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Abstract

Wrong way risk can be incorporated in Credit Value Adjustment (CVA) calculations in
a reduced form model. Hull and White [2012] introduced a CVA model that captures wrong
way risk by expressing the stochastic intensity of a counterparty’s default time in terms of
the financial institution’s credit exposure to the counterparty. We consider a class of reduced
form CVA models that includes the formulation of Hull and White and show that wrong way
CVA need not exceed independent CVA. This result is based on some general properties of
the model calibration scheme and a formula that we derive for intensity models of dependent
CVA (wrong or right way). We support our result with a stylized analytical example as well
as more realistic numerical examples based on the Hull and White model. We conclude with
a discussion of the implications of our findings for Basel III CVA capital charges, which are
predicated on the assumption that wrong way risk increases CVA.

1 Introduction and Summary

Since the 2007–2009 credit crisis, the emphasis on counterparty credit risk by both global and
US regulators has increased dramatically. Credit Value Adjustment (CVA) is one of the most
important counterparty credit risk measures; according to Basel III,1 banks are required to hold
regulatory capital based on CVA charges against each of their counterparties, (see, for instance,
Bohme et al. [2011]).

Consider a portfolio of derivative contracts that a financial institution, such as a dealer,
holds with a counterparty. CVA is the difference between the portfolio value before and after
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1Basel III is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk
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adjustment for the risk that the counterparty might default; it is the market price of counterparty
credit risk.2 CVA is expressed in terms of the dealer’s counterparty credit exposure, V , which
is the maximum of zero and the future value of the portfolio. It also depends on the maturity,
T , of the longest transaction in the portfolio and the default time, τ , of the counterparty. CVA
can be expressed as a risk-neutral expected discounted loss:

CVA = E[(1−R)DτVτ1{τ ≤ T}], (1)

where Dt is the stochastic discount factor at time t, 1{·} is an indicator function, and R is
the financial institution’s recovery rate.3 Hereafter, for notational simplicity, we suppress the
dependence of the CVA to the recovery rate, R. A widely adopted assumption is that credit
exposure, V , and the counterparty’s default time, τ , are independent. This leads to independent
CVA, denoted CVAI , and it is expressed in terms of the density, f , of τ :

CVAI =

∫ T

0
E[DτVτ |τ = t]f(t) dt =

∫ T

0
E[DtVt]f(t) dt, (2)

where the last equality follows from the independence of τ and V . In practice, a counterparty’s
default time distribution is approximated from counterparty credit spreads observed in the
market. Monte Carlo simulation is then used to estimate independent CVA by estimating
E[DtVt] based on a discrete time grid.

The efficacy of independent CVA is limited since there are important practical cases where
credit exposure, V , and the counterparty’s default time, τ , are correlated, (see Chapter 8 of
Gregory [2010]). When credit exposure is negatively correlated with a counterparty’s credit
quality, the exposure and its associated risk measures are said to be wrong way. Wrong way
CVA, denoted CVAW , refers to CVA in the presence of wrong way risk. When the correlation is
positive, the exposure and its associated risk measures are said to be right way. To simplify the
exposition, we concentrate on wrong way CVA. However, there are analogous results for right
way CVA. A basic example of wrong way risk occurs when a derivatives dealer takes a long
position in a put option on a stock of a company whose fortunes are highly positively correlated
with those of its counterparty.

A widely held view among practitioners is that wrong way risk decreases a counterparty’s
credit quality, and this, in turn, increases CVA. This is also evident from Basel III CVA capital
charges where CVAW ≈ α × CVAI with α > 1. It is difficult to build any practical intuition
on the impact of wrong way risk on CVA in the absence of a mathematical model capturing
the correlation between credit exposure, V , and the counterparty’s default time, τ , with a well
defined calibration scheme using historical data to estimate the model parameters. In this paper,
working within the widely used reduced form modeling framework, we show that wrong way risk
does not necessarily increase CVA, i.e. CVAI could exceed CVAW .

Our starting point is the model introduced by Hull and White [2012] summarized in Section 2.
In that model, the logarithm of the counterparty’s default time intensity is an affine function of

2Throughout this paper, we consider the unilateral CVA. See Chapter 7 of Gregory [2010] for discussions on
Bilateral CVA.

3A derivation of Formula (1) is in Chapter 7 of Gregory [2010].
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the dealer’s exposure to the counterparty. In Section 3, we consider a class of intensity models
of CVA that includes the formulation of Hull and White [2012]. We show that the calibration
scheme of intensity models imply that the model implied credit quality is to match the market
implied credit quality. This holds regardless of how the exogenous relationship between V and
τ is specified. Let λ denote the counterparty’s default time stochastic intensity. As shown in
Sections 3.1–3.3, this important implication of the calibration scheme gives us a useful expression
for CVAI :

CVAI =

∫ T

0
E[DtVt]E

[
λte
−

∫ t
0 λu du

]
dt.

Deriving the following formula for CVA in the presence of wrong way risk,

CVAW =

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt,

enables us to directly compare CVAW and CVAI and conclude that wrong way CVA need not
exceed independent CVA. That is, using reduced form modeling, we derive a formula for CVAW

and a calibration-implied formula for CVAI so that CVAW and CVAI become comparable. We
shall emphasize that in the absence of such a framework, i.e., a dependent CVA model with a
well defined calibration scheme, no practical comparison can be made between wrong way CVA
and independent CVA. In Section 4 we provide numerical examples based on the Hull and White
model showing that CVAI can exceed CVAW .4 We discuss the regulatory implications of our
result in Section 5.5

2 The Hull and White Stochastic Intensity Model of CVA

Hull and White [2012] incorporate wrong way risk in a CVA model by formulating a counter-
party’s default intensity in terms of a dealer’s credit exposure to the counterparty. They assume
that the stochastic intensity of a counterparty’s default time, τ , denoted by λ, is given by:

λt = ebVt+at (3)

where b is a constant and at is a deterministic function of time. The parameter b governs the
type and level of dependent risk, and it is calibrated by “subjective judgment” in Hull and White
[2012]. A positive value for b indicates wrong way risk and a negative value indicates right way
risk.6 Let st denotes the counterparty’s maturity-t credit spread and let R denotes the recovery

4In practice dealer portfolios are complex, and there are almost always collateral and netting agreements asso-
ciated with positions. However, in order to effectively communicate our main results, we consider uncollateralized
contract-level exposure in our numerical examples.

5We use the following terms interchangeably in the sequel: counterparty credit exposures and credit exposures;
also, stochastic default intensity models, intensity models, and reduced form models.

6Hull and White [2012] discuss, but do not implement, an estimation scheme based on historical observations
of the exposure V and credit spread of the counterparty.
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rate.7 Given b, the piecewise constant at are sequentially chosen to satisfy:

e−
tst
1−R = E

[
e−

∫ t
0 λudu

]
, (4)

as closely as possible. Hull and White [2012] use the left side of (4) as an approximation of the
counterparty’s survival probability up to time t > 0, i.e., P (τ > t). The Appendix of Hull and
White [2012] details how at is sequentially specified using Formula (4); the expectation on the
right side is estimated by Monte Carlo simulation after time discretization of the integral of the
intensity process, λ.

3 Stochastic Intensity Models of CVA

Motivated by the Hull and White model, we consider intensity models of CVA in which a
counterparty’s default intensity, λ, is driven by a single risk factor, V . The real-valued process
{Vt}t≥0 is defined on a filtered probability space (Ω,F , {Gt}t≥0, P ), where {Gt}t≥0 denotes the
filtration generated by V . To incorporate wrong way risk, the intensity, λ, is defined as an
increasing function of exposure, V . In this setting the default time, τ , admits a stochastic
intensity, λ. A consequence of this is an expression for survival probabilities, (under technical
conditions summarized in Appendix A):

P (τ > t) = E
[
e−

∫ t
0 λu du

]
, (5)

and conditional survival probabilities:

P (τ > t|τ > s) = Es[e
−

∫ t
s λudu], (6)

where 0 < s < t and Es denotes expectation conditional on all available information at time s.8

Also, (5) implies that the density of the default time τ is given by:

fτ (t) = E
[
λte
−

∫ t
0 λu du

]
. (7)

Remark 1 The results of this paper hold when λ is driven by more than one risk factor.
This becomes evident from Remark 2 in Appendix A and a common implication of calibration
schemes in reduced form models as discussed in Sections 3.1 and 3.3. Defining λ as a function
of a single risk factor, V , merely facilitates the communication of our results; it simplifies the
notation and resembles the Hull and White model.

7This is the recovery rate associated with the credit default swap contract “on” the counterparty, and it may
or may not be equal to the recovery rate that appears in the CVA formula. The recovery rate in the CVA formula
refers to the fraction of loss that is recovered by the financial institution (a derivatives dealer) if the counterparty
defaults.

8Clearly, (5) follows from (6) by taking s = 0. We have presented them separately to simplify the exposition
as each expression is used to calibrate an intensity model to different types of historical data. We discuss this in
Section 3.1 and Appendix B.
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3.1 Calibration of Stochastic Intensity Models

Many of the reduced form models in the credit literature benefit from the the computational
convenience of affine intensity modeling by assuming that λ is an affine function of a given
Markov process X, such that the conditional expectation in (6) can be written as:

P (τ > t|τ > s) = Es

[
e−

∫ t
s λ(Xu)du

]
= eα(s,t)+β(s,t).Xs , (8)

where coefficients α and β depend only on s and t, 0 < s < t, (see Duffie and Singleton [2003]
and Duffie et al. [2000]). The Markov process X can be multidimensional. However, here, for
simplicity, we think of X as a 1-dimensional process, e.g., a square-root diffusion. Suppose that
the conditional survival probabilities on the left side of Formula (8) are market implied. For
instance, they may be approximated from corporate bond spreads. Given the convenient form
of the conditional expectation in (8) and given that X has usually well known distributional
properties, statistical estimates of the parameters of X and λ are often based on (approximate)
maximum likelihood estimation methods or the Kalman filter. (See Duffie et al. [2000], Appendix
B of Duffie and Singleton [2003], and Lando [2004]. Also, Duffie et al. [2003] and Duffee [1999] are
examples of papers using an approximate maximum likelihood estimation method and Kalman
filter, respectively.)

In CVA stochastic intensity modeling, the unknown parameters of λ are also to be estimated
via (5) or (6) assuming that survival probabilities or conditional survival probabilities are market
implied. Hull and White [2012] use (5) and approximate survival probabilities based on CDS
spreads. Corporate bond spreads can be used to approximate conditional survival probabilities,
(see Appendix B). That is, (6) can also be used for the calibration of an intensity model of CVA.

In CVA intensity models considered in this paper, λ is a function of the credit exposure
process V , which is the maximum of zero and the value of a derivatives portfolio consisting of
possibly thousands of derivatives contracts. So, the stochastic process governing the dynamics
of V cannot be assumed as given a priori, and affine intensity modeling cannot be applied here.
That is, when the distributional properties of V are not given a priori, the parameters of λ
cannot be specified by benefitting from convenient expressions similar to the one on the right
side of (8) and using well-known statistical parameter estimation methods. In this sense the
term “calibration” as opposed to “statistical estimation” is more suitable for CVA intensity
modeling.

We shall emphasize that regardless of the sophistication and the mechanics of statistical
estimation or calibration schemes, the parameters of λ are to be estimated or approximated
such that the model implied survival probabilities:

E
[
e−

∫ t
0 λudu

]
match the market implied survival probabilities, or, similarly, the model implied conditional
survival probabilities:

Es

[
e−

∫ t
s λudu

]
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match the market implied conditional survival probabilities, where 0 < s < t. That is:

The statistical estimation or calibration scheme of stochastic default intensity models is to en-
sure that model generated (conditional) survival probabilities match market implied (conditional)
survival probabilities.

Hereafter, for simplicity we focus on (5) and survival probabilities. The above observation has
important implications for CVA calculations in the presence of wrong way-right way risk. In
what follows we further elaborate on this by revisiting the Hull and White calibration scheme.

Consider the Hull and White model again, where λt = ebVt+at . Let 0 ≡ t0 < t1 < ... < tn ≡ T
denote a discrete time grid and set P (τ > ti) ≡ pi, i = 1, 2, ..., n. Suppose that n market
implied survival probabilities p1, ..., pn, approximated based on maturity-ti CDS spreads with

e−
t1st1
1−R , ..., e−

tnstn
1−R , are given. Suppose that b is given and the model’s unknown parameters are

a1, ..., an, on the above-mentioned time grid; ai ≡ ati . The Hull and White calibration scheme
sequentially estimates ai’s by estimating:

E

[
e
−

∫ ti
ti−1

λudu
]

with Monte Carlo simulation and making these Monte Carlo estimates equal to pi, for i = 1, ..., n.
For instance, given b and p1, the calibration scheme uses:

p1 = E
[
e−

∫ t1
0 ebVu+a1du

]
,

at its first step to specify a1. This is done by replacing the expectation above with its Monte Carlo
estimate based on sampling from V and then numerically solving for a1. That is, the calibration
scheme approximates ai’s sequentially by making the Hull and White model generated survival
probabilities equal to market implied survival probabilities, p1, ..., pn.

3.2 Model Implied Counterparty Credit Quality

Suppose that a counterparty’s survival probabilities P (τ > t), for t > 0, are considered to be a
measure of its credit quality. Wrong way exposures are defined by Canabarro and Duffie [2003]
as “credit exposures that are negatively correlated with the credit quality of the counterparty.”
In what follows, we show that stochastic intensity models of CVA capture this basic definition.
However, reiterating the result of the previous section: the calibration scheme equates a coun-
terparty’s model implied credit quality to the counterparty’s market implied credit quality. In
other words, wrong way risk does not affect a counterparty’s credit quality.

In the presence of wrong way risk, the stochastic intensity, λ, of a counterparty’s default
time, τ , is defined as an increasing function of the credit exposure V . Conditional on a given
sample path of the credit exposure process in [0, t], we can write:

P (τ > t |Gt) = e−
∫ t
0 λGt (Vu) du. (9)
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Hereafter, when conditioning on a given sample path of the exposure process in [0, t], we suppress
the dependence of λGt on Gt, and we refer to the survival probabilities on the left side of (9)

as path dependent survival probabilities. Consider two given sample paths, {V (k)
u ; u ≤ t},

k = 1, 2, for which: ∫ t

0
λ(V (1)

u )du <

∫ t

0
λ(V (2)

u )du.

This implies that the counterparty’s credit quality is lower along the second sample path, i.e.
counterparty’s path dependent survival probability is lower along the second sample path:

e−
∫ t
0 λ(V

(2)
u )du < e−

∫ t
0 λ(V

(1)
u )du.

In other words, wrong way risk affects a counterparty’s credit quality on a path-wise basis, i.e.,
it lowers the credit quality along some paths. However, the calibration strategy that uses (5)
equates the average of path dependent survival probabilities with the market implied survival
probabilities:

P (τ > t) = E[P (τ > t |Gt)] = Market Implied Time-t Survival Probability .

An analogous argument shows that right way risk does not affect the credit quality of the
counterparty.

3.3 Wrong Way CVA Need Not Exceed Independent CVA

In Lemma 1 of Appendix A, we derive the following formula for dependent CVA (right or wrong
way), which assumes that the stochastic intensity of counterparty’s default time, τ , is a function
of dealer’s credit exposure, V :

CVAW =

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt. (10)

Focusing on wrong way CVA, we now show that CVAW need not exceed CVAI in stochastic
intensity models of CVA. Our result is based on comparing the wrong way CVA formula with
a calibration-implied independent CVA formula introduced below. The calibration-implied ex-
pression for independent CVA holds for all intensity models whose calibration scheme uses (5) or
(6). We further support our result by constructing a stylized example at the end of this section
and our numerical examples of Section 4. Recall that to calculate CVAI ,

CVAI =

∫ T

0
E[DtVt]f(t) dt,

the probability density function (p.d.f), f , of a counterparty’s default time is market implied
and approximated from CDS or bond spreads. The calibration scheme of stochastic intensity
models equates the market implied (conditional) survival probabilities to the model implied
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(conditional) survival probabilities as suggested by Formula (5) and (6). This implies that the
market implied p.d.f. of counterparty’s default time, f(t), is to match the model implied p.d.f.:

E
[
λte
−

∫ t
0 λu du

]
,

for all t ∈ [0, T ] as also suggested by Formula (7). This gives the useful calibration-implied
expression for CVAI :

CVAI =

∫ T

0
E[DtVt]E

[
λte
−

∫ t
0 λu du

]
dt, (11)

which enables us to compare CVAW and CVAI directly, regardless of the mechanics and sophis-
tication of the model calibration strategy. Hereafter, for simplicity, assume that the stochastic
discount factor D is constant or independent of λ and V . A comparison of the calibration-
implied CVAI (right hand side of Formula (11)) and CVAW (right hand side of Formula (10))
suggests that wrong way CVA need not exceed independent CVA. Note that since the stochastic
default intensity process is defined as an increasing function of the credit exposure process, λ,
and V are positively correlated. That is,

E[DtVtλt] ≥ E[DtVt]E[λt].

However, this has no implication for the pair of terms:

E
[
DtVtλte

−
∫ t
0 λu du

]
and E[DtVt]E

[
λte
−

∫ t
0 λu du

]
, (12)

or for the time integrals of those terms.
We end this section by constructing a stylized example for which we analytically prove that

CVAI ≥ CVAW in some parts of the parameter space. In Section 4, we give more realistic
numerical examples for which CVAI > CVAW in the Hull and White model.

Example 1 Let X denote a [0, 1] uniform random variable. Define the exposure V in the
interval [0, T ] based on X as follows:

Vt =

{
X 0 < t ≤ t1 ≡ T/2
nX t1 < t ≤ t2 ≡ T,

where n is a positive constant. Let λ be the stochastic intensity of a counterparty’s default time,
τ , and suppose: ∫ ti

0
λudu = bKi + ai, (13)

for i = 1, 2 and K1 = X, K2 = nX. In Formula (13), b is a positive constant and the parameters
a1 and a2 are calibrated to market credit spreads. Note that since the time integral of the
stochastic intensity is an increasing function of the exposure, the definition of wrong way risk is
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captured in this stylized example. Let p1 and p2 denote the market implied survival probabilities
of the counterparty by time t1 and t2, respectively. The calibration scheme that uses Formula (5)
specifies the unknown parameters a1 and a2 based on:

pi = P (τ > ti) = E[e−bKi−ai ], (14)

for i = 1, 2 and K1 = X and K2 = nX. We show that for large n:

CVAI ≥ CVAW . (15)

The proof is in Appendix C.

3.4 Discussion of Our Results

Our study challenges the premise that wrong way risk always increases CVA and shows that
independent CVA can exceed wrong way CVA. Reduced form modeling enables the modeler to
exogenously correlate credit exposures and the default time of a counterparty by making the
default time’s intensity an increasing function of credit exposures. The calibration scheme of
any intensity model equates the model implied counterparty’s credit quality with the market
implied counterparty’s credit quality derived from, for instance, CDS prices. This statement
has been rephrased by “in intensity models, wrong way risk does not affect a counterparty’s
credit quality” in Section 3.2 to further emphasize this important implication of the calibration
scheme. Using this, we derive a calibration-implied expression for the independent CVA formula
to make it directly comparable with dependent CVA, whose formula is derived in the Appendix.
See the right side of (11) and (10), respectively. Then, it follows that there is no reason that
one should exceed the other.

It is not the purpose of our paper to numerically experiment with a fixed model in order
to attach financial interpretations to different parts of the parameter space to formulate a rule
prescribing where CVAW could exceed CVAI . A different intensity model of CVA, i.e., different
functional relation between λ and V , could lead to different numerical results leading to different
sets of financial rules and interpretations. It is the purpose of this paper to show that CVAI

can exceed CVAW for a broad class of reduced form models. Example 1 in the previous section
is a stylized setting in which we show that CVAI exceeds CVAW in some part of the parameter
space.

On the basis of our study, one could argue that the dependence of a counterparty’s credit
quality on credit exposures is already reflected, for instance, in CDS prices, which are indicators
of the credit quality. In fact, when CDS prices are believed to reflect all the information on
counterparty’s credit quality, one could question the need for dependent CVA, which is then
to be compared with independent CVA. After all, in a dependent CVA intensity model, after
exogenously fixing a relation between a counterparty’s default intensity and credit exposures,
one should fit the model to the market implied credit quality, which is also present in the
independent CVA formula.
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4 Numerical Examples

This section is a summary of our numerical examples based on the Hull and White [2012] model.
They demonstrate that independent CVA can exceed wrong way CVA. There are many practical
instances where Monte Carlo estimates of CVAI and CVAW are close but the former exceeds
the latter. We consider contract level exposures for forward type contracts and put options.

In what follows we assume that the risk free rate, r, is constant. That is, the discount factor
is Dt = e−rt and independent and wrong way CVA are:

CVAI =

∫ T

0
DtE[Vt]f(t) dt and CVAW =

∫ T

0
DtE

[
Vtλte

−
∫ t
0 λu du

]
dt,

where Vt denotes the time t ≥ 0 value of the derivative contract and T is the maturity of the
contract. Also, λ is the stochastic intensity proposed by Hull and White, i.e., λt = exp(bVt+at).
Assuming that b is given, the piece-wise constant deterministic function at is approximated
based on counterparty’s t-maturity credit spreads, st, and (4), (see the details in the Appendix
of Hull and White [2012]).

The expected exposures, E[Vt], are with respect to the physical measure in our numerical
examples. There is no consensus in counterparty credit risk around choices of measure for CVA
calculations, (see Gregory [2009] and Chapters 7 and 9 of Gregory [2010] for discussions on the
use of risk-neutral and physical measure in CVA calculations).9

Monte Carlo CVA Estimation Monte Carlo estimators of CVAI and CVAW , denoted θ̂I
and θ̂W , are defined as follows. Consider the time grid, 0 ≡ t0 < t1 < ... < tn ≡ T ,

θ̂I =
n∑
i=1

DiV̄if(ti)∆i, and θ̂W =
n∑
i=1

Diξi∆i,

where ∆i ≡ ti− ti−1, and, V̄i = 1
m

(∑m
j=1 Vij

)
, with Vij being the jth Monte Carlo realization of

Vi ≡ Vti . Similarly, ξi is the m-simulation-run average of Viλie
−

∑i
k=1 λk∆̃k , with ∆̃k = t̃k − t̃k−1

being defined based on a finer time grid, 0 ≡ t̃0 < t̃1 < ... < t̃l ≡ T , l > n.
Let {St}t≥0 denote a geometric Brownian motion, St = S0e

Xt , where {Xt}t≥0 is a Brownian
motion with drift µ and volatility σ. We sample from the risk factor St based on the physical
measure. Then, given the Monte Carlo realization of S, the valuation is based on the risk-neutral
measure.10 This implies Vt = e−r(T−t)E[ST | St] = St for a forward type contract. For the put
options, we simply set Vt = e−r(T−t)E[(K − ST )+ | St].

The credit curve is assumed to be flat at s. So, in the independent case, the default time,
τ , is an exponential random variable with mean 1/s. This leads to the following closed form

9Note that in the above setting {DtVt}t≥0 is a martingale under the risk-neutral measure. We have chosen
the physical measure merely to avoid the trivial case, V0 = E[DtVt] and so CVAI = V0P (τ ≤ T ), resulting from
{DtVt}t≥0 being a martingale.

10This is the common and well known practice in risk management: sampling from the risk factors based on
the physical measure and then risk neutral valuation, (see, for instance, Chapter 9 of Glasserman [2004]).
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formula for independent CVA in the forward contract case, CVAI = sS0
α (exp(αT ) − 1) with

α = µ+ σ2

2 − r − s.

Numerical Results CVA estimates in the following numerical examples are based on m = 105

simulation runs.11 We assume a recovery rate of R = 0, a constant risk free rate of r = .01, and
an annualized volatility of 25%. The credit quality of the counterparty is investment grade with
a flat spread curve at 100 basis points. The family of forward contracts presented in Exhibit 1
and the family of in-the-money put options analyzed in Exhibit 2 are both examples where in-
dependent CVA and wrong way CVA are close, but CVAI exceeds CVAW at each maturity. The
coefficient b = .02 in both Exhibits 1 and 2 indicates a relatively low dependence of stochastic
intensity on exposure. Exhibit 3 presents another 20% in-the-money put option example where
CVAW exceeds CVAI at each maturity; note that the difference is most pronounced for T = 1.
The coefficient b = 1 in Exhibit 3 indicates a relatively higher dependence of intensity on expo-
sure.

T .1 .2 .4 .6 .8 1

CVAI 2 4 8 12 16.1 20.1

θ̂W 1.9 3.7 7.5 10.5 15.5 19.6

Exhibit 1: Forward contract: CVA numbers and estimates are of order 10−3, m = 105, b = .02,
µ = 0, σ = .25, S0 = 2, spread = .01, ∆ = 5∆̃, ∆̃ = .01 for T = 1, .8, .6, .4, and ∆̃ = .001 for
T = .1, .2.

T .1 .2 .4 .6 .8 1

θ̂I 2 4 8.1 11.5 17.1 21.9

θ̂W 1.9 3.7 7.6 11.1 16.7 21.6

Exhibit 2: Put option: CVA estimates are of order 10−3, m = 105, b = .02, µ = 0, σ = .25,
S0 = 10, K = 12, spread = .01, ∆ = 5∆̃, ∆̃ = .01 for T = 1, .8, .6, .4, and ∆̃ = .001 for T = .1, .2.

We also came across unrealistic cases of put options where CVAI exceeds CVAW in a more
pronounced way. For instance, consider the case where credit spread is flat at 106 basis points,
i.e., s = 100. This gives CVAI = .0169 and CVAW = .0057 for T = 1. That is, independent CVA

11We use MATLAB to produce the results.
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T .1 .2 .4 .6 .8 1

θ̂I 2 4 8.1 11.5 17.1 21.9

θ̂W 2.2 4.8 11.27 17.6 29.4 37.9

Exhibit 3: Put option: CVA estimates are of order 10−3, m = 105, b = 1, µ = 0, σ = .25,
S0 = 10, K = 12, spread = .01, ∆ = 5∆̃, ∆̃ = .01 for T = 1, .8, .6, .4, and ∆̃ = .001 for
T = .1, .2.

is roughly 3 times larger than wrong way CVA.12 Note that θ̂I and θ̂W are biased estimators
of CVAI and CVAW due to the time-discretization. Ideally, the mean square error of these
estimators should be estimated. This is computationally extremely expensive in our setting. To
get a feel for the statistical efficiency of our estimators, we note that for the forward contract
example presented in Exhibit 1, CVAI is analytically calculated, and Monte Carlo estimates of
CVAI coincide with the exact values. Since Monte Carlo estimation of CVA is computationally
intensive, a valuable line of research is to develop efficient Monte Carlo estimators of CVA. (See
Ghamami and Zhang [2013] for efficient Monte Carlo independent CVA estimation.)

5 Regulatory Treatment of Wrong Way Risk

Basel III’s counterparty credit risk (CCR) regulatory capital charges consist of counterparty
default risk (carried over from Basel II) and CVA capital charges for bilateral derivatives trans-
actions (see BCBS [2011]). For centrally-cleared derivatives transactions, the Basel Committee
on Banking Supervision (BCBS) has recently devised capital charges on banks for their central
counterparty credit risk (see BCBS [2012]). In all these CCR regulatory capital charges, the
BCBS assumes that wrong way risk increases different measures of CCR; CVA being one of
them. It then approximates a wrong way CCR measure by increasing the independent CCR
measure using the so-called α multiplier, which is often set to 1.4. That is, in the case of CVA,
wrong way CVA is often approximated by the independent CVA times 1.4. It should be noted
that capturing wrong way risk is not the only purpose of the BCBS’s α multipliers (see Section
4.2 of Pykhtin and Zhu [2006] on α multipliers and the references there). Similar to the view
often held by practitioners in the financial industry, the BCBS’s premise in CVA calculations
is that wrong way risk increases CVA. Our findings challenge this premise. Our results would
be useful when reviewing the methodology underlying CCR capital charges that incorporate
dependent risk (wrong or right way).

Historically, BCBS has taken relatively simple and conservative approaches in areas where
mathematical modeling becomes challenging – the alpha-multiplier approach to wrong way CVA
estimation was to provide simple and conservative wrong way CVA estimates. Financial insti-

12The remaining parameters for this unrealistic example are σ = .3, b = 2, µ = 0, S0 = 1, K = 1.5. Also,
∆̃ = .01 and ∆ = .05
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tutions that prove to be sufficiently sophisticated in terms of their quantitative capabilities are
usually approved by regulators to use their own internally developed risk sensitive models. Our
results would be informative for regulators when financial institutions’ CVA models are being
evaluated to replace the the BCBS’s less risk sensitive proposed methods.

6 Conclusion

A mathematical model is required to incorporate the dependency between a counterparty’s credit
quality and credit exposures to compare independent CVA and dependent CVA (wrong or right
way). The calibration scheme of the model plays a critical role in quantifying this comparison.
In this paper, we focus on stochastic intensity models of CVA that include the formulation of
Hull and White [2012]. We derive a formula for CVA and show that the general properties of
calibration scheme, regardless of its level of sophistication, imply that dependent CVA may or
may not exceed independent CVA. Using the Hull and White model, we generate numerical
examples that confirm our result for wrong way and independent CVA. BCBS’s regulatory CCR
capital charges assume that wrong way risk increases CVA, and CVAW is approximated by
α×CVAI , where α is often assumed to be 1.4. Our results would be useful when reviewing the
regulatory CVA capital charge that incorporate dependent risk (wrong or right way).

Appendix

A Default Times with Stochastic Intensity and the Proof of the
Dependent CVA Formula

It is well known that a default time, τ , defined on a filtered probability space, (Ω,F , {Ft}t≥0, P ),
admits a stochastic intensity, λ, when the process,

1{τ ≤ t} −
∫ t∧τ

0
λudu,

is a martingale, (where t∧τ ≡ min{t, τ}). To make the martingale property precise the filtration
is to be specified. For the general case see Chapter 2 of Bremaud [1981]. In what follows, we do
this for our setting. A consequence of the existence of an intensity is the identity:

P (τ > t) = E
[
e−

∫ t
0 λu du

]
,

which is used throughout this paper and in the proof Lemma 1.

Doubly Stochastic Random Times Let τ be a default time on a filtered probability space
(Ω,F , {Ft}t≥0, P ). Let {Ht}t≥0 denote the filtration generated by the default indicator process
1{τ ≤ t}. Suppose that the distribution of τ depends on additional information denoted by

13



{Gt}t≥0. Set Ft ≡ Gt ∨Ht where Ft is the smallest σ-algebra that contains Gt and Ht.
13 The

default time, τ , is called doubly stochastic when for all t > 0,14

P (τ ≤ t |G∞) = P (τ ≤ t |Gt),

and when conditional on Gt,
∫ t

0 λudu is strictly increasing.15

In our setting {Gt}t≥0 is the filtration generated by the exposure process V . The first
condition implies that given the past values, u ≤ t, of V , the future, s > t does not contain any
extra information for predicting the probability that τ occurs before t.16

The credit exposure process, V , could have jumps due to the the expiration of trades prior
to the maturity of the longest instrument in the portfolio. In this case, where V has points
of discontinuity, τ may not be doubly stochastic. But, it can be shown that τ still admits a
stochastic intensity λ, (see Definition D7 and Theorem D8 of Bremaud [1981]).

Lemma 1. Consider a real-valued process V defined on the probability space (Ω,F , P ). Let
{Gt}t≥0, denote the filtration generated by V , i.e., Gt = σ{Vs; 0 ≤ s ≤ t}, the smallest σ-field
with respect to which Vs is measurable for every s ∈ [0, t], and let G ≡ G∞ ⊂ F . Let D denote a
real-valued process that is adapted to {Gt}t≥0. Let τ denote a counterparty’s default time, which
admits the stochastic intensity λ that is adapted to {Gt}t≥0. For t ≥ 0,

P (τ > t |G) = e−
∫ t
0 λu du and P (τ > t) = E

[
e−

∫ t
0 λu du

]
. (16)

Then, the following holds for any given T ≥ 0:

E[DτVτ1{τ ≤ T}] =

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt.

Proof. Conditional on G we can write,

E[DτVτ1{τ ≤ T} |G] =

∫ T

0
E[DτVτ |G, τ = t]fτ |G(t) dt

=

∫ T

0
DtVtfτ |G(t) dt =

∫ T

0
DtVtλte

−
∫ t
0 λu du dt,

where fτ |G is the conditional density of τ and is derived based on the left side of (16). Then,
the Lemma follows by noting that:

13By definition, τ is an Ht-stopping time. Note that τ is also a Ft ≡ Gt ∨Ht-stopping time for any {Gt}t≥0.
14it represents the first event time of a conditional or doubly stochastic Poisson process.
15see, for instance, Chapter 9 of McNeil et al. McNiel et al. [2005].
16Many of the stochastic intensity models in the credit literature work under this doubly stochastic framework,

(see, for instance, Duffie and Singleton [2003]).
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E [DτVτ1{τ ≤ T}] = E [E[DτVτ1{τ ≤ T}|G]] ,

and

E

[∫ T

0
DtVtλte

−
∫ t
0 λu du dt

]
=

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt.

Remark 2 We would like to emphasize that the dependent CVA formula of Lemma 1 also
applies to multi-factor settings. That is, when λ is defined based on more than one risk factor,
the proof works by {Gt}t≥0 denoting the filtration generated by all the risk factors.

B Approximating Conditional Survival Probabilities from Zero-
Coupon Bond Spreads

Here we use a stylized setting to show how conditional survival probabilities can be approximated
from zero-coupon bond spreads. Let δ(t, T ) denote the risk-neutral price of a maturity-T default-
free zero-coupon bond at time t > 0. It is well known that:

δ(t, T ) = Et[e
−

∫ T
t rudu],

where r is the short rate process and Et denotes the risk-neutral expectation conditional on
information available by time t, (see, for instance, Bjork [2009]). Let d(t, T ) denote the risk
neutral price of a maturity-T zero-recovery defaultable zero-coupon bond at time t > 0. Reduced
form debt pricing for a default time τ with the risk-neutral default intensity process λ gives

d(t, T ) = Et[e
−

∫ T
t (ru+λu)du],

as shown by Lando [1998]. Note that in a stylized setting where λ and r are independent,
conditional survival probabilities are easily obtained from the defaultable and default free bond
prices:

P (τ > T |τ > t) = Et[e
−

∫ T
t λudu] =

d(t, T )

δ(t, T )
.

More realistic corporate bond reduced form pricing models also allow the modeler to estimate
conditional survival probabilities from market data, (see Chapter 6 of Duffie and Singleton [2003]
and the references there).

C Proof of the Result of Example 1

Assume zero short rate which gives D ≡ 1. First consider CVAI :
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CVAI = E[Vτ1{τ ≤ T}] = E[X]P (τ ∈ A1) + E[nX]P (τ ∈ A2),

where Ai = (ti−1, ti], i = 1, 2. Note that

P (τ ∈ Ai) = E[e−bKi−1−ai−1 ]− E[e−bKi−ai ],

where K0 = t0 = a0 = 0, K1 = X, and K2 = nX. Using the right side of the above in in the
CVAI formula, we can write

CVAI = E[X]
(

1− E[e−bX−a1 ]
)

+ E[nX]
(
E[e−bX−a1 ]− E[e−bnX−a2 ]

)
(17)

Now, consider CVAW and recall the proof of Lemma 1:

CVAW = E[Vτ1{τ ≤ T}] = E[E[Vτ1{τ ≤ T}|X]].

Consider the conditional expectation on the right side above; further conditioning on the default
time gives

E[Vτ1{τ ≤ T}|X] = X
(

1− e−bX−a1
)

+ nX
(
e−bX−a1 − e−bnX−a2

)
,

and so,

CVAW = E
[
X
(

1− e−bX−a1
)

+ nX
(
e−bX−a1 − e−bnX−a2

)]
. (18)

Using Formula (17), Formula (18), and simple algebraic manipulations, we have

CVAI − CVAW = e−a1(1− n)Cov(X, e−bX) + ne−a2Cov(X, e−bnX). (19)

Simple calculations show

nCov(X, e−bnX) = − 1

2b
+

1

b2n
− e−bn

2b
− e−bn

b2n
.

This term converges to a constant as n→∞. Note that, using Chebyshev’s algebraic inequality,
Cov(X, e−bX) < 0 when b > 0. So, CVAI ≥ CVAW for large values of n.
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