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ABSTRACT

In his classic Papers relating to Political Economy (1897), Francis

Edgeworth demonstrated that when duopolists have limited productive
capacity, there may be no Nash equilibrium in prices. One feature of
Edgeworth’s model is that consumers are assumed to meet with the
duopolists at the same time.

This paper analyzes a version of the Edgeworth model in which
consumers arrive sequentially instead of simultaneously. This departure
from lidgeworth’'s framework should seem reasonable since there are few
markets besides auctions in which buyers all meet with sellers at the
same time.

The point of the analysis is to show that when sellers engage in
quantity constrained price competition, the timing of consumer arrivals may
gr;atly»affect the nature of equilibrium. It turns out that the existence
of Nash equilibrium in prices may be restored. It also turns out that the

duopolists may be able to maximize joint profits!



The Timing of Consumer Arrivals
in Edgeworth’s Duopoly Model

Marc Dudey*

I. Introduction

Edgeworth (1897) demonstrated that when duopolists have limited
productive capacity, there may be no Nash equilibrium in prices. A
number of economists subsequently studied variants of Edgeworth'’s model,
mainly in an effort to obtain existence results. For example, Levitan
and Shubik (1972), DasGupta and Maskin (1982) and others obtained
equilibria in mixed strategies and Grossman (1981) noted the existence of
equilibrium in supply functions. Kreps and Scheinkman (1983) proved that
Cournot outcomes are generated when the duopolists choose capacity before
setting prices and Hotelling (1929) challenged Edgeworth’s conclusion by
introducing a product differentiation assumption. Peters (1984) has
recehtly made some progress on the existence question by assuming that
sellers are spatially isolated and that each potential customer visits
only oné location.

This paper analyzes a version of the Edgeworth model in which
consumers arrive sequentially instead of simultaneously. Thus,
Edgeworth’s assumptions of homogeneous products and costless search are
retainad, but it is assumed that buyers do not arrive at the same time.

This departure from Edgeworth’s framework should seem like a reasonable
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one since there are few markets besides auctions in which buyers all meet
with sellers at the same time.

Here is an outline of what I have in mind. A finite number of
consumers come to market one at a time. Upon the arrival of a consumer,
duopolists selling inventories of an indivisible good engage in price
competition. The consumers purchase at most one unit of the good each
and have a common reservation value. In the spirit of Edgeworth’s model,
the number of units in the inventory of at least one seller is less than
the number of buyers but the sum 6f the inventory levels exceeds the
number of buyers. This last assumption guarantees that there would be no
Nash equilibrium in prices if the buyers synchronized their arrival
times.1

This framework is not intended as a realistic descriptior. of
a duopoly, although it does dispense with the awkward requirement of
simultaneous consumer arrival. The point of the analysis is to show that
when sellers engage in quantity constrained price competition, the timing
of consumer arrivals may greatly affect the natu;e of equilibrium. One
implication of the assumptions listed in the previous paragraph is that
the existence of (subgame perfect) Nash equilibrium in prices is
restored. Another significant implication is that the duopolists can
almost always maximize joint profits.

The paper unfolds in the following way. In section II, I
present a more explicit description of the model outlined above. In
section III, I informally discuss the special case in Whiéh only one
seller is quantity constrained. It is in this special case that the
results stated in the previous paragraph are most intuitive. 1In section

IV, these results are proved for the cases in which one or both sellers



is quantity constrained. Section V considers a variation on the basic
model in which duopolists simultaneously choose their capacity
(quantity) before meeting consumers. The main conclusion is that the
sellers maximize joint profits and split the market as evenly as
possible.

Entry deterrence in a market with large fixed costs is the
subject: of section VI. An incumbent is assumed to precede a potential
entrani: in choosing capacity. If the potential entrant does enter, the
incumbent and entrant compete according to the model described in section
II. Otherwise, the problem simply reduces to capacity constrained
monopoly. It turns out that when the fixed cost of building capacity is
sufficiently large relative to the number of consumers, the incumbent may
restrict his productive capacity in order to deter entry. The
consequence is that consumers will be rationed at the monopoly price.
This result is disturbing since it follows from a fairly natural
spgcification of institutional detail and conflicts with the standard
result that "excess capacity deters entry" (see, for example, Spence
1977 ana Dixit 1980). The model is also interesting as an example of a
market with symmetrically informed participants and no uncertainty which
does not clear in equilibrium.

Section VII contains a short summary and an agenda for further

research.

I1. The Model Without Capacity Choice
Consider a market in which duopolists named A and B sell units
of an indivisible good to a collection of n consumers. Each of the n

consumers purchases at most one unit and all of them have the same



positive reservation value. Without loss of generality, I take this
reservation value to be one unit of a numeraire good and assume that all
consumers are endowed with at least one unit of the numeraire good. The
duopolists A and B are endowed with a and b units respectively, with a
< b.

Consumers arrive in sequence and, upon the arrival of each
consumers, the duopolists make price offers. For convenience, I assume
that if a seller has run out of units, he must set a price greater than
one. After receiving a pair of pfice offers, a consumer chooses between
sellers in the following way. He buys from the low price seller if the
sellers are charging different prices and the low price is less than or
equal to one. In case both sellers set the same price and this price is
less than or equal to one, each seller is assumed to have an equal chance
of attracting the consumer. If both sellers set a price gfeater than
one, the consumer rejects both offers and does not return. Thus,
consumers may be identified with n time periods. When setting prices in
any period, the duopolists know a, b, and all prices set in previous
periods. They also know how inventories have evolved over time.2 Each
seller’s objective is to maximize the sum of his earnings in the n
periods of trade.

The model just described amounts to an extensive fo:m game
played between A and B. A strategy for a seller in this game gives the
seller’s price in any given period as a function of the prices set and
inventories held by both sellers in previous periods. When the
duopolists play a pair of strategies, the consumer decision rule

specified above may be used to compute the expected total profit for each



seller. The payoff function for each seller maps pairs of strategies
into the seller’s expected total profit,

Subgame perfect equilibrium (Selten, 1975) is the solution
concept which I will use to analyze seller behavior in this game. In
certain special cases, subgame perfection yields obvious restrictions on
seller behavior. If a > n, the game reduces to repeated Bertrand
competition. Subgame perfection therefore requires that prices and
profits be driven to zero. On the other hand, there is no competitive
tension between the sellers if a + b < n or if a = 0. 1In these cases, A
earns a and B earns min(b, n). Sections III and IV deal with the more

interesting cases in which a + b > n and a < n.

ITI. Price Competition with One Quantity Constrained Seller
A. Informal Discussion

Suppose that exactly one seller is quantity constrained (that
is, fhe number of units in his initial inventory is less than the number
of consumers) and that the qgantity constrained seller adopts the
followiﬁg strategy. He sets a price of one whenever his current
inventory is less than the number of remaining consumers and he sets a
price of zero whenever his inventory is not less than the number of
remaining consumers.

This strategy implicitly threatens the unconstrained seller with
possibly repeated Bertrand competition unless the constrained seller is
allowad to sell all of his units at the monopoly price. The threat is
credible (!) since equilibrium requires that both sellers engage in
Bertrand competition once the number of consumers remaining is equal to

the number of units the constrained seller has left. It follows that



when the constrained seller uses the aforementioned strategy, the
unconstrained seller may as well let the constrained seller sell all of
his units at the monopoly price. The unconstrained seller can then serve
remaining consumers at the monopoly price. This reasoning suggests the
existence of an equilibrium in which sellers are able to maximize joint

profits.

B. The Advantage of Being Quantity Constrained

Notice that if the quantity constrained seller can dispcse of
his entire inventory at the monopoly price, the unconstrained seller may
earn less than the constrained seller. For example, suppose two art
dealers own the entire supply of a particular lithograph. One dealer
owns 11 of the prints while the other dealer owns 9 of them. The
dealers, who have no interest in keeping the lithographs, know that each
of 10 art collectors would like to add one of the prints to his
collection. The collectors have a common reservation value of $1000. 1If
the art dealers compete according to the model described in section II,
then fhe reasoning of the previous subsection suggests that the
constrained seller will earn $9000 while his unconstrained rival will
only earn $1000.

This example shows that there may be an advantage to being
quantity constrained. It also leads to the question of whether the
unconstrained dealer could increase his earnings by destroying scme of
his prints. Section IV will develop the argument which is needed to
answer this question. For now, I will simply observe that there are
contexts in which the issue of inventory destruction does not arise. An

entrepreneur or worker may find it too costly or impossible to precommit



to an artificially low volume of output and sales. For example, it may
not be possible for a producing seller to partially disable his means of
production. Alternatively, a seller might not be able to prove that the
total. number of units he is willing or able to supply is less than his

initial productive capacity or endowment.

IV. Basic Results

This section studies the game described in section II under the
assumptions that at least one seller is quantity constrained and that the
sum of the sellers’ quantity constraints exceeds the number of consumers.
A central finding is that sellers maximize joint profits in equilibrium
whenever their quantity constraints are not the same. If A and B are
subject to identical quantity constraints, then the sellers set
nonpositive prices when they meet the first consumer; all other consumers
are.served at the monopoly price.

As noted in the previous section, the intuition behind the
existence of a joint profit maximizing equilibrium is not hard to
understand when exactly one seller is quantity constrained. On the other
hand, obtaining uniqueness results and generalizing to- the case of two
quantity constrained sellers requires a more explicit backward induction
argunent. To perform this backward induction, it will be helpful to have
the following notation concerning subgame payoffs in equilibrium.
Consider any subgame with t consumers remaining in which A and B are
holding inventories of x and y respectively. Suppose that the payoff to
each seller in any such subgame is uniquely determined across subgame

perfect equilibria; that is, suppose any pair of equilibrium strategies



gives the same pair of subgame payoffs to the sellers. If they exist,
call these payoffs Vﬁ(x, y) and Vz(x, y).

I start with an example which confirms the informal reasoning of
section III for the case of two consumers. To begin the backward
induction, consider the situation with one consumer remaining in which A
and B have inventories x and y. Obviously, if both sellers have at least
a unit left, competition for the remaining consumer will force prices and
profits to zero in equilibrium. Hence, V?(x, y) = Vg(x, y) =0 if x and
y are greater than or equal to one. Of course, if exactly one seller has
no units left in inventory, then the other seller is free to set the
monopoly price. This means V?(x, 0) = V?(O, y) = 1 and V?(O, y) =
V%(x, 0) = 0 if x and y are greater than or equal to one.

Now consider the situation with two consumers remaining in which
A and B have initial endowments a and b, where a = 1 and b > 2. If B
makes the sale when there are two consumers remaining, then both sellers
will have one unit in the last period. As a result, A will earn
Vi(1, b - 1) = 0 and B will earn the sale price plus VI(l, b - 1) = 0. If
A makes the sale when there are two consumers remaining, A will earn the
sale price and B will earn V?(O, b) = 1. Thus, making the sale is worth
the sale price to A and the sale price minus one to B. It follows that A
will set a price equal to one and B will set a price greater than one in
equilibrium. Consequently, Vh(1, b) - Vo(l, b) = 1.

This two consumer example gives an indication of what happens in
equilibrium‘when there are n consumers. It turns out that if a <
min(b, n) and a + b > n, then the seller with less units in inventory can
sell all of his units at the monopoly price. The seller with more units

in inventory supplies remaining consumers at the monopoly price. It



follows that if a = b < n and a + b > n, each seller has an incentive to
undercut any positive price set by his rival and become the seller with
less units in inventory when there are n - 1 consumers remaining. To be
more specific, if a = b < n and a + b > n, whichever seller makes the
sale earns the sale price plus a - 1. His rival earns n - a. Since the
extra profits associated with making the sale must be bid away in
equil:brium, each seller will charge a nonpositive price of n - ba + 1
when there are n consumers remaining. Thus, both sellers earn n - a.
The main results for the n consumer case are summarized in the following
proposition.

Proposition 1. There is a pure strategy, subgame perfect

equilibrium in the model of section II. If a < min(b, n) and a + b > n,
then A earns Vﬁ(a, b) = a and B earns Vi(a, b) =n - a. If a=b < n and
a+ b > n, both sellers earn Vﬁ(a, a) = Vi(a, a) =n - a.

Proof. See the Appendix.

V.»The Model with Capacity Choice

Returning to the art dealer game presented at the end of section
IITI, proposition 1 implies that the unconstrained dealer could increase
his payoff to $8000 from $1000 by publicly destroying three of his
lithographs. This demonstrates the need to study a framework in which
initial inventories are determined endogenously. Below, I consider a.
model in which sellers may choose their own productive capacities before
meeting consumers. This model can be extended to cover situations in
which sellers may credibly destroy portions of existing inventories

before meeting consumers.
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Consider a two stage game in which sellers simultaneously select
their own capacities in the first stage and then play the game described
in section II in the second stage. First observe that if the
construction of capacity is costly, there may be»no subgame perfect
equilibrium in pure strategies for this two stage game. For example,
suppose the only expense associated with building capacity is a fixed
cost c¢ which is greater than n/2 but less than n - 1. This means that
the market is a natural monopoly. It follows that, if an equilibrium
existed, it would involve one seller choosing a capacity of zero. His
rival would thérefore choose a capacity of at least n units in this
hypothetical equilibrium. However, the strategy pair [0, m] where m = n
cannot be an equilibrium for the capacity choice game since the seller
who is not in the market could earn n - 1 - c instead of zero by choosing
a capacity level of n - 1 (use proposition 1).

In this section, I avoid the nonexistence problem by making mild
assumptions about the cost of building capacity. Let C(k) denote the
cost of building k units of capacity and assume C((n - 1)/2) < (n - 1)/2.
(the inequality means that the market cannot be a natural monopoly,
regardless of whether n is even or odd). As is usual, suppose that the
cost of building zero units of capacity is zero and that C is
nondecreasing and convex on the positive integers. Under these
assumptions, subgame perfect equilibria in pure strategies exist ard
payoffs in any such equilibrium are approximately symmetric. A more
precise statement of this result is contained in the folibwing
proposition.

Proposition 2. Given the above assumptions on C, there is at

least one pure strategy, subgame perfect equilibrium in the capacity
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choice game. If g(k) = k - C(k) is maximized at some k* less than or
equal to n/2, both sellers will earn g(k*) in any equilibrium. If n is
odd and all the maximizers of g(k) are greater than n/2, then either one
seller will earn g((n + 1)/2) while his rival earns g((n - 1)/2) or both
sellers will earn g((n - 1)/2) in any equilibrium. If n is even and all
the maximizers of g(k) are greater than n/2, then each seller will earn
g(n/2) in any equilibrium.

Proof. See the Appendix.

The analysis is not much different if, instead of choosing
capacity, the sellers may costlessly destroy portions of existing
inventories before consumers arrive. If one of the sellers is endowed
with less than n/2 units, proposition 1 implies that neither seller has
an incentive to destroy inventory. On the other hand, if each seller is
initially endowed with at least n/2 units, an argument like the proof of
proposition 2 can be used to show that equilibrium exists and (i) one
selier will earn (n + 1)/2 while his rival earns (n - 1)/2 or both
sellers will earn (n - 1)/2 if n is odd, and (ii) both sellers will earn
n/2 if n is even. Thus, in the art dealer game, both dealers will earn

$5000 if they can publicly destroy their own lithographs.

VI. Rationing in a Natural Monopoly

In the previous section, sellers were assumed to simul taneously
determine capacity before meeting consumers. Restrictions were placed on
the cost of building capacity to obtain existence of equilibrium in pure
strategies. In this section, the nonexistence problem is circumvented by

having the sellers choose capacity sequentially. The framework
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considered here has a natural interpretation as an entry deterrerice
model.

I assume that an incumbent seller named A chooses capacity in
the first stage of a three stage game. A potential entrant namec B
chooses capacity in the second stage. In the third stage, A and B
compete for n sequentially arriving consumers as in the modei of section
II. Ihe cost assumption used here is that if either seller builds a
positive level of capacity, he incurs a large fixed cost c which is
greater than n/2 but less than n - 1. Note that this natural moropoly
assumption led to the nonexistence of subgame perfect equilibrium in
pure strategies in the section V model.

It is easy to find a subgame perfect equilibrium in pure
strategies for the entry deterrence game. There is only enough room in
the market for one seller because of the large fixed cost assumption and,
according to proposition 1, the seller with smaller capacity can sell all
his units at the monopoly price. This means that the incumbent can deter
entry and make nonnegative profits by choosing a "small" capacity. The
main point is stated in the following proposition.

Proposition 3. There is a subgame perfect equilibrium in the
entry deterrence game in which A deters entry by setting a capacity equal
to the smallest integer greater than c. In this equilibrium, at least
one consumer is rationed at the monopoly price.

Proof. See the Appendix.

The rationing result is of interest because it relies or a
reasonable specification of institutional detail and conflicts with a
standard result from the entry deterrence literature. Economists (Spence

1977, Dixit 1980, and others) have generally made the point that the
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presernce of a potential entrant may cause an inqumbent to set a capacity
which is larger than the staticﬁmon§§9;& capacity. An exception is the
paper by Benoit and KrishnaLki?Sib). ;ihese authors use supergame
techniques to show that an iﬁézmﬁent may deter entry by choosing a
capacity which is smaller tha; the static monopoly capacity. However,

consumers are not rationed in this equilibrium. Footnote 2 mentions

another distinguishing featﬁre of the Benoit-Krishna approach.

VII. Concluding Remarks and Directions for Further Work

This paper introduces sequential consumer arrival into a model
of quantity constrained price competition. In the context of this model,
it is shown that Edgeworth’s noﬁexistence of equilibrium result would no
longer hold and that sellers would almost always maximize joint profits.
Adding a quantity choice assumption was shown to yield approximately
symmetric, joint profit maximizing, equilibrium payoffs. Finally, it is
shown that sequential consumer‘érrival would create the possibility of
ratioring in a natural monopoly.; )

Among the most restrictiﬁe assumptions made here is the
hypothesis that consumers have é common reservation value. The most
natural way to introduce downward sloping demand would be to assume that
consurers have different reservation values. However, it can be shown
that equilibrium in prices needbﬁo longer exist when consumers have
different reservation values and choose sellers according to the
symmetric tie breaking rule used in this paper. Although existence in
prices may be restored when consumers use certain asymmetric tie breaking
rules, equilibrium payoffs will no longer be unique with at least some of

these rules. Such difficulties also arise when consumers have the same
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reservation value and the discount rate is positive or the number of
consumers is random. Furthermore, if consumers have different
reservation values, it would seem unreasonable to assume that firms know
the order of arrival or even that firms know what these reservation

values are. These issues are left for another paper.
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Appendix
Proof of Proposition 1:

The inductive step is all that remains. Assume the theorem
statement holds for n consumers and any combination of initial gndowments
(x, y) satisfying x + y > n, x <y and x < n. First suppose the number
of consumers equals n + 1 and that the initial endowments (a, b) satisfy
a+b>n+1, 0<a=<band a < min(b, n + 1). If A makes the sale, he
earns the sale price plus Vﬁ(a - 1, b), which equals a - 1 by the
inductive hypothesis. " In this case, B earns Vﬁ(a -1, b) =n - a+ 1.

If B makes the sale, there are two possibilities. If b > a + 1,
then B earns the sale price plus n - a and A earns a. This means that
making the sale is worth the sale price minus one to both sellers. It
follows that either A or B will make the sale at a price of one in

equilibrium. Consequently, Vﬁ

B .
+1(a, b) = a and Vn+1(a, b) = n - a + 1 if

b>a+ 1.' If b =a + 1 and B makes the sale, then B earns the sale
price plus n - a and A earns n - a. This means that making the sale is
worth the sale price minus one to B and the sale price plus (a - 1) -

(n - a)vto A. Since a +b =a + (a + i) > n + 1 by assumption, the
quantity (a - 1) - (n - a) = 2a - (n + 1) is nonnegative. It follows
that A must be setting a price equal to one and B must be setting a price
greater than one in equilibrium. Thus, Vﬁ+1(a, a+ 1) = a and

VP (a,a+1)=n-a+1ifb=-a+1.

Now suppose a + b >n + 1 and a = b < n + 1. By the argument in
the last paragraph before the proposition statement, both sellers will
set a nonpositive price of n+ 1 - 2a + 1. The equilibrium payoffs are
therefore‘Vﬁ+1(a, b) = Vﬁ+1(a, b) =n+ 1 - a. To finish the proof,

notice that if a = 0 and b > n + 1, A must be setting a price greater
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than one (by assumption) and B must be setting a price equal to one in

s st s B
equilibrium. Hence, Vﬁ+1(a, b) = a and Vn+1(a, b) =n+ 1 - a. Q.E.D.

Proof of Proposition 2:

A pure strategy, subgame perfect equilibrium in the capacity
choice game exists if and only if there is a pair of capacity levels a
and b such that a < b, Vﬁ(x, y) - C(x) = Vﬁ(k, y) - C(k) and Vi(x, y) -
C(y) = Vg(x, k) - C(k) for all k in {1, 2, ... , n). In the remainder of
this proof, I will abuse terminolbgy by teferring to such a pair of

capacity levels as an equilibrium. T will also make routine use of

proposition 1 and the following observations from section II: Vﬁ(a, b)

a and Vi(a, b) = b if a + b < n, and VA(a, b) = VB(a, b) = 0 if a = n.
If (a, b) is an equilibrium and g is maximized at séme k* less

than or equal to n/2, then Va(a, b) - G(a) = VA(er, b) - C(k%) = g(k*).

On the other hand, Vﬁ(a, b) - C(a) < a - C(a) < g(k*). It follows that

Vﬁ(a, b) - C(a) = g(k*). Similarly, Vﬁ(a, b) C(b) = g(k*). It is easy
to see that (k*, k*) is an equilibrium.

Now assume n is odd and all the maximizers of g are greater than
n/2. If (a, b) is an equilibrium where a < b, I claima > (n - 1)/2. If
not, Vi(a, b) - C(a) = g(a) < g((n - 1)/2) = VA((n - 1)/2, b) -
C((n - 1)/2), contradicting the definition of equilibrium (the inequality
follows from the concavity of g and the fact that the smallest maximizer
of g is greater than n/2). Next, I assert that b > (n + 1)/2. If not,

then (n - 1)/2=2b =2a > (n - 1)/2. Hence, a=>b (n -'1)/2. However,

]

Vi((n - 1)/2, (n - 1)/2) - C((n - 1)/2) = g((n - 1)/2) < g((n + 1)/2) =
Vi((n -1)/2, (n+1)/2) - C((n + 1)/2), contradicting the definition of

equilibrium (again, the inequality follows from the concavity of g and
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the fact that the smallest maximizer of g is greater than n/2). Observe
that if b > (n + 1)/2, then a < (n + 1)/2. 1If not, then b = a >
(n +1)/2. Thus, V>(a, b) = max (0, n - a) < (n - 1)/2 and
Vala, (@ - 1)/2) - C((a - 1)/2) = (n - /2 - ¢t - 1)/2) > ¥a, b -
C(b), contradicting the definition of equilibrium.

The above reasoning shows that (n - 1)/2 <a<(n+1)/2 and b >
(n + 1)/2. It follows that if the sellers do not choose the same
capacity level, one seller will earn g((n + 1)/2) and his rival will earn
g((n - 1)/2). 1If both sellers set capacity equal to (n + 1)/2, then both
sellers will earn (n - 1)/2 - C((n + 1)/2). However, since either seller
could earn g((n - 1)/2) by choosing a capacity of n - 1, it must be that
C(n - 1)/2) = C((n + 1)/2). Hence, both sellers earn gln - 1)/2). 1t
is easy to check that [(n + 1)/2, (n - 1)/2] is an equilibrium which
yields the asymmetric payoffs and [(n + 1)/2, (n + 1)/2] would be an
equilibrium which yields the symmetric payoffs if, for example, C = O.

The argument is similar if n is even. Q.E.D.

Proof of Proposition 3:

Let I(c) denote the smallest integer greater than c. Suppose
the incumbent chooses a capacity level of x and that the potential
entrant chooses a capacity of min(x - 1, n - 1) if x > I(e),

Oifn - c<x=<1I(c), andn - x if x < n - ¢. It follows from the
results on Vﬁ and Vi that this (second stage) response function is
consistent with subgame perfection. Also, if the entrant uses this
response function, x = I(c) is the level of capacity which maximizes
profit for the incumbent. At least one seller is rationed in this

equilibrium since I(c) <n. Q.E.D.
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Footnotes

1. Brock and Scheinkman (1985) study an infinitely repeated Edgeworth
game in which firms face the same capacity constraint in every period.
Benoit and Krishna (1987a, b) also study a related Edgeworth supergame
in which capacities are determined endogenously. In all of these papers.
the authors are concerned with intraperiod capacity constraints instead
of the interperiod constraints imposed here.

2. If a seller knows initial inventories, the prices set by both sellers
in previous periods, and the way his own inventory has evolved over time,
he can infer the way his rival’s inventory has evolved over time. Thus,

the theory does not depend on a seller being able to observe his rival’s
inventory. ‘
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