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Transversality Conditions in Infinite Horizon Models

by
Jo Anna Gray and Stephen W. Salant*

I. Introduction

The transversality condition associated with finite horizon
maximization problems is well-known. It is sometimes believed that the
analogous condition for infinite horizon problems can be obtained simply by
replacing evaluations at the terminal time with the Timit of these
quantities as time tends to infinity. That this belief is incorrect has
been shown by Hubert Halkin (1974), who produced an example where an
optimal solution to an infinite horizon problem violated the Timiting
extension of the standard condition.

In this paper we develop a new transversality condition which must be
satisfied by all optimal programs in the particular class of infinite
horizon problems to which the Halkin example belongs. In addition, the
approach used in deriving this new condition is used to show that the
1imiting extension of the standard transversality condition is necessary
for a second class of problems to which the Halkin example does not
belong.

To facilitate the reading of this paper -- and the writing of it --

we conduct the analysis in discrete time. Our aim is to make the new

condition accessible to the many applied economists who, Tike ourselves,

*Board of Governors of the Federal Reserve System and the Federal Trade
Commission, respectively.



are users of control theory but whose knowledge of the pertinent techniques
may extend no further than the treatments of Dorfman [1969] or Arrow and
Kurz [1970]. We are aware that several economists -- beginning with
Weitzman [1973] -- have shown that the 1imiting extension of the standard
transversality condition is necessary in some classes of problems. But
these analyses neither address the problem considered here nor mention the
example formulated by Halkin./ Furthermore, many of the results of

this literature are so technical as to be inaccessible to the wide audience
which needs to use them, a situation we find regrettable.

The paper is organized as follows: In section II we review and
interpret the necessary conditions for an optimum in a finite horizon,
discrete-time problem. Among the conditions is the well-known
transversality condition for finite horizon problems. Halkin's problem is
introduced as an example of an infinite horizon problem whose optimal
solution violates the Timiting extension of this transversality condition.
In section III we develop a new condition that is necessary for the class
of problems to which the Halkin example belongs. Here we follow a time
honored tradition of examining the marginal gain due to feasible
perturbations of a‘proposed program. We show that even if an infinite
horizon program satisfies the Kuhn-Tucker conditions, it may nonetheless be

improved upon by feasible arbitrage schemes of a particular type.gf

1/In contrast, Halkin's example and the unsolved problem it raises is
discussed in Halkin (1974), Arrow and Kurz (1970, p.46), and Takayama
(1974, p. 625). The problem is also alluded to in Dixit (1976, p. 117).

2/In most of the more technical Titerature, feasible variations in a
proposed program are referred to as perturbations. In keeping with our
perspective as economists, however, we have chosen to refer to these
variations as arbitrage schemes, or arbitrages, throughout the remainder of
the paper.



Our new condition insures that the marginal gain from such variations is
zero. We then return to the Halkin example and verify that all the
optimal solutions considered by Halkin do, indeed, satisfy our new
condition. In section IV it is shown that the approach of examining the
consequences of a particular type of arbitrage in order to derive a
transversality condition for infinite horizon problems can be usefully
extended to problems in which only the state variable is restricted. For
this class of problems the appropriate transversality condition does turn

out to be the 1imiting extension of the finite horizon condition.

IT. The Kuhn-Tucker Conditions and the Halkin Example

In this section we review the development of the’necessary conditions
for an optimum in a finite-horizon, discrete-time problem in which the
value of the control variable is restricted. The transversality condition
emerges simply as one of the Kuhn-Tucker conditions. The other conditions
are interpreted as ruling out arbitrages reversed after a finite interval.
Attention then turns to the infinite horizon problem. If a program is
optimal in infinite time, no finite segment of it can be dominated by a new
segment over the same time interval which begins and ends with the same
respective values for the state variable. This implies that the condition
ruling out arbitrages reversed after a finite interval must be satisfied --
for all such intervals -- by any program optimal over an infinite horizon.
However, such a program may violate the limiting extension of the standard
transversality condition, as we learn at the end of the section from

consideration of Halkin's example.
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Consider the following prob]em:é/
T t
Maximize Z =131 B8 V[c(t),m(t)] (1)
t=1
subject to: m(l) =m (2)

ﬁ
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-
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(
( flc(t), m(t)]
c(t) > 2(t)
(t) > c(t) for t=1,2,...T.

Here g is a positive discount factor,ﬂj c(t) is the control variable,
and m(t) is the state variable. Note that although the control variable is
restricted, the state is not.

The problem under consideration is a standard non-linear programming
prOb]em-éj There are 2T+1 variables to choose (c(t), m(t), for t=1,T
‘and m(T+1)). Assuming the feasible set is not empty and that f[.,.] is
continuous, it can be established that (2) describes a non-empty, compact
set. Then assuming that V[.,.] is continuous, a solution to thé

prograrming problem must exist, and we can turn to its characterization.

A1l functions are assumed differentiable.

3/A bar over a variable indicates that the variable is exogenous.

4/Since what we will be deriving are conditions which any program rust
satisfy if it is optimal, we have imposed no restrictions on the size of
the discount factor. The reader is reminded, however, that an optimal
solution to an infinite horizon problem may not always exist.

5/For an extensive treatment of such problems, see Zangwill (1969).



Define the Lagrangean

L =
t

o~ -

: Bt TV[c(t),m(t)] + A(t)[flc(t) m(t)] - m(t+1)] +

a(t)Lu(t) - c(t)] + p(t)Le(t) - 2(t)]} + A(0)(m - m(0))

Then, provided the constraint functions (2) meet certain regularity

6/

conditions,™ the Kuhn-Tucker theorem implies the existence of 3T+l

numbers (a(t), p(t), and A(t) for t=1,T and A(0)) which satisfy the

following conditions at an optimal so]ution:zj

L]

gt [Ve(e) * ME)Fe() - alt) + p()T =0 for t=1,T (3)

-1

-
|

) = & Dnggy) * A8 = A(E18T 1= 0 for t=1,T  (4)

Lu(t) > 0, aft) > 0, with complimentary slackness, for t=1,T (6)

o(t) > 0, p(t) > 0, with complimentary slackness, for t=1,T (7)

6/See Takayama, p. 474-480 for a careful treatment of an optimal growth
problem in discrete time. Conditions under which the lleierstrass Theorenm
and the rank constraint qualification can be applied are discussed.

7/In the remainder of the paper, the notation x (t) stands for the
partial derivative of x with respect to the scaxar variable y(t).



8/
L = (0 for t=0,T. (8)
A(t)

The resulting conditions are analogous to the first-order conditions
of continous-time control problems. Equation (3) indicates how the control
variable (c(t)) should be set given the co-state variable (A(t)), the state
variable (m(t)), and the multipliers associated with the control (given by
(6) and (7)); the state variable then evolves according to the transition
equation (recovered in (8)), while the co-state variable follows (4). The
final value of the co-state variable is determined by (5). Since the value
of the state variable at T+l does not, by assumption, affect the value of
the program, BTA(T) = 0. Equation (5) is the transversality condition
for this "free-endpoint" prob]em.gj

The Kuhn-Tucker conditions can usefully be regarded as restrictions
which must hold if various feasible arbitrages are of no value. Suppose in
a feasible program that at dates t* and t' (t' greater than t*) consumption
is interior. Then it is feasible to vary c(t*) in either direction, leave
intermediate c(t) unaltered, and then vary c(t') so that m(t'+1l) and the

subsequent program are unaltered. The resulting change in the value of the

8/In contrast to a(t) or p(t), there is no restriction on the sign of A(t)
in (8) since this multiplier is associated with an equality constraint.

9/1f, instead, the terminal state variable is constrained to be m(T+1) > b,
the transversality condition replacing (5) can also be derived using the
Kuhn-Tucker theorem; it is A(T) > 0, m(T+1)-b > 0, with complimentary
slackness.



program is denoted dZ/dc(t*), and can be readily computed by making use of

the well-known result that the derivative of the sum of a finite number

of functions equals the sum of the derivatives of each function: 10/
dZ/dc(t*) = A(t*,t') + B(t*,t') (9)
where
* 11y = otF t*+1
ACEx,t) = 87 Vorpey + 87 Vpgeran)Te(en)
t f f f f
cotien & Vm(e) Te(e) Tm(eren) Tm(txe2) ==+ Tm(t-1)
and

* ¢! t!
B(t*,t') = -8 [*Ef;’%if (t%) Fn(te+1) Fm(exe) = T ) -

A(t*,t') represents the gains and losses of initially increasing the
control variable in period t* and then returning the control to its
original path until period t'. The first term in the expression defining
A(t*,t') gives the gain in the objective function resulting directly from
the increase in the control variable in the initial period t*. The second
term reflects the losses associated wifh the consequent change in the state
variable in the following period. Since the control variable is returned
to its original path in period t*+1l, gains and losses in subsequent periods
result only from the cunulative effects on the state of the change in its
value in period t*+1. These are captured by the sum which is the third

term in the expression defining A(t*,t'). In period t', however, the

10/See appendix A for details and footnote 13 for a demonstration that the
proposition is not, in general, true if the sum is an infinite series.



control variable must again deviate from its original path, this time by
the amount necessary to return the state variable to its original path.
The additional cost incurred in terminating the arbitrage is simply the
discounted value of this last change in the control variable. It is given
by B(t*,t'). Distinguishing B(t*,t'), which represents the cost of
terminating or "reversing" the arbitrage, from A(t*,t'), which represents
the cost of "maintaining" the arbitrage, will prove extremely useful in the
analysis of the next section.

It is easily shown that if the proposed program satisfies the
Kuhn-Tucker conditions, the arbitrage proposed above will have no value;

that is
A(t*,t') + B(t*,t') = 0. (10)

Hence, any feasible arbitrage initiated at t* and reversed at t' is
unprofitable if the program is optimal. Moreover, the Kuhn-Tucker
conditions imply that the following generalization of (10) holds even if

c(t') is at a boundary:ll/

A(t*,t') + B'(t*,t') = 0 (10")
where

I LI
B'(t*,t') = 8~ A(t )[fc(t*)fm(t*+1)fm(t*+2)"'fm(t')]‘

and A(t*,t') is defined by (9).

11/See appendix A for details.



Similar conclusions must hold for infinite horizon problems.

Consider a feasible program [m(1), m(2),....; c(1), c(2),....]. For any t*
such that c(t*) is interior to the control set, A(t*,t')+B'(t*,t')=0 if the
progranm is optimal. To prove this, we could consider maximizing over

the subinterval from t* to t' with initial condition m(t*) and terminal
condition m(t'+l) given by the infinite horizon problem. The necessary
conditions for this “clamped end-point" finite horizon problem may be
derived as before from the Kuhn-Tucker theorem and will once again include
(3), (4), (6), (7), and (8). These conditions must hold if the infinite
horizon program is optimal; otherwise it could be dominated by an alternate
program that differs from the proposed program only between t* and t'.

It might also be thought that a Timiting version of equation (5)
must hold if an infinite horizon program is optimal. There are, however,
well-known cases in which the limiting extension of this transversality
condition is violated by optimal solutions in infinite horizon problems.

An example of such a case has been devised by Hubert Halkin. The
example, as it appears in Takayama and Arrow and Kurz, is cast in
continuous time. Since the analysis of this paper is in discrete time, we
will work with the discrete time analog of Halkin's example. In our
notation, the problem posed by Halkin is to maximize an objective function

of the form

L= ; [1-m(t)1c(t), (11)
t=1

subject to the following constraints:
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m(1) = 0

m(t+1) = m(t) + [1-m(t)Ic(t), (12)
c(t) > -1

1> c(t) for t=1,2,....

By substituting equation (12), the transition equation, into equation

(11), the Tatter may be rewritten as

7=
t

™8

[m(t+1) - m(t)] = 1im nm(t). (13)
1 t +o

The value of the objective function in this problem is simply the limiting
value of the state variable. The solution to the problem may now be
determined by inspection: Equation (12), the transition equation, tells
us that the maximum achievable value of the state variable under the
restrictions of this problem is one. Accordingly, the maximum value of
the objective function is unity. Any path of the control variable that
generates a limiting value of the state variable of one is, therefore, an
optimal path. There are an infinite number of such solutions. Halkin
restricts his attention to those in which the control assumes a constant
value, denoted c, between zero and one. As long as ¢ exceeds zero but is
less than one, the state variable will grow monotonically over tine,
approaching an asymptotic value of unity as time tends to infinity. There

are, then, a continuum of solutions to this problem of the form
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c(t) = c for t=1,2,....
where (14)
0<c<l.

ATl these solutions violate the usual transversality condition.

The value of A(t), the shadow price of a unit of the state variable, is -1
for all t along any of these solution paths.lg/ Hence, the 1imit of

A(t) as t tends to infinity is -1. The Timiting extension of the standard
condition requires that this limit be zero.

The Halkin example demonstrates the evident absence of a
transversality condition among the necessary conditions for an optimum in
infinite horizon problems in which the value of the control variable is
restricted. In section III we will develop a new transversality condition

that is necessary for an optimum in this class of problems.

III. A New Condition

In this section we employ additional arbitrage arguments to derive a

new transversality condition that must hold for optimal programs in the

12/ In the Halkin example g is equal to unity. Accordingly, the limiting
extension of equation (5) becomes

Tim -A(t) = 0.

t »>o
To verify that A(t) = -1 for all t, solve equation (3) for A(t):

For the Halkin example, V =f )=1-m(t) for all t, giving A(t) = -1

for all t. c(t) ‘et
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class of infinite horizon probiems described in section II. The new
condition insures the absence of certain "unreversed" arbitrage
cpportunities, just as the Kuhn-Tucker conditions (excluding (5)) insure
the absence of certain "reversed" arbitrage opportunities. It is shown
that in finite horizon problems our new condition is redundant since it
nust be satisfied by any program which meets the usual transversality
condition. But in infinite horizon problems the usual condition need not
hold and our new condition takes its place. It is found that the optimal
solutions to the Halkin example do, indeed, satisfy the new condition.
The infinite horizon version of our problem is given by (1'), which

replaces (1), and (2'), which replaces (2):

Maximize Z(=) = ? BV(c(t), m(t)) (1)

subject to: m(1) =m (2*)

u(t) > c(t), for t=1,2,....

From section II we know that an optimal solution to this problem in which.

c(t*) is interior must satisfy equation (10'). It follows that any feasible
arbitrage initiated at t* and reversed at t' is unprofitable. We turn now
to an alternative "unreversed" arbitrage and the added condition it

implies.
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Consider again a feasible program [m(1), m(2),...; c(1), c(2),...].
For any t* such that c(t*) is interior to the control set, it is possible
to vary c(t*) in either direction and leave all subsequent c(t) unchanged.
In this new arbitrage, consumption is not altered after t* in order to
restore the state variable to its original path. This is what we mean by
an "unreversed" arbitrage. Our new condition rules out marginal gains for
this unreversed arbitrage.

The infinite horizon specification of our problem creates some special
difficulties for the derivation of this new condition. As c(t*) is varied,
holding constant consumption at other dates, the infinite sequence of the
state variables at dates subsequent to t* is altered. This sequence can,
however, be written as a function of c(t*) using the transition equation
and the (given) values of the controls associated with the original
program. Consequently, the discounted value of the program given in (1')
can be considered simply as a function of the single instrument c(t*). But
even if we were to assume that this function is well-defined (converges
pointwise) for £(t*) < c(t*) < u(t*), this would not be sufficient to
insure that the value of the program is a differentiable, or even a
continuous, function of c(t*). Moreover, even if it is differentiable (and
hence continuous) in some interval, its derivative might differ from the

infinite sum of derivatives. For, alas, the derivative of a sum is not,
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in general, equal to the sum of the derivatives when the sums are
1nfinite.l§/

To insure that the derivative of the 1imit function given by (1') can
be computed by summing up the derivatives of each of its terms, we make two
additional assumptions: that the discounted value of the program exists
for the specified c(t*) and that the series of changes in subsequent

discounted utilities converges uniformly on some open interval when

considered as a function of c(t*). These assumptions are sufficient to

13/ There exist examples of infinite series for which it is true that the
derivative of the limit of the sum is not equal to the limit of the sum of
the derivatives of the individual terms. One such example is found in
Goldberg (1976):

Let f (x) = £ h(x,t), where 0 < x <1
® t=1
n
and fn(x) = I h(x,t) = x"/n.

t=1

Here f (x) is the limiting value of the series, and fn(x) is the nth
partiaT sum. Note that

f (x) = lim f (x) =0 for all x.

© n 5 o n
It follows that the derivative of the infinite sum is zero for all
permissible values of x.

Suppose we tried to calculate this derivative of the limit of the
series by summing up the derivatives of each term -- as we do in the text.
The derivative of any partial sum is given by

t _ n-1
fn(x) =X .
The limit of this derivative as n tends to infinity is given by
. . _ 1 for x =1
n]lmo fn(x) T 0 for x <1

Thus, for x=1, the derivative of the limit of the infinite series is not
equal to the limit of the sum of its derivatives. Additional assumptions
are required to eliminate such cases.
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guarantee that the derivative of Z(=) with respect to c(t*) is equal to the
sun of the derivatives of its individual terms.t¥ The optimal
solutions to the Halkin example discussed in the preceding section, as well
as the solutions to other problems of interest, satisfy these assumptions.
With the preceding discussion as background, we can now formally derive our
new condition which any optimal solution must meet.

Define the infinite series of changes in discounted utilities which
result from an unreversed arbitrage as A(t*). Then A(t*) can be easily
computed:

g tx+]
A(t*) = 8 Vc(t*) + B Vm(t*+1)fc(t*) +

(15)

@

t

tetirz £ m®) et (e Tn(eerz) -+ Fgeon)-

A comparison of (10') and (15) confirms the intuitively obvious. The costs
associated with an unreversed, infinite horizon arbitrage differ from those
associated with a reversed, finite horizon arbitrage in only two ways: The
cost of maintaining the arbitrage becomes an infinite sum, and the cost of
terminating the arbitrage is never paid. Accordingly,

A(t*) = Tim A(t*,t'). (16)

t'sw

If the proposed program is optimal, and if the additional assumptions

discussed above are met, then A(t*) must be zero. That is,

14/See appendix B for the relevant theorems and references.
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Tim A(t*,t') = 0. (17)

t'>
Moreover, taking the limit of (10') as t' tends to infinity gives

Tim [A(t*,t') + B'(t*,t')] = O. (18)

t'+cn
Equation (17) and (18) together imply

lim B'(t*,t') =0 (19)

t‘+cp

Using the definition of B'(t*,t') from (10'), it is useful to rewrite (19)

as

Tim 85 A )L () P (a1 n(ere2) (e ) = O (20)

t'r =

Our new necessary condition may now be stated as follows:

If a program is optimal, then for every t* for which
consumption is interior, it is true that either
(i) the program satisfies the transversality
condition given by (20), or
(ii) the value function given by (1') is not
defined at c(t*), or
(iii) the series of derivatives given in
(15), when expressed as a function ?g
c(t*), is not uniformly convergent.__/

For purposes of comparison, note that the limiting extension of the
standard transversality condition is

vim 8% A(t') = 0. (5)

t'+> ©

From (20) and (5') we see that our new condition involves the product of

15/Using the transition equation, (15) can be rewritten as a function of
c(t*). See appendix B for details.
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the standard condition and terms that represent the cumulative change in
the state variable generated by an unreversed arbitrage over an infinite
horizon. Since the cumulative change in the state over an infinite horizon
may be unbounded, it is evident that (5') does not necessarily imply (20).
Further, since the change in the state over an infinite horizon may
approach zero, (20) may be satisfied even if (5') is not. Thus, we have
derived a new necessary condition for an optimum that is independent of the
limiting extension of the usual finite horizon condition.

It should be noted that in finite horizon problems our new
transversality condition is implied by the standard condition and,
accordingly, is redundant. For finite horizon problems, we know that the
standard transversality condition, (5) is necessary for an optimum. It is
possible to derive an additional transversality condition, analogous to
(20), by considering, as before, the consequences of an unreversed
arbitrage. The resulting condition is once again a product involving the
standard transversality condition and terms representing the cumulative

change in the state variable over the horizon of the problem:
T ]
BOE%T) = 8 ARG ¢y F(ewat) Fngeren) - o+ Feqmyd = O (21)

Since the cumulative change in the state is finite for any finite T, (21)
is necessarily satisfied whenever the standard condition, BTA(T)=O is
satisfied. Hence, for finite horizon problems, our new transversality
condition is redundant. In infinite horizon problems, on the other hand,
we have shown that the 1imiting extension of the standard condition is

invalid, and our new condition, (20), takes its place.
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It is easily verified that the optimal solutions to the Halkin example
considered in the preceding section satisfy our new condition. In
section II it was shown that th(t) is equal to -1 for all t in

Halkin's problem. The cumulative change in the state is given by

A Feen fngers) Fn(eer2) Tmie ) = (22)
Vim  [l-m(t*)I01-c(t*+1) I0T-c(e*+2) 1...[1-c(t") 1.
t'se

Since c(t) is a constant in the open interval between zero and one, the
limiting value of (22) is zero. It follows that (20) is satisfied by all
the optimal programs considered by Halkin. Thus, although the limiting
extension of the usual condition is violated in Halkin's example, our new
condition is not.

In this section we have derived a new transversality condition that
must be met by optimal programs in infinite horizon problems in which the
value of the control variable may be restricted but the value of the state
is not. This new condition is not necessarily implied by the limiting
extension of the usual finite horizon transversality condition, which can
be violated by optimal programs in this class of problems. The Halkin
example, which belongs to this class of problems and which has optima]h
solutions that violate the limiting extension of the standard condition,
was reconsidered. It was shown that these optimal solutions to the Halkin

example do, indeed, satisfy the new condition.
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IV. Further Results

In this section we argue that the approach employed in section III to
derive a transversality condition for the class of problems to which the
Halkin example belongs can be usefully extended to other classes of
problems. In particular, it is possible to generate a transversality
condition for infinite horizon problems in which the state variable, rather
than the control, is restricted. The analysis centers once again on the
consequences of an unreversed arbitrage scheme. The particulars of the
scheme, however, do differ from those of the scheme employed in section
III. For problems in which only the state variable is constrained, we find
that the appropriate transversality condition is the limiting extension of
the standard finite horizon condition. The section, and the paper,
conclude with a discussion of the economic intuition behind our results and
the circumstances under which a transversality condition may fail, as the
standard condition does in the Halkin example.

Consider the following problem:

Maximize Z = §, stVlc(t), m(t)] (24)
subject to: wm(1) =m (25)
m(t+1) = flc(t), m(t)]
m(t) > a(t)
u(t) > m(t) fort =1,2,...

The functions that restrict the state variable, u(t) and 2(t), are
themselves bounded functions. There are no other constraints on the

problem. In particular, the control variable is unrestricted.
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By following a line of reasoning similar to that employed in section
II, a set of necessary conditions analogous to those of section II can be
developed. The conditions include all the Kuhn-Tucker conditions for the
finite horizon version of the problem, except for the transversality
condition. These conditions are well-known and will not be reviewed here.
As before, however, it will be useful to interpret the Kuhn-Tucker
conditions as insuring that certain feasible arbitrages are of no value.
Suppose in a feasible program the state variable is interior over an
interval running from t* to t'. Then it is feasible to alter m(t*+1) in
either direction, maintain the same deviation of m(t) from its original
path through period t', and then return the state to its original value in
period t'+1 so that m(t'+1) and the subsequent program are
unaltered.lg/ This can be achieved through the appropriate
manipulation of the control variable in periods t* through t'. As before
the change in the value of the program resulting from this arbitrage is

easily computed and must be zero if the program is optimal:

dZ/dm(t*+1) = C(t*,t') + D'(t*,t') = O (26)
where
C(t*,t') = sty + ; gt LV +V (EMD- )f ]
’ C(t*) t=t*+] m(t) C(t) fC(t) C(t*)

and

D' (t*,t') = -Btlx(t')fc(t*).

16/We assume that fc(t) is not zero for t > t*.
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C(t*,t') may be interpreted as the cost of maintaining the arbitrage
through period t', while D'(t*,t') represents the cost of terminating or
reversing the arbitrage. As before it is easily shown that if the proposed
program satisfies the Kuhn-Tucker conditions, it also satisfies (26).

To derive a transversality condition for this problem, we consider
the consequences of the unreversed version of the arbitrage described
above. If we repeat the approach of section III, we find that the
following must be true for an optimal program: If the unreversed arbitrage
described above is feasible, then either the transversality condition for
the problem must be satisfied -- that is, the limiting value of D' (t*,t')
must be zero --, or the value function Z is not defined at m(t*+1), or the
sum of the derivatives of the terms composing Z does not converge uniformly
when expressed as a function of m(t*+1).l27

The arbitrage will be feasible if it is possible to maintain some
constant deviation of the state variable from its original path. Two
situations in which the arbitrage is infeasible may be distinguished.
Examples of each are illustrated in figures 1 and 2.

In figure 1, the state variable asymptotically approaches one of its
bounds as time goes to infinity. In this case it is impossible to generate
a constant "epsilon" increase in the value of the state variable at all
points in time without violating the restrictions on the state variable.
There will always be a sufficiently large t for which the deviation of the

original value of the state variable from its bound is less than any

17/We are substituting out of c(t); which requires that f{c(t),m(t)] be
invertible in its first argument for t > t*. See also footnote 16.
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m(t) m(t)
() — — — — — - — o — u(t) - — — — — — — — — —
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t t
Fig. 1 Fig. 2

epsilon chosen. In figure 2, a Timiting value of the state variable does
not exist. The state variable exhibits oscillatory behavior, periodically
taking on the value of one of its bounds, or approaching that bound
asymtotically. In this case it is impossible to generate an epsilon
decrease in the value of the state variable without violating the
restrictions on the state variable. If either of these two situations

exist, it will be true that

Tim [sup m(t') - u(t")I[inf m(t') - 2(t')] =0

t *

Here sup m(t'), or the supremum of m(t'), is defined to be the Targest

18/

value of m(t') that occurs for all t greater than t'.~—" Similarly,

18/As such it is non-increasing and bounded below by the function 2(t).
Since 2(t) is itself bounded below by assumption, the limiting value of

sup m(t') exists. Similarly, it can be shown that inf m(t') has a limiting
value.



- 23 -

inf m(t'), or the infimum of m(t'), is defined to be the smallest value of
m(t') that occurs for all ta greater than t'. In the case in which the
state variable has a limiting value, as illustrated in figure 1, this

condition reduces to

Tim [m(t') - u(t')I[m(t") - 2(t')] =0

t-—)~m

We may now formally state the transversality condition for the

infinite horizon problem studied in this section:

lim 8% a(t') = 0

t's »
or (27
Tim [sup m(t') - u(t')I[inf m(t') - 2(t')] =0

t'+m

The full necessary condition is as follows:

If a progranm is optimal, it must be true
that either
(i) the transversality condition given
by (27) is satisfied, or
(ii) the objective function Z does not
converge pointwise for the program
(its 1imiting value does not exist), or
(iii) the sum of the derivatives of the terms
composing (26) does not converge
uniformly when expressed as a function
of m(t*+1).

For problems in which uniform convergence of the sum of the

derivatives can be assured, and in which the limiting value of the
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objective function and the state variable exist, our necessary condition

reduces to

lim 8 a(t') = 0

t' v
or (28)
Tim [m(t') - u(t')IIm(t') - 2(t')] = 0. .
t!' >

It can be shown that equation (28) is, in turn, precisely the limiting
extension of the transversality condition associated with the finite
horizon version of this problem. Thus, we see that the limiting extension
of the usual transversality condition for this c]éss of problems is the
condition that insures, under certain assumptions, the absence of a
particular kind of feasible arbitrage opportunity.

To derive a transversality condition appropriate to a particular
class of problems, we first must find an arbitrage scheme that is always
feasible in that class of problems. This requirement is met by the two
schemes employed in this paper. MNote, however, that the arbitrage scheme
of section III could not have been applied to the problem addressed earlier
in this section. The arbitrage scheme of section III (referred to as
scheme 1 from here on) involves a one time change in the control variable
and a consequent alteration in the path of the state variable. The
resulting path of the state could, in principle, take any form. Since the
problem introduced at the beginning of this section is one in which the
state variable is restricted, there is no guarantee that scheme 1 is
feasible in this second class of problems. Similarly, the arbitrage scheme
employed in this section (scheme 2) may not be feasible in the class of

problems we considered in section III, as we will illustrate shortly.
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Hence, the transversality condition of section III may be violated by
optimal solutions to problems in which only the state variable is
restricted and is therefore inappropriate for such problems; similarly, the
transversality condition of this section may be violated by optimal
solutions to problems in which the control variable is restricted and is,
likewise, inappropriate for such problems.

To lend concreteness to the discussion, consider one last time the
Halkin example. Since the Timiting extension of the standard
transversality condition is violated by solutions which are nonetheless
optimal, any arbitrage associated with that condition must be infeasible.
This is, indeed, true in the case of the optimal solutions we have
considered to the Halkin example. Recall that in the Halkin example, each
constant consumption path between zero and one generates a value of the
state variable and the objective function that approach unity as time goes
to infinity. The arbitrage associated with the Timiting extension of the
usual finite horizon transversality condition (scheme 2) is one that
requires a constant epsilon change in the value of the state variable at
all times after some t*. For any epsilon, there must come a time when
raising the state variable by that amount would imply setting the state at
a value greater than unity. This can not be done by selecting values of
the control variable that are less than one; it can only be achieved by
setting consumption at a value greater than one, which violates the
constraints imposed on the problem. The arbitrage is, then, infeasible.

The results of this section and the previous one suggest the
following interpretation of transversality conditions in infinite horizon

problems: Transversality conditions, 1ike other necessary conditions,
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insure the absence of particular feasible arbitrage opportunities. If a
transversality condition is violated by a proposed solution to a problen,
then either the solution is sub-optimal or every arbitrage associated with

that transversality condition is infeasible.



- 27 -

Appendix A
Equation (9) of the text can be derived as follows: Differentiating

the objective function with respect to consumption in period t*, we get

dZ/dc(t*) = A(t*,t') + B(t*,t') (A.1)
where
A(t*,t') = gtTv + v ty o [dm(t)/dc(t*
(t*,t ) =8B c(t*) t=€*+1 B m(t) m(t)/dc(t*)]
B(t%,t') = 5° V(o) [de(t')/de(t%)].

By differentiating the transition equation, the following expressions for

dm(t)/dc(t*) and dc(t')/dc(t*) can be derived:

drm(t) /dc(t*) = f for t=t*+l

c(t*)

dm(t) /dc(t*)

It

f oxf

c(t%) Tm(t*+1) Tm(tre2) = F

=t* '

dc(t')/dc(t*)

"[fm(tl)/fc(tl)][dm(t|)/dc(t*)]

i

ey feen ey fmiemy - T -1)

Substituting these expressions into (A.1), we arrive at equation (9).
That any program satisfying the Kuhn-Tucker conditions also satisfies

(9) may be verified as follows: From (4) we know

FA(E)F oy - a(t-1)pl =0 for t=t*+1,....t".
(

m(t) m(t)
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Since t runs from t*+1 to t', this forms a set of (t'-t*) equations. For

each t in the interval (t*+1,t'), multiply the corresponding equation by

t
B n(tx+1) fm(ere2)  + Fme-1)

(We have adopted the convention that when t-1 < t*+1, the product following

st in the above expression is equal to one.) Add together all the

resulting equations and simplify to get

-Bt*x(t*) _ st'*(t')fm(t*+1)fm(t*+2)"'fm(t‘-l) (A.2)
t! t
" b ® () fn(exe) Tnerez) ey < O

By assumption, c(t*) and c(t') are interior, even if consumption at other
dates is not. For t = t* or t', then, equations (3), (6), and (7) imply
that

A(t) = _Vc(t) /fc(t) . (A.3)

Substituting this into (A.2), we can verify that A(t*,t') + B(t*,t') = 0,
or that equation (10) is satisfied. It is also useful to derive an
expression more general than (10) which takes account of the possibility
that c(t') is at a boundary. Since c(t*) is still -- by assumption --
interior, we can use (A.3) to eliminate A(t*) in (A.2) above. What results

from the substitution is (10') of the text.
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Appendix B

The purpose of this appendix is to state formally the restrictions
mentioned in the text which insure that the derivative of the limit
function of an infinite series equals the limit of the sum of the
derivatives of each term in the series. Consider a feasible program [c(1),
c(2),eeee3 m(1), m(2),...]. Choose any period t* such that
2(t*) < c(t*) < u(t*). If an alternative feasible consumption is chosen at
t* while consumption levels at other dates are unchanged, then the state

variable from t*+1 onwards can be written as

m(t*+1) = flc(t*),m(t*)] = m[t*+1,c(t*)],
m(t*+2) = fLc(t*+1),flc(t*),m(t*)]] = m{t*+2,c(t*)],
etc.

Note that from t*+2 on, the state variable is a composite function of
c(t*). Hence, the value of the entire program can be expressed as a

function of c(t*):

t*-1 t
Z[c(t*)] = t§1 g Vlc(t),m(t)]
+ gUVIc(t®) ,m(t%)] (B.1)

(-]

+ oz gtc(t),mlt,c(t*)1]
t=t*+l

We assume first that the infinite sum given in (B.1) converges for
c(t*) = c(t*). Further, we note that the first t*-1 terms of this sum are
independent of c(t*). Consider the remaining terms. Define hn[c(t*)]

to be the nth term in this series (n=0,1,...). Since
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2(t*) < c(t*) < u(t*), there exists an open interval around c(t*) which
contains feasible consumption points. Moreover, hn[c(t*)] is
differentiable on this open interval since it is the result of

the composition of a finite number of differentiable functions.

(See Marsden, p. 168.) If we make the second assumption that
zh&[c(t*)] converges uniformly to g[c(t*)] on this open interval, then
Z'[c(t*)] exists and equals zha[c(t*)] for c(t*) in the open interval

around c(t*). For details, see Apostel (1957, p.403).
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