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Dynamic Factor Demand Schedules for Labor
and Capital Under Rational Expectations

By Richard Meese*

Dynamic factor demand schedules for labor and capital are derived assuming a
representative firm maximizes the present value of expected profit when
factor inputs are subject to increasing marginal adjustment costs.. The
analysis is an extension of Sargent's (1978) one factor model of labor
demand. The derived factor demand equations are jointly estimated with the
autoregressive processes for the real wage and the rental price of capital,
and the cross equation restrictions implied by the rational expectations
hypothesis are imposed. Both the order of the factor price autoregressions
and the structural parameters of the model are estimated. A hypothesis

test of the overidentifying restrictions results in marginal rejection of
the theoretical restrictions implied by the rational expectations hypothesis.

I. Introduction

The derivation and estimation of dynamic factor demand schedules

1/

for aggregate U.S. manufacturing has a rich history.~ This literature
"1s based on the supposition that a representative firm maximizes the
present value of its profit stream when factor inputs are subject to in-
creasing marginal adjustment costé.g!l Adjustment costs are non-linear costs
which arise when firms change endogenous variables over time. ﬁany authors
(Brechling (1975), Gould (1968), Kennan (1979), and Nerlove (1972) have
recognized that without adjustment costs expectations of future exogenous
variables are generally irrelevant. If a firm can adjust instantaneously
and without cost to changes in market conditions, it has no need to predict
future market conditions. It is the interdependence of adjustment costs
and expectation formulation which dichotomizes the existing work on factor
demand schedules derived from a multiperiod theory of the firm with ad-
justment costs. To derive factor demand equations which are linear in the
variables of the model, and are characterized by time invariant parameters,
researchers have pursued two different strategies. The first and more
conventional strategy is to assume static expectations on the course of.

future exogenous variables and derive the firm's factor demand schedules

using general production and cost of adjustment functions. Berndt,



Waverman, and Fuss (1977) provide the most sophisticated example of this
approach The second strategy is to model the firm's expectations of "

future exogenous variables whlle assuming simpllstlc (linear—quadratic)

production and cost of adjustment functions. The second strategy has
been employed in recent work by Kennan (1979) and Sargent (1978). These
authers combine the rational expectations hypothesis with the adjustment
cost literature. The advantage of this'approach is that by formulating
and estimatigg models whtch discriminate between effects of structural
parameters of the objective functional and the constraints, and the effects
of parameters describing the evolution of exogenous variables, these
authors are not subject to Lucas' €1975)- critique of ad hoc estimation.

In this paper we pursue the second strategy and contribute to
the literature by expanding Sargent's (1978) one factor model‘of labor
demand to include capital. We allow for interaction terms between labor
and capital in quadratic production and cost of adjustment functions.
Unlike Sargent's (1978) original one factor analysis, the two factor
model is marginally rejected by the data. Several aspects of this re-
sult are worth noting. Factor demand equations with time invariant
parameters derived from a stochastic maximum problem are necessarily the
product of an overly simplistic model of firm behavior. Hence it is not
surprising that such a model finds. little support from aggregate U.S.
manufacturing data.A It has been a frustration of empirical macro—economists
‘that aggregate U.S. time series de not contain sufficient information to
distinguish between competing hypothesis of economic behavior (Sims (1977),
p. 26). The theoretical restrictions of the rational expectations model
derived in this paper are not strongly ‘supported by the data; the marginal con-

3/

fidence level for a test of the theoretical restrictions is .98005.—



Although we can formulate and estimate models which are immune to Lucas'
critique of ad hoc estimation and which imply empiricallyirefutable be~
havioral hypotheses on the part of economic agents, such models are
difficult to decisively reject (or accept) given the information content
of aggregate U.S. time series data.

The structure of this paper is as follows. The two factor model
is derived in section two. This model requires that the stocks of capital,
k(t), and production workers, n(t), and the rental price of capital, c(t),
do not Granger cause real wages, w(t), and that (n(t),k(t),w(t)) do not
Granger cause é(t).ﬁ/ A formal test of this hypothesis is carried out in
appendix two using a multivariate Granger test (1969) proposed by Geweke

(1978).2/

In section three we report estimates of the multiple equation
system derived in section two and test certain theoretical res*rictions.
For the unrestricted version of the model we estimate the order as well

as the coefficients of the vector autoregression in the real wage and

rental price of capital. Concluding remarks are found in section four.



2. A derivation of dynamic factor demand equations for labor and capital.
In this section we derive estimable factor demand equations

for labor and capital assuming a representative firm maximizes its real

present value, faces increasing marginal costs of adjusting factor inputs,

and has knowledge of the stochastic processes generating the exogenous

variables. Following Sargent (1978) we assume that a representative

6/, 1/

firm faces the quadratic production functiom— ’> —~

£(a(e), k(0)) = (£, + a,()n(t) - = n(e)? +

6, )
(£ + a,(E)k(®) - 52 k()% + £,n(e)k(t),

where n(t) and k(t) represent the stocks of production workers and
capital respectively, al(t) and a2(t) are exogenous stochastic pro-
cesses affecting the productivity of each factor input, and fo’ fl’

f2, f3, and f4 are firm-specific parameters., The firm is also assumed

to face costs of adjusting employment and capital,

5 @) = n(e-1)? + £ (k(t) - k(e-1))?

(2)
+h(n(t) - n(t-1))(k(t) - k(t-1)),

where d, e, and h are firm specific parameters. We place restrictions

on the parameter values fo’ fl’ f2, f3, f4’ d, e, and h below,



Last, thé firm is assumed to face a stochastic process for the real wage
w(t) which is not Granger caused by (c(t), k(t), n(t)), and a stochastic
process for the rental price of capital c(t) which is not Granger caused
by (w(t), k(t), n(t)), an assumption tested and accepted in appendix two.
The fim's wage bill is w(t) « n(t) and its costs of capital services

c(t) - k(t).

The firm chooses contingency plans for n(t) and k(t) to maxi-

mize real present value,§j

pv(t) = Et ~Zo bj[(f0 + al(t+j) - w(t+j))n(t+j)
J=

£ 2
- ;—L-n(t+j)2 - g-(n(t+j) - n(t+i-1)) o

£ 2
b (£, + a,(Er) = c(ERDIE(EHD - 2 k(e+))

- S (e(er) - K(eHL)” + ERERDR(ED) -

h(a(tH)) - n(tri=1)) (k(t+i) - k(tri=1)1,



where n(t-1), k(t-1) and the stochastic processes for w, c, a;s and

a, are available to the firm at time t. The parameter b is a real
discount factor, 0 < b < 1. The expectation operator Et is defined

by Et(x) = E(x |Q(t)) where x is a random variable and Q(t) is the
information set available to the firm at time t, We assume that Q(t) =
{n(t-1), k(t-1), al(t), al(t-l),..., az(t), az(t-l),..., w(t), Ww(t=1)yeee,
c(t), c(t-1),...}. The firm maximizes (3) by choosing contingency

plans for n and k that are functions of the information set. To

insure that there exists a bounded solution to the dynamic

optimization problem we require that the stochastic process x(t) =

(a,(6), a,(t), w(t), o(t))' satisty

lin  bIE_(x(tH) x(e+D)") = 0, &)
)

In particular we assume that the stochastic processes for w(t), c(t),

al(t) and az(t) have the following form;

(a) a,(t) = € (t)

| (5)
() a,(t) = e,(t)



(c) w(t) =y, + I Yy w(t-1) + ‘3(:)
j-

£
@ c(t) =@y + T 0.c(t-)) +e ),
j=1 3 4

where g(t) = (el(t), .Z(t), es(t), ca(t))’ is a 4-variate normal

vector with Et(g(t+j)) 0 and Et(g(t+j)_£(t+j)') =y for all j = O.

L : L
The zeros of 1- X YjQJ 0 (Q complex) and 1- b} Oij = 0 lie outside
j=1 | =1

the unit circle.

The maximization problem (3) falls into a general class of
optimization problems that have been studied by englneers.2!

This general optimization problem for a finite time horizon T can be

stated as
T -
z(t>,...,z<én§fn E, ;5 bI[B(t+§)* T B(ERD) + v(th)” my(etD], (6)

subject to B(tHit¥l) = ya(tty) + Ag(tfj) + u(t+jtl), where 7

the u(t+j) ~ N(Q, Q) and are independent for all 0 < j < T. (8)

Eqeation (6) is the firm's present value functional, equation (7)

is the state equation which describes the evolution of the system in
tems of Ehe previous value of the (nxl) state vector &, the (mx1)
vector of ‘control variables v, and the normally distributed random

process u. The maximization problem.(3) can be fit into the

general framework (6-8) by defining 3, ¥, U4, T, m ¥, and A in the



following manner: - . = ...

(a) B(t+l)” = (n(t), k(t), a;(t+l), al(t), a,(t+l), a,(t), 1, W(ttl),ee0,
(1x(7+21)) :

w(t=g+2), c(ttl), ..., c(t-£+2)),

(b) w(t)” = (n(t)-n(t-1), k(t) - k(t-1)), 9)
(1x2)

(c) u(t+l)” = (0, 0, ¢ (t+l), O, e, (EtL), 0, 0, e3(e¥L), 0,.00,0, ¢, (EH1), O,
(1x(7+24))
.an,o),

1 0 0 0 0 0 O

@ ¥ =
(+2g) x (+2g) |0 1 0 0 000

0o O ¥r 0 0 0 O
O 0 0 00 OO
O 0 0O 0100
0 0 0 00 01
Yo Y1 °* * Yy
0 1 0. + O
0 43 0 « o« o210
O © =« « + 8,
[ 0o I 0 . . 0
g 6o 1 . . O




( B
1 o | d h
L )
(e) A = () n = -3 g and
((7+2£)x2) o 1 = (2x2) h e,
5
0
. y
. ) .
(8) T = %- “£1/2
(7+24) x (7+2g) ¢ £
4/2 "3/2
0 0 0
1/2 0 0 0
0 0 0 0 0
0 1/2 0 0 0 0
for2 a2 o .. . 0
0 0 0 . . ] *
-1/2 0 L] L] L] Y
0 0 e . ° °
0 0 0 « o .
. 0 -1/2 O e 3 3
o O 0 e * °
o ) 0 .« o . 0
Y

where T' = T, We shall require 7T to be negative definite; a condition -~ ~

2

equivalent to the i'estrictions d>0and de >h



- Define the maximum expected present value for a T period problem

as

' ' . T
VT(_Z_(t)) = max (Et z

i . .
(V(E) 5 eea,y(t+T-1)) = 3=0 bl [B(tri)* T A(t+j) +

' (10)
v(teti)* av(tti) D).

By the principle of optimalityl(—’/ VT+1(_Z_(1:)) satisfies

V. (B(6)) = max E_[bV,(B(tH1)) + A(t)" TE(t) + |
T+l ey T (11)

v(£)* mv(t) 1.

11/
and by using an inductive procedure—VT(g(t)) can be shown to take

the form
- & 12
VT(_Z.(‘:D B7(t) 3 8(t) + gT’ where (12)
3 =0, €1: = 0, and the o, and Cj, t <j= T+ t, are recursively

determined by

= e w2 . . -1 ,.
(a) 3441 T by éj* +T -by §jA(bA QjA"‘ m A QJ.*, am(ils)

(b) ¢.

341 = b€j + b trace (Qﬁj).

The optimal control in period t is the v(t) maximizing (11),

(£) = = beASA + m) T AR YE(E). s
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Eduation’(13a) is known as the matrix Ricatti equation. J

Given that the stochastic processes for al(t), gé(t), c(f),’ahd
w(t) satisfy assumption (4), and given agpropriate restricﬁions on
y and A it can be shown that iterations on the matrix Ricatti>equation

(13a) converge, and the solution to the infinite time horizon problem

is given by

(@) 8 = by 3y +T - DY B ABNEAY IR T

(b) “ C.. b trace (0% )/(1;b), and . (15)

(c) v =-bdAS AT n)'lA‘éat.'a:(t)-

To simplify notation, rewrite the firm's decision rule (15c) as
' . . S
¥(t) = PB(t), where P={p; 4} °° b(bA"3 A+ ™) A9V (16)
e or
= - | - | +c.¢
(a) n(t) = (1 + 91,1)“(t 1) + pl’zk(t 1) + 01 7 + pl’8;,7(1;),

+ +l..+ - +
oy g (A 1) + g g4y SO0 b1, 742, SCE D ¥

91’3 el(t) + Dl’sez(t)’ and o (17)

(b) k(t) = 92’1n(t"1) + (1 + pZ’Z)k(t-l) + 92,77 + 92,8w(t)+_..
+ 02,7 ﬂw(t-zﬂ) + 0y 8+ Lc(t)-l-,..-l-, o1 ’7+22e(t_z+1)

+ 92’3 Cl(t)"' Dz’sCz(t)o
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Four characteristics of the decision rules (1l7a and b) are worth noting.
First,—ﬁ(t) and k(t) are iinear functions of‘n(t-l), k(t~-1), w(t-1), and
c(t-1), 1=0,... %=1, but are highly nonlinear functions of the structural
parameters in y, A, P, and 7. Second, the order of the distributed lags in
w(t) and c(t) is given by the specification of the autoregressive (AR)
processes (5c and d). Since the assumption of ¢-th order AR processes
for the real wage and the rental price of capital is arbitrary, we estimate
the order of these AR processes (along with the other parameters of the
model) in section three below. Third, the one period lagged labor and
capital terms in equations (17a and b) is a consequence of the
specification of the costs of adjustment function (2). Last, the rational
expectations approach to deriving dynamic decision rules for the firm
results in estimating equations which closely resemble the more traditional
distributed lag formulations. The difference between the traditional and
rational expectations approaches is the explicit modeling of the processes
gengrating w(t) and c(t), and the imposition of the cross equation re-
strictions implied by the rational expectations hypothesis to achieve
parameter identification.

We must perform two more operations on the two equation system

(17) before we arrive at estimable decision rules for n(t) and k(t). First,
since the model will be estimated from data that are deviations from means

12/

and trends;—— we drop the constant terms from both equations. Second, we

substitute expressions (5c and d) for the current period real wage
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and rental price of capital in equations (17). 1In addition to equations
(17a and b) we will estimate the autoregressions for w(t) and c(t).
The complete four equation system to be estimated has the following form:
(a) n(t) = (1+p1’1)n(t-1) + 91,2k(t-1) +(°1ﬁﬁ+, 19 Jw(t-1)
+-¢o+ - + -
ylpl,sw(t 2) (91,8+£91 f pl’9+£)c(t 1)

+o.-+° c(t-z) + ul(t)’

1P1,8+4
(b) k(t) = p, yn(t=1) + (I¥p, Pk(t-1)+ (g gv; + p; gI¥(t-1)

Feest vipg g¥(E70) + by gai01 7 Py ) (T D)

Foodt 8,0y, o, CUEE) + U, (8),
(c) w(t) = ylw(t-l) +oeot yj,w(t-!') + u3(t)a
(18)
(@) c(t) = Glc(t-1)+...+ Ozc(t-z) + u4(t), where

[py. ) = B = -DOATA+ m A8y and
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/ 7 ’ ~

4 b %
uy (8 p1,361(0) * oy 563 (0) + 0y geg(B) ¥ 0y gype(6)
© uz(t) _ p2’3¢1(t) + pz’sez(t) + 92’8¢3(t) + pz’8+z¢4(t) (19)
u =
. u3(t) 33(1:)
u4(t) 04(':)
7 Li ‘ . /e

Since 3ft) ig distributed as a 4-var;ateknormai (page 7).

u(t) has a 4-variate normal distribution with zero mean vector and a
covariance mat;ix V that depends on & and P, There are (4*62)
regressors in the system (182, b, ¢, and d). The free

paraméters of the model consist of the set w= {fl, f3, f4,/d, e,

h, Yieeee Yy 01,..., OL}’ so there are (6+2¢) parameters to be

estimated., The model is over identified for all positive intergral f£.

3. Estimation of the four equation system (18) using quarterly
U.S. manufacturing data 19471 - 19741V,

We first obtain maximum likelihood\(ML) estimates for the uncon-

strained version of the four equation system (18). Let 1 be the

(4 + 62) x 1 vector of regression coefficients of the "stacked" multi-

variate system (18). The log likelihood function of a sample of observa-

tions t = 1l,,0e, T is

L ,m T 1o w1
ML =-26GD -5 |Vi-3 _21. u(t) 'V oule).  (20)
ta
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In Table 1 we report the ML estimate of 1, the ML estimate of the
covariance matrix, %, and the log of the likelihood function (20).
Since %, the length of the autoregression in wit) and c(t) is unknown,
we use the multivariate CAT criterion (Parzen (1975)) to estimate its
value.lé/

For a 4 equation system, the multivariate CAT criterion selects

an order L* which minimizes

| s 2
CAT(E) = trace (',l‘;:' Zl le - Vzl) ° 2.=1,-.., 5. (21)
j= *

The estimated covariance matrices V-1

g s 2=1,...,5 are equal to the maximum

AN
likelihood estimates Vz

freedom. To limit computational costs, the maximum value of % was chosen

1 with the appropriate corrections for degrees of

be 5. The minimum value of CAT occurred fqr 2% = 2, and since the values
of CAT(ZL), 2.= 3, 4; and 5 increase monotonically, there appears to have
been no harm in restricting the analysis to autoregressions of order 1-5,

" A second order autoregression also corresponds to the maximum value of the
log likelihood functions associated with the five different versions of the

unconstrained model (18), 2=1,..., 5. We report CAT(¢), £=1,..., 5 and

the Iog likelihood function associated with each model in Table ‘1 below.
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The estimation of the constrained version of the model (18) is
-a difficult task. . Few software routines are capable of. estimgting
a model of such complexity, as the theoretical restrictions summarized
in (16) are nonlinear implicit functions of the set , of free
parameters of the model., Usually, maximum likelihood software routines
require nonlinearities to be explicitly representable as functions of
the free parameters of the modei;lﬁ! In our case when £=2, the 16 regression
coefficients cannot be expressed as explicit funetions of the set
u of free parameters. In order to estimate the model while imposing
the theoretical restrictions, it was necessary to modify the likeli-
hood function (20). It is well known that maximizing (20) is equivé-

lent to minimizing the determinant of V with respect to I, Where

T
A l._ ‘A ~ .
V=T ) u(tue)’, (22)

t=1

and u(t) is the sample (4xl) residual vector, (Bard (1974)). 1In order
to incorporate the nonlinear constraints we append the concentrated .
1likelihood function | V | with a penalty function. The new function

to be minimized has the form
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o A
ta |V \*Z?‘;m “’i' | . (23)
i=1 :

K

where ;he 0y are‘the 21 independent equalify’ponstraipts implied by
(15a),l§/ and the g, are weights to be used during the iterative
process, The o, are setlto an arbitrary starting value, a; = .610

for 1 = 1,..., 21, and the function (23) is minimized using a numerical
derivative version of a Pavidon-Fletcher-Powell (DFP) algorithm,

Each ay is then divided by two and the function (23) is minimized again
using the first round parameter estimates as starting values, The
process continues until the appended log likelihood function (23)
changes by less than .10. This convergence criterion is arbitrary and
is a consequence of the fact that our efforts to reduce a, below

,00125 and minimize (23) resulted in a failure to the DFP algorithm

to converge. We specified convergence of the DFP algorithm to be no
change in the first 4 significant figures of each parameter estimate
for two successive iterations, For the parameter estimates associated
with the minimum value of (23) (@ = é20125) reported in table 2 below,
the sum of the squared constraints, Z&)i, was equal to ,1366. ‘Ideally,

i=1
this value should be zero. Since the constraints do not hold exactly,

our likelihood ratio test can be interpreted as a lower bound for a

test statistic of the theoretical restrictions.



- 18 -

The likelihood ratio statistic for the test of the validity of

the theoretical restrictions is equal to 15,04, Under the null hypo-
thesis thatufﬁé theoretical rééﬁriétions are Qalid, the likelihood
ratio statistic is asymptotically distributed as a x2(6). The number
of degress of freedom is equal to the number of parameters in the
unconstrained model, 16, minus the number of free parameters in the
constrained model, 10. The calculated value of the likelihood ratio
statistic indicates rejection of the theoretical restrictions at any
significance level greater than .01995. ‘Since the theoretical restrictions
are neither decisively rejected or accepted, it is useful to analyie
the plausibility of the estimates of the free parameters of the model.
Our second order condition for the optimization problem (3) is satisfied
as Tf is negative definite. Also, the autoregressive processes for the
real wage and rental price of capital are stable. Neither the second order
conditions nor the stability conditions were imposed during the estimation
prodedure.

The regression coefficients of the unconstrained ﬁodel (Table 1,
p. 20) and the implied regression coefficients of the constrained model
(Table 2, p. 25) are similar. Total own price and cross price effects
for both lags of the real wage and rental price of capital in the employ-
ment and capital equations are negative., We have not reported "z-ratios"
of coefficient estimates to their asymptotic standard errors for Table 2,
pP. 23 as the standard errors are impkicit nonlinear functions of the
estimated covariance matrix of the parameters of ;. The results from

the unconstrained estimation of the vector autoregression (18) indicate
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that the real wage and employment exhibit more explanatory power (they
have higher z ratios) in the equation describing Capital,?than the rental
price of capital and the capital stock‘ié the eqﬁétionvdeScribiﬁg:1abor.

The rental price of capital and the capital time series wgré constructed
using . the formulas described -in appeﬁdii ohe,kan& these fo;mulas are

based upon restrictive assumptions. One of the least tenable assumptions
is that the depreciation rate of capital for aggregate U.S. manufacturing
was constant over the period 19471 - 197§IV. There are few quarterly
capital and rental price of capital time series in existence; we followed
the procedure used by Nadiri and Rosen (1973) to generate these series.

If more sophistication were used in the.generation of this data, the payoff
might be more precise parameter estimates.

Last, using the estimates of the free parameters in u we derive approxi-

mate estimates of the elasticity of substitution between capital and labor for

the sample period 1947III - 19741V;l§/ These values range from.a low of .364

to a high of 3.87. The average value of the capital-labor elasticity of
substitution for our sample period is 1.85, a value which is slightly
larger than the Allen partial elasticities of substitution between labor
and structures (range of 1.37 - 1.79) and between labor and equipment
(range of 1.23 - 1.43) estimated by Berndt and Christensen (1973, p.98)
for aggregate U.S. manufacturing 1929-68 using a three-input translog
function, annnai obéervations, amd static theory. Although the explicit
modeling of the firm's expectations of present and future factor prices

necessitates our use of less flexible functional forms, we have not
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imposed a unitary capital-labor elasticity of substitution a’ griori.

Some of the Carlier Aattempts to estimate dynamic multivariate factor . .

demand systems (Nadiri and Rosen (1973) and Coen and Hickman (1970))
relied on a Cobb-Douglas produttion technology, where the elasticity of

substitution must be constrained to be unity.
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Table 1

Results from the ML estimation of the autoregressive order ¢
of the unconstrained four equation svstem (18)

Value of the log

L CAT(L) ' likelihood
1 -263,020 1550.55
2 -275,143 1572.94
3 -271,586 1560.76
4 265,420 1549,93
5 -257,319 1538.79

Estimate of the covariance matrix of disturbances

for g = 2.
+506~03 «655=05 .688=05 «241-04
.107=04 222=05 -.124,05

.161-03 -.116-05
-4656=-05
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Table 2

ML Coefficient Estimates of the Free Parameters of the
Constrained Four Equation System (18)., (Statistics
in parentheses are ratios of coefficient estimates to

T

asymptotic standard errors)

A
o~

Bar#neter estimate

d 6.585  (1.382) .
e 23103 - ( .4260)
h 2217 ( .9456) !
£ L0164  ( .1151)
£, ©L,0011  ( .0065)
£, | .0020  ( .0191)
Yy . J7637  (5.537 )

' Yz A -00693 (-.5668)

‘e, 1.498 (11.54 ).
0, -.4892  (=3.979)

Estimate'of the covariance matrix of disturbances for the
constrained system (18).

R
. .5364-03 .8412-05 -9176=06  .2365-04
ve L .1112-04 .2314-05  =.1203-05
16460-03  -,1410-05

.6583-05

The sum of the squares of the components of the gradient vector

evaluated at the solution = 5,736-11,
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4, Conélusions

' ?tTﬁé derived dec%si&#hruléé3for p(tjland k(t) (equations -
-i8§u453M65 are ;omplek and diffiéuit to estimate, This is true
despite the simple functional forms employed in the theoretical
development of section two, and the restriction of the analysis to those
firms which produce a single output., In section two above we assumed
that a represenfative firm maximized real present value, This simpli-
fication would not be appropriate for firms producing multiple outputs
unless a pfice index for those outputs was available, In a recent
paper Berndt, Fuss, and Waverman (1977) examine more flexible functional
forms for the production technology and input adjustment costs, These
authors derive their estimating equations from a dynamic maximum pro-
blem so that lagged adjustment mechanisms are not tacked on to their
model in an ad hoc fashion, Many authors, (Berndt, Fuss, and Waverman
(1977), Nerlove (1972), Woodland (1977), and others), have criticized
the extant body of empirical work om factor demand equations for its
tenuous link with economic theory. Although the recent innovative
work by Berndt, Fuss, and Waverman results in estimating equations
which are both econometrically. tractable and accurately characterize
theoretical models, they have largely ignored multiple outpﬁts and
avoided the difficult problem of modeling expectations and the

stochastic processes generating the exogenous variables.
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In their recent theoretical paper "Linear Rational Expectations
Models for Dynamically Interrelated Variables", written in part as a
response to Lucasieciitigﬁénof ad hocfestimation,fﬁaﬁsenuand,Sa:gentif
(1979b) have analyzed general models.of which_ours isAa<speetal case,
They show how to obtaiﬁ‘the decisioéirules of the firm as explicit
fgnctiogg of the structu;al parameters of tﬁ;:mogel..iﬂiven.fhe
estimation problems endemic to the methodology employed in this paper,
; the new Hansen Sargent methodology may prove to be the most useful

approach to employ in future ﬁprk.

-~
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*International Finance Division, Board of Govermors of the Federal
Reserve System, The views expressed herein are solely those of the
author and do not necessarily reflect those of the Federal Reserve
System. An abbreviated version of this paper is to appear in the 1980
issue of the Annals of Applied Econometrics, dedicated to ongoing
research work in the Federal Reserve System. Computational assistance
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1/ Theoretical and empirical work on dymamic factor demand schedules
derived from a multiperiod theory of the firm with adjustment costs
begins with Eisner and Strotz (1963), and is extended in various
directions by Berndt, Waverman, and Fuss (1977), Brechling (1975), Coen
and Hickman (1970), Crame (1971, 1975), Geuld (1968), Kennan (1978),
Lucas (1967), Nadiri and Rosen (1973), Sargent (1978a, 1979), Schramm
(1970), Taylor (1970), Tinsley (1970, 1971), Treadway (1969, 1970, 1971),
and Woodland (1977).

2/ The assumption of increasing (convex) marginal adjustment costs is
not universally accepted, although it is required in the derivation of
the flexible accelerator model of Eisner and Strotz (1963). If marginal
adjustment costs are decreasing (concave) then "bang-bang'" solutions may
ensue, see Rothschild (1971) or Nerlove (1972) for a discussion of this
point. Chenery (1952) was one of the first to note that economies of
scale could lead to lumpy investment. Steve Peck (1974) explores this
alternative investment model of the firm using micro data and contrasts
it to a distributed lag or flexible accelerator model.

3/ Llet T  denote the value of the calculated test statistic and let

$(x) denote the cumulative demsity function of the test statistic assuming
the null hypothesis is true. The marginal confidence level of To is equal
to the Prob (x € To) = ¢(To). '

4/ A time series {x(t)} Granger causes a time series fy(t)} if present
y can be predicted better by using past values of x than by not doing so,
other relevant information (including the past of y) being used in either
case,

5/ The reader of this paper may find the results of the Granger causality
tests reported in appendix B to be theoretically unpalatable as they do not
accord with accepted factor supply behavior. It is my own view that Granger
causality tests are useful as early tests of specification error. The model
in the text requires certain Granger causality relationships to hold between
variables; these relationships are consistent with the data, but difficult
to explain on economic grounds. As the model is partial equilibrium in
nature, the results of our Granger causality tests can also be interpreted by
appeal to partial equilibrium analysis. The rental price of capital and the
real wage are clearly endogenous when attention is focused on the aggregate
economy, but their failure to be Granger caused by the stocks of capital and
production workers in aggregate U.S. manufacturing suggests the processes by
which real factor prices are determined may depend upon the past values of
other economic variables and/or other sectors of the economy.
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' g/ We restrict attention to quadratic production and cost of adjustment
functions so that maximization of a firm's present value remains a
tractable problem. Given a quadratic objective functional, a firm's
optimal decision rules are linear in the variables of the model (but non=-
linear in the structural parameters), and display the certainty equiva-
lence property, Malinvaud (1969).

7/ The assumption of a representative firm is only a convenience as the
solutions to the dynamic optimization problem for each firm can be
aggregated to obtain industry wide factor demand equations for k(t) and
n(t).

8/ Expression (3) in the text is the real present value of the firm.

The choice of an objective functional for the firm is an unresolved issue.
There is no general consensus on whether the firm maximizes profits,

expected utility, or another criterion. Our choice of the firm's objective
functional merits further comment. We shall asume that the firm buys

capital, or secures a rental contract for capital that extends over the
entire lifespan of the equipment. If this were not the case then the

renter of capital this period, due to adjustment costs, could exercise
monopoly power over the firm in the next period once the capital was in place.

9/ See Kushner (1971) Chapter 9.

10/ The principle of optimality states that "an optimal policy has the
property that, whatever the initial state and decision (control) are,
the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision," (Bellman (1957)).

11/ When T = t, there is no control as the system starts and stops at time
t. Given ¢ = 0 and ¢y = 0, (12) holds for time t. Assume (12) holds for
time T + t and substifute (12) and (7) into (11). Differentiating the
result with respect to v(t) yields the optimal control (14). After sub~-
stituting (14) back into the expression for V (3(t)), (12) and (13)
are seen to hold for T+t+1, T+

12/ The analysis summarized in Tables 1 and 2 of the text was performed using
the residuals from the regressions of n(t), k(t), w(t), and c(t) on a constant,
trend and trend squared.

13/ Many model selection criteria can be used to select the finite unknown
order of the autoregressive processes for w(t) and c(t). Geweke and Meese
(1979) have shown that the asymptotic distribution of the model order
selected is the same for the criteria of Akaike (1974), Amemiya (1976),
Mallows (1974), Parzen (1974), and Sawa (1978). Furthermore, these
criteria do not estimate autoregressive order consistently. Geweke and
Meese (1979) also describe a class of model selection criteria which do
estimate autoregressive order consistently. The Schwarz (1978) criterion
is a member of this class. When a consistent estimator of iag length is
used to select the order of the w(t) and c(t) processes, the results of
Table 1 are unchanged.



. =29 -

;ﬁ/ In a recent unpublished working paper Hansen and Sargent (1979b)
discuss alternative estimation strategies for multiple factor models

of which ours is a special case. In an appendix they .show that it is
possible to represent the regression coefficients as explicit functions
of the free parameters of the model using frequency domain methods. We
have not yet experimented with this new methodology.

'15/ For example, let 3= {¢ij} where the indices i and j run from 1 to 6
when £ = 2. Then from (15a) uy has the followine forms

= - - . 2 2
o) = (pgy by fAIZb + b(bipy, + 2byp,1%15 * by, ), where

by = (-b/s)(by,, ~ e/2)
by = (-b/s)(bp; = d/2)

s = (bgyy - 4/2) (b, - /2) = (b/2 - By, )7

There are 21 constraints of this form as § is symmetric.
e

16/ The estimates of the capital-labor elasticity of substitution, Ok.n®
reported in the text are approximate since we did not estimate the o1
production function parameters f, and f7. These parameters are part of
the constant terms in equation (17) that were suppressed to simplify
estimation. As fo and fo are components of the expressions for the
marginal products of n(t) and k(t) respectively, we approximated these
components by the sample means of each variable when calculating O.n

9 L]

17/ The asymptotic standard errors are calculated from the inverse of
the information (Hessian) matrix evaluated at the final parameter
estimates, The DFP minimization routine produces an estimate of this
matrix which improves with the number of iterations required for con-
vergence. We have not performed sufficient experiments with this al-
gorithm to have confidence in the estimates of the final Hessian matrix.
We did estimate the unconstrained four equation system (18) using the
iterative Zellner technique to achieve ML estimates of the regression
coefficients, and found that the standard errors of these estimates were
on the same order of magnitude as those of the DFP algorithm.
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18/ For example, the regre331on coefficient on n(t-1) in equation (a) of
(18) is equal to '

L4 by 8y +by s,

. 4 15.
where bl’ bZ’ @11,_and @12 are defined .in footnote
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Data Appendix

Eight quarterly time series were collected in order to

generate. the four serles needed for the analysis of section three
and appendix two. These series are:

1.) The consumer price index (CPI), converted to the base
1972 = 1.00. . i
2.) Investment (I) in new plant and equipment for all .
manufacturing industries in billioms of dollars.
3.) Production (or nonsupervisory) workers (m) on private:
nonagricultural payrolls in millions of people.
4.) Average hourly gross earnings (W) per production
. (nonsupervisory) worker on private nonfarm payrolls,
all manufacturing in dollars.
5.) Bond yields (r) from Moody's investors service, cor-
porate averages over four different ratings (Aaa,
Aa, A, Baa) for railroads, public utilities and
- industrials in percentage terms. '
6.) The fixed investment deflator (FID), converted to
~  the base 1972 = 1.00.
7.) The effective corporate income tax rate (CIT).
8.) The investment tax credit (ITC).

Series 1-5 are seasonally adjusted and taken from various issues

of Business Statistics, 1947-1974, The series 1, 3, 4, and 5 are
quarterly averages of monthly data. Series 6 is seasonally adjusted
and obtained from the National Income and Produét Accounts, 1974,
Last, series 7 and 8 were extracted from the FRB-MIT-Penn data tape

at the University‘of Wisconsin, Madison. The real wage (w) is equal
to W/CPI. The employment series n was used without modification, The

capital stock (k) was generated using the recursive formula

k(t) = (1-8)k(t-1) + (I(t)/FID(t)),



3.

where § = .0273 is the constant rate of depreciation of plant and

equipment in U.S. manufacturing taken from Jorgenson and Stevenson
- (1967). The benchmark capital sgo;k was taken to be 94.64 billion

1972'd011ars. The rental price of capital (c) was constructed by

the formula stated in Hall and Jorgenson (1967):

o | _@-1TC(e)) a-cit(r)2)

where z = .365 = (1/71d) (1-exp(td)) assuming straight line
depreciation. The values of T and d, the lifetime of capital
for tax purposes and the discount rate_reépectively, were taken

to be 72 quarters and ,035 from Nadiri and Rosen (1973).

Although the data used in this study are seasonally adjusted, not all
series were adjusted by the same method. As is well known, the non-
conformity of seasonal adjustment procedures can distort parameter estimates.
It is also true that two-sided filtering techniques (Census X-11) can alter
lead-lag relationships thus affecting the results of Granger causality tests
reported in the following appendix, and can weaken the case for covariance
stationary as recent data are filtered differently than earlier data. It would
have been preferable to use seasonally unadjusted data, but some of the series

were not available in the unadjusted form,
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Appeﬁdix 2

This‘aﬁpendix extends the recent findings’of Neftci (1978)\and
Sargent (1978) who both réport strongér evidence for Granger causality
flowing frbm real wagesAto employment in aggregate U.S.. manufacturing
than for Granger causality in the reverse direction, We extend these
results by performing a multi~variate Granger test of the null
hypothesis that in a four variable system, the rental price of capital
and the stocks of capital and production workers do not Granger cause
real wages, and that the real wage and the stocks of capital and pro-
duction workers do not Granger cause the rental price of capital. When
performing a test of Granger causality, the researcher must choose a
parameterization that offers a compromise between the criteria of un-
biasedness which requires a generous.parameterization, and power which
necessarily diminishes as the parameter space expands, Geweke (1978, p. 178).
Under the null hypothesis that (k(t), n(t), c(t)) do not Granger cause
w(t) and (k(t), n(t), w(t)) do not Granger cause c(t),.the model for the

Granger test of Granger causality has the following form: .

M R
(a) "w(t) = Iw(e-3)°a (3)+ I c(e=3)°B;()
j=1 L §=1
N N ,
+ In(e=3)v ) + I k(-1)8(3) + g (t)
=1 j=1 , A
(24)
N M
(b) c(t) = I W(t-j)°02(i) + I C(t-j)'Bz(j)
=1 j=1
N N

+ I n(e=f)v,() + I k(t-3) 52(5) + &5yl
j-l j-l
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,41341:
Let ¢ (t)' = (el(t),ez(t))t‘ We assume E(e(t)z = 0, Efe(t)e(t)') = I

for all t, and all non-contemporaneous covariances are zero.

Following Geweke (1978, p. 178) we-choosera generous parameterizatiqn
for the real wage agd rental price of capital, M=12, since omitting -
past values of these variables with large coefficients can lead to
spuriously significant coefficients.on lagged values of employment
and the capital stock, and we choose N=2 since if the null
hypothesis is false, it seems reasonable that the first few
lagged values of employment and the capital stock are likely to
have nonzero coefficients. A constant term and trend were also:
included in the regression equations (24)., All variables are
in levels, and the period of observation on the dependent variable
is 19501 - 19741V,

We report the coefficient estimates for equations (24) in Table
3. Table 4 contains the estimate of the unconstrained covariance matrix
of disturbances, and the Wald F statistic (Silvey (1959)) for a test
of the hypothesis that all past values of capital and employment have zero
coefficients in both equations, all past values of the rental price of
capital have zero coefficients in equation (a) and all past values of the
real wage have zero coefficients in equation (b). The results of this
test indicate the null hypothesis that (k(t), c(t), n(t)) do not Granger

cause w(t) and (k(t), n(t), w(t)) do not Granger cause c(t) is a tenable

specification.
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Tahle 4

Covariance matrix of unconstrained residuals for the null
hypothesis that (k(t), n(t), c(t)) do not Granger cause w(t)+-and
(k(t), n(t), w(t)) do not Granger cause c(t).

- «4512-01  1,484-04
I = '

(F statistic for the null hvoothesis,)

F(12,160) = 1.608 Marginal confidence level = ,906
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