderation, in August 2007. The results in section 6 are similar using later data vintages.
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months after the quarter ends, and the variances of the “3rd” GDP and GDI growth

estimates are almost equal).9 Subsequent annual and benchmark revisions incorporate

more comprehensive and higher-quality source data, plausibly reducing measurement

error in the estimates, either LoSE or CME. If the bulk of the measurement error elim-

inated by the revisions is LoSE, so the revisions mainly add news to the estimates as in

Mankiw and Shapiro (1986), the variance of the estimates should increase as in table 1.

Moreover, the revisions increase the variance of GDI growth more than the variance of

GDP growth, consistent with the revisions adding more news to GDI growth than GDP

growth. The implication is that GDP growth is missing some news or signal, and is thus

contaminated with LoSE.

The statistics in Table 1 suggest that, of these output growth estimates, “advance”

GDP growth is contaminated with the most LoSE, as one would expect since it is based

on the least amount of information. Somewhat counterintuitively, it is just such variables

that are likely to meet the conditions of Assumption 2 and provide valid instruments W ,

motivating the instrumenting strategy below. The baseline regressions are of an output

growth estimate on current and lagged stock and bond prices, which may reflect some

information missing from the output growth estimates.10 Since stock and bond prices

9Each quarterly observation in the “advance” or “3rd” time series is the estimate for that quarter
released about one or three months after that quarter ends.

10Dynan and Elmendorf (2001) show that asset prices predict revisions to GDP growth, evidence
that asset prices contain information missed by the initial estimates of GDP growth. Asset prices may
contain information missed by the fully-revised estimates of GDP growth as well, entering through
publicly-available information about the state of the economy not fully incorporated into GDP growth,
such as the source data used to compute GDI, or as the aggregation of all the private information of
asset market participants.
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are measured with little error, we have:

∆Y ⋆ = Xβ + U⋆

∆Y i = Xβ̂i + U i,

where i indexes output growth estimates. In this case, the instruments must be un-

correlated with E
(
X|Zyi

)
− X , which is the information missing from output growth

estimate i that is captured by the asset prices X . Paradoxically, an instrument based

on a smaller information set, while remaining correlated with X , is more likely to be

uncorrelated with this missing information and thus meet the conditions of Assumption

2.

In particular, contemporaneous and lagged “advance” GDP growth rates are pre-

sumably in the information sets used to compute the various output growth estimates

examined here, all released after the “advance” estimate. The identifying assumption

employed here is that the “advance” GDP growth estimate for each quarter, and lagged

“advance” estimates, are uncorrelated with whatever information remains missing from

later, revised estimates of GDP growth for that quarter. Subcomponents of “advance”

GDP growth are likely in the information sets used to compute those later, revised GDP

growth estimates as well. Equipment and software (E&S) investment is an appealing

subcomponent to use as an instrument because it produces a high first-stage R-square,

its growth rate being highly correlated with stock price changes and bond spreads as

predicted by Q-theory—see Tobin (1969) and Philippon (2009). For this reason, cur-

rent and lagged “advance” growth rates of real E&S investment are the main set of

instruments W employed in the paper.
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6 Regression Evidence for LoSE in GDP growth in

the Great Moderation

Under the model of section 4, the OLS βi estimated in this section are governed by

equation (7) with X measured without error, and we have:

β̂GDI − β̂GDP
p−→ (Qxx)

−1 (σ2
ζGDP ,xy − σ2

ζGDI ,xy

)
β,(9)

where σ2
ζi,xy

is the variance of bias-inducing LoSE ζxy in estimate ∆Y i. When X is uni-

variate, a test of β̂GDI = β̂GDP equivalent to a test of σ2
ζGDP ,xy

= σ2
ζGDI ,xy

if Qxx and β

are treated as constants. |β̂GDI | > |β̂GDP | is then consistent with positive bias-inducing

LoSE variance in ∆Y GDP .11 Furthermore, for the instrumental variables estimates re-

ported below, standard Durbin-Wu-Hausman tests (see Hausman (1978)) are available

to test whether the OLS estimates β̂GDP are biased towards zero as in (7).

Table 2 shows estimation results using as the explanatory variable X an average of

current and lagged stock price growth; standard errors are in parentheses.12 Such a

specification can be motivated in several ways, but for our purposes, it suffices that a

relation between true output growth ∆Y ⋆ and stock prices X exists governed by a true

parameter vector β.13 Comparing the first two specifications of Table 2, we see that β

11An earlier working paper reported tests of equality between the βs across regressions, which Monte-
carlo simulations (of an environment where one dependent variable is more contaminated with LoSE
than another) showed have the expected properties of a textbook t-statistic.

12The standard errors are corrected for heteroskedasticity and autocorrelation, although there is little
evidence of either. Standard errors computed under the assumption of i.i.d. errors are very similar to
those reported here.

13An earlier working paper examined multivariate specifications of Table 2 that estimated the coeffi-
cient on each lag separately, which yielded results very similar to those reported here. The main results
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increases when switching the dependent variable from “advance” GDP growth to latest

GDP growth, consistent with LoSE in “advance” GDP growth.14 Switching from latest

GDP growth to latest GDI growth, β increases again, consistent with LoSE in not only

the “advance” GDP growth estimates, but also latest, revised GDP growth.

Of course, other explanations for this result are possible, but appear less likely. First,

alternative measurement error models that do not meet the restrictions of section 3 could

hold. Appendix A examines such a model in which GDP and GDI growth are crudely

rescaled versions of true output growth, and finds that it is inconsistent with results

from reverse regressions. Second, and more obviously, stock prices could be reacting

to estimates of corporate profits, which are a component of GDI, more than to output.

However, if this were true, β should be particularly large using the initial estimates of

GDI (and profits) to which the stock market reacts in real time. The fourth column of

the table shows this is not the case. Moreover, the fifth column shows that β actually

increases when corporate profits are stripped out of GDI.

The last specification of table 2, the instrumental variables estimate, does not use

GDI growth at all, and is consistent with even more LoSE-inducing bias in latest GDP

growth than is evident based on the comparison with GDI growth. In particular, this

estimate implies attenuation of the OLS β computed using latest GDP growth of about

here are also robust to the inclusion of control variables such as lags of the output growth measures.
The stock price changes are quarterly growth rates of the Wilshire 5000 stock price index, while the
output growth measures are annualized quarterly growth rates as in table 1, so the effect on the level
of output in percentage points of a permanent 1 percent stock price increase is roughly the reported
coefficient divided by 4. The stock price index is nominal, and the results change little if the stock price
index is deflated.

14Substituting either the 2nd or 3rd GDP growth estimates for the “advance” estimates yields a very
similar β of 0.13, consistent with these early revisions not adding any of the missing signal that is
reflected in stock price movements. The greater signal in the latest estimates is added in subsequent
annual revisions.
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60 percent.15 The Durbin-Wu-Hausman test rejects the hypothesis of no bias in that

OLS β with a p-value of 0.02.

Table 3 shows similar results using bond spreads—the difference in yield between 10-

year and 2-year US treasury notes (TERM), and the difference in yield between corporate

bonds and 10-year treasury notes (DEF).16 Many papers have used similar variables

to forecast output growth; see Chen (1991) and Estrella and Hardouvelis (1991), for

example. The results (where each pair of βs is from a separate regression) provide almost

uniform evidence favoring LoSE-induced attenuation of the OLS coefficients computed

using either “advance” or latest, revised GDP growth. All of the βDEF coefficients

increase in absolute value when switching the dependent variable from “advance” to

latest GDP growth and again when switching from latest GDP growth to latest GDI

growth. Similarly, all of the βTERM coefficients increase when switching from latest GDP

growth to latest GDI growth except for k ≤ 2, horizons where the explanatory power of

TERM is weakest.

The instrumental variables estimates in Table 3 are generally consistent with even

more LoSE-inducing bias in latest GDP growth than is evident from the comparison

with GDI growth. The Durbin-Wu-Hausman tests reject the hypothesis of no bias in

the OLS βs computed using latest GDP growth, with p-values ranging from 0.07 (for

k = 1) to 0.002 (for k = 4 and k = 5). The instruments are highly correlated with

DEF at all horizons k, with high first-stage R2s. The very large instrumental variables

15This result is robust to the choice of instruments likely to meet the conditions of Assumption 2. In
particular, estimates using only lagged “advance” E&S growth rates, excluding the contemporaneous
growth rate from W , yield a β of 0.47. Substituting “advance” GDP growth for “advance” E&S growth
in W cuts down on the first-stage R2 considerably, but yields the same β of 0.47.

16The corporate bond yield measure is the Merrill Lynch High Yield Master II Index. This series
extends back only as far as 1986; hence the shorter sample for these regressions.
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estimates of βTERM should be discounted for k ≤ 2 as the instruments are weak, but for

the longer horizons where the instruments have higher first-stage R2s, the IV βTERMs

are consistent with LoSE-induced attenuation of the OLS βTERMs computed using latest

GDP growth of between 50 and 70 percent. This degree of attenuation bias, similar to

that found using stock prices, could be related to some puzzles regarding the continued

forecasting power of the yield curve, as noted in Rudebusch and Williams (2009). In

particular, the LoSE in GDP growth may have masked the long-horizon forecasting

power of the yield curve to forecasters focused on predicting GDP growth rather than

recessions, which are dated based on a broad array of indicators, including income data,

that may be less contaminated with LoSE than is GDP growth.

7 Application: Underestimating the Depth of the

Great Recession

The key macroeconomic forecasting question at the end of 2008 and early 2009 was,

given the extraordinary turmoil in financial markets, how sharply would the real econ-

omy turn down? Financial markets had already tanked by that time, so the issue was

how to translate the information in financial markets into a forecast of real economic

activity. Blue Chip Consensus Forecast for the unemployment rate issued in January

2009 (the solid blue line in Figure 2) underpredicted the actual rise in the unemployment

rate (the black line) by a wide margin, as did even the average of the top ten Blue Chip

forecasts (the dashed blue line). Publicly-available government forecasts, such as the red

line, did not do much better (see Romer and Bernstein, 2009). Macroeconomic analysts

typically use an Okun’s law-type relation to translate GDP forecasts into unemployment
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rate forecasts, so LoSE in GDP growth may have contributed to these forecast errors.

The LoSE in the “advance” 2008Q4 GDP growth estimate is obvious: it badly under-

estimated the severity of the downturn, revising down from -3.8 percent (annualized)

to -6.3 percent two months later and even more subsequently, and this poor initial esti-

mate may have contributed to the overly-optimistic unemployment rate forecasts. More

subtly, LoSE in the latest available GDP growth estimates over the preceding Great

Moderation period may have been problematic for forecasting the depth of the Great

Recession as well.17

Consider the OLS regressions from table 3 using latest GDP growth.18 Figure 2

plots three additional forecasts of the unemployment rate, the green solid, dashed and

dotted lines, using the first difference of the unemployment rate, real GDI growth, and

real GDP growth as they appeared in December 2008 as dependent variables in the

regression specification in Table 4.19 The forecasts for GDI growth and GDP growth are

translated into unemployment rate forecasts using an Okun’s law relation.20

17Note that while this was an important episode in the history of macroeconomic forecasting, the
results in this section are meant to be illustrative only. For more comprehensive out-of-sample forecast
analyses, see Koenig, Dolmas and Piger (2003) and Clements and Galvao (2013).

18These regressions were posted to the Federal Reserve Board web site in March 2008, prior to massive
intensification of financial market turmoil discussed in this section.

19Specifically, the forecasts for 2008Q4, 2009Q1, 2009Q2, 2009Q3, and 2009Q4 are predicted values
from five regressions as in table 4 (for k = 0, 1, 2, 3, and 4), with the average values for the corporate
bond spread and the slope the yield curve in December 2008 used to produce predicted values. The
average level of the high-yield corporate bond spread was almost 20 percentage points in December 2008,
compared to an average level of around 4 percentage points during expansions. During the previous
two recessions, this spread had peaked at around 10 percentage points.

20This is estimated by regressing the quarterly change in the unemployment rate on the contem-
poraneous quarterly output growth measure and two of its lags, using a 1959Q4 to 2008Q3 sample.
Note that, if the primary source of measurement error in the output growth measures is LoSE, these
regressions yield consistent parameter estimates since the LoSE-ridden variables are explanatory, and
the downward biases from the first stage regressions using bond spreads are passed through to the
unemployment rate forecasts. In contrast, in the crude rescaling model outlined in Appendix A, the
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The unemployment rate forecasts produced directly from bond spreads (the solid

green line) track the rise in unemployment almost perfectly over the first three quarters

of the projection, before overshooting in the second half of 2009. The Okun’s law trans-

lation of the GDP growth projection (the dotted green line) undershoots these direct

forecasts of the unemployment rate by about a half a percentage point in 2008Q4 and

one and a half percentage points in 2009Q4. Interestingly, the Okun’s law translation of

the GDI growth projection (the dashed green line) also undershoots the direct forecasts

of the unemployment rate, and the unemployment rate itself for much of the forecast

period. But, since the bond spread coefficients are larger in absolute value, the under-

shooting is considerably less than using GDP. In particular, in the first half of 2009,

more than half of the forecast error from the Okun’s law translation of GDP growth

disappears when we switch from GDP growth to GDI growth, likely because GDI is

less contaminated with LoSE. This suggests that, after financial markets tanked in late

2008, LoSE in GDP growth over the Great Moderation period contributed to the fail-

ure of conventional macroeconomic models and analysis to forecast the severity of the

Great Recession. Had that analysis employed the information in GDI growth, instead

of focusing solely on GDP growth, it might not have misread the signals from financial

markets so badly.

8 Conclusions

The canonical classical measurement error (CME) model is too restrictive to handle

important types of measurement error, including measurement error in one of the most

bias in the second stage regressions would largely offset the bias in the first stage regressions using bond
spreads, which does not appear to be the case empirically.
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widely-followed macroeconomic time series, US GDP growth. The paper studies a sim-

ple generalization of the CME model that is mathematically tractable, embeds the CME

model as a special case, and adds useful flexibility. Instead of just allowing measure-

ment error that adds noise to the true variable of interest, the generalization permits

measurement errors that subtract signal from that variable, called Lack of Signal Errors,

or LoSE, for short.

In some ways, this generalization of the CME model is the flip side of the coin

regarding the effect of errors in variables on ordinary least squares regression. CME

in the dependent variable of a regression Y does not bias parameter estimates and

increases standard errors, and, in the baseline case studied here, LoSE in the explanatory

variables X has the same effect. Of course, CME in the explanatory variables X does

bias regression parameter estimates, towards zero in the univariate case; LoSE in the

dependent variable Y introduces a similar attenuation bias under some circumstances,

namely, when some of the signal missing from the dependent variable Y is captured

by the explanatory variables X . LoSE in Y also shrinks the variance of the regression

residuals, raising concerns about the robustness of hypothesis tests by increasing the

probability of type I errors. In the limiting case of maximal LoSE, Y approaches a

constant, and in a regression of Y on any non-constant variable X , β̂ = cov(X,Y )
var(X)

and

var
(
β̂
)
approach zero, regardless of the true β. The result is badly attenuated parameter

estimates, estimated with false precision. On a positive note, the results derived here

provide some clear prescriptions for handling this type of attenuation, in terms of choice

of instruments. The previous literature had not developed instrumenting strategies for

dealing with bias from LoSE.

The paper provides evidence for LoSE not only in the initial GDP growth estimates
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based on limited source data, but also the latest, revised GDP growth estimates based

on more comprehensive data. In particular, coefficients from regressions of the GDP

growth estimates on a fixed set of stock or bond prices are smaller than coefficients

from regressions that substitute for GDP an alternative measure of US output, GDI,

that is likely more accurate than GDP over the Great Moderation period—see Nalewaik

(2010) and Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2012, 2013). These

results are consistent with LoSE in GDP growth even after it has passed through all

of its revisions. The paper shows that some other forms of non-classical measurement

error cannot explain the differences in coefficients across these regressions. Furthermore,

implementation of the instrumenting strategies derived in this paper, which rely in no

way on the information in GDI growth, corroborate and provide independent amplifying

evidence of substantial LoSE in latest, revised GDP growth over the Great Moderation

period.

Some implications of significant LoSE in latest, revised GDP growth and its major

subcomponents follow immediately. Those variables are simply less informative than

many macroeconomists currently believe, given the common but incorrect presumption

that the fully-revised estimates are measured with little error. And in a macroeconomic

forecasting context, the attenuation biases discussed here can lead to serious mistakes.

In particular, in late 2008 and early 2009, conventional macroeconomic analysis severly

underestimated the size of the shocks that had hit the economy and that were already re-

flected in the behavior of asset prices. The paper demonstrates that part of that forecast

error may have been due to the focus of conventional macroeconomic analysis on GDP

growth: LoSE in GDP growth likely biased down the coefficients employed to translate

asset prices into forecasts of output and unemployment. A better understanding of the
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implications of LoSE in GDP growth may help avoid such forecast errors in the future.
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Table 1: Summary Statistics on Vintages of GDP and GDI Growth

Quarterly Data, 1984Q3-2004

Vintage var
(
∆Y GDP

t

)
var

(
∆Y GDI

t

)

Current Quarterly, “Advance” 3.1 .

Current Quarterly, “3rd” 4.1 4.0

Latest Vintage Available 4.2 4.8

Note: Each quarterly observation in the “advance” or “3rd” time series is the estimate for

that quarter released about one or three months after that quarter ends.

Table 2: Regressions of Different Measures of Quarterly Output Growth

on Current and Lagged Stock Price Growth, 1984Q3 to 2004Q4:

∆Y i
t = α+ β (∆pt +∆pt−1 + . . .+∆pt−6) /7 + U i

t

Measure: ∆Y GDP ∆Y GDP ∆Y GDI ∆Y GDI ∆Y GDI−CP ∆Y GDP

Vintage: “Advance” Latest Latest “3rd” Latest Latest

Estimation: OLS OLS OLS OLS OLS IV

β: 0.142 0.214 0.325 0.152 0.389 0.522

(0.060) (0.068) (0.073) (0.075) (0.078) (0.213)

Note: The instruments are the time t “advance” growth rate of real equipment and soft-

ware investment, scaled by its share of nominal GDP to approximate contributions to real

GDP growth, and 6 of its lags; the first stage R2 is 0.22.
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Table 3: Regressions of Different Measures of Quarterly Output Growth

on Lagged Interest Rates Spreads (TERM and DEF), 1988Q3 to 2004Q4:

∆Y i
t = α+ βTERM

(
r10yrt−k − r2yrt−k

)
+ βDEF

(
rcorpt−k − r10yrt−k

)
+ U i

t

Measure: ∆Y GDP , “Advance” ∆Y GDP , Latest ∆Y GDI , Latest ∆Y GDP , Latest

Estimation: OLS OLS OLS IV, E&S

βTERM βDEF βTERM βDEF βTERM βDEF βTERM βDEF

k=1 0.20 -0.50 0.31 -0.61 0.23 -0.79 2.83 -1.11

(0.26) (0.13) (0.26) (0.13) (0.29) (0.10) (2.68) (0.36)

k=2 0.42 -0.44 0.48 -0.53 0.43 -0.69 2.75 -0.79

(0.26) (0.12) (0.31) (0.12) (0.33) (0.13) (1.18) (0.27)

k=3 0.58 -0.38 0.60 -0.40 0.68 -0.65 1.68 -0.64

(0.30) (0.12) (0.36) (0.15) (0.37) (0.15) (0.59) (0.20)

k=4 0.62 -0.23 0.57 -0.28 0.70 -0.50 1.87 -0.49

(0.32) (0.15) (0.39) (0.17) (0.40) (0.17) (0.55) (0.21)

k=5 0.59 -0.19 0.67 -0.29 0.75 -0.41 1.97 -0.41

(0.35) (0.14) (0.38) (0.14) (0.44) (0.19) (0.63) (0.23)

k=6 0.72 -0.27 0.76 -0.32 0.92 -0.39 1.75 -0.31

(0.35) (0.10) (0.38) (0.13) (0.41) (0.16) (0.63) (0.24)

k=7 0.73 -0.19 0.81 -0.20 0.96 -0.39 1.84 -0.18

(0.35) (0.10) (0.36) (0.13) (0.38) (0.15) (0.73) (0.22)

k=8 0.66 -0.10 0.72 -0.15 0.94 -0.27 1.72 -0.15

(0.34) (0.13) (0.36) (0.14) (0.37) (0.15) (0.71) (0.21)

Note: The instruments are the time t “advance” growth rate of real equipment and software investment, scaled by

its share of nominal GDP to approximate contributions to real GDP growth, and k of its lags. The first stage R2s for
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DEF range from 0.43 to 0.53, depending on k. The first stage R2s for TERM range from 0.01 (k = 1) to 0.26 (k = 8).

Appendix A:

Alternative forms of mismeasurement

Start with the conditioning information set Zt, and assume E (Y ⋆
t |Zt) = Ztγ. In

an alternative form of mismeasurement, the estimate Yt misuses Zt, so Yt = Ztγ̃ + εt

with γ̃ 6= γ. The estimate “misses” in a systematic way, inconsistent with the efficiency

assumptions of section 2. For estimation and inference about Y ⋆ (for example in re-

gressions), these systematic “misses” clearly lead to biased and inconsistent estimates.

Unless additional information is available about the nature of Ztγ̃ − Ztγ, the direction

and magnitude of these biases is unclear, but in highly stylized examples the biases may

be derived. One such example is Yt = α0 + α1Y
⋆
t + εt, with α0 6= 0 and α1 6= 1, and

εt noise. This model is employed by de Leeuw and McKelvey (1983), Bound, Brown,

Duncan and Rodgers (1994), Pischke (1995), and Bound, Brown and Mathiowetz (2001).

In the case of latest GDP and GDI growth, ignoring constants, consider:

Y GDP = αGDPY ⋆ + εGDP and: Y GDI = αGDIY ⋆ + εGDI ,

with εGDP and εGDI noise. In this model, the regressions in table 2 pin down the relative

αs, since:

β̂GDI

β̂GDP

p−→ αGDI

αGDP
.(10)
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Interestingly, reverse regressions X = Y β̂r + Ur yield:

β̂GDI
r

β̂GDP
r

p−→ αGDP var(Y ⋆) +
σ2

εGDP

αGDP

αGDI var(Y ⋆) +
σ2

εGDI

αGDI

.(11)

While an increase in αGDP , ceteris paribus, decreases the ratio (10) from the forward

regression, if var(Y ⋆) > σ2
εGDP , it increases the ratio (11) from the reverse regression. So,

if the variance of true GDP growth exceeds the variance of the noise in measured GDP

growth (and GDI growth), which seems plausible, these ratios (10) and (11) move in

opposite directions with respect to αGDP (and αGDI) under this crude rescaling model.

Table 2 implies αGDI/αGDP = 1.5, so we should observe βGDI
r /βGDP

r = 0.66 in the

reverse regression in table 2A with no noise in either estimate. The ratio is very far

from that, 1.32. Adding some noise variance to both estimates takes the implied ratio

from (11) closer to 1, but it exceeds 1 only if the noise variance in GDP growth exceeds

the noise variance in GDI growth by an implausibly large amount. Specifically, a ratio

of 1.32 could be consistent with (11) if half the variance of GDP growth were noise

uncorrelated with GDI growth, but the estimated covariance between GDP and GDI

growth is larger than half the variance of GDP growth, so this is highly unlikely: a test

of the hypothesis that this covariance (about 3.1 over the 1984Q3 to 2004Q4 sample) is

half the variance of GDP growth (about 4.2) rejects with a p-value of 0.01.21

Similarly, univariate specifications similar to table 3 but using only DEF imply

αGDI/αGDP ranging from 1.3 to 2.0, as can be seen comparing the third and fourth

21These calculations assume no noise in GDI growth, but examination of (11) shows that allowing
for noise in GDI growth only increases the already implausibly-large fraction of the variance of GDP
growth that must be noise under the crude rescaling model. Allowing a realistic amount of noise in
GDI growth, then, only reduces the plausibility of the crude rescaling model.
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columns of table 3A. However, comparing the sixth and seventh columns, we see the

coefficients using GDI growth as the explanatory variable are once again larger in abso-

lute value than the coefficients using GDP growth, inconsistent with the crude rescaling

model and plausible assumptions about the noise variances.

By contrast, the generalized LoSE model outlined in section 3 yields the following

for the reverse regressions:

β̂GDI
r − β̂GDP

r

p−→
(
σ2
εGDP − σ2

εGDI

var(Y GDP )

var(Y GDI)

)
βr

var(Y GDP )
.(12)

An increase in β̂GDI relative to β̂GDP implies an increase in the variance of LoSE in

Y GDP relative to Y GDI , which reduces
var(Y GDP )
var(Y GDI )

and increases β̂GDI
r − β̂GDP

r , all else

equal. This model is much more consistent with the results from the reverse regressions.

Table 2A: Reverse Regressions of Current and Lagged Stock Price Growth

on Different Measures of Quarterly Output Growth, 1984Q3 to 2004Q4:

(∆pt +∆pt−1 + . . . +∆pt−6) /7 = α+ βr∆Y i
t + U i

r,t

Measure: ∆Y GDP ∆Y GDP ∆Y GDI ∆Y GDI ∆Y GDI−CP

Vintage: “Advance” Latest Latest “3rd” Latest

β: 0.411 0.454 0.600 0.338 0.497

(0.194) (0.182) (0.169) (0.161) (0.140)
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Table 3A: Regressions of Lagged Interest Rates Spreads (DEF) on

Different Measures of Quarterly Output Growth, 1988Q3 to 2004Q4:

Forward: ∆Y i
t = α+ β

(
rcorpt−k − r10yrt−k

)
+ U i

t

Reverse:
(
rcorpt−k − r10yrt−k

)
= α+ βr∆Y i

t + U i
t

Measure: Forward βs Reverse βrs

Measure: ∆Y GDP ∆Y GDP ∆Y GDI ∆Y GDP ∆Y GDP ∆Y GDI

Vintage: “Advance” Latest Latest “Advance” Latest Latest

k=1 -0.47 -0.58 -0.76 -0.48 -0.46 -0.52

(0.13) (0.13) (0.11) (0.12) (0.11) (0.10)

k=2 -0.40 -0.48 -0.64 -0.39 -0.38 -0.43

(0.13) (0.13) (0.14) (0.12) (0.10) (0.09)

k=3 -0.31 -0.33 -0.57 -0.30 -0.26 -0.38

(0.14) (0.15) (0.17) (0.12) (0.11) (0.09)

k=4 -0.15 -0.21 -0.41 -0.15 -0.17 -0.28

(0.16) (0.16) (0.17) (0.15) (0.12) (0.10)
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Appendix:

Regression with Measurement Error in both X and Y ,

and examples highlighting the implications of LoSE

This appendix discusses regression when both X and Y follow the generalized mea-

surement error model of section 3, before examining special cases highlighting the most

important implications of LoSE in X and Y for parameter estimates and standard errors.

Our full set of assumptions follows:

Assumption 1 Y ⋆
t = X⋆

t β + U⋆
t . U⋆

t is i.i.d., mean zero, with var (U⋆
t ) = σ2

U⋆ and U⋆
s

independent of X⋆
t , ∀t, s. Measured Yt = E (Y ⋆

t |Zy
t ) + εt, with:

• The CME εt is i.i.d., mean zero, and independent of all conditioning information

sets, with var (εt) = σ2
ε .

• Zy may be partitioned into two sets of variables, Zy
x and Zy

u, with variables in Zy
x

independent of U⋆ and Zy
u, and variables in Zy

u independent of X⋆ and Zy
x.

• The LoSE ζt =
(
X⋆

t − E
(
X⋆

t |Zy
x,t

))
β +

(
U⋆
t − E

(
U⋆
t |Zy

u,t

))
= ζxyt β + ζut . ζut is

i.i.d. and mean zero with var (ζut ) = σ2
ζ,u, and ζxyt is i.i.d. and mean zero with

var (ζxyt ) = σ2
ζ,xy, a k × k matrix.

Measured Xt = E (X⋆
t |Zx

t ) + εxt , with:

• The CME εxt is i.i.d., mean zero, independent of εt and all conditioning information

sets, with var (εxt ) = σ2
ε,x, a k × k matrix.

• The variables in Zx are independent of U⋆ and Zy
u.

1



• The LoSE ζxt = X⋆
t − E (X⋆

t |Zx
t ) is i.i.d. and mean zero with var (ζt) = σ2

ζ,x, a

k × k matrix.

• As T −→ ∞:

– 1
T
(X⋆)′ X⋆ p−→ Qxx

– 1
T
(E (X⋆|Zy

x))
′E (X⋆|Zy

x)
p−→ Qzy

xx = Qxx − σ2
ζ,xy

– 1
T
(E (X⋆|Zx))′ E (X⋆|Zx)

p−→ Qzx
xx = Qxx − σ2

ζ,x

– 1
T
(E (X⋆|Zy

x))
′E (X⋆|Zx)

p−→ Qzb
xx

– 1
T
X ′X

p−→= Qzx
xx + σ2

ε,x.

All relevant fourth moments exist.

The assumptions imposed on the information sets Zy and Zx regarding partitioning and

independence allow us to factor the joint distribution of the relevant variables as follows:

f (U⋆, X⋆, Zy, Zx) = fUZ (U⋆, Zy
u) fXZ (X⋆, Zy

x , Z
x) .

Without these assumptions, the conditioning may introduce correlation between the

measurement error in X and the regression residual (which includes the measurement

error in Y ). For example, assume the information sets Zy
x and Zy

u are univariate and

Zx = Zy
u + Zy

x ; then E (X⋆
t |Zx

t ) and ζxt are correlated with U⋆ (as long as Zy
u captures

some variation in U⋆), and the above factorization is not valid. Another example is in

section 3.1 of HI, and while these biases are likely worthy of further empirical study,

they are of a different nature from those introduced by LoSE, and studying them in

detail is beyond the scope of this paper.1

1Most important, these biases are not applicable to regressions using X variables measured without
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Given assumption 1, Yt can be written as:

Yt = E
(
X⋆

t |Zy
x,t

)
β + E

(
U⋆
t |Zy

u,t

)
+ εt(1)

= Xtβ +
(
E
(
X⋆

t |Zy
x,t

)
−Xt

)
β + E

(
U⋆
t |Zy

u,t

)
+ εt

= Xtβ +
(
E
(
X⋆

t |Zy
x,t

)
−E (X⋆

t |Zx
t )− εxt

)
β + U⋆

t − ζut + εt.

The OLS regression estimator is:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ ((E (X⋆|Zy
x)− E (X⋆|Zx)− εx) β + U⋆ − ζu + ε) .(2)

Taking expectations and probability limits of (2) yields:

E
(
β̂
)

= β + E
(
(X ′X)

−1
X ′ (E (X⋆|Zy

x)− E (X⋆|Zx)− εx)
)
β, and:(3)

β̂
p−→ β +

(
Qzx

xx + σ2
ε,x

)
−1 (

Qzb
xx −Qzx

xx − σ2
ε,x

)
β.(4)

The usual attenuation bias and inconsistency from σ2
ε,x is evident. The additional in-

consistency from LoSE depend on the difference between Qzb
xx and Qzx

xx.

The inconsistency of β̂ can be corrected by instrumenting with a (1×m) set of

instruments Wt, with m ≥ k, if the instruments meet the following set of assumptions:

Assumption 2 With PW = W (W ′W )−1W ′, 1
T
X ′PWX

p−→ Qw
xx, a positive semi-

definite matrix, and 1
T
X ′PW ((E (X⋆|Zy

x)−E (X⋆|Zx)− εx)β + U⋆ − ζu + ε)
p−→ 0. All

relevant fourth moments exist.

error—see also section 3.2 of HI. All of the regressions in the empirical sections 6 and 7 of this paper
use X variables measured without error.
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To correct the biases in OLS, valid instruments must be uncorrelated with εx, a standard

condition. However, an additional condition must be met: the instruments must be

uncorrelated with E (X⋆|Zy
x) − E (X⋆|Zx). This condition is met by instruments W

that are common to both information sets (if such information exists), so W ⊂ Zx and

W ⊂ Zy
x , since W ′E (X⋆|Zy

x) and W ′E (X⋆|Zx) then have the same probability limit.

With valid instruments, we have:

β̂ =
(
X ′PWX

)
−1

X ′PWY

= β +
(
X ′PWX

)
−1

X ′PW ((E (X⋆|Zy
x)−E (X⋆|Zx)− εx)β + U⋆ − ζu + ε) ,(5)

and β̂
p−→ β. The asymptotic distribution of the estimator is:

√
T
(
β̂ − β

)
d−→ N

(
0, (Qw

xx)
−1

(
σ2
U⋆ − σ2

ζ,u + σ2
ε + β′

(
Qzy

xx − 2Qzb
xx +Qzx

xx + σ2
ε,x

)
β
))

.

where
d−→ denotes convergence in distribution as T −→ ∞, and N (a, b) is a Gaussian

distribution with mean a and variance b. The usual estimator of the variance of the error

term, s2 = 1
T

(
Y −Xβ̂

)
′
(
Y −Xβ̂

)
, converges to the error variance in this asymptotic

distribution:

s2 =
1

T

(
E (X⋆|Zy

x)β + E (U⋆|Zy
u) + ε− (E (X⋆|Zx) + εx) β̂

)
′

∗
(
E (X⋆|Zy

x)β + E (U⋆|Zy
u) + ε− (E (X⋆|Zx) + εx) β̂

)

=
1

T
E (U⋆|Zy

u)
′ E (U⋆|Zy

u) +
1

T
ε′ε+

1

T
β′E (X⋆|Zy

x)
′E (X⋆|Zy

x) β

− 1

T
β′E (X⋆|Zy

x)
′E (X⋆|Zx) β̂ − 1

T
β̂′E (X⋆|Zx)′E (X⋆|Zy

x)β

+
1

T
β̂′E (X⋆|Zx)′ E (X⋆|Zx) β̂ +

1

T
β̂′εx′εxβ̂ +

1

T
cross terms.

The first two terms converge in probability to σ2
U⋆ − σ2

ζ,u + σ2
ε ; the terms involving β
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and β̂ simplify in the limit since β̂
p−→ β; and the cross terms converge in probability

to zero. Then: s2
p−→ σ2

U⋆ − σ2
ζ,u + σ2

ε + β ′
(
Qzy

xx − 2Qzb
xx +Qzx

xx + σ2
ε,x

)
β.

Several specialized examples of this general measurement error model follow, high-

lighting the following important implications of LoSE in X and Y for parameter esti-

mates and standard errors.

Example 1:

X Mismeasured, Y Not Mismeasured: No LoSE Problems

The LoSE in X, ζx, introduces no bias or inconsistency into the estimates, as long

as all k explanatory variables are conditioned on the same information set Zx. Similar

to CME in Y , the only effect of LoSE in X is to increase the variance of the regression

residuals.

Given the traditional focus on mismeasurement in X on regression estimation, we

begin with this subsection making the following assumption (on top of assumption 1):

Assumption 3 Yt is not mismeasured: Yt = Y ⋆
t .

Then (4) simplifies to:

Y ⋆
t = X⋆

t β + U⋆
t

= Xtβ + (X⋆
t −Xt) β + U⋆

t

= Xtβ − εxt β + ζxt β + U⋆
t .

Not all of the true variation in X⋆
t appears in Xt due to LoSE, but all of that variation

does appear in Y ⋆
t through X⋆

t β. The variation in Y ⋆
t missing from Xt is relegated to

the error term of this equation.
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The OLS regression estimator in this case is:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ (−εxβ + ζxβ + U⋆) .

Since ζx is uncorrelated with E (X⋆|Zx) + εx = X , the LoSE in X introduces no bias

into β̂ in this case. Given assumption 1, 1
T
X ′ζx

p−→ 0, and the LoSE introduces no

inconsistency either. These results rely on the assumption that the LoSE is the dif-

ference between truth and a conditional expectation, and for multivariate regressions,

the consistency result also relies on all k explanatory variables being conditioned on the

same information set Zx. Bound, Brown, and Mathiowetz (2001), and Kimball, Sahm,

and Shapiro (2008) discuss the case where different elements of X are conditioned on

different information sets, causing bias and inconsistency.2

Of course, the CME in X produces the usual attenuation bias. By way of review,

and for comparison with later results:

E
(
β̂
)

= β − E
(
(X ′X)

−1
X ′εx

)
β, and:(6)

β̂
p−→ β −

(
Qzx

xx + σ2
ε,x

)
−1

σ2
ε,xβ.(7)

Instruments uncorrelated with the CME in X yield consistent estimates.

To focus more tightly on the implications of LoSE, the remainder of this subsection

considers the case of no CME in X :

Assumption 4 var (εxt ) = 0.

2In that case, consistency may be acheived by instrumenting with variables from the smallest infor-
mation set only.
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Then E
(
β̂
)
= β, and β̂

p−→ β. The variation in X⋆ that appears in Y ⋆ but is missing

from X shows up in the regression error, increasing the variance of the parameter esti-

mates. We have var
(
β̂
)
= E

(
var

(
β̂|X

))
+ var

(
E
(
β̂|X

))
, but E

(
β̂|X

)
= β and

var (β) = 0, so the second term vanishes. Then since U⋆ and ζx are uncorrelated, and

both are uncorrelated with X , standard manipulations show:

var
(
β̂
)

= E
(
var

(
β̂|X

))
= E

(
E

((
β̂ − β

)(
β̂ − β

)
′

|X
))

= E
(
E
(
(X ′X)

−1
X ′ (U⋆ + ζxβ) (U⋆ + ζxβ)′ X (X ′X)

−1 |X
))

= E
(
(X ′X)

−1
X ′E ((U⋆U⋆′ + ζxββ ′ζx′) |X)X (X ′X)

−1
)

= E
(
(X ′X)

−1
) (

σ2
U⋆ + β ′σ2

ζ,xβ
)
.

Asymptotically, the analogous distributional results hold, as:

√
T
(
β̂ − β

)
d−→ N

(
0, (Qzx

xx)
−1 (σ2

U⋆ + β ′σ2
ζ,xβ

))
,

and s2 converges to this error variance σ2
U⋆ + β ′σ2

ζ,xβ. So the LoSE in X increases the

variance of the regression error.

Example 2:

Y Mismeasured, X Not Mismeasured, Xt ∈ Zy
x,t: Shrunken Standard Errors

The ζu component of the LoSE in Y introduces no bias or inconsistency into the

estimates, but decreases the variance of the regression residuals and standard errors.

In addition to assumption 1, this subsection makes the following assumptions:

Assumption 5 Xt is not mismeasured: Xt = X⋆
t , and Xt ∈ Zy

x,t.
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Then Y ⋆
t = Xtβ + U⋆

t . The relation between Xt and the information set Zy
x,t has an

important effect on the properties of the OLS regression estimates; this subsection con-

siders Xt ∈ Zy
x,t, and the next Xt 6∈ Zy

x,t.

Since E
(
Xt|Zy

x,t

)
= Xt, we have: Yt = Xtβ+E

(
U⋆
t |Zy

u,t

)
+εt in this case. The LoSE

impacts only U⋆
t , so ζt = U⋆

t −E
(
U⋆
t |Zy

u,t

)
, and var

(
E
(
U⋆
t |Zy

u,t

))
= σ2

U⋆ − σ2
ζ . The OLS

regression estimates β̂ as:

β̂ = (X ′X)
−1

X ′Y

= β + (X ′X)
−1

X ′ (E (U⋆|Zy
u) + ε)

= β + (X ′X)
−1

X ′ (U⋆ − ζ + ε) .

LoSE in U⋆ introduces no bias or inconsistency since Zy
u is uncorrelated with X , so the

overall measurement error in Y introduces no bias or inconsistency in this case.

For the variance of the point estimates, var
(
β̂
)
= E

(
var

(
β̂|X

))
since var

(
E
(
β̂|X

))

= 0, and:

E
(
var

(
β̂|X

))
= E

(
E
((

X ′X
)
−1

X ′ (E (U⋆|Zy
u) + ε) (E (U⋆|Zy

u) + ε)′ X
(
X ′X

)
−1 |X

))

= E
((

X ′X
)
−1

) (
σ2
U⋆ − σ2

ζ + σ2
ε

)
,

since E (U⋆|Zy
u) and ε are uncorrelated. The analogous asymptotic results hold. The

CME in Y increases the variance of the regression residuals and parameter estimates,

and reduces the power of hypothesis tests, similar to LoSE in X . The LoSE in Y has

the opposite effect, decreasing the variance of the regression residuals and parameter

estimates.

Such excessively precise standard errors can be a serious problem, especially in the
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next example where β̂ is biased towards zero. As we approach the limiting case of

maximal LoSE in Y where Y approaches a constant, β̂ and var
(
β̂
)
both approach zero.

Under this limiting case, a test of β = β0 rejects with certainty when β0 is non-zero,

even if the hypothesis is true. The shrunken standard errors increase the risk that the

econometrician rejects such true hypotheses.

Example 3:

Y Mismeasured, X Not Mismeasured, Xt 6∈ Zy
x,t: Biased Point Estimates

In addition to assumption 1, this subsection makes the following assumptions:

Assumption 6 Xt is not mismeasured: Xt = X⋆
t , and Xt 6∈ Zy

x,t.

This is the case studied in section 4 of the main paper.

Example 4:

Both X and Y Mismeasured: Illuminating Special Cases

The ζxy component of the LoSE in Y introduces an attenuation-type bias (i.e. to-

wards zero in the univariate case) and inconsistency into the estimates under some

circumstances. In particular, when Zx 6⊂ Zy
x, so measured X contains information about

X⋆ missed by the information set used to compute measured Y , then the LoSE in Y

introduces bias and inconsistency. Put another way, bias and inconsistency occur when

the explanatory variables X contain signal missing from the dependent variable Y .

Again for simplicity, and to focus on the effects of LoSE, this section considers the

case of no CME in X , so assumption 4 holds, as well as assumption 1. Three special

cases are illuminating. The first is where the information sets used to construct Y

and X coincide in the universe of variables correlated with X , so Zy
x = Zx. Then
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E (X⋆|Zy
x) = E (X⋆|Zx), so their difference in (3) and (4) disappears, leaving unbiased

and consistent regression parameter estimates. The variance and asymptotic distribution

of β̂, and the probability limit of s2, are as in example 2.

The second illuminating case is where Zy
x ⊂ Zx, so Zx contains all the information

about X⋆ in Zy
x , plus additional information. The difference E (X⋆|Zx)− E (X⋆|Zy

x) is

uncorrelated with Zy
x ; substituting this difference for ζxy in example 3 then leaves the

results of that section unchanged. The estimate β̂ is biased and inconsistent, with the

bias towards zero in the univariate case; some variation in measured X that appears

in Y ⋆ is missed by measured Y , biasing down the covariance between X and Y . Valid

instruments must be drawn from the information set used to compute the more-poorly

measured Y .

The last illuminating case is where Zy
x contains all the information about X⋆ in Zx

plus additional information, so Zy
x ⊃ Zx. Then E (X⋆|Zy

x)− E (X⋆|Zx) is uncorrelated

with Zx and X , and if this difference replaces ζx in example 1, the results in that

subsection carry over to this case, except LoSE in U⋆ shrinks the error and parameter

variances. The estimates are unbiased and consistent.

These cases should help provide some intuition about the potential effects of LoSE in

particular regression applications where the econometrician has some knowledge of the

relative degree of LoSE mismeasurement in the explanatory and dependent variables.

For each application, whether Zy
x ⊃ Zx, Zy

x = Zx, or Zy
x ⊂ Zx provides the best

description of reality determines which results are most relevant, those from example 1

(augmented with LoSE in U⋆), example 2, or example 3. For example, the extent of

any bias in the parameter estimates depends on the degree to which the mismeasured

explanatory variables contain signal missing from the dependent variable.
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