A MODEL OF STOCHASTIC PROCESS SWITCHING

by

Robert P. Flood and Peter M. Garber

NOTE: International Finance Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment. References in publications to International Finance Discussion Papers (other than an acknowledgment by a writer that he has had access to unpublished material) should be cleared with the author or authors.
Often, a policy authority such as a central bank operates by establishing a policy rule to set the variables under its control. Such a rule is allowed to operate freely as long as certain endogenous variables of interest to the authority remain within particular bounds; however, when those endogenous variables cross their bounds, the authority switches to a new policy rule which it had prepared to meet this contingency. Since variables such as prices are determined partly by agents' beliefs about future events, agents' behavior injects the probabilities that policy switches will occur at particular future times into current price determination.

In this paper we explore in a formal model the determination of a current exchange rate when future policy regime switches are possible. In order to do this we develop a new aspect of an otherwise standard exchange-rate model; this key component is the probability density function (p.d.f) for the first passage through a barrier of the endogenous variable (the exchange rate) which interests the policy authority.\(^1\) Since analytical solutions for first passage p.d.f.'s are available for only a limited number of stochastic processes, we are restricted to these processes in formulating our example. However, within this class of processes, our results are generally applicable to many different kinds of macroeconomic problems.

We present our ideas in the context of a model of exchange rate determination. Our choice of a specific example is intended to add concreteness to the analysis but should not be interpreted as setting limits on the applicability of the analysis. Indeed, the structure of the problem at hand virtually duplicates the structures which would be
In section II we present the major steps necessary to produce an exchange-rate solution. In section I we set up the exchange-rate model when future fixation is likely.

In the specific example we study, when agents know that a future early 1920's, studying the movements of the French and British exchange rates in the an example of the latter case, our results are particularly applicable to solution for the current exchange rate will be a more complex form. As is uncertain, then, though the solution techniques is analogous, the central form reflecting such knowledge. If the level is known while the timing expectations world the solution for the current exchange rate assumes a time the exchange rate will be fixed at a known level, then in a rational In the specific example we study, when agents know that a future processes in the economy would change as a result of the now binding regulation. Relevant interest rates were to reach the ceiling then some of the stochastic some interest rates may currently be below that ceiling. However, if regulations. For example, an economy with a regulation on set-up should be useful for studying the effects of current non-binding virtually any other uncertain future policy switch, so in addition our price controls, possible tax reform, the future fixing of gold price or return to an interest rate rule, the possible introduction of wage and appropriate for studying problems such as a monetary authority's possible

marketers to set the rate. However, it is possible that under some future freely means that governments do not interfere currently in exchange. That the exchange rate between two currencies is allowed to float

I). Determining the current exchange rate when future fixation is likely

an exchange rate solution.
contingencies a government may intervene and establish a fixed rate system; this possibility will partly determine the current floating rate through its effect on expectations.

The specific example that we have in mind is that of Britain in the 1920's. The British decision to return to the gold standard at the pre-war parity of $4.86\text{} was announced in the Budget Speech of April 28, 1925, and effective in the exchange market the next day (Moggeridge 1969, p. 9). However, as early as 1918 the Treasury and Ministry of Reconstruction appointed a Committee on Currency under Lord Cunliffe, which reported in 1919 "in our opinion it is imperative that after the war the conditions necessary to the maintenance of an effective gold standard should be restored without delay" (Moggeridge 1969, p. 12). Since the dollar was fixed to gold at that time, the British government was indicating that in the future it would fix the dollar-pound exchange rate at its pre-World War I level; the timing depended on achieving purchasing power parity at the pre-war exchange rate. Adopting such a policy affects the current exchange rate. Here we present a model in which this result is explicit.

In order to highlight the novel aspects of our study we adopt the simplest exchange-rate model popular in the current literature. This is the monetary model of Bilson (1978), Frenkel (1978) and Mussa (1978). The model consists of semi-log linear money demand functions for the countries studied, assumptions of purchasing power parity and uncovered interest parity, and an assumption that semi-elasticities of money demand with respect to interest rates are identical across countries.
simplicity we impose a \(\alpha = \alpha^* \)

for its parameters, \((a, t), (a^*, t^*)\) are assumed to be structural. For demand function is the basic behavioral building block of the model and which must equal real money demand, the right-hand side of (1). The money supply is the right-hand side of (1) is the real domestic money supply and all variables dated \(t \) or earlier.

\[I(c, t) = \text{time t information set containing the structure of the model} \]
\[E(x, t) \mid I(t) \text{ expected rate of change of } x(t) \text{ conditional on } I(t) \]
\[x(c) \text{ exchange rate} \]
\[\lambda(t) \text{ stochastic disturbance} \]
\[\gamma(t) \text{ interest rate (level)} \]
\[\delta(t) \text{ output} \]
\[p(c) \text{ price level} \]
\[w(c) \text{ money supply} \]

and variable denoted "forecast\(\hat{V}(c, t)\) and lower case letters generally denote logarithms; an asterisk (*) over a

\[I(c) \mid E(x, t) \mid I(t) \]
\[x(c) + (1) = (1) \]
\[* \]
\[d = (1) \]
\[* \]

The model is described by the following equations:

\[0 < 2 \alpha \]
\[a^* \]
\[\lambda(t) \]
\[\gamma(t) \]
\[0 \]
\[\alpha^* \]
\[\alpha \]
\[\gamma^* \]
\[\gamma \]
\[0 \]
\[\alpha^* \]
\[\alpha \]
\[\gamma^* \]
\[\gamma \]
\[0 \]
power parity, which is an arbitrage condition in a one-good world. Equation (4) is the condition of uncovered interest parity, which, with risk neutrality, follows from an assumption that domestic and foreign earning assets are perfect substitutes.\(^\text{3}\) We assume that \(m(t), y(t), v(t)\) and \(v(t)\) are exogenous to \(x(t)\).

Combine (1) - (4) to obtain

\[
m(t) - m(t) - x(t) = \alpha_0 - \alpha_0 + \alpha_1 y(t) - \alpha_1 y(t) - \alpha_2 E(\dot{x}(t) | I(t)) + v(t) - v(t).
\]

We define \(K(t) \equiv \alpha_0 - \alpha_0 + \alpha_1 y(t) - \alpha_1 y(t) - m(t) + m(t) + v(t) - v(t)\).

Hence (5) may be written as

\[
x(t) = K(t) + \alpha_2 E(\dot{x}(t) | I(t)).
\]

Equation (6) is the standard sort of equation that monetary models have produced and is a structural semi-reduced form consistent with a wide variety of models. To address the problem of the future fixing of an exchange rate we must specify both the stochastic nature of the exogenous forcing function \(K(t)\) and the nature of the policy rule whereby the monetary authority decides the time for fixing the exchange rate. With rational expectations, the decision to fix the exchange rate implies a decision to change the stochastic nature of \(K(t)\). This follows from equation (6): when \(x(t)\) is fixed, with rational expectations, \(E(x(t) | I(t))\) must be zero, hence \(K(t)\) must be fixed. For the purposes of this example we will assume that, as long as the monetary authority does not actively fix the exchange rate, \(K(t)\) is a random walk with drift, i.e. \(K(t)\) can be written as

\[
K(t) = K(0) + \eta t + e(t)
\]
Given a terminal condition we can solve (9) for the expected (and

\[E(x(t)|I(t)) + \mu \frac{Z_0}{t} + \frac{\partial}{\partial t} E(x(t)|I(t)) = 0 \]

on \(I(t) \). Rearranging we have

This is a differential equation in the expected exchange rate conditional

\[E(x(t)|I(t)) = E(x(t)|I(t)) + \mu Z_0 \]

on \(I(t) \) available to agents at time t, we find set \(I(t) \) available to agents at time t, we find

Taking expectations of both sides of (6) conditional on the information.

\(x(t) \) is random with a p.d.f. \(f(x(t), I(t)) \), which is conditional on \(x \) and \(K(t) \).

At any time t, the moment \(t \) in the future at which this first passage occurs

through 0 from below at the time of the exchange rate, i.e.,

\[\mathbb{P}(\text{first passage through 0 before time } t) \]

is to obtain currently we expect \(p(t) = p(t) - \rho(t) \) to make a first passage

through 0 from below at the time of the exchange rate's fixation.

\[\mathbb{P}(\text{first passage through 0 before time } t) \]

Every time t, \(p(t) = p(t) - \rho(t) \) since by assumption the

foreign price level minus the foreign price level is too low for this

particular x, t.e., when \(x = p(t) - \rho(t) \) will fix the exchange rate when purchasing power parity holds at some

be fixed, we suppose that the monetary authorities in the foreign country

In order to specify a policy rule for when the exchange rate will

exchange rate.

By control of \(x(t) \) so that \(K(t) \) will drift toward the desired fixed

fixed exchange rate, control over the process governing \(x(t) \) can be executed

process reflecting a U.K. government goal to return to a pre-war party,

while many alternative specifications for \(K(t) \) are possible, we select a

where \(u \) is the drift rate and \(e(t) \) is a white noise process, i.e., \(e(t) \sim N(0, \sigma^2) \).
therefore actual) exchange rate at time t.

Suppose first that purchasing power parity at the exchange rate \bar{x} occurs at time T; then the exchange rate is fixed at \bar{x} for $\tau > T$ and $x(T) = \bar{x}$. Since $x(T)$ is fixed at T, its expected rate of change conditional on fixing at T is zero at T and hence, from (6), $\bar{x} = K(T)$. That $x(\tau)$ makes a first passage through \bar{x} at T is equivalent to $K(\tau)$ making a first passage through \bar{x} at T.

Conditional on first passage at T, the current exchange rate (and its current expectations) can be determined as

$$E(x(t) | I(t), T) = \bar{x} \exp \left\{ \frac{t - T}{a_2} \right\} + \frac{1}{a_2} \exp \left\{ \frac{t - T}{a_2} \right\} \int E(K(\tau) | I(t), T) \exp \left\{ \frac{-\tau}{a_2} \right\} d\tau$$ \hspace{1cm} (10)

where $E(K(\tau) | I(t), T)$ indicates the expected path of $K(\tau)$, $t \leq \tau \leq T$, given $I(t)$ and $K(T) = \bar{x}$ for the first time. The unconditional exchange rate is then the integral of (11) weighted by the first passage p.d.f.

$$x(t) = \int_{t}^{\infty} E(x(t) | I(t), T)f(T - t | \bar{x}, K(t))dT$$ \hspace{1cm} (11)

Equation (11) is of the form of a typical solution to a rational expectations model. The problem which remains is to express the right hand side of (11) in terms of a finite number of in principle observable variables. In linear rational expectations models this final step is often accomplished by conjecturing that the solution is a linear function of the state variables and then requiring the unknown coefficients in the conjectured solution to obey the model at hand. This is the method of undetermined coefficients recently popularized by Lucas (1972). Our problem, however, is substantially more difficult because the as yet unknown non-linear
where

(13) \[E(\kappa(t) | \mathcal{F}_t) \cdot I(t) \equiv \frac{x - c}{\sigma} I(t) \]

explicit conditional expectation is

\[
\mathbb{E}(\kappa(t) | \mathcal{F}_t, I(t), I(t-t_1)) = \int_{-1}^{1} \mathbb{E}(\kappa(t) | \mathcal{F}_t, I(t), I(t-t_1)) f(t) \, dt
\]

where\(f(t) \) is the pdf of \(\kappa(t) \).

To obtain the reduced from exchange-rate equation we proceed in two steps: First finding the density function \(f(t) \) and second finding the forms of the solution we seek will be a non-structurally relation whose parameters will depend on current and expected future government behavior. The form of the solution must be constructed from the first principles. The
\[C_2 = \left[1 - \frac{\tau_1}{T_1} \right] \left[\left(1 - \frac{\tau_1}{T_1} \right) \frac{Z^2}{\sigma^2} + \sigma^2 \tau_1 \right] \phi(\hat{z}) + \sigma Z \tau_1 \left(1 - \frac{\tau_1}{T_1} \right)^{\frac{1}{2}} \phi(-\hat{z}) \]

\[- \exp \left\{ \left(1 - \frac{\tau_1}{T_1} \right) \frac{2\eta Z}{\sigma^2} \left(1 - \frac{\tau_1}{T_1} \right) Z^2 + \sigma^2 \tau_1 \right\} \phi(\hat{z}) - \sigma Z \tau_1 \left(1 - \frac{\tau_1}{T_1} \right)^{\frac{1}{2}} \phi(-\hat{z}) \right\} \right] \]

\[\text{(14)} \]

and

\[C_1 = \left[\sigma \tau_1 \frac{1}{T_1} \right] \left[\left(1 - \frac{\tau_1}{T_1} \right)^{\frac{1}{2}} \phi(\hat{z}) + Z \left(1 - \frac{\tau_1}{T_1} \right) \phi(\hat{z}) \right] \]

\[- \exp \left\{ \left(1 - \frac{\tau_1}{T_1} \right) \frac{2\eta Z}{\sigma^2} \left(1 - \frac{\tau_1}{T_1} \right) \frac{Z^2}{\sigma^2} \phi(\hat{z}) \right\} \left[\sigma \tau_1 \left(1 - \frac{\tau_1}{T_1} \right)^{\frac{1}{2}} \phi(\hat{z}) - Z \left(1 - \frac{\tau_1}{T_1} \right) \phi(-\hat{z}) \right] \right\} \]

\[\text{(15)} \]

In these formulas, \(\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \) and \(\hat{x}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{y^2}{2}\right) \, dy \).

To derive formulas (13)-(15), we must find the conditional density of \(K(\tau) \), given \(T \), the time of first passage through \(\bar{x} \), where \(T > \tau > t \). Call this density function \(h(K(\tau) \mid T) \). Then we need only multiply by \(K(\tau) \) and integrate to determine the first moment. We can find this density function by first determining the joint density over \((K(\tau), T) \). For simplicity, let us assume that we are looking forward from time \(t = 0 \) and that \(K(0) = 0 \). (These assumptions are relaxed in our reported results; see Appendix section 4.)

The joint density function equals the conditional density function over \(K(\tau) \) multiplied by the marginal density function over \(T \), \(f(T) \), i.e.

\[g(K(\tau), T) = h(K(\tau) \mid T)f(T). \]

\[\text{(16)} \]

The joint density also equals the conditional density over \(T \), given \(K(\tau) \), which we denote by \(F(T \mid K(\tau)) \), multiplied by the marginal density over \(K(\tau) \), \(H(K(\tau)) \), i.e.
The probability that a particle passing through \(x \) for the

\[
\phi \left(\frac{1 - r^0}{1 + x - (1)^{k(1)}} \right) \left(\frac{t - r^0}{1 + x - (1)^{k(1)}} \right) (x) = ((x)^{(1)}) (x)^{(1)}
\]

is passing through \(x \), and at time \(t \) as obtained from (18) as:

The unconditional probability \((1) \) of the first time \(l \) and through \(x \), given that a path

There are an infinity of paths which, like path \(l \), pass through

\(x \), which pass through \(x \) at \(t \), but which also have passed through \(x \) prior

subject the weight to all paths (like in Figure (1)) to \(x \)'s having remained below \(x \) prior to

Thus, from the unconditional density of \((1) \), obtain the density below the

\[
\phi \left(\frac{1 - r^0}{1 + x - (1)^{k(1)}} \right) \left(\frac{t - r^0}{1 + x - (1)^{k(1)}} \right) \exp \left\{ - \frac{\alpha x^2}{2} \right\} = ((x)^{(1)}) (x)^{(1)}
\]

\((x)^{(1)} = 0 \), \((k)^{(1)} \) has an unconditional p.d.f.

Since \((1) \) is a Wiener process with drift and a starting value

determine the unconditional density \((1) \) and from (10). First we develop

functions in (17) to construct the joint density \((x)^{(1)} \); then we can

since they are relatively easy to derive, we will use the density

but it is unconditional on first passage not having occurred prior to

\((1) \) does not depend on the time \(t \) at which first passage occurs,

\[
((x)^{(1)}) (x)^{(1)} = \phi (1)^{(1)} (x)^{(1)} (x)^{(1)}
\]
Figure 1
To determine the joint p.d.f. \(f(X) \) we must multiply \(\mathbb{H}(1) \) by the conditional p.d.f. \(f(1|1) \). But again from equation (12)

\[
(23) \quad f(1|1) = \frac{I_1 - \frac{1}{1}}{(I_1 - 1)(1 - x - 1)} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} = \frac{\phi}{} \frac{\phi}{} \frac{\phi}{}
\]

from (18) (22)

To determine \(\mathbb{H}(1|1) \) up to a normalizing constant we need only subtract

\[
(22) \quad I_1 \frac{I_1 - \frac{1}{1}}{(I_1 - 1)(1 - x - 1)} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} = \frac{\phi}{} \frac{\phi}{} \frac{\phi}{}
\]

over \(I_1 \) of (22):

\(: \)

Therefore, the probability weight associated with all paths which both pass through \(x \) at some time prior to \(t \) and equal \(K(1) \) at \(t \) is the integral

Therefore, the probability weight associated with all paths which both pass through \(x \) at some time prior to \(t \) and equal \(K(1) \) at \(t \) is

\[
(21) \quad \frac{I_1 - \frac{1}{1}}{(I_1 - 1)(1 - x - 1)} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} = \frac{\phi}{} \frac{\phi}{} \frac{\phi}{}
\]

\(\mathbb{C}(K(1)|I_1) \) is the probability that \(\mathbb{C}(K(1)) \) for the first time at \(I_1 \) and pass through \(K(1) \) at \(t \) is

\[
(20) \quad \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} = \frac{\phi}{} \frac{\phi}{} \frac{\phi}{}
\]

Then the probability weight associated with the set of all paths which both pass through \(x \) for the first time at \(I_1 \) and pass through \(K(1) \) at \(t \) is

\[
(19) \quad \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{I_1 - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} \frac{\phi \frac{1}{l} - \frac{1}{1}}{I_1 - x} = \frac{\phi}{} \frac{\phi}{} \frac{\phi}{}
\]

\(-12-\)
\[F(T|K(\tau)) = \frac{x - K(\tau)}{\sigma \sqrt{2\pi(T - \tau)^3/2}} \exp\left\{-\frac{(x - K(\tau) - \eta(T - \tau))^2}{2\sigma(T - \tau)}\right\} \]

\[= \frac{x - K(\tau)}{\sigma(T - \tau)^{3/2}} \phi\left(\frac{x - K(\tau) - \eta(T - \tau)}{\sigma\sqrt{T - \tau}}\right). \]

(24)

Finally,

\[\varepsilon(K(\tau), T) = CH(K(\tau))F(T|K(\tau)) \]

(25)

where C is a normalizing constant. h(K(\tau), T) is simply (25) divided by f(T) and evaluated at a particular value of T.

To derive C_1 and C_2, we performed a change of variable in (25) to produce a p.d.f. over u(\tau) = x - K(\tau). In the formula (13), C_1 is simply the inverse of the normalizing constant for this p.d.f. while C_2 is the unnormalized first moment of this p.d.f. Hence, \[C_2/C_1 = E(u(\tau)|u(t), T) \] so that \[E(K(\tau)|K(t), T) = x - C_2/C_1. \] Deriving the actual formulas (14) - (15) requires the cranking out of some horrendous integrals, which we relegate to the appendix.

III) Application

We have derived analytical expressions for f(T - t|x, K(t)) and E(K(\tau)|I(t), T). The next step is to substitute these results into (10) and (11) and continue the integration. However, the remaining double integral has proven intractable to us, so we simply report our solution for x(t) as

\[x(t) = \int_0^\infty \left[\frac{t}{\alpha} \exp\left\{-\frac{t - T}{\alpha}\right\} + \frac{1}{\alpha} \exp\left\{-\frac{T}{\alpha}\right\} \right] \int x - C_2(\tau)/C_1(\tau) \exp\left\{-\frac{t}{\alpha}\right\} dt \]

\[\cdot f(T - t|x, K(\tau)) dT \]

(26)
The British return to pre-war parity.

result in a stochastic process switching problems as clearly determined.

switching. However, it is applied to such deliberations that they

intercept into agents' forecast and problems an element of stochastic process

may be gate the widespread. Indeed, when ever policy makers deliberate, they

It seems to us that the problem encountered in Ruenkel and Clemence

In accord with our non-linear exchange rate equation.

to our results the first stage of their procedure should have been specified.

Ruenkel and Clemence used a linear two stage least squares procedure. According

switching. To allow for the endogeneity of interest rates differential

a large part of the period when agents may have been antithetical process

exchange-rate equation over the period February 1921 to May 1925, which encompasses

switching. For example, Ruenkel and Clemence (1980) estimate a US/UK

methods during a period when agents are antithetical stochastic process

It is not appropriate to estimate an exchange-rate equation by typical linear

The unfortunate feature of our result is that it implies that

numerical integration sub-routines.

principal be estimated using a combination of nonlinear techniques and

The nonlinear exchange-rate equation resulting from the above can in

-13-
Footnotes

1/ Models of pricing for some types of options make use of first passage probability density functions. For example, Ingersoll (1977) uses first passage profits in studying the prices of convertible securities.

2/ By assuming \(\alpha_2 = \alpha_2^* \) we are able to determine \(x(t) \) without modeling the goods market. Alternatively we could allow \(\alpha_2 > \alpha_2^* \), impose world goods market equilibrium, and produce an exchange-rate solution slightly different from that reported below.

3/ Some empirical support for the assumption of open interest parity can be found in Hansen and Hodrick (1980).

4/ In our example we are treating the U.S. as the home country and the U.K. as the foreign country so \(\bar{x} = \ln(\$4.86 / £) \).

5/ The nature of the exchange-rate fixing policy precludes the existence of a multiple solution type bubble which would cause \(x(t) \) to rise through \(\bar{x} \). However, it does not preclude the existence of negative bubbles which would prevent \(x(t) \) from passing through \(\bar{x} \) from below even though \(K(t) \) passes through \(\bar{x} \). Therefore, for the stated equivalence to hold we must explicitly rule out the existence of multiple solutions to (9) of the speculative bubble variety. Hence, the solution to (9) depends only on market fundamentals, as the formal expressions (10) and (11) for a solution explicitly indicate.

6/ We are extremely grateful to J.H. Kemperman for showing us how to derive the conditional expectation of \(K(\tau) \).
Atkinson-Reedley, Reading, MA.
J. Wheelwright and H. Johnson (eds.), The Economics of Exchange Rates. In
An Externality, ed., "Economic Theory of Price Determination: The Case of
Internal Trade," The Economic Journal, 80, 1970, pp. 103-123.

References

-15-
Appendix

Derivation of C_1 and C_2

1) Solution to Integral in Text Equation (23)

Notice that the integral part of the right-hand side of equation (23) is a convolution. It is

$$\int_{0}^{\tau} w(t_1) Z(\tau - t_1) dt_1 \quad (A1)$$

where

$$w(t_1) = \frac{-x}{\sigma t_1^{3/2}} \phi\left(\frac{x - nt_1}{\sigma t_1^{1/2}}\right) \quad (A2)$$

and

$$Z(\tau - t_1) = \frac{(\tau - t_1)^{-1/2}}{\sigma} \phi\left(\frac{K(\tau) - x - nt_1}{\sigma(\tau - t_1)^{1/2}}\right) \quad (A3)$$

It is a property of the Laplace transform, $L[\quad]$, that $L[w(t_1)] \cdot L[Z(\tau)] = L[\int_{0}^{\tau} w(t_1) Z(\tau - t_1) dt_1]$ (see Simmons, pp. 407-408). For our problem

$$w(\tau) = \frac{-x}{\sigma^{3/2}} \phi\left(\frac{x - nt_1}{\sigma^{1/2}}\right) \quad (A4)$$

and

$$Z(\tau) = \frac{\tau^{-1/2}}{\sigma} \phi\left(\frac{K(\tau) - x - nt_1}{\sigma^{1/2}}\right) \quad (A5)$$

This property is useful to us because the problem of integrating (A1) may be stated equivalently as finding $L^{-1}[L[w(\tau)]L[Z(\tau)]]$, where $L^{-1}[\quad]$.
\[
\frac{2}{I - u} \exp \left(\frac{z}{2/2} \right) \left[1 - u \right] = [(1)Z]^{1/2}
\]

We obtain (1) \(K - x\) instead of \(N - y\) by \(x + y\) and then replacing \(x\) in that result transform of \(Z\) being in \((1)W\) and \(- u\) in \((1)W\) being in \((1)W\). It follows that we obtain the Laplace transform of \((1)Z\) instead of \(Z\) instead of \((1)X\) instead of \(X\) instead of the corresponding term in the numerator with \((1)W\) being in \((1)W\) is \((1)W\) \(x\) in the constant in the numerator which is the form of \((1)W\) \(W\) we will work with subsequently.

\[
\frac{2}{I - u} \exp \left(\frac{z}{2/2} \right) \left[1 - u \right] = [(1)Z]^{1/2}
\]

Recall that \((x - y) = (x) \phi = (x) \phi\) is useful in finding \(Z\) \(L\) which we now turn.

\[
\frac{2}{I - u} \exp \left(\frac{z}{2/2} \right) \left[1 - u \right] = [(1)W]^{1/2}
\]

We have (47) Simmons' p. 702.

\[
\phi / [(1)W]^{1/2} = [(1)W]^{1/2}
\]

p. 362). Further, since where \(p\) is the parameter of the Laplace transform (see Karlin and Taylor),

\[
\frac{2}{I - u} \exp \left(\frac{z}{2/2} \right) \left[1 - u \right] = [(1)W]^{1/2}
\]

Our first step is to note for \((1)W\) using Laplace transforms, \(Z\) is the inverse Laplace transform. We will develop an analytic expression.
From (A6) and (A10) obtain

\[L[w(\tau)]L[Z(\tau)] = \left[\frac{2}{\sigma^2} \right]^{1/2} \exp \left[-\frac{2\overline{x} + K(\tau)}{\sigma^2} \right] \left[\frac{2}{\sigma^2} \right]^{1/2} \frac{\pi K(\tau)}{\sigma^2} \]

(A11)

(A11) is the Laplace transform of the integral we seek so we are now looking for the inverse Laplace transform of (A11).

Notice that if in (A10) we replace \(K(\tau) \) with \(K(\tau) - \overline{x} \) then we will produce the expression on the right hand side of (A11) multiplied by the factor \(\exp \left[-\frac{2\eta \overline{x}}{\sigma^2} \right] \). Thus, we create the function

\[q(\tau) = \exp \left[\frac{2\eta \overline{x}}{\sigma^2} \right] \frac{\pi}{\sigma^2} \frac{1}{1/2} \frac{K(\tau) - 2\overline{x} - \eta \tau}{\sigma^2} \]

(A12)

and by construction we know \(L[q(\tau)] = L[w(\tau)]L[Z(\tau)] \). Hence

\[q(\tau) = L^{-1}[L[w(\tau)]L[Z(\tau)]] = \int_0^\tau w(t)Z(\tau - t)dt, \]

so \(q(\tau) \) is the analytic integral we have sought.

We were attempting to solve the integral in text equation (23) so that we could obtain an analytic expression for \(g(K(\tau), T) \). To obtain this expression we now use (A12) in text equation (23) and we use equations (23) and (24) in (25) yielding

\[g(K(\tau), T) = C \frac{\pi}{\sigma} \left[\frac{K(\tau) - \eta \tau}{\sigma^2} \right]^{1/2} \exp \left[\frac{2\eta \overline{x}}{\sigma^2} \right] \frac{K(\tau) - 2\overline{x} - \eta \tau}{\sigma^2} \]

\[\cdot \left[\frac{\overline{x} - K(\tau)}{\sigma(T - \tau)} \right]^{3/2} \frac{\pi}{\sigma(T - \tau)} \frac{1}{1/2} \frac{\pi (\overline{x} - K(\tau) - \eta (T - \tau))}{\sigma(T - \tau)} \]

(A13)

\(C \) is a normalizing constant. Given \(T \), the first time \(K(\tau) \) passes through
The mean of the conditional p.d.f. $h(K(\tau) | \tau)$, except over τ.

2. Deriving the normalizing constant for $h(K(\tau) | \tau)$, substituting u into (A13) and dropping all the constant coefficients, the function (A13) can be written as

$$\phi(u) = \exp \left\{ \frac{1}{2} \left(u - \frac{1}{\tau} \right)^2 \right\}.$$

Except for a normalizing constant, (7) is a p.d.f. over u. We are interested in the moments $C_n = \int_0^\infty u^n g(u) du$.

Here $1/C_1$ is the normalizing constant and C_2/C_1 is the conditional mean of u. The conditional mean of $K(\tau) = \bar{x} - C_2/C_1$.

By elementary algebra,

$$\phi(u) = \exp \left\{ \frac{1}{2} \left(u - \frac{1}{}\tau \right)^2 \right\}.$$

Using this result with $a = \bar{x} - \eta \tau$ and $b = \eta (T - \tau)$, we find that C_n is proportional by a factor independent of n to

$$C_n = \int_0^\infty \phi(u) \exp \left\{ \frac{1}{2} \left(u - \frac{1}{\tau} - \eta (T - \bar{x}) \right)^2 \right\} du.$$
To find the normalizing constant we set \(n = 1 \) in (A17) and we perform a change of variables using the following definitions

\[
\varepsilon_1 = \frac{u - (1 - \tau/T)x}{\sigma(1 - \tau/T)^{1/2}} \\
\varepsilon_2 = \frac{u + (1 - \tau/T)x}{\sigma(1 - \tau/T)^{1/2}}.
\]

We have

\[
C_1' = \int_{-x^*}^{\infty} \left[(1 - \tau/T)x + \varepsilon_1 \sigma (1 - \tau/T)^{1/2} \right] \sigma(1 - \tau/T)^{1/2} \phi(\varepsilon_1) d\varepsilon_1 \\
- \exp\left\{ \frac{(1 - \tau/T)^2 n x}{\sigma^2} \right\} \int_{-\infty}^{\infty} \left[-(1 - \tau/T)x + \varepsilon_2 \sigma (1 - \tau/T)^{1/2} \right] \sigma(1 - \tau/T)^{1/2} \phi(\varepsilon_2) d\varepsilon_2
\]

where

\[
x^* = \frac{-x(1 - \tau/T)^{1/2}}{\sigma_{\tau^{1/2}}}
\]

Recall that \(\phi(w) = (2\pi)^{-1/2} \exp\{-1/2w^2\} \) and define \(\Phi(w) \equiv \int_{-\infty}^{w} \phi(u) du \) so \(\Phi(w) + \Phi(-w) = 1. \) (A20) reduces to

\[
C_1' = \sigma_{\tau^{1/2}} (1 - \tau/T)^{3/2} \phi(x^*) + (2\pi)^{-1/2} \sigma_{\tau} (1 - \tau/T) \exp\{-1/2x^*^2\}

- \exp\left\{ \frac{(1 - \tau/T)^2 n x}{\sigma^2} \right\} \left[-\sigma_{\tau^{1/2}} (1 - \tau/T)^{3/2} \phi(-x^*) + (2\pi)^{-1/2} \sigma_{\tau^{1/2}} \right.

\cdot \tau(1 - \tau/T) \exp\{-1/2x^*^2\}\]

(A21)
The integral in (A22) is a sum of three elements and we will treat these quadratic from the first part of (A22). The term in square brackets under where we have substituted the functional form and expanded the functional form.

The first integral in (A22) is the first integral. We will evaluate these in turn. The right-hand side of (A22) is now broken into two integrals and which results from (A17) with \(n = 2 \) and \(\tau \) defined as before.

Now consider

\[\zeta \text{ primitive integral} \]
3aii. \[\int_{-\infty}^{\infty} 2^{\frac{1}{2}} (1 - \tau/T)^{3/2} (2\pi)^{-1/2} e^{-1/2 \varepsilon_1^2} \exp\{-1/2 \varepsilon_1^2\} d\varepsilon_1 = 2\sigma x \tau^{1/2} (1 - \tau/T)^{3/2} \phi(-x) \] (A25)

3aiii. The third term is

\[\int_{-\infty}^{\infty} \sigma^2 (1 - \tau/T) e^{-1/2 \varepsilon_1^2} (2\pi)^{-1/2} \exp\{-1/2 \varepsilon_1^2\} d\varepsilon_1 \] (A26)

and we must integrate this by parts. Set \(dF = (2\pi)^{-1/2} e^{-1/2 \varepsilon_1^2} \exp\{-1/2 \varepsilon_1^2\} d\varepsilon_1 \)

and set \(H = \varepsilon_1 \). We know \(\int H dF = HF - \int F dH \). Hence \(\int H dF = -((2\pi)^{-1/2} \varepsilon_1^2 \exp\{-1/2 \varepsilon_1^2\} d\varepsilon_1 \) \)

or

\[\int H dF = -\varepsilon_1 \phi(-\varepsilon_1) + \phi(\varepsilon_1) \]

Since \(\int H dF \) is (A25) up to a constant we find that (A25) is

\[\sigma^2 (1 - \tau/T) \Phi[\phi(x^*) - x \Phi(-x^*)] \] (A27)

Summarizing, the first integral on the right hand side of (A22), which is (A23), is

\[\sigma(1 - \tau/T)^{1/2} [(1 - \tau/T)^2 \phi(x^*) + 2\sigma x \tau^{1/2} (1 - \tau/T)^{3/2} \phi(-x^*) \]

\[+ \sigma^2 \tau(1 - \tau/T)[\phi(x^*) - x \phi(x^*)] \] (A28)
\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]

Computing we find (A22) and (A23) may be rearranged to give

\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]

Terms in (A11) may be rearranged to give

\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]

integral equals

Substituting in (A20) the result in (A22) (A23) (A24) (A25) the second

\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]

The second integral in (A22) (A23) is - integral in (A24) (A25) (A26) (A27) the second

\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]

and this is our expression for (A22),

\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]

Last term of (A22) we obtain

for the \(x^\mu \) coefficient in the

\[
\left\{ (x^\mu)^2 \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2 = \sum_{\nu} \frac{d}{dx} (x^\nu x - (x^\mu)^2) \right\}^2
\]
4. Alterations needed to Produce the Form reported in the Text

Since we are interested only in the ratio C'_2/C'_1 we can remove all coefficients common to the terms in C'_1 and C'_2. Since $\sigma \tau^\frac{3}{2}(1 - \tau/T)^\frac{1}{2}$ is common to both C'_1 and C'_2 it is not included in the values which we report for C'_1 and C'_2 in the text.

Notice also that the text uses for notation τ_1, T_1, Z_1 and Z^* in place of τ, T, \bar{x} and x^*, respectively, which we have used in the appendix. Recall that for simplicity we assumed that the time at which this forecast is made is time zero for the derivations in the appendix. The time for which the forecast is made is called τ in the appendix. In the text the time at which the forecast is made is called t; the time for which the forecast is made is called τ. Hence the variable $\tau_1 = \tau - t$, in the text notation, is substituted for τ, in the notation of the appendix. Similarly, $T_1 = T - t$ in the text notation is substituted for T in the notation of the appendix. In the appendix $K(0)$ is set at zero; in the text $K(t)$, the value of $K(\)$ at the time at which the forecast is made, need not be zero. Hence, we subtract $K(t)$ from \bar{x} to derive a barrier equivalent to \bar{x} in the text. Defining $Z = \bar{x} - K(t)$ we substitute Z for \bar{x} in the notation of the appendix. Finally, letting $Z^* \equiv \frac{Z}{\sigma} \frac{1 - \tau_1/T_1}{\tau_1}$, we substitute Z^* for x^*. This produces the formulas for C'_2 and C'_1 in the text.