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ABSTRACT

Using recently developed Monte Carlo methodology, this paper
investigates the effect of dynamics and simultaneity on the finite sample
properties of maximum likelihood and jnstrumental variables statistics for
testing both nested and non-nested hypotheses. Numerical-analytical
approximations (response surfaces) to the unknown finite sample size and
power functions of those statistics are obtained for dynamic one- and
two-equation models. The results illustrate the value of asymptotic theory
in interpreting finite sample properties and certain limitations for doing
so. Two practical finite sample results arise: the F form of the Wald
statistic is strongly favored over its chi-squared form; and the effects of
"large-o" and a sﬁall effective sample size are particularly pronounced for
Sargan’s (1958) instrumental variables statistic and Ericsson’'s (1983)
Cox-type instrumental variables statistic. Re-examining Pesaran and
Deaton’s (1978) empiricél example illustrates the additional information

gained from the instrumental variables statistics.

Keywords and phrases: asymptotic distributions. dynamics. econometrics.
encompassing. evaluation criteria. finite sample properties.
_ infefence. Monte Carlo. non-nested hypotheses. power. response
surfaces. simultaneity. simulation. test statistics.



Monte Carlo Methodology and the Finite Sample Properties of Statistics
For Testing Nested and Non-nested Hypotheses

by

Neil R. Ericsson1

1. Introduction

Statistical inference has profoundly influenced econometric methodology
and practice, both with regard to estimation and with regard to hypothesis
testing. Mann and Wald (1943b), Haavelmo (1943, 1944), and Koopmans, Rubin,
and Leipnik (1950) systematically exposit the framework for applying both
aspects to the modeling of systems of economic relationships. Although the
former (estimation) often has taken the more important role in econometrics,
extensive testing of econometric models is becoming more common. Several
reasons for that include a clearer understanding of the relationships
between various econometric estimators, a marked reduction in the computing
costs of estimating econometric models (those costs often having been a
motivation for deriving different estimators), and a more widespread
appreciation of the weaknesses of untested models. (E.g., see Hausman
(1975) and Hendry (19765, Hendry and Srba (1980), and Hendry and Mizon

(1978) and Sargan (1980a,b,d).) More extensive testing is of some comfort
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to users of econometric models, particularly in light of the ease with which
seemingly highly significant but nevertheless spurious regression results
can be obtained with time series (mb. Yule (1926), Granger and Newbold
(1974), Hendry (1980), and Phillips (1986b)). In recognition of the
importance of hypothesis testing in econometric modeling, Pesaran (1982),
Ericsson (1983), and Godfrey (1983) derive and analyze asymptotic properties
of various statistics for testing nested and non-nested hypotheses in
systems of economic relationships. However, both analytical and Monte Carlo
studies indicate that the presence of dynamics and simultaneity may
substantially influence the finite sample properties of statistics for
testing nested hypotheses (cf. Phillips (1977, 1980), Sargan (1980c), Mizon
and Hendry (1980), and Hendry (1984)); and even for simple static models,
considerable discrepancies may exist between the finite sample and
asymptotic properties of Cox's statistic for testing non-nested hypotheses
(cf. Pesaran (1974, 1982)).

Using recently developed Monte Carlo methodology, this paper
investigates the effects of dynamics and simultaneity on the finite sample
properties of the statistics discussed in Pesaran (1982) and Ericsson
(1983), including the Wald, Cox and F statistics. Section 2 describes the
statistics and their asymptotic properties; Section 3, the class of
econometric models to be investigated. Monte Carlo studies in econometrics
often have been highly imprecise in estimating the underlying finite sample
properties and specific to the particular parameter values and sample sizes
chosen, so making any conclusions very tentative at best. Hendry (1984)
presents a methodology reducing both imprecision and specificity and which
aims to obtain “numerical-analytical.formulae [response surfaces] which
jointly summarize the experimental findings and known analytical results in
order to help interpret empirical evidence and to compute outcomes at other

points within the relevant parameter space" (p. 944). That methodology



affects all aspects of Monte Carlo experimentation: design, simulation, and
post-simulation analysis. Section 5.considers each of those aspects in
turn for a Monte Carlo study of the properties of various instrumental
variables test statistics in a dynamic simultaneous two-equation model,
following a review in Section 4 of the role of response surfaces in
analyzing the Monte Carlo simulations themselves. Section 6 provides a

brief empirical example illustrating the potential practical value of these

statistics.

2. The Test Statistics and Their Asymptotic Properties

This section summarizes existing analytical results for the statistics
of interest.2 Consider the two non-nested hypotheses

Ho: ¥y =XpB8p + 1 ug ~ D(O,ag-IT) (1)
and

Hy: y=X8, +uy u, ~ D(O,a%-IT) (2)
and the comprehensive hypothesis

Hy: y = X,B8, + 4y u, ~ D(O,a%-IT) (3)
where the dependent variable y is Tx1l, T being the econometric sample size;
Xi is a Txki matrix of regressors and ﬂi the corresponding kixl vector of
coefficients (i=0,1,2); X, includes all the non-redundant variables in
(XQ:XI) with B, conformable; and ug is a Tx1 vector of disturbances
distributed with mean zero and variance aioIT (i=0,1,2). Two approaches
have been suggested for testing H, against H,: "direct" comparison of the
non-nested hypotheses and comparison of each non-nested hypothesis with the
compreﬁensive model. For the former, Pesaran (1974) propoSes evaluating a

modified likelihood ratio statistic for H, and H; when X, and X, are

2 s s . . . .
The statistics and most of their analytical properties appear in Pesaran

(1974) and Ericsson (1983). Godfrey’s (1983) statistic G_ is a linear
function of tg, so only one (tg) 1s considered. X

See MacKinnon, White, and Davidson (1983) for regularity conditions and
MacKinnon (1983) for a review of the.subject.



predetermined, following Cox (1961, 1962). Alternatively, because those
hypotheses are nested in H,, the restrictions implied by going from H, to H,
(or Hy) can be tested using the F or Wald statistics.3 Those Cox, F, and
Wald statistics for testing H, are denoted D,, f,, and c,. Under H, and
under H; as a local alternative, they each are asymptotically distributed
with the central and non-central distributions given in Table I.4

When simultaneity is present, Cox's test may be inconsistent unless the
entire systems of equations from which H, and H,; are drawn are specified and
estimated (see Pesaran and Deaton (1978)); likewise, F and Wald tests using
the least-squares estimator may be inconsistent. Instrumental variables
(IV) statistics provide a convenient alternative. Sargan (1958, 1980c)
proposes a x?-statistic (cy) and the corresponding F-statistic (f,) for
testing the specification of an equation after estimation by instrumental
variables: c, is the criterion function for the IV estimator, and it and £,
are asymptotically distributed as x2?(m-kq,+) and F(m-kq,T-m,+), as given in

5

*
Table I, with m being the number of instrumental variables Z . Iv

generalizations of f, and ¢, may be used: those IV statistics also have the

3Cf. Cox (1961, pp. 105-106, 120-122), Dhrymes et al. (1972, pp. 316-317),
and Cox and Hinkley (1974, pp. 327-328, 331-337) on the Cox statistic and
Fisher (1922), Wald (1943, pp. 469, 479), Stroud (1971), Silvey (1975,
pp. 115-116), and Phillips (1986a) on the F and Wald statistics.

Ericsson (1983) presents explicit formulae for inter alia the asymptotic
mean and variance of D, under H; (po, wo) and the asymptotic non-centrality
of f, and ¢, (X;). A second and minor approximation is made (i.e., in
addition to the asymptotic one) to obtain those formulae. For brevity's
sake, those approximate asymptotic distributions are referred to as
"asymptotic" as well.

Pesaran’s (1982) derivation using a different local alternative uses
only the usual asymptotic approximation but requires at least as many
regressors (total) under H, as regressors in H; but not in H,. In many
cases, that restriction is not satisfied and so Pesaran’'s formulae are not
computable. For Pesaran’s (1974) model, the two approximations are
numerically similar; cf. Ericsson (1986) and Pesaran (1982, 1987).

5The statistics co and f, and various of their properties are described in
Sargan (1958, pp. 401-404; 1959, pp. 93-94, 99-100; 1964, PP. 28-29; 1976b,
p. 19; 1980c, pp. 1124, 1136). See also Kiviet (1987, Chapter V).
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Table I.

Asymptotic Properties of Statistics for Testing Nested and Non-nested Hypotheses

Statistic Asymptotic Distribution Conditions for

Asymptotic Equigalences
under H, and H,

Name Type Sources Ho ' H1b
D, ML Cox (1961), N(0,1) N(-pgo,wq) -
Pesaran (1974) X, € Z
tg IV Ericsson (1983) N(O0,1) N(ug,wg) under
t, IV Ericsson (1983) N(0,1) N(pg,wq) Ho only
co IV Sargan (1958) x2(m-k,,0) x2(m-kg,Ap) A
always
£, IV Sargan (1980c) F(m-k,,T-m,0) F(m-kq,T-m,A,)
> m = Kk,
c, - wald (1943) X2 (ky-kq ,0) 2 (ky-Kg,Ap)
always
£, - Fisher (1922) F(ky-ko,T-k;,0) F(ky-ko,T-ky,25) )
Notes: a. Two statistics are said to be "asymptotically equivalent" under a
given hypothesis if, when rescaled to be O (1) (but not o_(1)) and
possibly after some nonlinear transformatiBns, they diffel only by
a scale factor plus terms of o (1) (nb. Mann and Wald's (1943a,
p. 218 notation). P
The asymptotic properties of the statistics under H, when H,
is neither H, nor H, are discussed in Ericsson (1983).
b. The arguments po, Wo, He, W4, Her We> and X, are each a positive
rational function of the parameters of H; and of the population
second moments of the data.
c. The statistic f, is [co/(m-ko)]-[(T-m)/(T-ko)]/[1-c0/(T-ko)],
which is co/(m-k,) with finite-sample adjustments arising from the
finite-sample boundedness of c,. f, is exactly distributed as an
F-ratio when Z* = X, and X, is fixed.
d. The Wald statistic and its F-transformation are applicable to
testing hypotheses using a broad class of estimators, including ML
and IV; cf. Stroud (1971).
e

. The statistic f, is c,/(ky-ko), which is the classical F statistic

for testing the exclusion from H, of those variables in X, but not

in X,. f, is exactly distributed as an F-ratio when Z* = X, and
X, is fixed.



asymptotic distributions given in Table I, but with X, a more complicated
function of the parameters and second moments. Using the IV criterion
function ¢, in place of the likelihood function, Ericsson (1983) obtains IV
statistics (denoted t, and tg) resembling Cox's statistic D, and which are
asymptotically equivalent to it under H, when the set of instrumental
variables includes all the regressors and the regressors are predetermined.
However, t, and tg are valid in the presence of simultaneity whereas D, may
not be. Given a suitable set of instrumental variables, the statistics t,
and tg are asymptotically distributed as normal variates: standardized under
H,, and with non-zero means and non-unit variances under H; as a local
alternative. The final column of Table I gives conditions for asymptotic
equivalences between the various test statistics. Whether they are
equivalent or not, the asymptotic powers of t,, tg, Co, C2, f,, f£,, and (if
applicable) D, can be numerically calculated from the formulae in Table I,
given a particular data generation process.6 Similar statistics exist for
testing the specification of (2) and are denoted by tgs, tg, ¢;, €3, f,, £3,
and D; (i.e., with incremented subscripts). Finally, the statistics for
testing non-nested hypo;heses may be interpreted aé "variance-encompassing"
test statistics or, equivalently, statistics for testing a certain scalar

nonlinear restriction on the hypothesis H2.7

3. The Data Generation Process

Using Monte Carlo techniques, Hendry and Harrison (1974) investigate

the properties of single-equation estimators in the context of a dynamic

In this paper, "the power of the statistic c," means "the power of an
appropriate test based on c,", and likewise for the other test statistics.
This is done for brevity'’s sake, and no ambiguity should arise therefrom.

For extensive discussion on the encompassing approach, see Davidson,
Hendry, Srba and Yeo (1978), Davidson and Hendry (1981), Hendry and Richard
(1982), Hendry (1983), Mizon (1984), and ¥izcn and Richard (1983, 1986).
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-simultaneous two-equation model. Their model provides a convenient

framework for analyzing the statistics discussed above: it is

Ye = bYt + th + dyt_1 +ul u, 4)
, ~ NID(O,X)

Yt = ay, + h LA + Ve v (5)

w, = Awt_1 + Ve Ve o~ 1ID(0,0) (6)

where (yt:Yt)' and w_ are 2x1 and 4x1 vectors of endogenous and exogenous

variables at time t (t=1,...,T); the (i,j)th element of X is gsss that of Q

is w,.; h' =
1]

diagonal matrix diag(p,:p,:ps:p,); the latent root of (4)-(5) pyg

(hy;:hygothygthyy), wé = (Zt:w2t:w3t:w4t)’ and h,; = 0; A is a

(= d/(1l-ab)) and all the latent roots of A lie within the unit circle; and
E(utvé*) = E(utvé*) = 0 for all t and t*.9

The structure studied herein is the dynamic simultaneous two-equation
model defined by (4)-(5) with non-zero a, b, d, and 012.10 In order to
study size as well as power, one of the non-nested hypotheses is assumed to
be correctly specified and, without loss of generality, it is Hy,. Thus,

Hy: Ye = bYt + th + dyt-l + Uoe o n

8Cf. Hendry and Srba (1977a), Hendry (1979a), Maasoumi and Phillips (1982),
Hendry (1982), and Kiviet (1985). Also, see Mizon and Hendry (1980) and
Hendry (1984, pp. 971-972) on the influence of dynamics on the finite sample
properties of the Wald statistic in a single-equation context, and Pesaran
(1974, 1982), Godfrey and Pesaran (1983), and King and McAleer (1987) on the
properties of the F and Cox statistics for a single static equation. See
Cox (1962, pp. 414-415, 422-423), Jackson (1968), Atkinson (1970, p. 338),
and Pereira (1977, 1978) for Monte Carlo analyses of the Cox statistic in
the statistics literature.

"Equations (4)-(6) above correspond to equations (2)-(5) in Hendry and
Harrison (1974), with some slight changes in notation.

Hendry and Harrison'’s model allows for autoregressive errors on the
structural equations whereas (4)-(5) does not. However, noting that
autoregressive errors imply a common factor restriction, enough equation
dynamics are sufficient to account for such errors; cf. Appendix B.

Except for the inclusion of a constant term, the data generation
process for Pesaran's (1974) Monte Carlo study is a particular case of the
model in (4)-(6) with b =d =0,, = 0 and Py = 0 for i=1,...,4.

10

A dynamic single-equation model served as a pilot study and is described
in Appendix A.



in keeping with the notation of (1) and where (4) is the equation of
interest. Although non-nested alternatives to (7) might involve
mis-specification of dynamics or simultaneity, falsely included (or
excluded) exogenous variables, or any combination thereof, attention is
restricted to the (false) hypothesis that

Hy: y, = bYt + h12W2t +oug (8)
with y = corr(Zt,wzt) > 0. For vy close to unity, it may be difficult to
detect which of the two exogenous/variables, Z

and Lo enters the correct

t t’

specification. The comprehensive hypothesis (3) is

Hyt vy, = bYt + th + h12w2t + dyt-l +ouy (7
and will be used for constructing the Wald and F statistics.

The data generation process (or DGP) defined by (4)-(6) and the
relationships of interest in (7)-(9) have certain implications for the
properties of the statistics being examined. In (8), the exogenous variable
Wy, 1s falsely included and Z_ is falsely excluded (as in the pilot study
and in Pesaran (1974)), but also the lagged dependent variable Yeo1 is
falsely excluded (hence mis-specified dynamics). Pesaran’s study and the
one above differ also iq the degrees of freedom for each statistic. 1In the
former, the F statistic (asymptotically equivalent to the Wald statistic)
has one degree of freedom in the numerator. In the latter, the Wald
statistic has two degrees of freedom for (8) but only one for (7). The
degrees of freedom for Sargan’s statistic depend upon the number of
instruments selected; but, for instance, with (yt_l:wé) as instruments
(i.e., two-stage least-squares), it is asymptotically distributed as a x2(2)
for (7) and as a non-central x2(3) for (8). In addition to affecting the
asymptotic powers of those statisticé, the degrees of freedom may have a
significant effect on their finite samplekproperties. Consistent estimation

of the parameters in (7) requires some simultaneous equations estimation



technique, as would be true for those in (8) if (8) were the DGP, so only
the IV statistics are considered for that structure.

Various finite sample properties of the statistics might be analyzed
(e.g., their means and variances; see Mizon and Hendry (1980, p. 40)), but
their powers and sizes are viewed as being of primary importance, and as
providing a simple way of summarizing their properties. Before turning to
the experimental design, simulation, and results of this Monte Carlo study,

I discuss the analysis of Monte Carlo data on powers and sizes.

4, Response Surface Methodology

Cox (1970, Chapters 3 and 6), in his discussion of the empirical
logistic transform, implicitly provides the basis for developing response
surfaces of estimated finite sample probabilities, including both estimated
finite sample powers and estimated finite sample probabilities of type I
error.11 Consider a binary response variable for which the probability of
"success" (or, later, acceptance or rejection by a particular test) is =«

(0 < * < 1) and on which there are N observations (N > 1), S being the

number of "successes". -Letting
A = [S(N-$)]/(N-1) , (10)
L) = AY%1n _"_} 0<¢ <1, (11)
[1-¢
and
- -1
ey = al/?1n |5 - (O ] oy e <1-emt, an
1 - ¢ - emt

it can be shown that

$(s,m) = L) - Lm g NOD ay

11See Cochran and Cox (1957, pp. 335ff), Cox (1958, pp. 113-128), and the
references in Cochran and Cox (1957, p. 369) on the use of response surfaces
in statistical analyses. Their use in econometrics is relatively recent
although Summers (1959) proposes using them; cf. Summers (1965) and Sowey
(1973). Ericsson (1986) describes and uses response surfaces and other
techniques for post-simulation analysis of Pesaran’s (1974) Monte Carlo
study of nested and non-nested hypothesis test statistics.



. . . . 12
where s = §/N and £ denotes "converges in distribution to, as N =+ « ". In

the context of Monte Carlo studies of power, N is the number of replications
in a particular experiment, S the number of replications for which the value
of the test statistic lies in the critical region, and = the finite sample
(i.e., finite econometric sample T) probability of the test statistic lying
in the critical region. Below, m is treated as if it were "power” although
all that is said applies equally for size.

Typically, m is some unknown function g(f,T) (say) where § is the
vector of all parameters (except T) which define the model generating the
binary random variable of interest, and the aim of finite sample research
(whether using analytical or Monte Carlo techniques, or both) is to obtain a
close approximation to it.13 Even though it is unknown, g(#,T) is
implicitly defined by the computer program generating the Monte Carlo data.
Further, approximations to g(#,T) may be found and the accuracy of those
approximations may be tested. As a first step to approximating g(6,T), it
is helpful to solve as much of the problem as possible analytically in order

to minimize the imprecision and specificity arising from simulation. With

that in mind, let
- 2 | exptcT(a,m) (14)

1 - Tr 1 - L

without loss of generality, where n (= E(S/N)) is subscripted by T so as to
emphasize that it is a function of the econometric sample size; n_ is th;

(local) asymptotic (i.e., as T » «) power of the test; and G+(-,-) is some
appropriate function. By assumption, Tp > T, as T + =, so G+(-,-) is o(1l).

Thus, (14) splits T into two components, an asymptotic term and a term

12 .

That differs from the sense of "asymptotic" elsewhere in this paper, where
it means "as T + « ", Unless otherwise noted, "asymptotic" and "finite
sample" refer to T, not N. Ericsson (1986, Appendix) gives a proof of (13).

13 .

If g(+,+) were known, the exact finite sample probability (of "success",
rejection) for any particular value of (4,T) could be calculated directly,
obviating any need for conducting Monte Carlo experiments to estimate =

T



10

involving the deviation between the finite sample and asymptotic

distributions. Because 7 can be calculated analytically for any (4,T), the

problem of directly simulating Tp (of 0(1)) simplifies to one of simulating
only G'(+,+) (of o(1), and quite possibly 0(T 1/?)).1* 1In the analysis of
an estimator’s properties, an analogous partition is between its asymptotic

value (its plim) and its finite sample bias (the deviation of the estimator

from its plim).15

Using (14), (13) may be rewritten as
*
L*(s) - L) = a2t 4 e 5 N(O,1) (15)
providing a stochastic relationship between a feasible and unbiased

estimator of T (i.e., s) and the known quantities L 6, and T. However,

the functional form of G+(-,-) remains unknown. From asymptotic theory, one
expects that

¢to,m) = 1 %0,171?%) (16)
where G(8,T /%) is 0(T®) (cf. Phillips (1977, p. 474; 1982), Sargan (1980c,
p. 1120)). Thus, G(+,*) might be expanded in powers of 7-1/2 (about T = =)
and of the elements of #. Truncating the series for G(0,T_1/2), the
coefficients of the powéfs and cross-products of # and T-1/2 may be
estimated by least squares, correcting for heteroscedasticity using the
weight_Al/z, i.e., from estimating

L'(s) - Lixy) = aY21V2%m0,17Y%) 4 e (17)
where H(0,T'1/2) is the weighted least squares approximation to G(ﬂ,T'l/z)

and the error term e is the combination of ¢ (the error from estimating LY

14If an analytical approximation to ., better than n_ is available (e.g., an
Edgeworth expansion), it could appear in (l4) in place of x_, further
reducing the order of the term being simulated; cf. Phillipg (1982).

The functions G (e¢,+), G(+,+), and H(+,+) in this section differ
slightly from those identically labeled in Ericsson (1986). The change
lends itself to a clearer exposition.

15See Campos (1986a) for a discussion on response surfaces for estimator

biases and standard deviations and estimated asymptotic standard errors.



11

by s) and A1/2T-1/2{G(-,-)-H(',°)) (the error from approximating G(+,+) by
H(»,+)). The parameterization of § is not unique and, before expanding
G(+,*), it may be worthwhile transforming "natural" parameters of the model
into parameters which span the same range as L*(s) and which have
econometrically interesting interpretations. For instance, it may be
convenient to reparameterize § to include a function of T such as
ln{na/(l—ﬂa)}. For the experimental design adopted in Section 5.1 below in
which T is a design variable, that seems particularly appropriate.

A response surface like (17) summarizes a possibly vast array of Monte
Carlo simulations in a relatively simple formula which may account for much
of the variation in s across experiments and may be useful for predicting o
at points within the parameter space of the experimental design (denoted
BXI'; see Section 5 below) but not included in the simulations. Further, the
response surface may adequately approximate the underlying finite sample
distribution function. One primary source of information exists for
inferring how "good" a response surface like (17) is:

e x NID(O,1) . (18)
Using (18), many testable implications follow from the null hypothesis that
H(o’.)=G(o’o)_

(A) az = 1. If H(e,+)»G(+,+), then az > 1 because ¢ is uncorrelated
with A1/2T_1/2(G(-,-)-H(-,-)}. The hypothesis ag = 1 may be tested by
noting that, under the null, the residual sum of squares from (17) is
distributed as a x? random variate with its degrees of freedom equal to the
number of experiments less the number of regressors, provided N is large.

Power under the alternative is directly related to the magnitude of

AT']'{G(-,-)-H(-.;-)_}2 over the experiments.

(B) The error e does not include any terms of O(T_l/z) involving # and
1/2

T . By using OLS, e can not include any of the terms in H(-,.).

However, if H(e,¢)»G(+,+), e contains terms of a higher order than those
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included in H(e+,+) (cf. Maasoumi and Phillips (1982, p. 198) and Hendry
(1982, p. 210)). By initially specifying a general formulation for H(s,s)
and simplifying, one can use an F statistic to test for the presence of such

factors in the e’s of the final specification.

(C) The error e does not include any terms of O(T°) involving §. By

construction from (14), T'1/2G(-,-) does not. However, if H(e,*)=G(+,+),
regressors of O(T?°) in (17) such as a constant term or 1n(wa/(l-ﬂa)} may be
"statistically significant", thereby revealing the mis-specification of
H(+,+). This hypothesis is particulariy noteworthy, given the importance of
the insignificance of 1n[ﬂa/(1-wa)) in (17) vis-a-vis the analytical
properties of the response surface.

(D) The error e is normally distributed.

(E) The e's are serially independent for any ordering of experiments

specified prior to simulation. That follows from the independence of ¢
across experiments. If H(e,*)=G(+,+) and experiments are ordered to be
(e.g.) increasing in values of # and T, terms in e involving 4 and 'I‘-l/2 may
induce serial correlation and/or heteroscedasticity in the e’s.

(F) H(e.,+) is constant over regions of the parameter space which were

not included in the estimation of (17).

Table II lists most of the test statistics reported below; the convention
used is that §i(q) and ni(q,p) denote statistics which have central x?(q)
and F(q,p) distributions respectively under a common null and against the
ith alternative. Thus, £4(q) and n4(q,K-m-q) both test for qth-order
residual autocorrelation. There are K experiments and n regressors in the
response surface under the null hypothesis.

The extent to which (A)-(F) are not satisfied reflects the degree of
approximation of the response surface to the underlying conditional

probability formula (response function) although the power of tests of

(A)-(F) depends crucially on the number of replications per experiment, on
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Table II.
Criteria for Evaluating Response Surfaces

Null Alternative Statistic? Sources

(A) o2 >1 £,(K-n) Theil (1971, pp. 137-138)

e

(B) q invalid parameter ns(q,K-n-q) Johnston (1963, p. 126)

restrictions

(B) qP-order RESET 74(q,K-n-q) Ramsey (1969)

)y % = 0P ns(1,K-n-1) Hendry (1984, p. 962)

(D) skewness (SK) and £6(2) Jarque and Bera (1980)

excess kurtosis (EK)

(D) heteroscedasticity n,(q,K-n-q-1) White (1980a, p. 825),

quadratic in regressors Nicholls and Pagan (1983)

(q quadratic terms)

(E) qP-order ARCH €5(q), Engle (1982)

ns(q,K-n-q-1)

(E) first-order residual dw Durbin and Watson (1950,

autocorrelation 1951), Farebrother (1980)
(E) qth—order residual £5(q); Box and Pierce (1970);
autocorrelation n9(q,K-n-q) Godfrey (1978), Harvey
(1981, p. 173)
(F) H+(-,-) not constant 710((j-1)n,K-jn) Fisher (1922),
over j subsamples Chow (1960, pp. 595ff)
(F) predictive failure £1(q); Hendry (1979b, p. 222);
over a subseg af q n,(q,K-n-q) Chow (1960, pp. 594-595)
observations ™’

Notes: a. The value of q may differ across statistics, as may the number of
regressors n and the number of experiments K across response
surfaces and Monte Carlo studies.

*

b. ¥ is the coefficient on L (wa) if the latter is included on the
right-hand side of the response surface (17).

c. The Chow statistic is labeled 5,(q,K-n-q). The covariance test
statistic 7,4,((j-1)n,K-jn) is often (and confusingly) referred to
as the "Chow statistic" although Chow (1960, p. 592) was well
aware of its presence in the literature.

d

. Constancy may be tested using Chow'’s statistic, the covariance

statistic, or the usual x? statistic based upon the forecast
errors. Often, an even more stringent test may be constructed by
substituting unity for the estimated value of o2 in the relevant
statistic, thereby testing the "absolute" accuracy of the response
surface. Such statistics are designated as those above, but with
a prime added, e.g., §,(q) becomes £!(q).
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the experimental design (i.e., the points in 6xT examined), and on the
choice of DGP and ©xT. Finally, even if any of (A)-(F) are rejected, the
response surface still has certain desirable properties as‘an approximation
to the unknown function G(+,*) (White (1980b, pp. 155-157)), and it still
may account for (and so summarize) much of the inter-experiment variation.

Instead of estimating response surfaces of the form (17,
econometricians sometimes have estimated ones like:

s = h(,T) + e (19)
where h(4,T) is the least squares approximation to g(4,T) and e is the
residual. Unlike (17), (19) does not account for the heteroscedasticity of
s, conditional upon (4,T), nor does it bound the range of h(4,T), e.g.,
h(4,T) could go outside the unit interval. Even so, White's standard errors
are consistent; the response surface h(4,T) is a least squares approximation
to the underlying response function g(0,T) and has the desirable properties
that that entails; for this Monte Carlo study at least, some very simple
response surfaces of the form (19) do very well at approximating T (as
measured by the magnitude of the deviations s-h(4,T)); and, in so doing,
those response surfaces succinctly summarize a large number of simulations.
The more sophisticated response surfaces of the form (17) are more appealing
theoretically and, with enough terms, can explain much of the remaining
prediction error of the naive response surfaces, but the former lose in
terms of summarizing the Monte Carlo results because of their complexity.
For convenience, "naive" response surfaces (of the form (19)) are called

type A; "sophisticated" ones (of the form (17)) are called type B.16

5. Simulation Evidence: A Two-equation Model

This section describes the experimental design, simulation, and

post-simulation analysis of a Monte Carlo study of the nested and non-nested

16Type B response surfaces need not_be complex, nor type A response surfaces

simple. However, the latter’s appeal lessens if they are complex.
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hypothesis test statistics discussed in Section 2 for the dynamic
simul taneous two-equation model in Section 3. At each stage, particular
attention is given to techniques which will obtain as precise and general
results as possible on the finite sample properties of those statistics.
5.1. Experimental Design

Following Hendry'’s (1984, p. 940) nofation and terminology, the Monte

Carlo design variables for the econometric model given in (4)-(6) are

§ = (b, c, d, a, h', o,,, 044, 049, (vecA)', (vec)')'
e 6= (6 | lp;1<1,i=0,...,4; |Z|>0; |Q|>0; = and Q symmetric) (20)
and
T e T =[T,T] (21)

where I' is pre-assigned with Ta and Tb being the smallest and largest
econometric sample sizes considered. Equations (4)-(6) are the data
generation process (DGP); 6xT is the parameter space; equations (7)-(9) are

the relationships of interest; and the objective of the Monte Carlo study is

to determine the finite sample distributions of the statistics ¢4, ¢, f,,
f1, c2, c3, f5, f5, t,, tg, tg, and t; as defined by the relationships of
interest, within the specified parameter space of the DGP. More modestly,
letting 7 be any of thosé statistics and § be the critical value associated
with a test based on 7, the objective is to find the finite sample rejection

frequency Tp = prob(|r|=§). That probability depends upon # and T and can

be expressed as a conditional probability formula:

*p = prob(|r|z=s | 4,T) = g(8,T) , (22)
where Tp and g(§,T) are precisely the probability and function discussed in
Section 4.17 Thus, we wish to know (or obtain a good approximation to)

g(4,T) over OxT, focusing on the effect on the statistics’ finite sample

power and type I error of dynamics, simultaneity, sample size, and (in the

7Implicitly, g(+,+) is a function of § as well. However, because § is held
constant for each of the statistics examined, its presence in g(e,s) ic
ignored in the analysis below.



15

case of finite sample power) asymptotic power. Hence the key parameters in
the experimental design are d, b, T, and L

First, consider the other parameters. As in Hendry and Harrison (1974,
pp. 164-166), the matrices A and Q are held constant across experiments. In
the present set of experiments, the diagonal elements of A and Q are

(P1 : P2 : ps : Pg ) = (.8 : .7 : .4 : .2 ) (23)

(wy1! wap! w33t we) = (.52: ,52: 72: .72) | : (24)
implying that var(wit) is virtually constant across i. A is a diagonal
matrix (as in Hendry and Harrison (1974)); but Q is not, with w;, (=w,,)
chosen such that y = ,925, and all other wij = 0 (i»j). That implies that

Vi (= Zt) and Yo combined have a variance about twice that of w. and w

3t 4t
combined. All the exogenous variables are stochastic, i.e., varying across
replications as well as across experiments. The parameters in the second
equation are fixed across experiments, with a = .3, h = (0O:1:1:1',
and 0,5 = 1.0. The error covariance o,, is chosen such that
corr(ut,vt) = .5; and ¢ = 1.0 (without loss of generality).

The values of the key parameters b, d, and T cover a range typical of
econometric models estimated with actual data: b = (-.5, .3),
d=(-.4, .2, .7), and T = (20, 40, 80).18 The number of replications N
varies inversely with the econometric sample size (N = 4000 for T = 20,
N = 2000 for T = 40, N = 1000 for T = 80), keeping computational costs
virtually constant across sample sizes and giving more precise information
on finite sample powers at smaller sample sizes (where the asymptotic
approximations would be expected to provide less information about those .
finite sample powers). The error variance o,, is the final parameter in the

experimental design. Rather than assign it somewhat arbitrary values,

possibly implying very high (or very low) finite sample powers, oy, is set

180f. Hendry and Harrison (1974, p. 166) who chose a similar range for b, d,

and T. See Klein (1969) and Hendry (1974) inter alia for estimated values
of such parameters in empirical macro-economic models.
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to obtain certain values of asymptotic power LI thus controlling to some

extent the values of finite sample power = So, o0y, is chosen such that

T

T, = (.25, .5, .75, .90) ) (25)
which seems a relevant range of powers, and one which ought to avoid having
observed rejection frequencies too close to unity.19 However, because
several statistics are being considered, some having different asymptotic
powers, it remains undecided as to which statistic the asymptotic power L
in (25) corresponds. Because of the degrees of freedom involved and because
Hy is in fact the DGP, it is conjectured that (in general) t; would be most
powerful, followed by cg and the asymptotically equivalent f;, followed by
c,, with the placement of tg uncertain. So, to avoid any of the statistics
having consistently high (or consistently low) power for all experiments,
the asymptotic power of c5 is the L in (25). Even so, the asymptotic power
of t; implied by those values of b, d, T, and o0,, is always greater than
one-half, and that for tg always less than .17, highlighting the
difficulties of designing a Monte Carlo study for statistics with different
asymptotic powers. (Note, however, that in the response surfaces below, L
and £ (= ln{wa/(l-wa)})‘are for whatever statistic is being examined, and
not just for cj3.)

Given the choices of b, d, T, and ", a full factorial design is
adopted, with 72 experiments in all. Three randomly selected experiments
are retained from each econometric sample size for prediction. Estimation
is by two-stage least squares.

5.2. Simulation and Computational Aspects

Noting the similarity between evaluating (for instance) D, under H, and

H, and evaluating both D, and D, under H, only, and that the latter is

computationally more efficient in these studies, only simulations under H,

9 )
See Appendix A, Mizon and Hendry (1980, p. 34), and Hendry (1984, p. 971)
for counter-examples; cf. Poskitt and Tremayne (1981, pp. 266, 268).
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were considered. Those Monte Carlo simulations were carried out with a
modified version of Hendry and Srba’'s (1979, 1980) computer program NAIVE on
the University of London's CDC 7600 computer. For a given set of parameters
§ defining the DGP in (4)-(6), each (ut,ut) was generated as a rescaled pair
of normal pseudo-random numbers using Box and Muller’s (1958) transformation
on two uniform pseudo-random numbers.20 Each Vit ¥Was generated as an
appropriately rescaled sum of twelve pseudo-random uniform numbers from
RNDM, which veryiclosely approximates a pseudo-random normal number; see
Hammersley and Handscomb (1964, pp.‘39—40). The series for Ve Yt’ and W

were determined from those for u, v, and Ve using (6) and the reduced form

of (4)-(5). The relevant statistics were then calculated for each of N such

replications.21

For a particular experiment, N replications were generated, of which §
(dependent upon the statistic) were "successes" (e.g., the number of
rejections; see Section 4 above). The fracfion of successes s (=S/N) is an
unbiased Monte Carlo estimator of the (unknown) finite sample rejection
frequency 7p; and from those estimates, numerical-analytical approximations
to n, were obtained by estimating response surfaces as described in
Section 4. To calculate the asymptotic powers of the statistics, the
moments of the DGP for each experiment were obtained using Hendry and Srba's
(1977b, 1980) program DAGER, from which the non-centrality of c¢,;, f;, c

3

and f; and the asymptotic means and variances of D;, tg, and t,; were

20Cf. Hendry and Harrison (1974, p. 153). The random number generators are
Carrier, Atkins, and Taylor’s (1969) mixed-congruential generator RNDM

and NAg's (1977) multiplicative-congrpential generator GO5CAF. Different
random number generators were used for each number in the pair of uniform
pseudo-random numbers in order to avoid potential difficulties with Box and
Muller’'s transformation: see Neave (1973). Nb. Hammersley and Handscomb
(1964, Chapter 3), Kennedy and Gentle (1980, Pp- 136ff). See Sowey (1972,
1973, 1978, 1986) and Sahai (1979) for bibliographies.

21The initial value for (y ’Yt’wt) in each replication was its unconditional
mean, so the first thirty obseérvations generated for each replication were
discarded to ensure stationarity of the series used for estimation and
testing (cf. Hendry and Harrison (1974, p. 153)).
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determined, using formulae in Ericsson (1983). The asymptotic powers of D,,
tg, and t; were calculated assuming a symmetric two-sided test with critical
values of #1.96. The asymptotic powers of c¢; (f,;) and c, (f3) were
calculated assuming critical values corresponding to the 5% 1eVe1, and
approximating the non-central x2 (singly non-central F) by a central 32

(central F).22

5.3. Post-simulation Analysis

This subsection examines how well various analytical and numerical-
analytical formulae approximate the underlying finite sample properties of
the test statistics. To organize presentation, discussion centers around
four formulae: the asymptotic (ra), the F-adjusted asymptotic (rx, explained
below), and type A and B response surfaces (ﬁT and ;T). These are in order
of increasing accuracy of approximation (and complexity) and are examined in
that order. The value s is an unbiased estimate of Tp, SO a natural measure
of the degree of approximation of these formulae is their deviation from s.
Graphs portray all this information concisely: results for (c,, cj),
(f2, £3), (cg, ¢;), and (tg, ty) appear in Figures la-d, 2a-d, 3a-d, and

kY

ba-d, respectively. For a given pair of statistics, Figures a and b graph
the results for power and size, and Figures c and d plot the correspording
deviations of the formulae from s.23 In the figures and elsewhere, the data

are ordered by increasing values of T, then of L of d, and of b. The

remainder of this section describes the approximations obtained, interprets

2See Patnaik (1949), Johnson (1959), Kendall and Stuart (1973, pp. 237-240,
262-263), and Mizon and Hendry (1980, pp. 32-33) for further details.

23In all experiments, the observed rejection frequencies of tg are small (as
are its asymptotic values), so no response surfaces are given for it.
Although tg does not appear particularly useful in testing non-nested
hypotheses when one of those hypotheses is the DGP, it shows promise for
testing non-nested hypotheses when neither is the DGP (see Section 6 and
Ericsson (1983, p. 294)).

The statistics f, and f, were not calculated in the Monte Carlo study,

but there was little need to do so, given the results for L. below.
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them in light of existing finite sample theory, and proposes directions for

further research.

The Asymptotic Approximation T Figure la displays the asymptotic

power (na) and the unbiased estimate of finite sample power (s) for c,. As
T increases, s converges to L with the latter usually an upper bound of
the former. The estimated finite sample size of c, generally is somewhat
larger than its nominal value (.05) for small T, but tends to .05 as T
increases (Figure 1b). The largest estimated finite sample size is 7.5%,
occurring at the smallest sample size and with substantial dynamics and
simultaneity present (T=20, b=-.5, d=.7). The properties of f, and £,
resemble those of c, and c3, except that discrepancies between s and n_ are
typically smaller. That is particularly noticeable for the size, with s
infrequently lying outside the interval [.035, .05], indicating how useful
the F transformation is in small samples, even in the presence of dynamics
and simultaneity. By contrast, the estimated finite sample sizes of c, and
teg are almost always greater than 5%, and often exceed 15% (Figures 3b and
4b). The estimated finite sample power of ¢, generally exceeds its
asymptotic power substa&tially: however, if its size were properly adjusted,
its finite sample power would be considerably less, quite possibly bringing
it more closely in line with its asymptotic values. The estimated finite
sample power of t; deviates only slightly from its asymptotic power:
adjusting its size would reduce its finite sample power considerably but
generally increase deviations from its asymptotic values although the

magnitude of those changes is difficult to predict.

The F-adjusted Asymptotic Approximation L In certain circumstances,

f, is exactly distributed as an F-ratio although c, remains only
asymptotically x? by failing to account for the variability in the estimated
error variance used in its calculation. Because of the analytical

relationship between c, and f,, it is possible to calculate the size of the
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Figure 1a. Asymptotic and Estimated Finite Sample Powers of ¢ 5
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Figure lc. Prediction Errors for Calculated Powers of ¢ .
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Figure 2a. Asymptotic and Estimated Finite Sample Powers of fs.
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Figure 2c. Prediction Errors for Calculated Powers of { .
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Figure 3a. Asymptotic and Estimated Finite Sample Powers of ¢ v
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Figure 3c. Pre&iction Errors for Calculated Powers of ¢ .
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Figure 4a. Asymptotic and Estimated Finite Sample Powers of t 5
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test using c, (called the F-adjusted asymptotic size) that would result from
taking that variability into account. A similar adjustment can be made for
the asymptotic power: both are plotted in Figures la-b. Although typically
LI N for c; is small relative to the remaining discrepancy s-m_, the

-1 .
F-correction captures a dominant finite sample term (of O(T 7)) in the

distribution of c,, as is apparent in Figure lb. Because f, is not exactly

an F-ratio in these experiments, the F-adjusted asymptotic approximation
need not improve upon the regular asymptotic approximation although it is
useful because it does.24 Indeed, a similar correction for c, (and c;)
appears unimportant relative to remaining fluctuations in s.25 Those
fluctuations and similar ones for tgq exhibit a pronounced pattern, inspiring
the following digression.

*
The Effective Sample Size T and large-o Effects. The concepts of

effective sample size and small-c asymptotics are valuable for interpreting
the finite sample fluctuations of all the statistics, and particularly those
of ¢y and tg4.

Using a concept from Sims (1974), Hendry (1979a, 1984) develops the
notion of an "effective sample size", that is, one which accounts fcr the
lagged (and hence redundant) information accrued by each new observ:ztion of
a dynamic process. For example, in an AR(1l) process with autoregressive

*
coefficient p, the effective sample size T is T(1l-p2?) where T is the number

24Kiviet (1986) studies a variety of mis-specification test statistics for a

dynamic single equation and also finds the F form preferred to the 2 form.
25The F-adjustment to c, does aid analysis of further finite sample terms;
cf. Table IV. Also, f, may be preferred over c, for other related reasons.
Co is bounded from above by (T-ko), regardless of the DGP. Although that by
itself may not induce large finite sample effects into the distributiion of
Co under Hy, it easily can under H; when ), is sizable. Additionally, the
numerator and denominator of ¢, in Ericsson (1983, eq. (10)) are positively
correlated in finite samples, and that may lead to the finite sample
distribution of ¢, deviating significantly from the x? distribution.

Nb. Sargan (1980c, pp. 1135-1137).



of odservations. The greater the dynamics, the less new information on the
process is gained with each additional observation, e.g., relative to a
white-noise process: that is reflected in the measure T*. In general, T
involves all the latent roots of the dynamic system generating the data.
Howewver, for (4)-(6) and the experimental design in Section 5.1, Po is the
only latent root that changes, so T is defined as T(l-pZ). 1In static
models, terms of O(T-l/z) are often important, so in dynamic models the
focus is on terms involving (T*)_l/z, denoted T for convenience.26

Most asymptotic results in econometrics are "large-sample", i.e., large
T. NKadane (1970, 1971) proposes an alternative approach, small-o
asymptotics, in thch T is held fixed and the equation error variance o2 is
let to approach zero. Anderson (1977) discusses the relationship between
iarge-T and small-o asymptotics. Just as small-sample phenomena may appear
when T is small enough, "large-o" phenomena may exist for large enough o.
In (4), the error variance is o0,,;, so /011 is denoted o.

The dominant finite sample term for Co appears to be To: that can be
"seen in several ways. In the cross-plot of s and To, their correlation is
striking (Figure 5a). Even with no constant term and no correction for
heteroscedasticity, the least-squares regression of (s-.05) on To is:

(7p-.05) = .0890To R? = .964 o = 2.388% (26)

(.0020)

[.0032]
where (¢) and [+] denote conventionally calculated and White's (1980a,
pp. B20-821; 1980b, p. 156) heteroscedasticity-consistent standard errors,
R? is the unadjusted squared multiple correlation coefficient, qe is the

square root of the residual variance, and ~ denotes the least squares

26Also, Phillips (1977) shows that the first Edgeworth correction term to

the normal distribution is O(T) for the t-ratio of the coefficient in an
AR(1l) process.
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Figure 5a. Cruss—plot of s (for ¢ ) and To.
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estimate in this very simple type A response surface.27 The estimated
finite sample size s and the fitted values %T from (26) appear in Figure 5b,
along with the asymptotic value (.05). Although the standard error of the
prediction errors is still 2.4%, it is small relative to the size of the
fluctuations in T and is a remarkable reduction from 9.2%, the standard
error of s-n_. Individually, neither T nor o approximate wT-.OS nearly so
well. Together they conveniently summarize effects of the sample size,
dynamics, simultaneity, and goodness-of-fit, i.e.,
To = J[all/(T{l-[d/(l-ab)]2})]. Based upon this rather suggestive evidence
and upon the analytics for effects from T and o, 8 is reparameterized to
include T and o in the response surfaces.

Before turning to the response sﬁrfaces, it is valuable to consider why
T and (especially) o so dominate this Monte Carlo study and not others. Two
aspects of the experimental design are responsible. First, T* and o range
widely, over [8, 78] and [.424, 20.2] respectively. For T*, that arises
because |py| spans [.17, .77] and T, [20, 80]; o is used to control L of
Cp, given the values of (b,d,T) selected. Second, as the parameter for
controlling s O effectively is one of the experimental design parameters,
and one which varies over all experiments. Other investigators typically
have normalized on o, used it to‘control the population R2, or included it
explicitly as a design parameter but with a small number of values. Each
approach has its merits, but none would be likely to elicit large-o effects

to the extent that the design in Section 5.1 does.

Type A Response Surface Approximations (ﬁT). Tables III and IV give

type A response surfaces for c,, cg, f,, f3, co, c,, tg, and t;. They
involve simple terms in T: T itself and/or T interacting multiplicatively

with o, & (= |po|), and (for powers) M, OF 7. In simplifying from a

27Because there is no constant term in the regression, R2 may lie outside

the unit interval. However, o , not R2, is the appropriate measure of the
goodness-of-fit for response surfaces. :
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Table III.
Estimates of Type A Response Surfaces for Finite Sample Sizes and Powers

Test Statistic r and Dependent Variable?

Regressors
and Size Power
Diagnostic
Statistics f, c, f, Cg
s-.05 s-m_ s-m_ s-m_
T -1.89 -2.29 -32.5 -36.4
(.66) (.70) (9.5) (10.?)
[.67] [.75] [(7.3] [8.3
To -1.70 -1.87 -8.02 -7.82
(.28) (.30) (1.74) (1.80)
[.21] [.21] [1.54] [1.67]
Tko 2.08 2.23 17.8 _ 17.7
(.39) (.42) (2.3) (2.4)
[.29] o [.31] [2.0] [2.1]
Trx_ (Tx_ for cg) -.459 -.381
a % ’ (.125) (.134)
[.114] [.117]
R? .661 .698 .868 .870
o .743 .797 4,315 4.329
e

s 4.04 4.86 47.36 51.51
(.81) (1.16) (23.25) (22.87)

s-7 -.96 -.14 -8.86 -8.48
a (.81) (1.16) (7.42) (7.83)
s-m - -1.12 : - -9.03
X (.88) (7.42)

s- Ry -.06 -.05 .20 .18
(.73) (.78) (4.22) (4.23)

STy -.03 -.04 -.08 -.08
(.46) (.49) (1.88) (2.07)

s-nT 0 0 0 0
(.47) (.50) (1.06) (1.06)

Notes: a. The dependent variable (and n#_ and n_ when they appear on the
right-hand side) are rescaledaby 100*to make them percentages and
to achieve a reasonable scaling of coefficients. That implies
that 3e is a percentage; o, however, is in its original units.

b. Noting that s-x,, has zero mean and variance n.(l-x.,)/N, for each
experiment the Iatter is approximated as s(1-5)/N, "with the values
given above being based on averages across experiments.
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Table 1V.
Estimates of Type A Response Surfaces for Finite Sample Sizes and Powers

Test Statistic 7 and Dependent Variable?
Regressors

and Size Power Size Power
Diagnostic
Statistics Co c, tg ty
s-m s-x s-.05 s-m
X X X
T -5.75 -48.3
(1.29) (6.4)
[.98] [5.5]
To 14.24 46.7 11.35 60.2
(.54) 2.7) (.66) (11.0)
[.55] [2.9] [.89] [9.5]
Tk 64.9 262.5
(10.5) (40.1)
[8.4] [38.1]
Tko -7.05 -25.6 -12.4 -11.1
.77) (3.8) (1.2) (4.4)
[.85] [4.2] [1.3] [3.9]
T2 -74.5 -424 .3
(17.4) (57.7)
[13.7] [51.3]
Twac -.689
(.118)
[.109)]
R? .988 .963 .957 .636
36 1.457 7.221 1.876 4,645

s 13.70 69.27 12.08 86.32
(9.15) (25.18) (5.25) (10.48)
s-m 8.70 14.70 7.08 1.17
a . (9.15) (32.08) (5.25) (7.39)
s-m_ 9.31 23.24 - | -
) (9.06) (28.60)
s-#.. -.07 -.31 .03 .54
- (1.43) (7.11) (1.84) (4.36)
s-,, -.09 .03 -.10 .26
- (1.31) (1.63) (1.21) (2.06)
s-wT 0 0 ‘ 0 0
: (.83) (.86) (.79) (.73)

Notes: See the notes for Table III.
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regression in simple products of these parameters to a given response
surface in Table III or IV, the primary criteria were parsimony and a small
prediction error (not necessarily complementary criteria).

The size and power of the Wald statistic strongly resemble those of the
F-statistic, once netted of its F-adjusted asymptotic approximation L
rather than the simple asymptotic approximation L the similarities are
apparent both from the estimates for the respective response surfaces (Table
III) and from the resulting predictions and actual values of s (Figures la-d
and 2a-d). The terms in the response surfaces for the size of c, and f, are
highly significant statistically, but the lower portion of Table III shows
that they achieve only a moderate reduction in the residual standard
deviation. That arises because the variances of (s-wx) and (s-wa) (for c,,
f,) are close to their theoretical minima, i.e., the variances arising
exclusively from the sampling of s, equivalent to the square of ths residual
standard deviation obtained if g(#,T) were known (estimated by the last row
in the table). That reflects the observation above for Figures 1b and 2b
that estimated sizes for these statistics stay close to 5% over the entire
range of sample sizes, dynamics, and simultaneity. The reduction is more
substantial for powers, approximately threefold in the residual variance.

The type A response surfaces for cqy, c;, tg, and t,; (Table IV) are
similar in form to those for c,, c3, f£f,, and f;, but the magnitude and
statistical significance of the estimated coefficients of the former are far
greater than those of the latter and the signs of the estimated coefficients
generally are reversed. For instance, the strong positive biases from To
for ¢y, ¢;, tg, and t; are five to ten times the magnitude of comparable
negative biases for c,, c3, f,, and fs; observed negative biases in the
finite sample size of ¢, and tg are negligible, but positive ones are large
and frequent. Because of the analytical relationships between c,, c,, f,,

and f3, and, to a lesser extent, between c,, c,, tg, and t,;, similarities in
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properties of statistics of either set are expected. However, neither the
form, magnitude, nor sign of the finite sample effects was anticipated, nor
was the considerable discrepancy between properties of statistics in

different sets.

Type B Response Surface Approximations (;T). Unrestricted type B

response surfaces are estimated with regressors involving T, being
multiplicative combinations of T, o, po, and (for powers) £, and
combinations of powers thereof. Because of the experimental design, the
factors T, o, po, and £, appear up to (and including) powers of three, two,
one, and one, respectively. All combinations except for To2p,4, T202%2p,42,
T302p,2 are included initially: that implies thirty-three regressors in the
unrestricted response surfaces of estimated finite sample powers and
eighteen in the unrestricted response surfaces of estimated finite sample
type [ errors.28 Restricted versions of all response surfaces are presented
in Tables I and IT of Appendix C. No sets of restrictions are rejected at
the 5% significance level. Unlike those for the type A response surfaces,
the primary criteria here are those listed in Table I. Parsimony is not
central in this framewofk, and so the response surfaces are more complex
than those in Tables III and IV, while capturing more of the deviations
between the finite sample and asymptotic properties of the test statistics.
In the response surfaces for ¢, and f,, ;e is insignificantly different
from unity, leaving little residual variation beyond that inherent from
estimating Tp by s. With the additional complexity of these response
surfaces, the standard deviations of the prediction errors for f, and cy

fall from .73 and .78 (for s-%T) to .46 and .49 (for s-;T) versus the

8 . . .
2 There are fewer regressors in the latter because the unit vector is

collinear with £, which is in that case In(.05/.95). Cf. Cochran and Cox
(1957, pp. 148ff, 342ff) and Cox (1958, pp. 113-117) on factorial design and
response surfaces.

To?pokl, T202pyl, T30?p,L are not included due to limitations in the
number of regressors in PC-GIVE.
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estimated theoretical lower bounds of .47 and .50. Similar moderate
reductions in variation are achieved for c, and tg although substantial
explainable variation remains unexplained for even type B response surfaces.

Type B response surfaces fare better for the powers of these tests,
although still at the expense of greater complexity. Graphs ¢ and d for
Figures 1-4 illustrate the reductions in prediction error across the
different predictors (wa, L %T’ and ;T)’ with the most marked improvements
generally being between the purely analytical formulae (wa, wx) and the
response surfaces (%T, ;T)' That does not discount the value of analytical
formulae: to the contrary, the response surfaces serve to augment whatever
analytical results are available. Further, the analytical formulae for
powers frequently explain much of the unconditional inter-experiment
variation in s, as is apparent both from Figures la-4a and from the first
two rows of the lower half of Tables III and IV.29 Also, although the
finite sample terms explain over 95% of the variation in L*(s)-L(wa) for c,
and t;, the value of ;e implies that under 25% of the remaining (residual)
variation is due to sampling fluctuations (i.e., in estimating Ty by s),
with over 75% being due to additional finite sample components. Better
analytical approximatioﬁs would be of considerable value here.

Remarks. In retrospect, several features of the experimental design
are notable.

(a) Even though many of the response surfaces appear mis-specified,
White'’'s standard errors are consistent under the sorts of mis-specification
present and the coefficient estimates are still useful for prediction within
the population being investigated: see Hendry (1982, pp. 210-211) and White
(1980b, pp. 155-157). 1In fact, both type A and type B response surfaces

track the simulation estimates of the finite sample size and power

Hendry (1973) convincingly argues the merits of analytical formulae in
interpretiug Monte Carlo studies.
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remarkably well, in spite of mis-specification. That apparent contradiction
has the following explanation. For a given set of experiments and their
associated rejection frequencies, the estimates of the coefficients in a
response surface are essentially invariant to the number of replications N,
whereas (52 - 1) is proportional to N times the square of any unexplained
finite sample fluctuation.30 The large values of N, both in Section 5 and
Appendix A, magnify the effect on Ee of discrepancies between Top and ;T (or
ﬁT) although those discrepancies themselves are insensitive to N and appear
quite small in general. Hence, a larger number of experiments with fewer
replications per experiment would have been preferable.31

(b) For a third of the experiments, the largest latent root of (4)-(5)
is .77, resulting in considerable dynamics affecting the statistics.
Although that latent root is smaller for the other experiments, the largest
latent root of the entire system (4)-(6) is always p, (=.8). Also, the
actual sample size is only twenty for a third of the experiments, equaling
the smallest sample size in Pesaran’s (1974) experimentsBz; the effective
sample size is sometimes as small as glgh§.33 In light of that, the

experimental design may be over-ambitious.

3Oote that A = (S(N-S))/(N-1) ~ Ns(1l-s) and that the rescaling factor Al/2
is applied to all variables.

1Control variates for the estimated finite sample power might have been
used to achieve more efficient Monte Carlo estimates of =x,,: see Sargan
(1976a, pp. 444-448) and Rothery (1982). However, their gerivation appears
practically intractable for most dynamic models: cf. Nankervis and Savin
(1985) .
32The Cox statistic departs significantly from its asymptotic properties in
some of those experiments even though no dynamics or simultaneity is present
and fewer instruments are used: see Ericsson (1986).

Hendry and Neale’'s (1987) recently developed recursive Monte Carlo
techniques permit rapid graphical analysis of estimator’s properties for
every feasible sample size up to the largest: parallel techniques for
statistics would permit far more extensive analysis of their T- and
T*-dependent properties than currently feasible.
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(c) There is a clear need to limit the range of the (unknown) finite
sample power of a statistic over experiments so as to avoid generating
experiments with uninformative estimated powers (e.g., unity). Setting o,,
such that the asymptotic power T takes particular values goes some way to
achieving that, although there is an inherent difficulty present when
statistics with different asymptotic powers are being examined. JFurther
control over the range of Ty may be possible, e.g., by using different
critical values for statistics with different asymptotic powers.

(d) Small sample adjustments to statistics are a long-run objective of
studying their finite sample properties and could take many forms in
addition to the F-adjustment. Under the hypothesis (7), ¢y has more degrees
of freedom than any of the other statistics (likewise, c¢; has more than any
other, under the hypothesis (8)); and that may be partly responsibie for the
apparent relative poorness of the asymptotic approximation for ¢, (and for
cl).34 Sargan’s (1980c) transformation of the IV criterion may ameliorate
that effect. Also, the properties of tg may improve from using that
criterion rather than ¢, in constructing tg. Godfrey and Pesaran (1983)
propose bias adjustments to the numerator and denominator of the Cox
statistic and thereby design a Cox-type statistic with a better finite
sample size. Similar adjustments may be possible for the IV statistics, at
least when Z* = X,. Finally, further analytical results on the statistics’
finite sample properties, even for simple models, could be of value for
deriving finite sample adjustments.

To summarize, the. finite sample properties of the Wald and F statistics
are quite closely in line with their asymptotic properties, with the
F-adjustment capturing a dominant fiﬁite sample term of O(T_l) in the

distribution of c,. The behavior of f, (versus that of c,) favors use of

4See Sargan (1958, pp. 393, 400, 409, 414-415) and Sargan and Mikhail
(1971, pp. 156-158) on similar considerations for the distributions of
econometric estimators.
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the F form of the Wald statistic rather than its x2 form, even for
situations in which the Wald statistic has no known exact sampling

distribution. A similar correction for Co appears unimportant relative to

remaining fluctuations in LUE The finite sample sizes of both c, and tg are

typically strongly and positively biased: To accounts for much of that bias.
That contrasts with small and negative biases by To for c, and f,. Biases
in the finite sample power of ¢, and t, are even larger, with T and o being
primary explanatory factors. Because of the analytical relationships
betwzen c,, c3, f,, and fg and, to a lesser extent, between Co, €;, tg, and

t7;, oroperties of statistics within either set are generally similar: that

helps to unify the results.

6. An Empirical Example

Pesaran and Deaton (1978) consider several (hypothesized) non-nested
economic relationships between consumers’ expenditure and income to
demonstrate the application of Cox's maximum likelihood (ML) statistics in
econometric modeling. This section re-examines their two linear models to
illustrate the use of the IV statistics. Those models are:

Hy: Ct =  Boo + ﬂo1Yt + ﬂozwt +ug, Uge ~ NID(0,03) (27)

H,: Ct =  PBio t ﬂ“Yt + ’Blzct-l + U, Uje ~ NID(0,0%) (28)
where the data are quarterly, seasonally adjusted series in constant 1958
doilars for the United States (1954i1i-1974iii) for consumers'’ personal
expenditure (C), personal disposable income (Y), and personal wealth (W),
with wealth measured at the beginning of each period. Throughout their
analysis, Pesaran and Deaton assume that conditioning upon current income
does not affect inference about the ﬂij's: IV estimation allows relaxation
of that assumption. The IV statistics are calculated for several possible

sets of instruments, namely:

(1v wt: ((Ct_is Yt-i), i=1v---;‘)) (29)
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. . 35
where : varies from one to eight.

Tables Va and Vb summarize the results for all values of .. To focus
discussion, consider the statistics and estimated coefficients for ¢=5:

Hot T, = 23.2 + .862Y + .00652W, (30)
(10.3)  (.038)%  (.00601)

of = 18.078 t, = -32.84 tg = 86.41 co = 51.74 c, = 50.18

Hy: C. = 2.65 + L067Y_ + .930C,_ (31)
(2.13)  (.116) (.129)
o = 12.974 t, = -7.59 tg=-.19 cq = 21.42 c, = .04

where ~ denotes IV estimation and the values in parentheses are the IV
estimated standard errors. The estimated coefficients in (30) are very
similar to those obtained by ML, but those in (31) are not: that for Yt is
no longer significantly different from zero, consistent with simultaneity
bias in the ML estimates, and that for Ci.q1 1s now essentially unity.

The values of t,, tg, c,, and c; in (30) all point to the
mis-specification of Hy. c¢, indicates that Ct-l is significant if added to
(30). ¢, shows that the instrumepts used are not independent of the
residuals, most likely because inter alia Ct-l is an instrument snd is not
included in the specification of H,. ty and tg are so significart because
(31) markedly vériance-dominates (30) (and that, because ¢, is significant).

With H; as the null hypothesis, only ¢, and t, appear significant:
Sargan's statistic indicates that some of the instrumental variables are not
valid (i.e., they are correlated with the residuals), suggesting that H,
incorrectly omits certain lagged values of C and Y. The statistic t, also
appears to detect that (although tg does not), possibly because H, excludes
all lagged values of Y and C. The results for (=5 are typical of all values

of . except :=1, in which case none of the tests detect mis-specification.

35The behavior of the IV statistics is determined both by the number of

instruments (here, 2:+2) and by the lags at which variables appear in the
instrument set: this analysis makes no attempt to separate those effects.
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Table Va.

Values of the statistics for Hy: Ct = Boo + ﬁo1Yt + 502Wt +oug

Estimat%on ty te [Do] Co cy, (=£f,)
method
b
ML 2.1 36.5 29.6 46.8
\ [-47.1]
Iv® =1 3.3 157.7 46.5 45.7
=2 -13.8 107.1 46.9 50.1
=3 -23.4 102.6 49.3 49.9
=4 -24.1 101.7 51.6 51.1
=5 -32.8 86.4 51.7 50.2
t=6 -35.3 82.7 51.9 49.7
v=7 -40.8 81.9 53.6 49.3
=8 -56.4 80.5 58.1 47.9

Notes: See the notes for Table Vb.

Table Vb,

Valves of the statistics for H,: Ct = B0 + ﬁllYt + ﬂ12ct-l + Uy,

Estimatiion ty - te [Dol Co c, (=f,)
methodl
b
ML -.40 -.37 .16 .16
[ .37]
Ive =1 -.03 -.03 .00 .00
=2 -3.22 -.13 8.08 .02
=3 -5.11 -.14 13.19 .02
v=4 -5.31 -.14 14.07 .02
=4 -7.59 -.19 21.42 .04
=6 -8.26 -.21 23.66 .05
=7 -9.45 -.21 27.11 .05
T =8 -12.77 -.22 36.38 ‘ .06

Notes: a. Under the null hypothesis (H, for Table Va, H, for Table Vb), the
statistics t,, tg, and D, are asymptotically distributed as
N(0,1); c, is asymptotically distributed as x2(2:-1) for IV (x2(1)
for ML); and c, is asymptotically distributed as x2(1).

b. The instruments for ML are (1, Wt, Ct-l’ Yt}.

¢. The instruments for IV are. (1, Wt, ((Ct—i’ Yt-i)’ i=1,...,¢)}.
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These two models illustrate the potential value of both nested and
non-nested hypothesis test statistics in practice. The IV statistics point
to the possible importance of additional lags on income and consumers’
expenditure in the equation for the determinants of consumers’ expenditure,
thus establishing a basis for the re-specification of that equation.36 In
general, IV statistics complement ML statistics by allowing for situations
in which the specification of a complete set of simultaneous dynamic

economic relationships is undesirable or impractical, as is typical in many

existing econometric models.

7. Concluding Remarks

The finite sample properties of test statistics often deviate markedly
from their asymptotic ones. Exact analytical results typically are not
available for precisely those situations which are most interesting from a
practical standpoint, e.g., dynamic, simultaneous, mis-specified models.
This paper presents and implements an approach for obtaining numerical-
analytical formulae (response surfaces) which integrate existing analytical
knowledge with Monte Carlo (experimental) results. Response surfaces can
help summarize and interpret Monte Carlo simulations, and may reasonably
approximate the unknown finite sample conditional probability formulae of
the statistics evaluating the relationships of interest, for the DGP
considered. Cox (1970) provides the basis for'assessing the closeness of
that approximation and, more generally, for conducting inference about
response surfaces. Applying this approach, this paper investigates the
effect of dynamics and simultaneity on the finite sample properties of
maximum likelihood and instrumental variables statistics for testing both

nested and non-nested hypotheses for dynamic one- and two-equation mcdels.

However, the results themselves are more elucidative than substantive:
both estimated equations and the comprehensive model exhibit considerable

residual autocorrelation and parameter non-constancy, so further inferences
are dubious.
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The results demonstrate the value of asymptotic theory in interpreting
finite sample properties and certain limitations for doing so. Response
surfaces summarize the Monte Carlo results conveniently and provide simple
formulae for obtaining reasonably accurate and computationally inexpensive
predicticns of finite sample rejection frequencies within a sizable
parameter space. Two practical finite sample results arise. First,
transforming the x? Wald statistic to its F form eliminates a dominant term
of O(T-l). In fact, under the null hypothesis the resulting statistic is
approximately an F-ratio and is virtually invariant to the degree of
dynamics and simultaneity considered; under the alternative it is only
moderately affected by those factors. Second, "large-o" and a small
effective sample size strongly affect the finite sample properties of
Sargan’s (1958) instrumental variables statistic and Ericsson’s (1983)
Cox-type instrumental variables statistic. Additional analytical results
could help in specifying the functional dependence on ¢ and T and for
deriving finite sample adjustments. Re-examination of Pesaran and Deaton's
(1978) empirical example illustrates the additional information gained from
the instirumental variables statistics. Although Monte Carlo experimentation
can not replace analysis, the two can complement each other effectively to

provide convenient formulae for interpreting empirical findings.
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Appendix A. Simulation evidence: A single-equation model

This appendix describes the experimental design, simulation, and
post-simulation analysis of a pilot Monte Carlo study of the Cox and Wald
statistics for a dynamic single-equation model with autocorrelated
regressors, used to assess the potential value of the asymptotic formulae in
Section 2 and of the response surface methodology in Section 4. The model
is defined by the restrictions b = g,, = 0, so (4) and (5) are recursive.
The correctly specified hypothesis Hy 1is

Hy: Ye = th + dyt_1 + ug. . (Al)
The following (falsely specified) non-nested alternative is considered:

Hy: y,. = h12w2t +dy +tug, (A2)
with v = corr(Zt,wzt) = 0, so the comprehensive hypothesis H, is

Hy: y, = ez, + h12w2t + dyt_l + Uy . (A3)
The pair of non-nested hypotheses above is similar to that in Pesaran (1974)
in that both have competing sets of exogenous variables. However, his DGP
has no dynamics, whereas dynamics enter (Al) both directly (d = 0) and
indirectly (pi = 0 for 1 =1, 2).

A.l1. Experimental design

The Monte Carlo design variables of this study are

(6', T) = (c, d, 011, P1, P2, @11, W22, 7, T) (A4)
where w;, is chosen to give selected values of y. Three parameters s&re
normalized without loss of generality: o,, = 1 and w;, = wy, = 1/12. Rather
arbitrarily, p; = p, and N = 1000. The remaining parameters span rarges

similar to those in Hendry and Harrison (1974, Section 6.1): ¢ = (1., 4.)

d= (.2, .7), pg = (.3, .9), v= (.8, .9, .95), and T = (20, 50, 80) with a
full factorial design of seventy-two experiments.

A.2. Simulation

Given this study'’s exploratory nature and in order to minimize

computational expenses, the exogenous variables Zt and Wy, are
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non-stochastic (i.e., constant across replications, but not across
experiments), and the Vi, are uniform. Estimation is by OLS and only the
Cox statistic and the x? Wald statistic are evaluated. All other

computational aspects are as in Section 5.

A.3. Post-simulation analysis

Cursory examination of the Monte Carlo results reveals that the Cox
test generally rejects H; more frequently than the Wald test, parallelling
Pesaran’'s (1974, 1982) Monte Carlo results for static models. It is unclear
which test is more powerful because the estimated sizes of both tests are
almost always larger than the asymptotic 5% level, with the Cox test the
worse of the two. To evaluate powers as such, some control of the size
would be necessary, e.g., by estimating the finite sample size by an order
statistic based on the test statistic values from a Monte Carlo experiment
when the assumed null hypotheses is true, or by the techniques discussed in
Mehta (1979). Even without such adjustments, the simulation results are
worthwhile evaluating because they use critical wvalues which an applied
econometrician typically would employ. In estimating response surfaces, all
experiments for which the asymptotic power or the rejection frequency of H,
is greater than .998 for either test, are excluded. Of the remaining
fifty-two experiments, six randomly selected experiments are retained for
the Chow test. 1In the spirit of Mizon and Hendry (1980), Type B response

surfaces are estimated with £, £/T, A3/T, T-O, 7-1/2

for powers; £, T_l/z, T'l, ar-1/2

-1
, and T as regressors
-1 . 37
, and dT as regressors for sizes.
Parsimonious representations of those more general response surfaces appear

in (A5)-(A8) with a selection of evaluation criteria.

376, the order of the second approximation for the asymptotic distribution

of D;, is also included in the unrestricted response surface for D;, but
proved insignificant. The data are ordered by sample size, increasing in X,
within each group. Detailed Monte Carlo results for Appendix A and Section
5 are available from the author upon request.
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The restricted response surfaces for the type I error of the Wald (cp)

and Cox (Dy) statistics are

1¥(s)-L(.05) = 1.92A
(.16)
[.20]

1/2,-1/2 (5)

R2 = .43 Ze = 1.659 15,(6,45) = .62 £,(51)

140.4 dw = 1.95

ny(4,47) = 2.05 n.(1,49) = 10.23

L¥(s)-L(.05) = 3.16a/27p71/2 (A6)
(.20)
[.24]

I

R? = .57 G_=2.240 1,(6,45) = .84 £,(51) = 255.9 dw = 1.06

ns(4,47) = .93  1n,(1,49) = 11.58

respectively. The response surfaces for the finite sample powers of the

Wald (c3) and Cox (D,) statistics are

L"(s) = .96L(x) - 6.65L(x)/T - 1.81aY2 (5, /1) (A7)
(.11) 2 (3.01) (.48)
[.08] [2.22] [.51]
R? = .78 G_=7.490 9,(6,43) = 2.03 £,(49) = 2749.1 dw = 2.11
ns(3,46) = 2.75 n,(6,42) = 2.34
1*(s) = 1.08L(r) - 11.68L(n)/T (A8)
(.15) 2 (3.82)
[.11] [3.83]

RZ = .70 Ee = 8.069 n,(6,44) = 1.90 £,(50) = 3255.4 dw = 2.17

ns(5,45) = .41  n,(3,46) = 2.74 .

These response surfaces are in general agreement with the theory discussed
earlier: the coefficients of L(.05) and L(ﬂa) are statistically
insignificantly different from unity, and Ee is close to unity fo:r the
response surfaces of type I errors. The coefficient on T-l/2 in (A6)
(versus that in (A5)) captures the larger positive finite sample Dbias in

size for the Cox statistic. Also, the coefficients for £/T and X;/T are
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negative in (A7), in line with Mizon and Hendry's (1980, pp. 35, 42)

response: surfaces for the Wald test of a common factor. However, although

R? is large in (A7) and (A8), the corresponding values of Ee and n, suggest

that much more variation present in L*(s) could be explained by additional
terms in those response surfaces. Re-using random numbers across
experiments could aid in estimating the response surface coefficients more
precisely and in reducing the values of Ee, but it also might create
spurious correlation between experiments; cf. Mizon and Hendry (1980,
pp. 34-37 and footnote 4) and Hendry (1984, p. 971). The lack of control
over the range of Tp (or even wa) and the resulting loss. of one quarter of
the experiments motivate the experimental design in Section 5.

The asymptotic formulae in Section 2 explain many features of the Monte
Carlo simulations across experiments, with response surfaces providing a

concise, useful method of analyzing the relationship between observed

fluctuations, asymptotic approximations, and finite sample effects.
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Appendix B. Hendry and Harrison's (1974) model

This appendix briefly describes Hendry and Harrison’s (1974) model and
its relationship to the model used in this paper. Their model can be
expressed as

Byt + Czt + Dyt_1 = u. u, = Rut_1 + e

z - Azt_1 =V (t=1,...,T) (B1)

where Ye and z_ are 2X1 and 4X1 vectors of endogenous and exogenous

t
variables at time t; the normalizations are b;; = by, = -1.; B, C, D, R, and
A are matrices of dimension 2x2, 2x4, 2x2, 2x2, and 4x4, respectively, and
all the latent roots of B-lD, R, and A lie within the unit circle;

€ ~ NID(0,3) and Ve o~ IID(0,0Q); and E(etv;) = 0 for all t and s. Hendry
and Harrison (1974, pp. 153-154) restrict C, D, and R such that the first

line in (Bl) may be written extensively as

Yie = P12¥pe ¥ C1aZyp * diayy g Fup Ul = TiaYy g F o6
4
Yor = b21y1t + jil C2jzjt + e, (B2)

with ¢;;,¢,; = 0 and with an implicit change in sign of the disturbances.

Rewriting (B2) in a simpler notation (and with Ye and €, mow denoting

scalars),
Ye = bYt + th + dyt_l +ul u =ru 4+ e (B3)
Yt =ay + f'wt +e, (B4)
where f' = (c,y:c55:Cp5:C,4) and L in (B4) equals z, in (Bl). Thus,
w, = Awt_1 + Ve . (B5)

Equations (4)-(6) in Section 3 are equivalent to (B3)-(B5) with r = 0 and
correspond to equations (2)-(5) in Hendry and Harrison (1974), but with some
slight changes in notation: Pi (rather than Ai) denotes the ith diagonal
element of A; h' and hij are their f’ and P and the disturbances on the
structural equations are u_ and v, rather than ¢, and e,. Those changes are

t t t t

made to avoid confusion with other notation in this paper.
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Hendry and Harrison’s model allows for autoregressive errors on the
structural equations whereas (4)-(5) do not. At first blush, including
autoregressive disturbances (r » 0) might appear an interesting extension.
Pesaran (1974, pp. 164-169) derives the Cox statistic for models with fixed
regressors and first-order autoregressive errors; and Sargan’'s statistic c,
generalizes to allow for models nonlinear in their parameters (and in
particular for linear models with autoregressive errors, see Sargan (1959,
pp. 101-105; 1964, pp. 25-29) and Campos (1986b)), from which an IV
statistic for testing non-nested nonlinear hypotheses could be constructed.
However, autoregressive errors can be regarded as arising from a common
factor restriction on a more general dynamic model with serially
uncorrelated errors, a restriction which is often invalid in empirical
studi_es.38 Hence, the restriction r = 0 is imposed in both Monte Carlo
studies, but with d = 0. Note, though, that for that particular dynamic
specification, (4) does not include a first-order autoregressive error as a

special case except trivially so when b = ¢ = 0.

38For both theoretical and empirical discussions of the common factor

restriction, see Sargan (1959, pp. 91-92, 101-105), Durbin (1960a,

pp. 150-153; 1960b, pp. 235-238), Sargan (1964, pp. 27, 39-41), Hendry
(1974), Hendry and Mizon (1978), Mizon and Hendry (1980), Sargan (1980d),
and Hendry, Pagan and Sargan (1984, pp. 1045-1047, 1078-1080).
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Appendix C. Type B Response Surfaces
*
The dependent variable in each response surface is L (s)-L(w*) where =
is .05 for f, and tg, L for £3 and t,, and L for c,, ¢c3, cg, and ¢c;. All

right-hand side variables represent effects present only in finite samples.

Table C.T.
Estimates of Type B Response Surfaces for Finite Sample Sizes and Powers

Regressors Test Statistic 7
and :
Diagnostic
Statistics £, c, £, Cg
T 11.8 9.7 8.2 6.1
(3.2) (3.0) (2.8) (2.9
[3.1] [2.9] [2.4] [2.6]
T2 -130. -106. -77. -54,
(32.) (30.) (26.) (28.)
[32.] [29.] [21.] {24.]
T3 328. 268. 140. 89.
(81.) (76.) (63.) (68.)
[79.] [71.] {50.] [58.]
To -2.10 -1.76 -2.44 -2.17
(.48) (.46) (.35 (.36)
[.38] [.35] [.42] [.38]
T20 16.3 12.5 6.9 4.8
(5.0) 4.7) (1.6) (1.6)
[3.7] [3.4] [1.6] [1.6]
T30 -36. -27.
(13.) (12.)
[ 9.] [ 9.]
To? .0197 .0200 .0400 .0378
(.0046) (.0044) (.0192) (.0204)
[.0044] [.0040] [.0166] [.0179]
T202 : .59 .59
(.13) (.14)
[.10] [.12]
Tpo -17.2 -13.7 -26.5 -24.0
(5.3) (5.0) (6.1) (6.6)
[3.5] [{3.2] [4.7] [5.5]
T2p, 185. 148. 184, 153,
(50.) (46.) (54.) (58.)

[34.] [30.] [41.] (48.]
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Estimates of Type B Response Surfaces for Finite Sample Sizes and Powers

Regressors

Test Statistic 7

and
Diagnos=:ic
Statistics £, C, £, Cs
T3p, -443 . -352. -366. -283.
(118.) (109.) (121.) (129.)
[86.] [75.] [91.] [107.]
Tpoo 2.15 1.60 5.32 4.74
(.66) (.62) (.81) (.81)
[.45] [.44] [.68] [.68]
T2po0 -21.3 -15.6 -29.8 -24.1
(6.9) (6.5) (5.7) (5.6)
[4.5] [4.5] [4.6] [4.6]
T3p,0 48.4 34.7 44.3 33.8
(17.4) (16.3) (10.7) (10.7)
[11.4] [11.2] [8.3] [ 8.8]
Tpoo? -.127 -.122
(.017) (.017)
[.017] [.016]
T -3.33 -3.30
(.49) (.51)
[.52] [.53]
T22 7.74 6.61
(1.97) (2.06)
[2.02] [2.10]
Tho .542 .543
(.063) (.066)
[.085] [.082]
T3 Lo? .530 .559
(.092) (.108)
[.067] [.090)
Tpolo -.504 -.485
(.077) (.082)
[.093] [.092]



40

Table C.I. (concl.)

Estimates of Tvpe B Response Surfaces for Finite Sample Sizes and Powers

Regressors Test Statistic r

and

Diagnostic

Statistics f, c, fq Cj

R2 .850 .866 .985 .985

Ee 1.080 1.092 2.069 2.256

n 13 13 19 19

Chow

n,(9,63-n) .85 .93 .88 1.04

RSS

£€,(72-n) 68.8 70.4 226.9 269.8

Parsimony

n3(q,72-n-q) .50 1.23 .40 .88
{5} {6) {14) (14}

Functional form

n3(q,71-n-q) .46 .39 1.26 .75
{29) (29) {28) {30}

RESET

n4(4,68-n) 2.92 3.32 1.01 .90

Unit coefficient

P 1.02 . 1.36 1.11 1.13

(.37) (.34) (.22) (.23)

Unit coefficient

n5(1,71-n) .00 1.10 .26 .35

Normality

€6(2) .24 .60 7.23 3.82

Heteroscedasticity

n,(q,71-n-q) .46 .45 .48 .49
{26) (26) {38} {38)

ARCH

ng(12,59-n) .59 .60 .15 .27

dw 2.31 2.25 1.86 1.86

AR residuals
n9(12,60-n) .87 1.02 .81 .85

Note: The value of the degrees of freedom q appears in curly brackets {-).
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Table C.II.

Estimates of Type B Response Surfaces for Finite Sample Sizes and Powers

Regressors Test Statistic r Regressors Test Statistic r
and and
Diagnostic Diagnostic
Statistics Co c, Statistics tg t,
T -.57 7-1/2 -38.5 -109.
(.13) (5.0) (11.)
[.10] [5.4] [10.]
T2 -17.90 T 35.9 113.
(.84) (4.7) (11.)
[.92] [5.0] [11.]
To 1.39 .72 117 1/2 -28.9
(.04) (.33) (5.6)
[.04] [.35] [5.5]
124 -.50 15.9 1 1/2, 17.2 6.3
(.18) (2.7) (2.3) (1.4)
[.15] [2.8] [2.7] [1.1]
T3g -38.7 To -14.1 -6.1
(6.1) (2.1) (1.2)
[6.9] [2.5] [1.0]
To? .207 T-l/za2 -.90
(.026) (.15)
[.028] [.19]
T202 -.153 -.080 To? .82
(.016) (.126) (.14)
[.016] [.114] [.17]
Tro 1.85 1171/ 252 -.520
(.70) (.055)
[.60] [.072]
T25, -3.01 -45.0 12, 4t .5 146
' (2.17) (8.3) (8.5) (26.)
[1.92] [(7.5] (8.7] [25.]
T3p, 128. Tr, AN -167.
(33.) (8.2) (25.)
[30.] [9.1] (25.)
Toqo -.155 1712, 25.3 137.
(.040) (12.5) (36.)
[.037] [15.2] [33.]
2 -1/2
Tpoo -.077 T P00 -17.5 : 1.53
(.027) (3.0) (.52)
[.030] [3.5] [.44]
T2po0? .63 Tpoo 17.0
(.15) (2.8)
[.15] [3.3]
T4 -2.00 12,0 -7.6
(.13) (2.5)
[.15] [2.6]
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Table C.II. (cont.)

Estimates of Type B Response Surfaces for Finite Sample Sizes and Powers

Regressors Test Statistic r Regressors Test Statistic 7
and and
Diagnostic Diagnostic
Statistics Co c, Statistics te tq
Tlo .34 T-l/zpoo2 .96
(.10) (.19)
[.12] [.23]
Tpo4 -13.8 Tpoo? -.98
(2.6) (.18)
[2.4] [.21]
T2p, 4 95. 1772, 02 .87
(18.) .17)
[16.] [.18]
T35, -166. 7172, 30.3
(32.) (4.8)
[26.] [3.8]
Tpolo .46 T -30.8
(.11 (4.6)
[.11] [3.7]
Tlo? 081 T 124, -7.38
(.014) (.93)
[.015] [.74]
TAho 7.35
(.91)
[.75]
11240 421
(.48)
[.39]
/2,08 ' -36.1
(11.3)
[ 9.2]
Tpol 45.9
(11.0)
[9.0]
Tr°1/2, 4 -53.1
(16.8)
[14.6]
Tpolo -.88.
(.26)

[.22]
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Table C.II.

(conel.)

Estimates of Type B Response Surfaces for Finite Sample Sizes and Powers

Regressors Test Statistic r Regressors Test Statistic 7

and and

Diagnostic Diagnostic

Statistics Co c, Statisties tg t,

R? .9958 .9947 R? .9923 L9777

g, 1.489 2.097 o, 1.703 3.056

n 7 17 n 16 18

Chow Chow

7,(9,63-n) .90 .81 7,(9,63-n) .82 .66

RSS RSS

£€,(72-n) 144 .0 241.9 £5,(72-n) 162.4 504.3

Parsimony Parsimony

n3(q,72-n-q) .73 .94 n3(q,72-n-q) .28 .60
{11} {16} {2) {6}

Functional form Functional form

n3(q,71l-n-q) .83 .90 n3(q,71-n-q) 1.27 .41
{33) {31) {30} {33}

RESET RESET

n,(4,63-n) .34 3.91 n,(4,68-n) 7.74 4.84

Unit coefficient Unit coefficient

P .97 .93 1.02 1.09
(.03) (.07) (.04) (.19)

Unit coefficient Unit coefficient

ns(1l,71l-n) 1.26 1.11 ns(l,71-n) .19 .22

Normality Normality

£6(2) 1.00 1.34 £6(2) 1.97 1.42

Heteroscedasticity Heteroscedasticity

n,(q,7l-n-q) 1.08 .45 n,:(q,71-n-q) 2.59 .54
{14) {34) {31) {35)

ARCH ARCH

1g(12,59-n) .37 .57 ng(12,59-n) .32 _ .39

dw 2.19 2.39 dw 2.13 1.84

AR residuals AR residuals

n4(12,50-n) 2.24 1.23 15(12,60-n) .59 1.33

Note: The value of the degrees of freedom q appears in

curly brackets {-}.
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