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Distributed Lag Order Determination

by Richard Meese®

Introduction

This paper is organized as follows: parameterization problems
endemic to time series models are discussed in section one. New
approaches to the parameterization problems are summarized and then
applied to the problem of simulataneously estimating the length and
the coefficients of a distributed lag regression model. The asymptotic
properties of the new estimator of the distributed lag model (DLM)
are examined in section two, and the small sample properties of the

estimator are examined in section three using Monte Carlo experiments.

1. Time Series Parameterization Problems

Considerable economic analysis is carried out ﬁsing time series
data., The large forecasting models of the U.S. economy that help
determine macro-policy are notable examples. Hence it is important
that econometricians develop and use estimation procedures that are
appropriate for time series. An appropriate regression technique
for handling this type of data is generalized least squares (GLS),
a procedure that dates back to the work of Aitken (l). Consider the

generalized linear regression (GR) model:

y = XB + u ,with . (1.1
(Tx1) . (TxK) (Tx1)
(Rx1)

a) X full column rank,
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b) E(u|X) = 0, and

c) E(uu'|X) = I, positive definite.

Since I is positive definite, so is 'l Letg'c =zl After

premultiplication of 'y and X by G, the least squares regression
of Gy on GX is best linear unbiased (BLU). Although theoretically
eloquent, this procedure is dnly a paradigm since the researcher
rarely knows the disturbance covariance matrix.

Estimation of 8 with an unknown I matrix has been one focal
point of the time series econometric literature for many years.
Since an unrestricted I matrix contains T(T+1) /2 distinct para-
meters, some restrictions on the autocovariance function of the
disturbance process are necessary. The earliest estimators of
B were derived using the assumption that the disturbance process
followed a first order autoregression, AR(1l), u(t) = pu(t-1) +.
e(t). In'what follows €(t) shall always denote a process which is
independent and identically distributed (iid) with zero mean
and variance 02. For the AR(1l) process I contains two unknown
parameters; p and 02, and an asymptotically efficient estimator
of B can be obtained using a variety of procedures.l Hannan (7)
and Amemiya (3) have worked out estimatofs of B8 with less stringent
assumptions on the disturbance process. They assume that the

disturbance folliows an ARMA (p,q) process.

P q
z aju(t‘j) = 3

Yie(t—i) where (1.2)
j=0 i=0



a)‘ob=1=Y0,

b) p and q unknown non-negative integers,
p

c) the zeros of I OL.zJ = 0 (z complex) and
j=o0
3 i
z Yiz = 0 lie outside the unit circle.
i=0 '

Hannan's estimator of B is éeveloped in the frequency domain while
Amemiya's estimator is formulated in the time domain. Both may
be interpreted as multistage GLS procedures which require consis-
tent estimation of the parameters of G or £ as an intermediate
step. . Since the autocovariance function of the disturbance
process is unknown, the Amemiya and Hannan procedures can only
be shown to be asymptotically efficient. To prove asymptotic
efficiency (and asymptotic normality) of either coefficient
estimator, the estimates of the parameters of G or L must
"improve" as the sample size increases. This requires that the
following conditions be satisfied:
(a) The number of parameters characterizing the disturbance '
process must be allowed to increase without bound.
(b) The number of observations must increase at a faster
rate tﬁan the number of parameters eo that the ratio of
parameters to observations tends to.zero as each tends to
infinity.
Point (a) ensures that the approximation of the true disturbance

process improves as the sample size increases, and point (b)



ensures that the estimate of the approximation is consistent.
In this paper we shall be concerned with the estimation
of the special case of model 1.1 in which the columns of X are suc-
cessive lagged values of the same variable. Consider the distri-
buted lag model:
M .

y(t) = I B(s)x(t-s) + e(t) with - (1.3)
s=0

a) M a fixed unknown non-negative integer,
M 2
b) I B(s)” <, B(M) # O,
s=0
c) (x(t), £(t))’ a zero mean jointly covariance stationary

process and

d) E(e(t){x(t-s)) = 0 for all t and s.

Model 1.3 has an observation matrix X with unknown column dimen-
si;n. Although models 1.1 and 1.3 have striking dissimilarities,
they have a common parameterization problem. Feasible GLS

estimators (Hannan and Amemiya) of model 1.1 with disturbance

process 1.2 require close attention to points (a) and (b) above.
Since M is unknown in model 1.3, a defensible procedure in this
context is to expand the length of the fitted distributed lag indefi-
nitely as sample size increases so that specification érror is
avolided asymptotically. Again, the number of parameters must be al-

lowed to increase without bound as the sample size tends to infinity,



while the ratio of parameters to sample size converges to zero.
In practice, the parameterization problem is solved by

increasing the dimension of the parameter space deterministically

with sample size T. For example, let m be the maximum length

of the distributed lag that is to be fit for a given sample size.

If a deterministic rule is followed, we choose m as a function

o(T) _ . .
T T 0. This

of T, m(T), so that m > as T + ® and lim
To
guarantees that for sufficiently large T, m{T) > M, and under-
fitting of model 1.3, i.e., m < M, is avoided asymptoticall&.
Also, since 1im-2ézl = 0, the estimator of the coefficients of
L300

the dist;ibuzed lag can be shown to have desirable asymptotic
properties.2 The feasible GLS procedures can be made operational
by use of the deterministic rule m =nm(T) described above. For
Hannan efficient estimation of model 1.1, a consistent estimator
of the spectral density of the disturbance process can be obtained
by expanding the width of the spectral window as a function of
the sample size. Amemiya's estimator of model 1.1 is made
operational by expanding the length of the residual vautoregression
as a function of sample size.3 |

Recentlf, Akaike (2) and Parzen (13, 14, 15) have suggested

a new resolution of the type of parameterization problems discussed

above. Both authors have suggested methods for choosing the order

(length) of an autoregressive process when the order is unknown.

Their procedures are similar to regression strategies since one



estimates a set of autoregressive models whose length varies from
zero to m, (m chosen as a function of the sample size) choosing the
order that is best according to some criterion.A Akaike's
decision rule is based on the principle of maximum likelihood
estimation while Parzen's criterion minimizes the one step ahead
mean square prediction error. It has been shown (14, p. 14)

that for any autoregressive process and large T, the Parzen
criterion selects an order that is bounded above by the order
chosen using Akaike's criterion. Although this result does

not imply that Akaike's decision rule is less useful, we choose
to restrict attention to Parzen's criterionm, which is called CAT
for "criterion autoregressive transfer function."

Parzen's criterion was derived for use in selecting the
order of the estimated autoregressive process, but his decision
rule can be applied to the problem of estimating M, the length
of the distributed lag in model 1.3. One chooses a lag length

.m* which gives the minimum value of

2.0 1=0, 1, ..., m, (1.4)

CAT(1i) =

e
0o~ R

A

where Gj is the residual variance from the regression of y(t)
on current and j lagged values of the independent variable x(t).
The variable T denotes sample size, and m is chosen as a function

of T in a manner described below (section two).- A rigorous

derivation of criterion 1.4 can be found in Parzen (14, pp. 16-20).



The following is a paraphrase of Parzen's rationale for
the use of CAT as a method of order estimation. _Let s(t) be
a zero mean, normal, covariance stationary process with auto-

covariance function
Rs(v) = E(s(t) ° s(ttv)), v=0, + 1, ... . (1.5)

We assume that s(t) has autoregressive representation,

@

I a_(j)s(t-j) =eft), a (0) = 1. (1.6)
j=0

Define the mmemory prediction error as

Em(t) = s(t) - E[s(t)|s(t-1), s(c-2), ..., s(t-m)].
(lc 7)
The normality of s(t) implies that the m—memory prediction error
1s linear in past and present s(t),
m
em(t) = jzo am(J)S(t—J), am(O) = 1. (1.8)

Since em(t) is uncorrelated with past values of s(t),
E(em(t) * s(t-k)) = 0, k=1, ..., m, (1.9)

the m-memory autoregressive coefficients am(j), j=1, ..., m can
be found by sclving a set of m Yule-Walker equations, where am(O)

1s defined to be one:



B

am(j)Rs(j-k) =0, k=1, ..., m (1.10)

I ™

j=0
The m—memory prediction error variance is given by
2 =B (2= I a (DR W)s a©@ =1.  (1.11)
m m j=0 T s’ “m

From 1.6 Ew(t) is the infinite-memory prediction error obtained

from the projection of s(t) on its infinite past,
€o(t) = s(t) - E[s(t)|s(t-1), s(t=2), ...]. (1.12)
Let qf denote the infinite-memory prediction error variance,

of = B(e (P = I a (DR D, a® =1, @13

j=0
and define the transfer functions

m .
g(zy=1+ I a (j)zJ
o j=1 ®

g.(z) =1+ L a,m(j)zj
51

for z complex, and let

v (™) = 0% (1), (1.14)

~ Py 6-2" i
Ym(,elw) =0, gm(e “), and

A m N
em(t:) = jﬁo am(j)S(t-j).



A
: ro»
A A ~ .

2 B . . 2
The o am( ) and gm( ) are consistent estimates of Om,
am(°) and gm(') respectively which are obtained by solving

the sample Yule-Walker equations, where am(O) is defined to

be omne:
m A A
| jio am(j)Rs(j-k) =_0, k=1, ..., m
~ 1 T"V ) :
R(v) == I s(t)s(tt+v), and ' .(1.15)
s T 3=1

1\2 m - ~
The idea is to approximate the autoregressive process 1.6,
of unknown but possibly infinite order, by a finite order process
so as to minimize the one-step ahead mean square prediction error
associated with the approximation of s(t) by an AR(m). As a
. measure of the one-step ahead mean square prediction error
Parzen takes (14, p. 19)
-y 2
J Z E(e_(t) - Em(t))
m ‘ (1.16)

_ B oA iw iw, 12
R MACR R NG LE

where f(w) is a spectral density function on (-II,II) given by

© » 2
N2 1 -ivw 1 9%
f(w) = LI e s R (V) =5 (—mmm). (1.17)
1T :
2 y=—03 8 ) 21 ‘ (eiw) ‘2
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For large T Parzen shows (14, pp. 16-20) that approximately,

m
1 =25 024 (%o dh. . (1.18)
m T ,_ J @ m
. j=0
This mean square error expression is the sum of two terms,
-2 -2 . 1 ¢ =2 .
(0,” - 0 ") representing bias and = I o representing
>y m T j=1 J

. R -2 .
representing variability of Ym' Because 0 1s not a function
of m, to find m*, the optimal order of the AR process, it is
sufficient to find the minimum o£

-2 =2

i
1 )
-Tch =05

CAT(1) = J, - o2
1 .
j=1

o

1‘1, s ooy m.(l.lg)

In practice, when using the CAT criterion to fit an autoregressive
model, it is necessary to replace the 0;2, j=1, ..., m in formula
1.19 by their consistent estimates. See Parzen (14, pp. 20-23)
for further discussion of this point.4

Althéugh CAT's theoretical justification is completely
different from that of the residual variance criterion, Theil
(18, pp. 543-545), the two methods of determining the order of
the distributed lag model 1.3 have similarities. The method of
selecting the #ariables to be included in a regression model by
choosing the specification with smallest residual variance can
be used since the expected value of the residual variance of
the erroneous model minus the expectation of the residual variance

of the true model is non-negative. On average,zone chcoses the
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correct.specificationAof the regressioh'model, bﬁf

the residual variance criferion produces estimates of the
population variance of y given x that are biased downward,

and will not choose the correct specification of g%e regression

model if it is not ome of the models that is being considered. For
- m .

fixed m the expression 7 I~ U,Z - 0~ converges to
3=0 |
~2 1 D2
plim (-0_")because the first term of CAT, = I c. converges
Two T 3=0

to zero as To~ {see section two below). In large samples,
minimizing CAT (i), i=1, .;., m is thus similar to choosing the
model specification with smallest residual variance, because
minimizing —3;2 is equivalent to chqosing the model with
smallgst ai. Despite the similarity, we produce asymptotic

distribution results in the next section which indicate the

superiority of CAT over the residual variance criterionm.



12

2. Properties of an estimator of the distributed lag model 1.3 when

CAT is used to determine the order of the lag distribution.

Consider the distributed lag model 1.3 with the additional

assumptions

e) lim (cov(x(t), x(t-s)) =0,
s—)w

£) x(t) has finite fourth order moments, and
g) €(t) is normally distributed with zero mean and unit

variance for all t.

It will be convenient to write model 1.3 in matrix notation,

y = XMgM + £ . (1.20)
(Tx)  poagyy  (TxD)
(M+1) x1

Let m denote the maximum length of the distributed lag that is to

. > C o=
be fit for a given T. For m > M partition Xm (XM’ Xm—M) and

write 1.20 as

CH |
= X X\ . ; +¢€, vhere B, = 0. (1.21)
Tx(M+l), Tx(m—M) “m-M
When m < M partition XM = (X;, Xﬁ_m) and write 1.20 as
B*
= x + + X*B* m
X = xm.s.m My V=E ng,m_m, ‘B‘M = g . (1.22)
“M-m

Assumptions (c), (e), and (f) are sufficient to show5
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Plim \J . -
Tow (}S{T}S{-‘)= Q(M, (1.23)
(any fixed M) ,

where Q(M) is an (M+1l)x(Mt+l) matrix with (1,3) th element equa.l

to cov(x(t-i), x(t-j)). When m > M is fixed, define

W™ I
1
plim =

T 1 J ] ?
(u i?ixed) ) St a o A0t Q)

(1.24)

Given that the limit matrix of 1.24 is nonsingular,

-1
plin 1 xt'{xM xt'dxm-M

' ’
(M,m fixed) Xm—MXM Xm—Mxm—M

exists since the elements of the inverse of a matrix are continuous

functions of the elements of the matrix itself, (18, p. 363)

Similarly, when m < M define

Plm 1 x;x; X;‘:Kt,_m - Q*(m) Q*(m,M-m)
T~)(D . T ] [} '
(m,M fixed) }Sff—mx:; )q&.m)%_m Q*(m,M-m) ' Q*(M-m)/ ,
| (1.26)

It is also true that limit matrix of 1.26 has an inverse by the
Same argument given above, (18, p. 363). In what follows

we will be interested in expanding the maximum length
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of the fitted distributed lag indefinitely as T2 . Suppose we

let m = m(T) so that m(T)»>~ as T+», and lim E%rl = 0. Clearly,
T-)m o

for T sufficiently large, m(T) > M. Now consider the sequence of

(M+1) x (M-l) matrices for any sample size T; l(w >
1oy . l'- ! l‘. ' '
TR 1K 2 7EF % 2 o 2 TEP Ly Y > 0 (1.27)

where > and > denote matrix ordering and P, = (I - Xi(Xj'_Xi)-IX'),

i=1, ..., m(T)-M, where Xi is the Txl matrix whose jth column,

j=1, ... 1 is composed of x(t) lagged M + j times. The inverses

of the matrices in 1.27 also form a monotone sequence,

. 6
1:(1(141&4)"1 < T(X&Plxﬂ)-l < e < T(Xl'(Pm(.T)_h)-.'l (1.28)

. , 2 .
Finally, we define Om as the error sum of squares e'c from a

regression of y(t) on x(t), x(t-1), ..., x(t-m), t = 1

3 oo ey

T divided by T-m-1.

For any fixed m and iid e(t), plim (% XI'nE) =0,

7 T ~2
(4, pp. 23-24). When m < M, plim (¢7) =
T m
1
lim (T/(T-m-1)) ° . plim =[R'X' pP=*
U (1/(T-m-D) - P T PR B T 28X n &t EPEE] (1.29)

where P* = (1 . -1
A Ty
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B)g s
T -
' [ XE ( )(x*'x*) -1 (X;'_S_) -
28, gil;im 2 + (1.30)
o (59) - [ (S15)" () (55) '
pn (T) TR VT ) T T ] -

plim (0)=1' [ﬁﬂplim(

. ~2 _ 2 . N - [ -1 =
For m > M, plim 0. =0 since XM(I Xm(Xme) Xm) 70

Too
when m > M. Therefore, 02 is a consistent estimator of 02
when m > M, m i'ixed. For m < M, plim 0:'1 > cz. Now consider

Torco
the case m = m(T): :

~y e'e
plim Gm(T) = plim <———.T—m(T)-l)
T B (1.31)
: (6.9 )71 £
() Fnem) Zucr) m(T) =
gﬁm T-m(T)-1 .

= ‘ ] -1 ' .
let Nm(T) = Xm(T) (Xm(T)Xm(T)) Xm(T)' Then from 1.31,

ay | '"N_(my E
2 2 , T £ m(T)
Iim g = - I]m S err—— m | ——————ee .
lr;,m n(T) ° Toroo <T°m(T)-l )gli T . (1.32)
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Observe that

y |
EN €
("—%@"> >0 for all T and m(T), and that

(1.33)

1
. (5 N(r) 5) _ o’n(r
T

T -

[e'N_, €
Clearly, lim E (——Tllﬂ-) =_lim GZ(E,%'-Q') = Q, from which
Tooo T

e'N £ ~
plim (:—?-QZ—) = 0.9 Therefore, oi(T) is a consistent estimator
T

of 02 provided lim m_'](:']?l = 0.

T
We are now ready to examine the lafge éample prOperties of
CAT as a model selection criterion. For sufficiently large T, |
m(T) > M so without loss of generality, we need 6n1y examine the

case for which m(T) > M. Consider the probability limit of

CAT(m(T)),
1 m(T) A_2 A-2
plim CAT(m(T)) = plim T I o, -0 )=
T-o0 Tooo j=0 3 o
‘ (1.34)
- 1 M ~a2 : m(T) A A-z
plim-,i,- z Oj + plim,—r- z oj - plim om(T)'
T * §=0 Too  © j=Mil T

We shall analyze each part separately:

plim:% X qj',zs 1im (-,%) I plim 0-2 < lim (—%) (M+1)c7-2 =0, (1.35)
Too I juQ Too 1 jm0 oo 3 ‘
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~_y - 1 M ~_p
since for j < M, plim 0. < ¢ . Therefore, plim-E z 01 = 0.
Torco j T->c0 . j=0 <
We have already established that plim (—52 ) = -0-2, so there
Tooo m(T) :

is one part of 1.34 left to consider. Now

m(T) . m(T) - . m(T) 3
E(f = 7.2 = -11; I E@2) = —%— z —'L-T; =1 ,
J=MH1 h =M1 J=MHl o"(T-3-3)

(1.36)

A A

since g:; £ j/02 is distributed as axz(T-j—l) for j=M+1, ..., m(T),

and using the definition of expectation, the reciprocal of a

xz(t—j-l) variate can be shown to be ( ). The last term on the

1
T-j-3
right hand side of 1.36 is bounded above.

1" 141 wmen <T—m(T)—l>

Tj=M+1 O'Z(T—j—3) = gt T-m(T)-3 (1.37)

Thelimit as T® of the right hand side of 1.37 is equal to zero,

.m(T)
. ~2 :
so plim T z O, = 0 by lemma 1 in footnote 9. Returning to
T ° j=mr1 J

our original problem 1.34, we have

m(T) ~_ ~_ _
Plin CAT(a(D)) = plim (2 £ o2 - 2y )= <2
Tox T j=0 3 m(T)

(1.38)

Provided m(T) increases at a slower rate then T, i.e.,

= 0, CAT(m) is a consistent estiﬁ:ator of -0-2 10
T-»c0
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Define m* as the lag length which gives the minimum value of

i A N .

A 2 . .

CAT (1) =-% L 0.2 - gy y 1=0, 1, ..., m(T).
j=0

Proposition 1: The lim Prob(m* > M) = 1, i.e., the probability
. T-m
that minimizing CAT(i), i=0, 1, ..., m(T) results in specification

error, goes to zero as To®,
Proof: Suppose we look at a finite subcollection of the set
{i=0, 1, 2, ,.., m(T)} that does not contain any integers greater

than or equal to M. Let i = {0, 1, 2, ..., M-1}.

Then plim [min CAT(i)] = min(plim CAT(i)) since the min function

T ) T
i i
does not depend upon the sample size T, and plim CAT(i) exists
T
by virtue of 1.30. The min (plim CAT(i)) > -0~2 from 1.30.
i T

If we look at a different finite subcollection of the i's that
contains at least one integer greater than or equal to M,
i* = {non-negative intergers < If, and at least one integer z_M},

then

Plim (min CAT(i)) = min (plim CAT(i)) = 2,

To i% i*  Tooe
Since m(T)»>> as T»e, for sufficiently large T we have m(T)>M and

tnere exists a finite subcollection of {i=0, 1, ..., m(T)} that contains

at least one integer greater than or equal to M as T»»., Therefore,

lim Prob(m* > M) = 1,
T

Proposition 2: Let k be a fixed positive integer. Then
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T ¢ (CAT(Mtk) - CAT(M)) converges in distribution to

1
Lok- () as .1t
2
(9]
S N N
Proof: T(CAT(M+k) - CAT(M)) = z 0,” + To,.” - To
Lfoo”. ] M Mtk
j=M+1
- ojz ¢ TIAED)  T(T-Mok-1) (1.39)
3 ) 1]
j=M+1 (e'e) (e Ie k)
(E'M+k5M+k) (TMkl)(“ o )
— R - STmRT L ' -
NS T A e
'= j A'/\ A' ~
je (S) S
T T

1
Because Eﬁi%%ﬂil is a consistent estimator of 02 for i=1, ...,

A S oo o 2 T
k f o, gnd 02 (ele §M+kEM+k) has a x (k) distribution independent

of T, expression 1.39 converges in distribution to

2 22
w2 + (KO —40 x (k) §_ J%.(zk - xz(k)).

o] g

Proposition 3:

~ ~ ~

\ 7 " A' A -A. A _ .
Covitu Sw i’ Sps Sui Sy Swy) 0 0 SISLSK
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Proof: F <j<ic< N A >
rooA fr 0 £3j <1i<K, it is true that (_G_:M+ —M}j EM+1—M+1)
and €' i are independent (18, pp. 84-85, 139). This implies

. _ l\' A /\' A -

V(i Sty T St Swri’ EwriSaer) = O

whence
(1.40)
[] ] 1 - —Me= ] -
V(e Eyti® SriSars) T VAT EypyiByyg) T 2(T-M-E Dot
SariSaer

The second line follows from the fact that — has a chi-

o .
square distribution with (T-M-i-1) degrees of freedom, and the

variance of a chi-square variate is equal to twice the number of
A A A A A A

d . ' ! -
egrees of freedom. The COV(EM#K Eatrk T i CMei’ Smi €

A A

€é+j €M+j) = 0 since for 0 < j <1 <K, and using 1.40 above,

A A ~ ~ A A ~ ~

1 t - ' =
oV(Eysr Ewir T EriSwtid St Swbi T Sy Swry)

(1.41)

2(T—M.-—K—l)0‘4 - 2(T-MI--K--1)G4 + 2(T—Mﬁ-—i«l)04 - 2(T-M—i-—l)0’4 = 0.

Using propositions 2 and 3 we can now calculate the

lim Prob(m* = M+j), j=0, 1, ..., k. It has already been established
T-»00

that lim Prob(m* = M-j) = 0, j=1, ..., M. Define the following:

T-rc0
S 52-j+(;' ; —g';)/oz 0<j<w
3 = M+j—M+j MM ’ ?
(1.42)
5, = 0.

. 2
Observe that S, ~ 2¢§ - j) and S, = S, + 2 - w,, where the
5 j=-x"() i j-1 - vy

wj's are distributed as independent Xz(l) variates. Define
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= Preb(Z, 5 6|z, 1 >0), j=1,2, «.. and
— > 4 > 2 - cewe 3
p*x = Prob(-Zﬂ 0|-Z. 1 0), i=1, s> 1

; 2 - 2

here 2, ~ 2*5 -x"(§), 2 =0,2, =2, . +y., y. =52 -%x (1) and

W ; i-x)s 2 el i -1 Yy vy X (1)
. "3L'. r = ° A b

yj,is independent of Zj—l z Yo Now

lim Prob(m* = M#+j) = Prob(-S, >0, S. = S, >0, ...,
T->00 3

- > - > - > . .
Siy = 55> 05 Sy =8> 0,5, -8,>0, ... (1.44)
= "Gh S > cee - S > Q) . T { - 3 > LI
Prob(-§; > 0, wvvy S,y = S, > 0) * Prob(S,,, = §, >0, ...),

since the random variables (Si - Sj)’ 0 <i< j~-1 are independent

of (Sn - Sj)’ n > j + 1 by proposition 3. Note that
Prob(-S, >0, ..., S, . =S, >0) =
( 3 » S50 ; )
Prob(S, - S, >0) * Prob(s, - S,">0]s, -5,>0) -
j-1 b ( j-2 h | j-1 b )
Prob(S, ., - S.|S. ., -S.>0,S, ., ~S,>0) * ... .
j-3 J| j-2 h| > Ti-1 h| ) (1.45)
- Prob(S, , - S, > 0|s ~S.50, ..., S, . -5, >0)."
j-i 3 j-itl b ? > 731 h|

Given 1 < i < j observe that
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- > - > coe
Prob(S;_; S olsj_i+l S5 >0, » 8501 7 85

>0, veu, - z, > 0)

- > -
Prob( Zi ’OI Zi—l

(1.46)

Prob(-z, , -y, > ol-zi_ % 0, ..., =Z, > 0)

1 1

= Prob(-2, , -y, >0|-z, . >0,

~because Y4 is independent of zi—n’ n=1, ..., i-1. Therefore,

Prob(-sj >0,8 -S,>0, ..., § - s-j > 0) =

1 j j-1
(1.47)
h| | i
II Prob(s, - S, >01(s, . -8, >0) = 1 p*.
i=1 -1 =i+ =1 1
Similiarly, one can show
[+ 2]
Prob (S, -S5,>0, 8. -8,>0, ...) = II p.. (1.48)
i+ *2 i=1 1
Putting the two results together,
J [ ]
lim Prob(m* = M+j) = II p; i pi. (1.49)
T-oo i=1 i=1

Inorder to calculate the limiting probability that m* is equal to
M+j, we need to approximate expression 1.49. To accomplish this
end let ui‘_1 ~ Xz(i—lh Vo~ xz(l) independent of ui—l’ and for i>2

note that
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' > >
Prob(z, olzi_l 0)

Prob(2i - U, - V> 0]2(i-1) - u, _ > 0)

i-1
(1.50)
Prob(u; ; + v < 2ilu,_; < 2(i-1))

Prob(u, < 2ifu,_, < 2(i-1)). %3

1

Figure 1

4 21

2(i-1).

A R
BROREIN

v >

The shaded area of figure 1 represents the set of u,_ and v

1

such that ui—l_+ v < 2% and w1 < 2(i-1). Let Fui(.)’ Fy (),

and Fv(') denote the cumulative distribution functions (cdf) of ui

i-1

b

u;_q and V and let £, » f » and fv denote the corresponding

u

i i-1

probability density functions (pdf). It is clear from figure 1.1

that there are several representations of Di in terms of these cdf

and pdf.

Since the Di must be calculated numerically, we have chosen
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the following expression for pi to minimize computational cost:

2

Py = Fui(Zi) - g (Fui—l(Zi—v) - Fui_l(Z(i—l))fv(V)dv
F (2(i-1))
Yi-1
2 .
Fui(Zi) - éFﬁi_l(Zi-v)fV(V)dv
= EV(Z) + 5 CIE=Y)) . (1.51)
Y1-1

Numerical integration of the second term in the numerator of 1.51
was carried out as follows. The closed interval [0,2] was
divided into 20,000 disjoint intervals, and the value of fv(v),

0 < v < 2 was calculated using the approximation

fv(v) = Prob(xz(l) < v + .0001) —fProb(xz(l) < v - .0001).

(1.52)
A similar procedure is used to find D;, i<ij:
* = - > - >
P%¥ = Prob( z, 0] Z, 120
= i - - < - - <
Prob(2i W v 0|2(1 1) u 0)
(1.53)
- > 94 S .
Prob(u, , + v > 2ilu,_, > 2(i-1))

Prob(ui > Zilqi_l > 2(i-1)).
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Figure 2

- The shaded area of figure 2 represents the set of Ui and v

such that u, . + v > 2i and u 1 > 2(i-1).

i-1 i-
2
1-7F (2(1-1)) - f (F (2i-v) - F. (2E~1D)))E (v)dv
. = e T R o Yi-1 i 5 D
Pi 1-F (2(i-1)
u, .
i-1
. | (1.54)
1+F (2-DIF (2) - J F (2i-v)f (v)av
- ui_l v 0 ui"l v
l1-F (2(i-1))
u,
i-1

Table 2.1 summarizes the results of these calculations.
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Table 2,1
Limiting Probabilities that m*=M+j, j=0, ..., l4.

j 14
M+j , lim Prob(m* = M+j) = 1l pg i pi
T->00 i=1 i=1

j=0 .4354
1 .2215
2 .1268
3 ) .0769
4 .0482
5 .0310
6 .0203
7 .0135
8 .0090
9 .0061
10 .0042
11 .0028
12 .0020
13 .0014
14 .0009

The figures in Table 2.1 indicate that as T»>®, the CAT
criterion does not prevent asymptotic overfitting of the
distributed lag model, i.e. lim Prob(m*>M) = .5646. As T
Parzen's criterion selects tgzmtrue lag length approximately
44% of the time. The limiting probabilities that m* = M+j converge
rapidly to zero as j increases. Because the use of the CAT cri-
terion results in a non-zero probability that m*=M, there is a gain
in asymptotic efficiency when using this criterion to estimate the
DLM. Consider the estimator of an unconstrained distributed lag
model of unknown order called Hannan inefficienf (H1), (7). To get

consistent estimates of the coefficients using HI, the fitted



distributed lag m(T) must be expanded to infinity with sample size,
while the ratio of m(T) over T goes to zero, (17, p. 304). The
terminology "liannan inefficient" stems from the fact that the lag
distribution must be expanded indefinitely in both directions, so
there is no way of incorporating prior information on the lag
distribution (one-sidedness or known lag length) into the estimation
procedure. Our analysis is comparable to the HI procedure if model
1.3 is amended to include M future x's. None of the preceding
analysis (propositions 1-3) is affected if we fit symmetric two-
sided lag distributions of order m(T). Once the random variables
0;2, j=1, ..., m(T) are redefined as the error sum of squares from
a two sided distributed lag with j leads and lags divided by
T-2j-1, the previous results follow with appropriate chénges in
degrees of freedom. The salient feature of these results is that
lim Prob(m*=M) > 0. Also, since the limiting probability that
T-0
m* = M+j goes to zero as j gets large, for § > 0 there exists some
integer M. = M_(8) such that lim Prdb(m* >M ) < 6. Hence there
0 0 0
is a gain in asymptotic efficiency over HI when CAT is used to
estimate the length of a symmetric two sided distributed lag model.
As T», the CAT criterion selects a finite lag length m* > M with
14

non-zero probability.

We conclude this section with a discussion of the large sample

-1
. . 1 1 ] 1
properties of B x (X. . .A(II#) X *y. We shall focus attention on

the first M+l components of §ﬂ#.
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PR . L - ' .A=
Proposition 4: Let ﬁm* (ﬁM, Bm*_}? . Then gi;m EM EM'

Proof: By proposition 1 we need only consider those values of m*

such that m* > M. Let {x(t)} denote the entire history of the x

process, {..., X 1 Xeo X1 «..}. Then
2 -1
lim E(B, [{x(0)}, m) = (X ,'X ) X 4'XB
Too
B (M+1)x1
=™ (1.55)
0/ (u*-mx1

~ 2., -1
%ig Var(§m*|m*, {x(t)) =0 (Xm*Xm*) .
The (M+1)x(M+1l) upper left hand corner block of (72()(:ﬂ*XW,¢).l is equal
2, -1 , , . ,
to O (XMPm*—MXm) - Denote this matrix by V(m*). The expectation
of V(m*) with respect to m* is equal to the variance of the first

~

M+l components of §m* conditioned on {x(t)} alone :

M-1
Ex(V@®) [{x(0}, o%) = I v@®fm*, T|{x(t)})
m*=0 )
(1.56)
m(T)
+ I V(m*)£(o*,T|{x(t)}),
m*=M

where f(m*,T|{x(t)}) is the pdf of m* given the x process. The

sample size is included as an argument of f(¢) to re-emphasize the

dependence of m* on T. Since plim V(m*) is a well defined matrix (see
T

footnote 15 below), the first term on the right hand side of 1.56

converges to zero as T>* by proposition 1. The second term,
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m(.T)

‘ 9 m(T)
T V(o) f(o*,T|{X(t)}) = o (XyP MKM) Le(m*, 1| Ix(0) D)
m¥*=] m*—M
' (1.57)
2., -1m(T) R
SO XY L f@e T,
m*=M

where < denotes matrix ordering. The matrix Pm(T)—M is equal to

(T - m(T) M m(T)-Mxm(T)—M) m(T) M Observe that

m(T)

-1
plim O ! ‘Pm(T) MXM . *P_".:Mf(m* T| {x(t) hH =
e " (1.58)
.2 p oy -1
T Too

. .
XMI —MXM 15
since plim ( mj(:T ) is a well defined matrix.

T >

Therefore, the first M+l components of —B-m* consistently estimate
.gM'
Conditional on {x(t)} and a fixed m* > M, the limiting

distribution of »/‘I'_(_@m* - ( :.;M)) is normal with zero mean vector

and covariance matrix 02 Q(m*)—l. This is true because for
1 2 Xx;*xm*
fixed m* > M, S Xr:l* £~ NQO, 0°(——))

T and

1
xm*Xm* ) -1

plim ( T

T o0

has been the estimation of both M and the distributed lag coeff-

= Q(m*)—l. The innovation in our analysis

cients, but it is applied work that motivates this discussion

of the conditional limiting distribution of B . given m* and
“m

{x(T)}. Once m* has been selected using the CAT criteriom, it

is convenient for the researcher to act as if m* were fixed
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when performing hypothesis tests using coefficient estimates
and their estimated covariance mafrix. In the next section we exa-
mine the bias agsociated with conventional coefficieﬁt t-tests
when CAT is used to.select a DIM from a set of compgting models
of various lag lengths.

Although we have worked- out the limiting probabilities that
m* = M+i, i=0, 1, ..., m(T) for a distributed lag regression
model with an arbitrary zero mean covariance stationary
X process and normal independent disturbances, the problem
of determining the limiting distribution of ff(ém* - §m*)’
or some other function of‘ém*, remains a difficult problem.
The column dimension'of Xh* is a random variable with no upper
bound, and "unconventional" central limit theorems are required
to examine the limiting distribution of(l/ff)xé*_g . This is

A

true even if one restricts attention toﬁM =

A

-1

] y .

(XMPm*—MXM) XMPm*-M’E’ the first M+l components of ﬁm*' The
paper by Sims (17) discusses the problems associated with
infinite dimensicnal parameter spaces; we shall not pursue the

subject further.
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3. A Monte Carlo study of the use of the CAY criterion to select
the order of the distributed lag model.

In this section we report results from a series of Monte
Carlo experiments in which the CAT criterion was used to select
the length of the coefficient lag distribution in the regression
model 1,3 of section one,

M

y(t) = T R(s)x(t-s) + e(t), t=1, ..., T,
s=0 ’

when M is an unknown nonnegative integer. The explanatory

variable x(t) was generated by the covariance stationary process
2
X(t)(l—-BL) = C*(t): t=ls e sy T’ (1.59)

where L denotes the lag operator. Both g*(t) and ¢(t) are

"pseudo-random" standard normal variates independent of one
another.16 This particular parameterization for the x(t) process
was chosen since the autocovariance function of x(t) closely
resembles that of a typical U.S. time series.l7 For each experiment
we chose samples of size 50, 100, and 200, and one of the
following lag distributions:.

a) -No lag distribution; B(0) = 1.0 and B(i) = 0, i#0.

b) Linear Decay; B(i) = 1.0, O <1i <4 and B@) =

1.0 - .1(i-4), 5 <1i <13, (1.60)
c) Box; B(0) = .5 = B(6), B(i) = .8, i <i <5,

. 18
d) 1Infinite geometric; B(i) = .81, i=20,1, .



For each sample size the maximum order of the fitted dis-
tributed lag models was approximately T'6; when T=50, distributed

lags of order 0-12 were fit, for T=100, 0-18, and for T=200,
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0-27. For each replication and sample size the CAT criterion esti-

mated a particular lag distribution. After 100 replications the

following summary statistics (i-viii) were calculated.

(i) The average order of the lag distribution that6
was selected by minimixing CAT(i), i=0, 1, ey (T77),
denoted m*(T). Let m*(T,k) denote the order chosen
for sample size T and replication k. The average
order m*(T) is given by

100

a*(T) = I%E I w*(T,k), T=50, 100, 200. 1.61)
k=1

We include this statistic in the analysis since it gives a
general indication of the performance of CAT as sample size
increases. For example, when the CAT criterion is applied to
the finite lag distributions (a), (b), (c), we would expect the
average m* to more closely coincide with the population lag .
length M, the larger is the sample size. When-CAT is used to
estimate the lag distribution which is of infinite lengtH, lag
distribution (d), we would expect the average m*(T) to be an
increasing function of sample size.

(ii) The average estimate of 02, the variance of the

disturbance temm (02 = Var (e(t)) = 1), denoted
l\2 A,
07 (T). Let OZ(T,k) denote the estimate of 02 for

sample size T and replication k. Then 02(T) is given by
~ 100

2 1
0°(T) = == I oz(T,k), T=50, 100, 20Q. (1.62)
100 =1
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Tﬁis statistic is important since the residual vafiance is one
component of the estimated variance of the coefficient estimates.
If 82 is biased downwards (upwards), we would expect coefficient t
statistics to be too large (small) on average, provided the

coefficient estimator is unbiased. In any event we would expect

. .2 PR . .
bias in 0" (T) to diminish as sample size increases.

(iii) A Komolgorov-Smirnmov (K-S) statistic to test the

null hypothesis that the sum of the estimated coefficients

was equal to the sum of the true coefficients. Let CSUM(T,k)
denote the sum of the coefficients from the estimated lag distri-
bution of order m*(T,k) minus the sum of the population

distributed lag coefficients, divided by the (T,k)™"
standard error of the estimated sum. Assume that the
CSUM(T,k) are independent and identically distributed
normal variateigwith zero mean and unit variance,
denoted N(0,1) Suppose CSUM(T,k) is re-indexed by
CSUM(T,%) so that the CSUM(T,&), %=1, ... 100 form a
monotone increasing sequence. Let ®(CSUM(T,2)) denote
the cumulative density function (CDF) of a N(0,1)
evaluated at CSUM(T,%). The two-sided K-S(T), T=50,
100, 200 statistics reported below are equal to the
maximum absolute difference between the sample and
population CDF of CSUM(T,Z),

K-S(T) = max
=1, ..., 100

I—l-g—o— - o(CSUM(T, ) |,
(1.63)

T=50, 100, 200.

The null hypothesis that the estimated sum is equal to
the true sum is rejected at the 5% (1%) significance
level if the K-S(T) statistic exceeds .136(.163).

An asterisk denotes acceptance of the null hypothesis

at the 5% significance level.

We choose to report a K-S statistic for the sum of the estimated
coefficients since for some distributed lag models this sum

represents the cumulative or iong frun response of an endogenous
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variable to a once and for all change in an exogenous variable.

The researcher may want to kno& if the use of the CAT criterion
distorts this statistic. It should be noted that the same informa-
tion concerning fhe distribution of the sum of the estimated
coefficients could have been obtained from a standard t-statistic.

Failure to do so was an oversight on the author's part.’

(iv) The average bias of the coefficient estimates,
denoted BIAS(i,T). Let B(i,T,k) denote the ith
estimated coefficient i=0, 1, ..., m*(T,k) for sample
size T and replication k, and let B(i) denote the value
of the ith population coefficient from 2.12 a-d.

For T=50, 100, 200 define B*(i,T,k) as

5B(i,T,k) if i=0, 1, ..., m*(T,k), and

6 (1.64)

B*(1,T,k) =
l 0 if i = m*(T,k) + 1, ..., T .

Then BIAS (i,T) is given by

1 100 ~

BIAS(i,T) = 100 L B*(i,T,k) - R(1),

k=1 (1.65)

i=0, 1, ..., T'6, and T=50, 100, 200.

This statistic is important since it helps determine the reliability
of coefficient point estimates when the lag distribution has
been estimated using the CAT criterion.

(v) -The number of times that coefficient (i,T) was
included in the estimated lag distribution, denoted
NTIME(i,T). Define the variable Q(i,T,k) as follows;

1if i < mw*(T,k), and
Q,T,k) = - (1.66)

0if 1 = m*(T,k) + 1, ..., T°°.
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Then NTIME(i,T) is given by
4 100 ) 6
NTIME(i,T) = I qQ(,T,k), i=0, 1, ..., T,
k=1 ' : (1.67)

T=50, 100, 200.

. 6
The values NTIME(i,T) i=0, 1, ..., T ~, T=50, 100, 200 can be

“used to compute the sample frequencies  that m*(f) = i, i=0,
cees (T'6) which can then be compared to the limiting probabi-
lities that m* = i, i=0, ..., (M+l4) that were calczlated in
section two pages 18-26. The sample frequency that m*(T) =
for any sample size and lag distribution is given by

(NTIME (i,T) - NTIME(i+1,T))/100 for i=0, ..., (T°°-1),  (1.68)

. _meb
and NTIME(i,T)/100 for i=T®",

We expect there to be greater coincidence between the sample
and limiting probabilities that m*(T) = i, i=0, 1, ..., T'6,
the larger is the sample size.

(vi) The average mean square error of the estimated

coefficients, denoted MSE(i,T)

L 100 .
MSE(i,T) = IEE z (B*(i T,k) - 8(1))

(1.69)

i=0, 1, ..., T'6, T=50, 100, 200.

This statistic is useful since we will compare it to the average

T06

s bl

estimated variance of each coefficient EVAR(i,T), i=0, ..
T=50, 100, 200, which is described below.

(vii) The average estlmated variance of coefficient (i,T),
denoted LVAR(i,T). Let G2(T,k)-(X(T,k)" » X(T JNIE

denote the diagonal elemepts of the estimated

covariance matrix of the B(i,T,k), i=0, 1, ..., T, Define
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o 2 (T, k) (R(T, k)" * X(T,k));Ji'

G+ (T (X*(T,k) '+ X*(T,k)) 1= { for 1=0,1, ..., m¥(T,k), and

° .6
0 for i=m*(T,k)+1, ..., T .

(1.70)

Then EVAR(i,T) is given by

100 ., -1
I O% (X*(T,k)’ °X*(T,k))'ii

k=1

EVAR(i,T) = 100

H]

i=1, ..., T8, T=50, 100, 200.

If BIAS(i,T) is small, we expect EVAR(i,T) and MSE(i,T) to be

roughly the same. Should EVAR(i,T) be biased'upwardé (dowvnwards)

then coefficient t-tests will be too small (large). We examine

the bias of coefficient hypothesis tests under the null hypothesis

that (i) = 0, i=0, 1, ..., T'6 using F(i,T,k) described below.
(viii) The sample CDF of the ratio of each coefficient

to its estimated standard error, assuming the ratio
has a N(0,1) distribution. Define F(i,T,k) as

-1
ii

1/2, for

BIBGLT, /(@M1 + (K(L,0) 'X(1,10) (D2

F(i,T,k) = i=0, 1, ..., m*(T,k), and (1.71)

.5 for i=m*(T,k) + 1, ..., T'6.

If the CAT criterion selected an estimated lag distribution of
6
order m*(T,k) < T ', then the (@*(T,k) + 1) through (T'6) -th

coefficients were arbitrarily assigned a cumulative probability
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of .5. The cumulative normal probabilities F(i,T,k) are found in
13 columns of tables 2.3; 2.5, 2.7, and 2.9, a table for each
lag distribution (1.60)a-d. For example, the entry corresponding
to the column headed by 3 and the row associated with Lag 6 in
Table 2.3-Lag Distribution (a) - T=50, page 43 is 2. AThis means
that F(6,50,k) is in the third probability cell; F(6,50,k) is less
than .05 and greater than or equal to .025 for 2 out of the 100
replications for lag distribution (a), sample size 50, and the coeffi-
cient corresponding to the x variable lagged six periods. The null
hypothesis that the ratio.of an estimated coefficient to
its estimated standard error is distributed as a N(0,1) is incorrect
for the first M+l coefficients of each lag distribution and correct
for all others.20 Theoretically, the sample ratios of those coeffi-
cients whose population value is zero should be distributed across
the columns of tables 2.3, 2.5, 2.7, and 2.9 in proportiocn to the
cumulative probabilities at the head of each column. For eﬁample,
given any lag distribution there should be approximately 30 replica-
tions in the first five columns in all rows where the population
coefficient is zero, since the first five columns represent a
cumulative probability of .30. We shall return to this point
during the analysis of the Monte Carlo results.

Last, the statistics described in (i-vii) above are found
in tables 2,2, 2.4, 2,6, and 2,8; these tables correspond to

the four lag distributions 1.60 a-d. The first three statistics

(i-iii) are found under the heading general statistics, while

(iv-vii) are found under the heading coefficient statistics.



Table 2,2

Lag Distribution (a)

T=50

General Statistics

~

o (50) = 3.22 02(50)= .8836 K-S(50) = .0974*
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Coefficients Statistics
BIA S(50,1i) NTIME(50,1i) MSE(50,1) EVAR(50,1) LAG-1i
.0281 100 .0264 .0116 0
-.0040 51 .0755 .0332 1
.0370 45 .0634 .0316 2
-.00898 38 .0701 .0282 3
-.0207 34 .0412 .0251 4
.0135 30 .0439 0211 5
.0105 25 .0394 .0194 6
-.0135 24 .0378 .0181 7
.00456 21 .0590 .0162 8
-.00225 18 .0466 .0140 9
.00461 16 .0354 .0115 10
-.000409 13 .0264 .00640 11
-.000504 7 .00856 .00152 12



Table 2.2 cont.

Lag Distribution (a)

T=100

General Statistics

m*(100) = 3.07 02(100) = .9476 K-S(100) = .1013%*

Coefficients Statistics

39

BIAS(160),i) NTIME(100,i) MSE(100,i) EVAR(100,1) LAG-i
.0178 100 .00902 .00543 0
-.0213 56 .0254 .0157 1
.0122 41 .0247 .0101 2
.0104 34 .0273 .0120 3
-.0274 28 .0199 .0107 4
.0177 25 .0169 .00949 5
.00356 21 .0180 .00845 6
-.0211 18 .0154 .00760 7
.0136 15 .0212 .00694 8
~.0000761 13 .0146 .00627 9
-.00212 12 .00755 .00485 10
.000331 8 .00678 .00433 11
.0111 8 .00570 .00431 12
-.0121 8 .00753 .00399 13
~.00256 7 .00921 .00304 14
.0114 5 .00984 .00223 15
-.00753 4 .00440 .00163 16
.00233 3 .000761 .000705 17
.000430 1 .0000185 .000110 18
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Table 2.2 cont.

Lag Distribution (a)

T=200 g
General Statistics

o*(200) = 3.11 02(200) = .9747 K-S(200) = .0778%

Coefficients Statistics

BIAS(200,i) NTIME(200,i) MSE(200,i) [EVAR(200,i) LAG-i

.0C856 100 .00372 .00230 0
-.00993 51 .0134 .00656 1
.00718 36 .0142 .00632 2
.00480 32 .0116 .00524 3
-.0137 26 .00952 .00425 4
.000530 21 .00623 .00356 5
.00488 17 .00641 .00317 6
.00207 16 .00433 .00264 7
-.00140 12 .00426 .00233 8
.00399 11 .00124 .00218 9
~.00667 10 .00239 - .00212 10
.00528 10 .00331 .00202 11
.000179 9 - .00259 .00196 12
-.00381 9 .00290 .00182 13
.0116 8 .00629 .00168 14
-.00910 8 .00289 .00128 15
.000691 5 .000579 .00111 16
-.00411 5 .000949 .00109 17
.00780 5 «00253 ~ .000958 18
-.00371 4 .00118 .000913 19
.00430 4 .00174 .000860 20
-.00364 4 .00104 .000621 21
-.00147 3 .000127 .000402 22
.00101 2 .000186 .000330 23
.000744 2 .0000993 .000210 24
.0000909 1 .000000826 .000304 25
- 0 - - 26

- 0 - - 27



Table 2.3 - Lag Distribution (a)

T=50

Number of replications in éach probability cell

13

12

11

10

Probabilities

7= .9- .95- .975- .9875-
.975

.9

.0125- .025~ .05-
.05

. 025

0.0-

.9875 1.0

.95

100

.0125

Lag

49

11

55
62
66

‘1

70
75
76
79
82

84
87

10
11
12

93

T=100

100

41

N T N~

~~O0 O

TN

™M =M

11

72
75



Table 2.3 ~ Lag Distribution (a)

T=100
Number of replications in each probability cell

13

12

11

10

Probabilities

1.0

«95-  .975-

975

.9-

-5"‘

.0125- .025- .05- .1-
.05

.025

000—

.9875

n

.95

.0125

Lag
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o O
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Table 2.3 - Lag Distribution (a)

v T= 200
Number of replications in each probability cell

13

12

11

10

Probabilities

1.0

-975_
.9875

c95"‘
.975

.9~
.95

07—
.9

15"'
07

.025~ .05~ .1~
.05 .1 .3

.0125-
.025

0.0~
.0125

Lag

84
88

89

90
90
91
91

10
11
12

13

92

14

92

15

95
95
95
96

16
17

18

19
20
21
22
23
24
25
26
27

96

0

96

0
2

97

98
98

43

99
100

100



Table 2.4

Lag Distribution (b)

T=50

General Statistics

44

0% (50) = .9678 K-5(50) = .0645%

m*(50) = 11.17
Coefficient Statistics

BIAS(50,1) NTIME(50,1) MSE(50,1) EVAR(50,1) LAG~-1
-.000726 100 .0413 .0386 0

.00821 100 .143 .129 1
-.00368 100 .169 144 2

.0289 100 .126 .142 3
-.0309 100 .101 .142 4
-.00246 100 141 <141 5

.00548 100 .150 . 140 6
-.0107 100 .152 142 7

.0255 100 194 .143 8
-.0403 100 224 .137 9

.0436 98 .193 .109 10
-.0143 74 .139 .0655 11
-.0151 45 .0394 .0170 12



Table 2.4 cont.

Lag Distribution (b)

T=100

General Statistvics

45

| n*(100) = 12.65 82(100)-“= .9709 K-S(100) = .0705*

Coefficient Statistics -

BIAS(100,i) NTIME(100,i)  MSE(100,i) EVAR(100,1i) LAG-1i
-.0124 © 100 +0125 0134 0
.03.2 100 ©.0507 .0472 1
-.0367 100 .0431 .0531 2
.0321 100 .0483 .0533 3
-.0130 100 + 0659 .0533 4
-.000332 100 .0626 .0535 5
-.0162 100 .0655 .0533 6
.0141 100 .0575 .0533 7
00265 100 .0550 .0534 8
.0164 100 .0636 - .0535 9
-.0225 100 .0507 .0509 10
.00419 99 .0632 .0366 11
-.0150 63 .0506 .0229 12
.0265 39 .0312 .0150 13
-.00234 28 .0197 .00899 14
-.0134 16 .0100 .00532 15
-.00139 10 .00757 .00335 16
.00635 6 .00759 .00196 17
-.00189 4 .00119 .000479 18



m*(200) = 13.60

Table 2.4 cont. .-

Lag Distribution (b)

T=200

General Statistics .

~,

0%€200) = .9726 K-S(200) = .0917+

Coefficient Statistics

46

BIAS(200,i) NTIME(200,i) MSE(200,i) EVAR(200,i) LAG-i
-.00547 . 100 - 00613 .00578 0o
. .0158 100 .0178 .0205 1
-.0287 100 .0180 .0229 2
.0323 100 .0255 .0229 3
-.0205 100 .0246 .0229 4
-.000843 100 .0220 .0228 5
.00678 100 .0242 .0228 6
.0681 - 100 . .0207 .0228 7
-.0135 100 ..0201 .0229 8
.00826 100 .0251 .0230 9
~.000897 100 - .0242 .0225 10

-.00953 100 .0344 - .0185 11
.00990 78 .0234 .0121 12
.00232 47 .0128 .00762 13
-. 00654 31 - .0178 . .00522 14
-.000163 . 23 -.0117 .00393 15

-.000289 18 .00420 .00304 16 -
.00124 14 . 00436 .00240 17
-.00226 11 00507 .00201 18
.00577 - 10 . .00408 .00153 19
-.00342 7 .00378 .00120 20
.000717 .6 .00309 .00100 21
-.000182 5 .00150 .000814 22
. 000406 4 .00116 .000602 23
.000904 3 .00108 .000424 24
-.00106 2 .000474 . .000230 - 25
-.00128" 1 .000164 .000230 26
- -0 - - 27
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Table 2.5 - Lag Distribution (b)

T=200
Number of replications in each probability cell

13

12

11

10

Probabilities

.9875-.
100

095- 0975—
.9875

.975

-9-

-
.3

lOS"

‘1

.0125-  .025-

. 025

0.0~

.95

.05

.0125

Lag

96
84
68
38
34
22

12

10

15

21

10
11

12

23
12
11

11

22

12

53
69

13
14

77
82

15
16

86
89

17
18
19
20
21

90
93
94
95
96
97
98

22
23

49

24
25

99
100

26
27
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Table 2.6

Lag Distribution (¢)

~ T=50
General Statistics
m*(50) = 7.52 32(50)‘= .9232 K-S(50) = .0752%
Coefficient Statistics

BIAS(50,1) NTIME (50,1) MSE(50,1) EVAR(50,1i) LAG-i

-.0237 100 .0357 .0290

-0

.0273. 100 .116 .0951 1
.0133 100 127 .106 2
-.0319 100 .0839 .106 3
. 0445 100 .0936 .106 4
-.0181 100 - .138 .0966 5
-.0541 96 121 G635 6
.0238 51 .0999 .0393 7
.00714 36 .0580 .0281 8
.0149 27 .0586 .0198 9
-.0150 19 .0398 .0143 10
-.00698 15 .0324 .00928 11

.00625 8 .0102 .00253 12



Table 2.6 cont .

Lag Distribution (c)

T=100

General Statisties

m*(100) = 8.18 02(100) = .9665 K-S(100) = .0581%

Coefficiegt Statistics

51

BIAS(100,i) NTIME(100,i) MSE(100,i) EVAR(100,1i) LAG~1
-.0206 100 .0127 .0119 Q
.0363 100 .0458 .0415 1
.00869 100 .0535 .0466 2
-.0246 100 .0431 .0465 3
-.0137 100 .0476 . 0465 4
.0279 100 .0517 .0439 5
-.0328 100 .0332 .0269 6
.0305 46 .0332 .0159 7
-.0204 32 .0208 .0122 8
.0157 26 .0158 .0100 9
-.0101 22 .0232 .00911 10
.0100 21 .0238 .00798 11
-.00350 .17 .0147 .00737 12
-.00918 17 .0117 .00628 13
.0149 13 .0132 .00518 14
=~. 0117 11 .00826 .00376 15
.00518 7 .00595 .00201 16
.000177 4 .00286 .000941 17
-.000429 2 .00135 .000225 18



Table 2.6 cont.

Lag Distribution (c)

T=200
General Statistics
m*(200). = 7.86 _82(200) = ,9810 K—S(ZOO) = ,0801*

Coefficient Statistics

"52

BIAS(200,1) NTIME(200,i) MSE(200,i) EVAR(200,1i) LAG-i

-.0104 100 .00516 .00540
.0143 100 .0211 .0189
.00793 100 .0282 .0210

-.0124 100 .0220 .0211

-.00273 100 .0191 .0121
.0164 100 .0203 .0200

-.0227 100 .0170 .0124
.00956 46 .0132 .00712
. 00296 30 .00592 .00479
.00129 20 .00469 .00366

-.000682 16 .00858 .00305

-.0118 14 .00741 . .00245
.0111 ‘11 .00507 .00200

-.00553 9 . .00399 .00173
.00643 8 .00393 .00150

-.00628 7 .00225 .00109
.00405 4 .00113 .000947

~-.00392 4 .000485 .000923
.00138 4 .000699 .000791
.00339 -3 .000685 .000716

-.00392 3 .00134 .000548
.00292 2 .00173 .000323

~-.00216 1 .000466 .000260
.000766 1 .0000586 .000257

-.000612 1 .0000374 .000257

; .000992 1 .0000984 .000228
g -.000362 1 .0000131 .0000648
- 0 - -

BEs ' ,
HOWVONOUHWNHO

NNNMNNNOMNHPBRRBR R
NMEWLWNHOVONOWL W

26

N
~



53

6 Y 4 T 1 0 0 0 0 0 0 0 0
16 L 1 T 0 0 0 0 0 0 0 0 0
€6 4 Y T o0 0 0 0. 0 0 0 0 0
6 4 4 € 1 0 0 0 0 0 0 0 0
Y6 T 4 € 0 0 0 0 0 0 0 0 0
L6 .0 1 T T 0 0 0 0 0 0 0 0
00T =1,
r 0 T 1 1 0 6 T 1 0 T 1 0
1 0 4 1 AN 5 S8 0 1 1 0 R4 4
€ 0 0 0 ¢ € 8 0 Vi z 1 0 €
Yy 4 0 T % S €L 1 Y 1 0 € z
Y 0 1 € 8 € Y9y S € 'z 0 £
9 z € S 9 9 6 9 S € Y 0 S
6% T S L L 9 Y Y S 1 0 0 0
€9 8 S L T € 0 1 T 0 0 0 0
69 IT .9 g8 v 1 0 1 0 0 0 0 0
€9 9 z1 0T 8 4 0 0 0 0 0 0 0
€9 4} 'S L 0T ¢ 0 0 1 0 0 0 0
89 S L 8 01 4 0 0 0 0 0 0 0
1L L L L 9 1 0 1 0 0 0 0 0
0°'T <L86° SL6° S6° 6° L* s G € T S0* GZ0° 6ZT10°
-6L86* -SL6° -S6° ~6° ~-L° ~-G° -€*  -T* -60°* =-6Z0° -SZIO' ~0°0
89TITTTqeqO1d
€1 A} 11 0T 6 8 L9 S / € 4 1

kuu £13TT98q0ad Yoea ug mcoﬂuaoﬁamwu Jo xaquiny

0§ =L

(®) voranqrilsiq 8eT - £°7 °1qel

L NI WS Wy

OrmNNITN

O - N
- -

Ol TN O~©Oo

Beq



Table 2.7 -~ Lag Distribution (c)

T=100
Number of replications in each probability cell

13

12

11

10

Probabilities

0975" 09875—
.9875 1.0

'95-
.975

09'_
.95

o7—
.9

.5"’
.7

03""
.5

.025- .05~ .1-
.1 .3

.05

.0125~
.025

0-‘0—

Lag
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Table 2.8

Lag Distribution (d)

T=50
General Statistics = v
m*(50) = 11.53 02(50) = 1.280 K-5(50) = .7004

CoefficiethStatistics

BIAS(50,1) NTIME(50,i) MSE(50,1) EVAR(50,i) LAG-i
-.110 ‘ 100 .0555 ©.0518 0
.0718 100 114 171 1
.0624 , 100 .139 .193 2
-.0782 100 T .144 .195 3
.0232 100 .157 194 4
-.0312 100 .163 .193 5
.0386 - 100 171 .191 6
-.0336 100 .202 .191 7
.0125 , 100 .189 .187 8
-.0611 99 .166 .183 9
.0380 98 .166 171 10 .
-.128 88 .200 .129 11

.267 68 .140 .0344 12



m*(100) = 16.43 02(100) = 1.024 K-S(lOO) = .4030

Coefficient Statistics

Table 2.8 cont.

Lag Distribution (d)

T=100

General Statistics

57

BIAS(100,i) NTIME(100,i) MSE(100,i)  EVAR(100,i) LAG-i
-.0205 100 .0155 .0158 0
.00888 100 . .0384 .0538 1
.0296 100 .0566 .0600 2
-.00849 100 .0527 .0601 3
-.0189 100 .0548 .0601 4
.00353 100 .0527 .0602 5
.0131 100 .0586 .0603 6
-.0133 100 ~.0710 .0603 7
-.00213 100 L0667 .0602 8
.00221 100 .0625 .0599 9
.00520 100 L0611 .0596 10
-.00469 100 .0631 .0597 11
-.0177 100 .0553 .0591 12
.0153 100 .0497 .0576 13
.00530 97 . 0531 .0537 14
.00225 91 .0502 L0444 15
~-.0259 72 .0435° .0334 16
L0147 54 0344 .0194 17
.0370 29 L0144 .00444 18



m* (200) = 20.75 82(200) = .9959 K-S(200) = .2566

Table 2.8 cont.

Lag Distribution (d)

T=200

General Statistics

Coefficient Statistics

58

BIAS (200,1) NTIME(200,i) MSE(200,i) EVAR(200,1) LAG-1

-.0138
.0181
.00589

-.00831

-.00143

.00269

.00505

. 00406

.0113

.00942

.00944

-.0169

.0105

.00704

.00173

.00906

.0143

.0338

.0243

.0209

.00869

.00124

.00750

.0116

.000980

.0123

.000397

.000952

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
97
92
83
67
54
46
37
30
23
20
15
11

.00676
.0251
.0302
.0221
.0234
.0238
.0277
.0315
.0251
.0241
.0268
.0247
.0212
.0270
.0296
.0271
.0243
. 0219
.0214
.0193
.0162
.0167
.00970
.00959
.0101
.00641
.00744
.00327

.00620
.0216
.0241
.0242
.0242
.0241
.0241
.0241
.0242
.0243
.0242
.0242
.0242
.0241
.0240
.0234
.0224
.0203
.0170
.0137
.0113
.00916
.00746
.00600
.00494
.00387
.00271
. 000710
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For each replication let m* denote fhe lag length selected
by the CAT criterion and let M denote the trueklag length. The
results of the Monte Carlo experiments indicate that when the
CAT criterion is applied to the truncated lag>distributions a
and c, m* is greater than or equal to M except for 4 replications
of lag distribution c, sample size 50, and m* is equal to M for
approximately half the replicationsf The sample probabilities
that m* = M+i, i=0, 1, ..., (T'G—H) roughly correspond to the
limiting probabilities that m* =.M+i, i=0, 1, ..., 14 which
were tabulated in section two, page 26. As one would expect,
there is gfeater coincidence between the sample and limiting
probabilities the larger is the sample size.

The coefficients in lag distribution b decline linearly
from one to zero in steps of .10. Coefficients whose population
value is close to zero are frequently excluded from the lag
distribution chosen by the CAT criterion, although the frequency
of replications where m* is less than M declines as sample size
increases. A similar result holds for the infinite geometric
lag distribution d. In this experiment, the average m* is an
increasing function of the sample size. 'Although we have not
analyzed the large sample properties of the CAT criterion when
the population distributed lag is infinite, the results of experiment
d indicate that the bias of the estimated coefficients is small

despite the specification error.



63

For experiments a, b, and ¢ the null hypothesis that the
sum of the estimated coefficients is equal to the .sum of the
population coefficients is easily accepted at a 5% ;ignificance
level. This hypothesis is rejected for experiment 4 (all sample
sizes) at any reasonable significance level. The latter result
is not surprising as the fitted lag distributions are too short.
For sample sizes of 50, 100, and 200, the average m* is equal’
to 11.5, 16.4, and 20.8, and the difference between the sum of
experiment d population distributed lag coefficients (5.0) and
the sum of the first 11, 16, and 21 population coefficients is
.43, .14, and .05. This analysis suggests that the majority of
the ratios (the sum of the estimated coefficients minus the
actual sum divided by the standard error of the sum) used in
the calculation of the Komolgorov-Smirnov statistics are positive.
So it is unlikely that these sample ratios for experiment d
are realizations from a N(0,1) population and hence the null
hypothesis is rejected.

There is a discrepancy between the mean square error (MSE)
of the estimated coefficients for all experiments and sample
sizes and the average estimated variance of the coefficients,
EVAR. This discrepancy has two components. First, one can only
expect the approximate equality of MSE and EVAR when the coefficient

bias is zero. The average bias of the estimated coefficients
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over all experiments is small, so the coefficient bias explains
only a part of the MSE-EVAR dispafity. Second, the average
estimate of 02,‘the variance of the disturbance term, is biased
downwards for experiments a, b, and ¢ and upwards f&r experiment d,
except for experiment d, T=200, where Gzlis essentially unbiased.
In all cases the bias tends to zero as sample size increases.
The direction of the 02 bias is as expected since the average m¥*
exceeds M for the finite distributed lag models a, b, and ¢, and
m* is always too short for the infinite distributed lag model d.
For thosecoefficients which are always included in the lag
distribution selected by the CAT criterion, experiments a-c,
EVAR is usually less than MSE. The reverse is true for experi-
ment d except for the case T=200 when EVAR and MSE are roughly
coincidental. These results reflect the direction of the 02
bias. Last, for those coefficients which are frequently omitted
from the lag distribution selected by the CAT criterion, all
experiments, there is greater disparity between EVAR and MSE,
the smaller is NTIME.

We now turn our attention to the analysis of tables 2.3,
2.5, 2.7, and 2.9. As was stated earlier, the null hypothesis
that the ratio of an estimated coefficient to its estimated
standard error is distributed as a N(0,1) is incorrect for the
first M+l coefficients of each lag distribution and correct for

all others. When the null hypothesis is true, one would expect
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to find a distribution'of the F(i,T,k) across the columns of
tables 2.3, 2.5, 2.7, and 2.9 in proportion to the probabilities
at the head of each column. Since a different order lag distribu-
tion is selected each replication, and since those céefficients
not included in the fitted model are assigned a cumulative
probability of .5, we cannot expect the F(i,T,k) to be distributed
across the columns of these tables in the manner described above --
except for those coefficients just beyond the end of the true
lag distribution which are frequently included in the fitted
model, but whose population value is zero. Despite the draw-
backs of this analysis, it is still possible to. make general
statements concerning the type I and type II error probabilities
associated with the maintained hypothesis 8(i) = 0, for all i,
when the CAT criterion selects the order of Fhe estimated dis-
tributed lag model.

Avreview of tables 2.3, 2.5, 2.7, and 2.9 indicates that
for the first M+l coefficients, the probability of a type II
error (accepting the hypothesis B(i) = 0, i=0, ..., M~1 when
it is false) decreaseé with sample size and increases as one
moves closer to the end of the true lag distribution. To see
this note that the number of replications in the la§t column of
tables 2.5, 2.7, and 2.9 for the first M+l coefficients increases
(to a maximum of 100) as sample size increases, but the number of

replications in the last column decreases as one moves closer
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tovthe end of the true lag distribution. This generality does
not apply to the first experiment, lag distribution a (¥=0),
since in this. case thefe are 100 rewlications in the first row
and last column of the table 2.3 for all sample sizes. For those
estimated coefficiehts whose population value is zero, the pro-:
bability of a type I error (rejection of the null hypothesis
B(1) = 0, i=M+1, ... when it is true) tends to decline as
sample size increases, and as one moves further away from the
end of the true lag distribution. To see this note that the
number of replications in column 7 of tables 2.3, 2.5, 2.7 and
2.9 for the M+l through (T'6)—th coefficients increases wit
sample size, and is larger (with a maximum of 100) for those
coefficients corresponding to the longest lags. In summation,
it is only for those estimated coefficients .in a band around
t@e true lag length M that the coefficient hypothesis tests
tend to be biased, and it is quite likely that EVAR-MSE dis-
crepancy is a principle source of this bias.

The results of this section constitute strong evidence for
the use of the CAT criterion to estimgte tﬁe order and the
coefficients of the distributed lag model 1.3. Using moderate
size samples we have found corroborative evidence for the
limiting probabilities that m* = M+i, i=0, 1, ..., M derived

in section two. Despite the similarity of the CAT criterion



67

to regression strategies (18, pp. 603-606), coefficientrt—statistics
(except for those coefficients in a band round the true lag length
M) are not biased by the use of the CAT selection procedure. But
until we derive the large sample properties of Parzen's criterion
for the case of infinite lag distributions, the applicability

of the CAT criterion is limited to circumstances where the
researcher has a priori knowledge that the lag distribution is

finite,
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Foctnotes

lSee Kmenta (10), pages 282-294 or Johnston (9), pages 259-
265 for a discussion of these procedures.

Sims (17) provides an excellent survey of the various
estimators of the distributed lag model. He shows (pp. 305-308,
326-329) that there exists a sequence of m's converging to
inifinity with T, m/T»0, so that ordinary least squares, feasible
generalized least squares, and Hannan inefficient (7) estimators
of the DLM all have the same asymptotic distribution.

3n spectral theory, see Hannan (8, pp. 273-288) for a dis-
cussion of the relationship between expanding parameterizations
and sample size. Anmemiya (3) does not provide guidelines for
choosing the order of the residual autoregression as a function

of the sample size, but the ideas presented in Hannan
still applicable.

4Theoretically, the CAT criterion selects the order of an
approximating autoregressive process which minimizes the one step
ahead mean square prediction error. In (12) a set of AR models
are estimated using monthly economic data (1960-1974) to see if
the CAT criterion selects the appropriate order of an AR process,
These experlments are inconclusive, but they suggest that the CAT
decision rule does not always select AR models that minimize mean
square prediction error.

5See Hannan (8), pages 204-220, especially theorem 6,

6The matrix result A> B > 0 -1 2.Afl is well known) see

Goldberger (6 , p. 38).

1
7Anderson shows that ST X' € has a llmatlng normal distribu-

tion with zero mean vector and covariance matrix O Q(uO given
assump tions that are satisfied by our covariance stationary x
process. His theorem 2.6.1 (4, pp. 23-24) implies that
1
. _i 1 = - .
plim T X, E 0 for m fixed |

T

2 . .
85ce Theil (18, p. 380). When m < M, plim o is strictly

T

greater than 02 because B, # 0 and
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plim
Toroo

-

(Xﬁ?m*xn) _{ 0| 0
T "\ 0 Q*(M—m)‘Q*(m,M'm)'Q*(ED'lQ*(m,Mrm))’

and the lower right hand block of the limit matrix has full rank
M-m.

Lemma 1: Let s(t) be a sequence of random variables,
s(t) >0 for all t, E(s(t)) < = for all t. If lim E(s(t)) =0,
T
then plim s(t) = 0.
T

Proof: Let 8§ > 0, and let f(s(t)) denote the probability density
function (pdf) of s(t). Then

S o ,
E(s(t)) = [ s(£)£(s(t))ds(t) + Ss(t)f(s(t))ds(t),
J

E(s(t)) 2 & « [ £(s(t))ds(t),
S

(DE(s(1)) > [ £(s(t))ds(t) = Prob(s(r) > 6).
! |

Consequently

C%)lim E(s(t)) > 1lim Prob(s(t) > 8) = lim Prob(|s(t)-0] > &),

L o t o
thus
0 > lim Prob(|s(t) - 0] > 6), that is: plim s(t) = 0.
toeo : T
10

If a function m9(T) had been chosen so that mP(T)*w as T

o
while lim-Eiigl > 0--_ for example mo(T) =b*T, 0 <b < 1-

T

then the arguments presented on pages 16-17 cannot be used to
show plim CAT(m°(T)) = <~2. This is so because
T
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'No 2 R
lim E —————JLJL—— =0 b,

T

and the conditions for lemma 1 footnmote 9 are no longer satisfied.

lI am indebted to John Geweke, my thesis advisor, for his
help in deriving the results on pages 19-25,

2For n events A

13t A.n one uses the definition of condi-
tional probability and an inductive argument to show
n . n-1
N = ces N
P(i=1Ai) P(Al)P(AZIAl)P(ABIAzrhl) P(Ah{ I A, )

There are n! such formulae.
13The mechanics on pages 20-22 can also be used to analyze
the large sample properties of the residual variance model
fitting criterion, Theil (18, pp. 543-5): the expression

T - (02 et 02) converges in distribution to 0 (k X (k)) The

«©

lim Prob(m* =M = H R s R,

= Prob(u +v<ifu, o < (i-1),
Towm i=1 i i-l i-1

'i=1, ..., where u, and v are defined as they were in the text.

i-1
In this case, the limiting probability that m*=M is not greater than

zero because the Ri converge too slowly to one. To see this note that
the expectation of Uz(j-xz(j)) is zero and the variance of Uz(j—xz(j))
is ZGaj. The convergence of R, to one as T+ is too slow for the
producg of the RJ to be boundeg away from zero. The probability

that c (3- X (j)) is greater than zero approaches .5 as j gets

large. For the CAT criterion, E(—— (23~ X'(J)) '/02, an increasing

function of j. The probability that if (23-x (J)) is greater
g

that zero goes to ome as j»>~. Thus the convergence of the Py

to one is faster for the CAT criterion, and lim Prob(m* = M)> 0.
T
14 .
The statement in the text must be interpreted with care.
Ltf x(t) is a white noise process, there is no gain in asymptotic
efficiency over HI for the first M+l coefficients since

plim C‘(X X )) , any fixed m > M, is a diagonal matrix. If
T '
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x(t) follows an ARMA(p,q) process, then there is a gain in
asymptotic efficiency over HI for some of the first M+l coeffi-

cients, and it is the form of plim Cl(X'X ))—l, any fixed m > M,
: T-r<0 T"mm : -

which determines the coefficients with smaller ésymptotic variance.

Xy () 0%
T

15We must first establish that plim (
and then that it is positive definite. Suppose we look at a
sequence of non-zero quadratic forms in the matrices 1.27 of the
text, page 14. The limit of this sequence exists since the
quadratic forms are monotone decreasing and bounded below.
Proposition Fl: As T»~, the limit of the sequence of non-zero
quadratic forms in the matrices of 1.27 is greater than zero,

1
i.e., plim XﬁngT —MXM is positi?e definite.
Tox

) exists,

Proof: Suppose the x process has moving average representation,

x(t) = I b(s)e(t-s), b(0) =1, and I b(s)2 <-m.
s=0 s=0

The matrix C giim x' Pm(TS—MxM/T) can be interpreted as

the matrix of 1 to (M+l) step ahead prediction error variances
and covariances from a projection of x(t) on its infinite past
history. Let Q(t) be the set of observed innovations at time t,
Q) = {... e(t-1), e(t)}. The it diagonal element of C,
c(i,i), is equal to :

E(x(th2-1)2|Q(t)) = E [( L b(s)e(t+M+2-i—s))zl§Z(t)]

s=0
2.2 2 ML
- Ib()lE [(e(t+n+z-i-s)) lsz(c)} =% I b(s)?,
s=0" - s=0

for i=1, ..., M+l. C(i,i) is the (Mt2-i) step ahead prediction
error variance of x(t). The covariances C¢i,j) =

min {C(i,i), €{(j,j)}. Let s be a (M1) x 1 vector, s # 0.
Suppose s'Cs = 0. This implies that there exist some j,

0 < j < M+l such that x(t+j) is perfectly predictable (with
probability one) for all t. This is impossible since x(t)

is nondeterministic. Therefore, C is positive definite. The
conclusion in the text is appropriate since the inverse of C

is a continuous function of the elements of C.
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The standard normal variates are termed pseudo-random
since they are generated by the method of Box and Muller (5)
on a Univac 1110 digital computer at the University of Wisconsin,
Madison.

17 Most quarterly economic time series are well represented
by stochastic second order difference equations, see Sargent
(16, chapter XI).

18Am infinite geometric lag distribution is not appropriate
for model 1.3; we include this parameterization in our set of
experiments to gain insight into the behavior of the CAT criterion
when applied to an infinite lag distribution.

Despite the fact that the disturbance term of 1.3
is distributed as a N(0,1), we have not shown that the estimated
coefficient vector selected by the CAT criterion is normally
distributed. In empirical work it is convenient to assume that
the order of the fitted model is fixed, and to proceed with
conventional hypothesis tests as if they were appropriate.
The results of the Monte Carlo experiments reported in the text
indicate that this simplification does not result in test statistics
which are grossly distorted.

20 We chose to analyze the null hypothesis that the sample
ratios of the estimated coefficients to their estimated standard
errors are distributed as a N(0,1) although it is incorrect for
the first M+l coefficients, since the magnitude of the t ratio
is more often than not the decision criterion used by empirical
researchers in determining what variables to keep in their models.
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