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ABSTRACT

This paper considers the statistical and econometric effects that
fixed ﬁ~period phase-averaging has on time series generated by some simple
dynamic processes. We focus on the variance and autocorrelation of the
data series and of the disturbance term for levels and difference equations
involving the phase-average data. Further, we examine the effect of
phase-averaging on the exbgeneity of variables in those equations and the
implications phase-averaging has for conducting statistical inference.

To illustrate our analytical results, we investigate claims by

Friedman and Schwartz in their 1982 book Monetary Trends in the United

States and the United Kingdom about what the properties of phase-average

data and the relationships'betWeen those data ought to be. We present
certain features of the observed series on velocity, examine how well our
analytical model captures them, and contrast them with Friedman and
Schwartz's predictions. While our model is an extremely simplified
characterisation of the phase-averaging adopted by Friedman and Schwartz,
it does offer several insights into the likely consequences of their

approach.

Keywords: business cycles. conditional models. conditioning. dynamics.
econometrics. exogeneity. marginalising. methodology. money
demand. phase averages. quantity theory. statistical inference.
temporal aggregation. time series. velocity of circulation.



An Analogue Model of Phase-averaging Procedures

by

Julia Campos, Neil R. Ericsson and David F. Hendry*

1. Introduction

The nature of business cycles has evoked extensive research in
economics over the last several decades, including such diverse studies as
Beveridge (1921), Slutzky (1937), Schumpeter (1939), Burns and Mitchell
(1946), Tinbergen and Bolak (1950), Friedman and Schwartz (1963, 1982),
Sims (1977), Lucas {1977), and recent investigations on "real business
cycles" by (e.g.) Long and Plosser (1983) and King, Plosser, Stock, and
Watson (1987). Simplifying (and in some cases, overly so), economic series
might be imagined to be composed of a trend and a cycle.1 Burns and
Mitchell (1946), for example, focus on’the cycle, abstracting from
non-cyclical temporal differences. To do so, they establish the NBER
reference business cycles, dating the contraction and expansion phases of
the cycles over their sample period, and across cycles average the data at
various points in the cycle. Conversely, Friedman and Schwartz in their

1982 book Monetary Trends in the United States and the United Kingdom focus
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Caracas 1010 Venezuela; International Finance Division, Federal Reserve
Board, Washington, D.C. 20551; and Nuffield College, Oxford OX1 1NF England.
This research was supported in part by UK E.S.R.C. grants HR8789 and
B 06 220012. We are grateful for the financial assistance from the
E.S.R.C. although the views expressed in this paper are solely the
responsibility of the authors and should not be interpreted as reflecting
those of the E.S.R.C., the Board of Governors of the Federal Reserve
System, the Banco Central de Venezuela, or other members of their staffs.
Helpful discussions with and comments from Rob Engle, David Howard, Bob
Marshall, David Pierce, and Ken Wallis are gratefully acknowledged. We are
indebted to Aileen Liu for excellent research assistance in preparing the
figures. This paper is based in part on Hendry and Ericsson (1985,
Appendix B), itself developed from Appendix B for Hendry and Ericsson (1983).

l1a11ais (1966, 1972), Neftgi (1984, 1986), Stock (1985), and Falk (1986)
inter alia present various reasons for the existence of business cycles and
give empirical evidence thereon.



on the longer-run features of the data. In an effort to filter out
short-run (i.e., cycliéal) properties of the data, they transform their
(raw) annual series by averaging separately over contraction and expansion
phases of the reference business cycles, afterwards presenting detailed
graphical and regression studies of the resulting series, both in levels
and in differences. They claim that such phase-averaging reduces serial
correlation arising from the business cycle (p. 78) and attenuates
measurement errors (p. 86), and implicitly claim that phase-averaging does
not affect the exogeneity or otherwise of their variables of interast

(pp. 35-36, 206): attaining those effects is important to sustain the
validity of their statistical analyses.2 Our paper analytically
evaluates statistical and cconometric effects that phase-averaging has on
time series and considers whether it obtains empirically the results
claimed by Friedman and Schwartz.

Use of phase-average data raises three distinct issues: (i) the
theoretical effects of phase-averaging (qua time aggregaiion), (ii) the
observed effects of phase-averaging, and (iii) the effects of selecting the
intervals over which to average (e.g., by prior analysis of an interrelated
data set such as that underlying reference business cycles). In Szsction 2,
we abstract from (iii) and address (i), using as our model fixed n-period
phase-averaging of time series generated by a simple dynamic process.3

We focus on the effects that phase-averaging has on the variance and

25ee Maverick (1933) for early advocacy of phase-averaging in econometrics.
Unreferenced tables and page numbers refer to Friedman and Schwartz (1982).

3Without undertaking a Monte Carlo study, it is difficult to deduce the
statistical effects of selecting the phases over which to average when
using information from related time series (i.e., (iii)). However, a first
approximation is given by examining the effects of fixed-length
phase-averaging. The model of phase-averaging with fixed phase lengths
below explains salient features of the data for velocity, leaving a small
role for the effects of selection of phase lengths.



autocorrelation of the data series and df the disturbance term for levels
and difference equations involving phase-average data. Further, wWwe examine
the effect of phase-averaging on the exogeneity of variables in those
equations and the implications phase-averaging has for conducting
statistical inference. To illustrate those analytical results, in Section
3 we examine claims by Friedman and Schwartz (1982) about what the
properties of phase-average data and the relationships between those data
ought to be. We present certain features of the observed series on
velocity (i.e., (ii)), examine how well our analytical model captures them,
and contrast them with Friedman and Schwartz's predictions. While our
model is an extremely simplified characterisation of the phase-averaging
adopted by Friedman and Schwartz, it does offer several insights into the

likely consequences of their approach.

2. Analytical effects of phase-aVeraging

This section describes our model of phase-averaging and considers the
effects that phase-averaging has on time series generated by some simple
dynamic processes.

Fhase-averaging sequentially applies two filters to the annual data:
the first averages that data (as with a moving average) and thus implies a
re-parameterisation of the data generation process; the second selects the
phase-average data from the averaged series (i.e., marginalises the data
density with respect to the intermediate observations), thereby entailing a
(statistical) reduction in that re-parameterisation. By analogy with
seasonal adjustment of quarterly data, the first filter is like the X-1l1
procedure; the second discards all but the fourth-quarter data points.

To illustrate, consider fixed n-period phase-averaging of the annual

series {X¢; t=..,1,2,...,T} with T a multiple of n. Letting L be the lag
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operator such thatith-xt_l, the first filter is (1+L+L2+...+Lﬁ'1)/n, so
the averaged series is {x:; t=..,1,2,...,T) where

x: = (Xp+xg_1+Xp_o+. .. +Xg_p41)/n. ' (L)
The second filter selects every nth observation of x:, so the
phase-average series is {x;n; j-..,1,2,...,(T/n)}, denoted
{ij; j=..,1,2,...,J}. To illustrate, Figure 1 shows the steps
involved in going from {x{} to {x:} to (ij} for fixed 3-period
phase—averaging.“

There is little loss of information from the use of the moving-average
data per se but a distinct loss of information results from the selection
process. That loss would be unimportant if (a) all the parameters of
intsrest could be recovered from the phase-average series (and Friedman and
Schwartz seem to believe such parameters can be, including the long-run
elasticity of interest rates in a money-demand equation) and (b) there was
no loss of power in testing the resulting model. However, many of the
parameters which we consider to be of interest cannot be obtained from
phase-average data, including parameters relevant to tests of Granger
(1969) non-causality, short-run variability in the postulated
relationships, and the dynamic mechanisms whereby the economy adjusts to
"shocks". Point (a) also ties in closely with issues of exogeneity: as
will be seen below, variables exogenous at annual observations may no
longer be so when phase-averaged. Even for parameters which can be

retrieved from the phase-average data, tests about them may be low in

41n fact, Friedman and Schwartz include turning points in both preceding and
following phases (but weight them by half the normal weight in each), so

the first filter is actually (.5+L+L2+...+Ln‘1+.5L“)/n and the second is
unchanged. However, the statistical effects of using phase-averages with
(rather than without) overlap appear minor in comparison to those of using
phase-average (rather than annual) data (cf. pp. 75, 84-85).



Figure 1. A schema for fixed 3-period phase-averaging.
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power relative to tests based upon the annual data.’
To illustrate the statistical effects of phase-averaging, we begin
with the time series ((yy:z¢)'; t =1,...,T) generated by the simple dynamic

bivariate process:

Yo = g * o1z¢ + up : (2)

up = pug.] + E¢ €¢ 0 oi 0 (3)
~ IN( , 2| )

Zg = Apze-1 * Ag¥e-1 + v Ve 0 0 o (4)

Except when otherwise noted, we assume that (yy:z,)' is stationary; hence
all roots of (2)-(4) are stable, i.e., |p| < 1 and |Aj+ajry| < 1. For
convenience, we denote the second root (Aj+ajAy) by k. If Ay = 0, z¢ is
strongly exogenous for (ag:a;)'; otherwise it is correlated with ut.6

Although (2)-(4) do not include a deterministic cycle, for suitable

SFor instance, cf. Banerjee, Dolado, Hendry, and Smith (1986) on
co-integration tests with static and dynamic models and note the similarity
between those models and the phase-average and annual models herein.

61f (yt:z¢)' is normally distributed, conditional upon its own past, then
(2)-(3) is the corresponding conditional density of y; (conditional upon
z¢) and (4) is the corresponding marginal density for zy, on the assumption
that the conditional mean of (yy3z¢)' is linear in its past and only
includes y¢.; and z¢_j, and that the resulting equation associated with the
conditional density of yy (e.g., yp = 8g+d12¢+d2y_1+832¢_1+€) includes a
common factor (l-pL). Cf. Hendry and Mizon (1978) and Hendry, Pagan, and
Sargan (1984) for further discussion on models with common factors.

Technically speaking, if A9 % 0 and so Zy is not strongly exogencus
for (ag:ay)', then zy is not weakly exogenous for (ag:ea))' either because
stationarity requires ]kl+a1A2| <1 and so (A1:A3)' and (eg:e})' cannct be
variation free; cf. Engle, Hendry, and Richard (1983, p. 282). Weak
exogeneity could be "restored" either by assuming that (Aj:A9)' and
(ep:ay)' lie within a sub-space of the region for stationarity where they
are variation free or by relaxing the condition of joint stationarity to
that of the conditional stationarity of y; (requiring only that |p| <1).
In the latter situation, if zy is integrable of order 1, then so will be y;
and y. and z¢ will be co-integrated. For further details on
co-integration, see Granger and Engle (1987), Phillips and Durlauf (1986),
and articles in the August 1986 special issue of the Oxford Bulletin of
Economics and Statistics on co-integration, especially Granger (1986) and
Hendry (1986).




parameter values, it easily can generate data with cyclical behaviour.’

The n-period phase average of an arbitrary series {x.} is:

T

1-1’2,.."(!\) ’ (5)

n
Xy =nly x
i (&1 TG-Lnt

S0

S;j = ag + alij + Gj (6)
from (2). Average two-(phase-)period differences result in:

(.5A2;'j) = al('5A2zj) + (-5A2(1j) (7))

where differencing for phase-average data is defined in terms of phases
rather than years so that (e.g.) A1X§ = Xj-Xj.1. Our

concern is how inference is affected by using (6) (or (7)) rather than
(2)-(4).8 Unleés otherwise noted, we limit our discussion to the

effects on phase-average data of positive p because economic data tend to

be highly positively autocorrelated. The effects of negative p are

7slutzky (1937) demonstrates that moving average processes can exhibit
cyclical behaviour, and (2)-(4) can be well approximated by a moving
average process.

8In the context of Friedman and Schwartz (1982), it is natural to interpret
"periocs" and "phases" as years and half-cycles. However, the analytical
properties are quite general and could be applied to other time intervals,
e.g., (uarterly data aggregated to annual data. In fact, a substantial
literature exists on the effects of time aggregation; cf. Theil (1954),
Durbin (1960), Mundlak (1961), Telser (1967), Moriguchi (1970), Zellner and
Montmarquette (1971), Amemiya and Wu (1972), Sargan (1976), Tiao and Wei
(1976), Wei (1978), and Weiss (1984). Those studies show that, inter alia,
sizeable inefficiencies result from using least squares even if the
regressors are strongly exogenous. Further, if they are only weakly
exogenous (or include lagged dependent variables), least squares is
generally inconsistent; cf. Wei (1982). Our results below are in line with
those general results. However, the motivation for our study is
fundamentally different from those of time aggregation. In the latter, the
data are generated at unit intervals but observation occurs at multiples of
that unit: hence relevant questions include the effects on inference,
forecasting, and policy analysis of not having available observations at
natural. time intervals. In the case of phase-averaging, observations at
the unit interval are available, but the investigator chooses to use the
aggregated (phase-average) data.



qualitatively different, particularly for n even; cf. (10) and (11)
below.9 However, the formulae derived apply for all e} < 1.

Levels of phase averages. As a baseline, we note that the variance

and autocovariances of uy in (2) are:10

o2/ (1-p%) i=0 o (®)
13 = E(upue_y) = - ) .
p OE/(l-p ) j. b 1,2,..- . (9)

Hence the autocorrelation function for u, is pl (i>0). Equivalent formulae

for ﬁj in (6), the levels equation with phase-average data, are:

»

ui 2p(1-p")
> [1 _ ___2_] i=0 (10)
n(l-p) n(l-p°)
TS E(iyugog) = <
: n(i-1) ,, n,2 2
P p(l-p )"0 i=1,2,... . (11)
| n2a-p?)(1-p)?

The error variance of (6) is less than that of (2) for all_n > 1, but both
equations manifest residual autocorrelation unless p = 0. The logarithm of
the variance of ﬁj (normalised by og) and its first-order

autocorrelation ry (= E(Gjﬁj_l)/E(ﬁz)) are shown in

Figures 2 and 3 respectively. The variance falls as n increases, but with
an ever smaller proportional effect as p increases. As an example, for
p=.8and n =3, (10) yields 19 = 2.302 whereas o% from (8)

is 2.802, so averaging produces only a small decrease in variance.
£

9Figures 2-7 below are for positive p only; Appendix B contains comparable
graphs which include negative values of p.

10Te15er (1967, Table 1) obtains parallel results for n=3 (i.e., his m=2),
noting that his Table 1 is for a typical "summed process". Thus, his c(k)
is our 1(k/n)-(1- -p!)°n? where k a multiple of n and his parameter ais

our p. Ahsanullah and Wei (1984) obtain equivalent formulae for the AR(L)
process; Stram and Wei (1986) generalise those results to ARIMA processes.



Figure 2. The logarithm of the variance of Gj (normalised by 02) as a function of p and n.
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Figure 3. The first-order autocorreslation coefficient of u, (r,) as a function of p and n.
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Figure 4. The second-order autocorrelation coefficient of u (r,) as a function of p and n.
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Moreover, as is apﬁarent from Figure 3, phase-averaging only marginally
reduces the first-order error autocorrelation when p is large. By
contrast, autocorrelation at higher orders dies off rapidly as n increases
(nb. (11), and compare Figure 3 with Figure 4, the latter plotting the
Second-order autocorrelation of uj, denoted rj).

Least-squares estimation of structural parameters in the presence of
autocorrelated disturbances is inefficient. Further, if right-hand side
variables are correlated with the disturbance, such estimation is
inconsistent:

E(zeup) = pAg02/[(1-p2)(1-pk)] = 4,y (say) (12)
which is zero only if pAy = 0. E(z¢_je¢) = 0 for all i z 0 (and for all p

and 1j9), so estimation of (2)-(3) by autoregressive least squares is always

consistent. Turning to the phase-average data in (6):

E(zjuj) = Ag02(14p)/[4(1-p)(1-pK)] (13)
when n = 2 (for illustrative purposes). Thus, even if p = 0 (and so
dzy = 0), E(zyuy) # 0 unless Ay = 0. Conversely, the strict
exogeneity of zy (i.e., Ay = 0) is sufficient for both (12) and (13) to be
zero.

Differences of phase averages. Next, we consider the effects of

two—period differencing of the phase-averages in (6) to get (7):

- o2 p(2-p™) (1-p2")
var(.SAzuj) - '————2 [1 - 3 ] (14)
2n(1-p) n(l-p“)

and

ELC.585)) (582851 = (1-p"Mp1-p™%e?/1an’a-p?)1-p)?1 . (15)

After rescaling (14) by 4, the error variances for levels and "rates of
change" models will be similar only for quite large values of p (e.g.,

P =.9), in which case the former will still exhibit substantial first-
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order autocorrelation although the latter will not; cf. Figure 5 and 6.11
Further, and in contrast to the results for levels, the differenced series -

{.5A26j} exhibits (typically negative) second-order autocorrelation of

the form:
, pn+l(l—p2n)(l—pn)2
r = -5 + ’ (16)
2 2 p(2-p™-p™
21\(1‘P )[l - 2
n(l-p~)

as portrayed in Figure 7 for some representative values of n. Only for
very large values of p is (16) near zero.

For the differenced data, the equation equivalent to (13) is:
- - 2 2 2
E(83z5°Aguy) = [2 - (1+k)k ]kzoeld 17

when p = 0 and n = 2. So, in general, different biases will result from
fitting (6) and (7). Only if z, is strictly exogenous (A = 0) will both
biases be zero.

Phase averages of stationary AR(1) data. One particularly interesting

special case of (2)-(4) is the stationary AR(1l) process, i.e., with a; =0

in (2). 1In mean deviation form (i.e., ag = 0), that yields:

Yt = PYt-1 + & t=1,...,T (18)
with
2 - g2/(1-p2
oy oE/(l p4) . (19)

For n-period averaging,

yj = pp§j_1 + ej ' j = 1,-.0,J (20)

llThe variable-length weighting procedures in Friedman and Schwartz (1982)
should not alter the substance of this last result; but being data-based to
eliminate "cyclical behaviour" (which, e.g.., a positively autocorrelated
series would appear to manifest), it could seriously alter the nature of
the residual autocorrelation. For example, the negative second-order
autocorrelation of {.5A2uj} in (16) may not carry over for

data-selected phase averages.
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Figure 5. The logarithm of the variance of .5A.3. (uormaiised by 02) as a function of p and =a.
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Figure 6. The first-order
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- *
Figure 7. The second-order autocorrelation coefficient of '5A23j (r,) as a function of p and n.
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where pp is defined by [E(y4_12)]171E(¥434-1), i.e., E(Yj-164)=0. Thus,
02(y) = 62/(1-p2) = o2[n(1-p2)-2p(1-p™)1/[n2(1-p)?] (21)
(which is equivalent to 1) and
pp = p(1-pM2/[n(1-p2)-2p(1-p)] (22)

(which is 7;/1g). Moreover,

A1ye = ¢ + (p-D)ye1 and (23)
A1§j = ey + (pp—l)ij_l so that (264)
02(a1y) = zog/(1+p) . and (25)
02(a1y) = 202/(1+pp) . (26)

These formulae will be used in Section 3 for analysing the empirical
characteristics of velocity and will be contrasted with similar formulae

for the random walk model (developed below).

Fhase averages of a random walk. The final alternative we consider
is that the series is a random walk. If p =1 in (18), then E(y%) = tog (for

Yo = 0) and the mean of the standard estimator of the variance of y; is:

1

L 2 2
T3 L Yy) = 9. T(T+#)/[2(T-1)] = 0 (¥) (27)

t=1

E(

(e.g., see Fuller (1976, p. 367)) whereas oz(Aly) = og. Working
(1960) considers the case of an n-period average of a random walk and shows
that, for ej defined by §j - §j-1 + ej , its variance is:

62 = 02(20241)/(3n) . (28)
However, the mean of the standard estimator of the variance of §j is:

J
GG 370 = 623’ -n’+ant) /l6n(3-D] = 63 (29)
1,47 € J

assuming yg = 0. Figure 8 plots 02(§) for different values of T
0 J 2
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Figure 8. The mean of the standard estimator of the variance of ;', as a function of T and n.
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and n with ¢, = 1.12 1¢ strikingly portrays the linearity of
o%(?) in T and the near invariance of u§(§) with

respect tb n, given T. Both follow from (29) which gives o§(§) =
02(y) + 0(T0) = 62[(T/2) + 0(T0)] where each of the terms 0(T0)

depends upon n only, to O(T“l).13

3. Interpreting Friedman and Schwartz's phase-averaging

To illustrate the value of our analytical results from Section 2
above, we investigate claims by Friedman and Schwartz (1982) about what the
properties of phase-average data and the relationships between those data
ought to be. We present certain features of the observed series on
velocity, examine how well our analytical model captures them, and contrast
them with predictions by Friedman and Schwartz. While our model is an
extremely simplified characterisation of the phase-averaging adopted by
Friedman and Schwartz, it does offer several insights into the likely
consequences of their approach.

Friedman and Schwartz's primary justification for phase-averaging
appears to be the claim that it reduces cyclical effects (pp. 13-14, 78),
thereby allowing them to focus on their primary concern, monetary trends.
By filtering out the cycle, they argue that phase-averaging should reduce
serial correlation in the data and lower the data variance. Secondly, they
claim phase-averaging reduces the effects of measurement errors (p. 86):
that also would imply a reduction in the data variance. Attaining those

effects is important to their statistical analysis. In practice, as is

12Note that p (=1) is no longer a determinant of the variances whereas T now
is. Also, og(y) = o%(y) for n = 1.

13Due to the non-stationarity of the series generated, inference in the
presence of a unit root requires special attention; cf. Dickey and Fuller
(1979, 1981), Evans and Savin (1981, 1984), Sargan and Bhargava (1983),
Phillips and Durlauf (1986), and Granger and Engle (1987).
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clearly visible in Figure 9 which jointly plots the phase-average and
annual data for velocity in the United Kingdom, phase-averaging negligibly
reduces either the variance or serial correlation in this time series, a
series from which they claim to draw important inferences.l4 The
remainder of this section shows that the simple AR(1) model in Section 2
implies properties for the phase-average and annual data closely iniline
with those observed. The evidence also supports the notion that a -

substantial loss of information has resulted from phase-averaging.

Time-series evidence. To evaluate some basic time-series properties
of velocity v, consider the following first-order autoregressions with

annual and phase-average data over the last century for the United Kingdom.15

~

Vt - .019 + .968 Vt_l (30)
(.016) (.029) :
T = 95 8 = 4.798% dw = 1.13  dw® = .08  dw¥* = 1.15 .
vy = .023 + .972 vi-1 (31)
(.042) (.077)
J =35 8 = 7.279% dw = 1.70  dw* = .31  dw®* = 1.74 .

Values in parentheses (*) are conventionally calculated standard errors.

dw denotes Durbin and Watson's (1950, 1951) statistic, dw* is its value

l4prom Table 1 below, the estimated standard error of the annual data is
17.35% whereas that for the phase-average data is 17.31%. The extent of
serial correlation in both series is evident from (30) and (31).

15The (logarithm of) velocity is v = In(P°I/M) where P*I is nominal income
and M is the money stock. Appendix A briefly describes these data.

All our estimates using phase-average data are based on weighted least
squares, correcting for the different phase lengths. However, parameter
estimates are not very different whether ordinary or weighted least 3quares
are used. The summary statistics for phase-average data also are
calculated with weights accounting for the differences in phase lengths.

One phase observation is lost in the calculation of lags, so the
sample sizes are J = 35 (phase observations 2-36) and T = 95 (annual
observations 1879-1973), with the span of the annual data matching that for
the phase-average data.
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Figure 9. The logarithm of the velocity of money for the United Kingdom: annual and phase-average data.
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when the dependent variable is regressed on a constant, and dw¥* is its
value when the first difference of the dependent variable is regressed on
a constant.l6 The series in levels (both annual and phaSe—aVerage) show
first-order autocorrelation close to unity with the resulting differenced
series being far less positively autocorrelated than the levels, and close
to "white noise" for the phase-average data. Those features influence the

standard deviations of velocity, listed in the second column of Table 1.

Table 1. Standard deviations of velocity (percentages)17

Predicted values
AR(1) model random walk model

Series Observed values

v 17.35 17.14 33.43
v ©17.31 16.84 33.60
A v 4.80 4.85 4.80
AV 7.19 6.82 6.67
€ 4.80 4.80 4.80

e : 7.28 6.68 6.67

For the annual and phase-average series, the standard deviations for
levels are roughly equal; large reductions in standard deviations are
obtained by differencing, more so for the annual data. Other series from
Friedman and Schwartz (1982) have analogous properties.

‘Assuming that velocity is a stationary AR(1l) process and that n = 3
and p = .96, the analogue model in Section 2 predicts relevant standard
deviations for the annual and phase-average data in terms of 0, the

standard deviation of the underlying innovation process. Those values are

16The Durbin-Watson statistic dw* and the t-ratio for (p-1) may be
interpreted as statistics for testing for the non-existence of a
relationship between money, prices, and income; cf. Sargan and Bhargava
(1983), Dickey and Fuller (1979, 1981), and Granger and Engle (1987).

17The values in columns three and four of Table 1 have been normalised on the
annual AR(1l) regression residual standard error because the results in
Section 2 are for relative, not absolute, variances.
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given in the third column of Table 1 and closely match the corresponding
observed values. Further, the implied first-order autocorrelation
coefficient of the phase-average data is Pp = -92, close torthét in (31)
above. While we do not think velocity is simply a first-order
autoregressive process (and give evidence supporting that view in Hendry
and Ericsson (1985)), these results nevertheless illustrate the
ineffectiveness of phase-averaging in attaining its supposed principal
benefits, namely, reduction in the data variance and elimination of serial
correlation arising from cyclical components. These results also explain
why the models using phase-average data fit much less well than those using
annual data.

Alternatively, the series for velocity might be generated by a random
walk. Certainly, the graphs of velocity and of several other variables of
interest to FQiedman and Schwartz (1982) look like those of the random-walk
series reported by Working (1934); and (e.g.) p = .96 is not "far" from
unity.18 Also, that hypothesis for velocity has received considerable
attention in the literature (cf. Gould and Nelson (1974), Nelson and
Plosser (1982), and Bharghava (1986)). The last column of Table 1 gives
various standard deviations for T = 95, J = 35 (and so n = T/J = 2.71).
Those results are a much poorer match to the observed standard deviations
than the predictions from the stationary AR(1l) model. Like the significant
error-correction coefficients established in Hendry and Ericsson (1985),
the evidence here favours a highly autoregressive but "just barely"

stationary process for velocity.

18As noted in Hendry and Ericsson (1985), it is difficult to reject the null
that p = 1; but that could be due to the low power of unit-root tests

against alternatives like p = .95 (e.g., see Bhargava (1986)) and does not
entail accepting the null.



24

- Econometric evidence. In terms of estimating econometric models, the

standard error of Friedman and Schwartz's (1982, p. 282) money-demand
equation for the United Kingdom is around 5%. We were able to reproduce

closely, but not precisely, their numbers:

(E-E—E)j = .012 + .885 (i-h)j - 11.21 RNy - .22 G(p+i)

(.19) (.049) (3.3) (.29)
+1.37 ﬁj + 20.6 §j (32)
(.58) 2.7)
J = 36 n=2.75 @ = 5.66% .

By contrast, the equivalent 8 from many dynamic annual models is under
2%. For example, Hendry and Ericsson (1985, equation (22)) obtain the

following.19

A (m-p)y = .37A1(m-p)y¢_] - .06A}(m-p)y_og - .20(m-p-1)¢_4

[.04] [.07] [.022]

+ .66(A1p/4) - .4TAlpy - .14A'py_5 - .78RS,
[.10] [.064] [.06] [.20]

- 3.3(A,R2¢/2) + 1.9D, + 3.6D, + 64D, - .086 (33)
{1.1] [1.1] [.6] [.80] [.010]

T=93 R!= .82 4 =1.711%

Thus the additional information leads to a more than tenfold reduction in
the residual variance relative td that for their model using
variable-length phase avérages. This is a larger improvement than
predicted by the analysis of fixed-length phase-averaging and may arise in

part from the data-selected choices of reference business cycles.

" 19%hite (1980) heteroscedasticity-consistent standard errors appear in square
brackets [*]; cf. Nicholls and Pagan (1983). Appendix A briefly describes
the data in equations (32) and (33) for which J = 36 (phase observations
1-36) and T = 93 (annual observations 1878-1970) respectively. Hendry and
Ericsson (1985) extensively discuss the properties of both regressions.
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Exogeneity. Hendry and Ericsson (1985, Appendix G) obtain substantial
evidence against Granger non-causality for money, income, prices, and
interest rates. Thus, the weak exogeneity of (e.g.) prices, income, and
interest rates in (33) may well be lost when a money-demand equation is
estimated as in (32) using phase-average data.20 That happens because
some feedback from (e.g.) interest rates to money occurs within a phase, so
‘those dynamics of the annual data introduce simultaneity in the

phase-average data.

4.  Summary )

Business cycles have been the focus of much economic analysis
throughout this century: phase-averaging has been proposed as one empirical
method of separating cyclical and secular components. This paper analyses
the statistical and econometric effects such filtering has on data from
some simple dynamic processes and illustrates those effects by comparison
of annual and phase-average data from Friedman and Schwartz (1982). For
Friedman and Schwartz in particular, phase-averaging empirically does not
obtain two results important to their analysis, namely, reductions of
serial correlation and of the data variance. In general, phase—averaging.
involves a loss of information and thereby can result in the inconsistency

of previously consistent estimation procedures and in the endogeneity of

previously exogenous variables.

20Nb. Engle et al. (1983) on the different concepts of exogeneity; cf. Wei
(1982), Hendry and Ericsson (1985, footnote 15), and Longbottom and Holly
(1985).
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APPENDIX A. The data

Legend

D, - A dummy variable for World War I (= 1 for 1914-18 inclusive,
zero elsewhere)

D, - A dummy variable for 1921-55 (= 1 for 1921-55 inclusive,
zero elsewhere)

D, - A dummy variable for World War II (= 1 for 1939-45 inclusive,
zero elsewhere)

G(p+i) - Growth rate of phase-average nominal income

H - Population (millions)

I - Real net national product (million 1929 &)

M - Money stock (million £)

P - Deflator of I (1929 = 1.00)

RY - Long-term interest rate (fraction)

RN - RS*H/M

RS - Short-term interest rate (fraction)

S - A dummy variable for phase observations 16-28 (1921-1955;
= 1 for observations 16-28 inclusive, zero elsewhere)

W - A dummy variable for phase observations 13-15 and 26-28

(1918-1921 and 1946-1955; = -4, -3, -2, 8, 5, and 3 for phase
observations 13, 14, 15, 26, 27, and 28 respectively; zero
elsewhere)

Coefficients and estimated standard errors of the dummies b, D, D,

R4

S, and W are reported times 100 for readability.

These data are as in Friedman and Schwartz (1982, Tables 4.8 and 4.9),
but relevant series are rescaled proportionately from 1871 to 1920 to
remove the break in 1920 when Southern Ireland ceased to be part of the
United Kingdom. A capital letter denotes the ievel of a variable; lower
case denotes the logarithm. Also, P, RS, and Rt have been divided by 100
so that the values of P in 1929 equal 1.00 (rather than 100) and the

interest rates are expressed as fractions (rather than as percentages).
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APPENDIK B. Phase-averaging of negatively autocorrelated data

In the text, the effects of phase-averaging are depicted for positive
p in (3) via variances and autocovariances in Figures 2-7. As noted in
Section 2, the effects are qualitatively different for negative p. This
appendix contains corresponding figures (numbered B.2 through B.7) with p
both positive and negative. The properties for even n (i.e., n=2 in the

figures) are particularly asymmetric.
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Figure B.2. The logarithm of the variance of G, (normalised by 02) as a function of p and n.
J 1)

— — 3.5
2.8
2.1
1.4

0.7

1n(;0/c§)

10+

07
1.4

2.1

LlllLlllllllllLLLIJllllllIlllllll]lllll2.8
-1 -.5 0 .5 1
p




29

Figure B.3. The first-order autocorrelation coefficient of u (rl) as a function of p and n.
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Figure B.4. The second-order autocorrelation coefficient of u, (r,) as a function of p and n.
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Figure B.5. "he logarithm of the variance of .SAZE. (normalised
J

31

by cz) as a function of p_and n.
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- *
Figure B.6. The first-order autocorrelation coefficient of .SAz_gj (r,) as a function of p anc. n.
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- *
Figure B.7. The second-order autocorrelation coefficient of '5A25j (r,) as a function of p and n.
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