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ABSTRACT

Both future disturbances and estimated coefficients contribute to the uncertainty in
model-based ez ante forecasts, but only the first source is usually taken into account when
calculating confidence intervals for practical applications. Schmidt (1974) and Baillie
(1979) provide an easily computable second-order approximation to the mean-square
forecast error (MSFE) for linear dynamic systems which recognizes both sources of
uncertainty. To assess the accuracy of their approximation, and thus its usefulness, we
compare it with three sets of estimates of the ezact MSFE for the univariate AR(1) process:
Monte Carlo estimates for OLS, analytically based values for OLS, and Monte Carlo
estimates for maximum likelihood. We find that the Schmidt-Baillie formula is a good
approximation to the exact MSFE, and that it helps explain why the exact MSFE can
decrease as the forecast horizon increases. In fact, for dynamics typical to econometric
models, the MSFE often has a mazimum at a forecast horizon of one to twelve periods, i.e.,

at horizons that are of principal concern to forecasters and policy makers.

Key words and phrases: approximations, autoregressive models, confidence intervals,
dynamics, forecasts, maximum likelihood, mean-square forecast error, Monte
Carlo, statistical inference, time series.
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1. Introduction

In practice, numerous factors contribute to the uncertainty associated with model-
based forecasts, including the inherently stochastic nature of the process generating the
data and the imprecision of coefficient estimates.2 Confidence bands for forecasts, if
computed, typically take account of the first source of uncertainty, but not the second. In
an extensive Monte Carlo study of the univariate AR(1) process, Orcutt and Winokur
(1969) obtain unbiased estimates of the ezact least-squares based mean-square forecast error
(MSFE) which accounts for both these sources of uncertainty. Hoque, Magnus, and
Pesaran (1988) (hereafter, HMP) derive an analytical expression for the exact MSFE for
the AR(1) orocess. These two papers show that coefficient uncertainty can substantially
increase the MSFE over and above the contribution from the inherent uncertainty.

Although both analyses are significant steps in properly interpreting forecasts, they
have important limitations. First, as HMP note, numerical evaluation of their exact
formula is computationally burdensome for any forecast horizons but very short ones (e.g.,
for more than four periods ahead). Given the availability of high-frequency data, longer
horizons often are of interest in economic, business, and policy applications. Second, their
formula is restricted to the univariate first-order process, and exact generalizations to

multivariate multiple-lag econometric systems seem unlikely. Third, although Monte Carlo

IThe authors are staff economists in the Division of International Finance. The views
expressed in this paper are solely the responsibility of the authors and should not be
interpreted as reflecting those of the Board of Governors of the Federal Reserve System or
other members of its staff. Helpful discussions with and comments from Julia Campos,
Dale Henderson, David Hendry, David Howard, Jan Magnus, Doug McManus, and Ted
Truman are gratefully acknowledged. We are indebted to Ned Prescott for assistance in
preparing the figures.

2Additional sources of uncertainty include the choice of model specification and errors in
data measurement. As important as they are, those sources are beyond the scope of our
paper, so we ignore them.



methods permit estimating the exact MSFE for more general models, such estimates are
subject to the imprecision inherent in Monte Carlo simulation and the specificity of
choosing a given model and set of coefficients rather than some other. A need exists for a
formula for the MSFE which can be implemented and computed with ease for any linear
dynamic system at any forecast horizon and which accounts for both inherent and
coefficient uncertainty.

Schmidt (1974) and Baillie (1979) provide a solution via a simple approximation to
the exact MSFE. Our paper ascertains the accuracy of their approximation by comparing
it with the results from Orcutt and Winokur and HMP, and with a further study conducted
herein on the MSFE of the maximum likelihood estimator for the stationary AER(1) model.
We find that their approximation is remarkably accurate over a wide range of sample sizes,
parameter values, and forecast horizons, giving support for its use in empirical practice.

Section 2 briefly reviews the derivation of the Schmidt-Baillie approximation and
discusses its analytical properties. In particular, the approximation’s formulation provides
an intuitive explanation of why the MSFE can decrease as the forecast horizon increases,
behavior which Hoque, Magnus, and Pesaran find surprising. Section 3 shows that the
deviations between the approximation and the exact MSFE for the AR(1) model are
numerically small for most practical purposes, except in two cases: small samples with
extreme values of the autoregressive coefficient, and forecast horizons approaching the
distance at which the exact MSFE is infinite. To assess the sensitivity of these findings,
Section 4 compares the Schmidt-Baillie approximation with Monte Carlo estimates of the
exact MSFE using an alternative asymptotically equivalent estimator, maximurr. likelihood:
the approximation is quite accurate, both for short forecast horizons and for longer horizons
at which the MSFE for OLS is infinite. As justification for evaluating the exact MSFE for
maximum likelihood at such horizons, we show that any truncated estimator has a finite
exact MSFE at all forecast horizons, and that, for some truncated estimators such as
maximum likelihood, the exact MSFE is bounded, regardless of the forecast horizon. That

identifies how sensitive the condition for the existence of the MSFE for OLS is to minor



changes in distributional assumptions because (e.g.) a truncated OLS estimator might be
truncated at only very large values (which occur very infrequently) and yet would have a

finite MSFE at all forecast horizons.

2. An Approximation to the Multi-period Mean-Square Forecast Error

Schmidt (1974) and Baillie (1979) provide an approximation to the MSFE, albeit in
two distinct contexts.  Schmidt approximates the MSFE for the linear dynamic
simultaneous equations model where a subset of the variables are strongly exogenous and
are known for the forecast period. Baillie’s framework allows for such strongly exogenous
variables but, if they are present, requires that they be forecast as well (i.e., true ez ante
forecasting). Our exposition follows Chong and Hendry (1986) because of the the latter’s
accessibility. To help in understanding the properties of the ezact MSFE, this section
sketches the derivation of the Schmidt-Baillie approximation and discusses its analytical
properties. For convenience, we denote the exact and approximate MSFE as ExMSFE and
AppMSFE respectively.

Derivation.  Let \ be an mx1 vector of variables generated by a first-order

autoregressive process:

(1) v, = Ay, + u u, ~ IN(0,Q) t=2,..,n+s

t
with y, given, and where the first n observations are available for estimation and the
s—period-ahead forecast is of interest. Bold characters denote vectors (if lower case) and
matrices (if upper case). Although (1) appears limited to first-order processes, it is not. If
the underlying process is of a higher order, it always can be "stacked" to give a first-order
process. Because of that stacking, or for other reasons, the variables of interest for
forecastirg may be a subset (or some linear combination) of Ypig SO We introduce a
selection matrix S such that S’yIlJrS is the vector of interest. Further, the matrix A may
be restricted (e.g., have zeros), so it is useful to recognize explicitly how the matrix A is a

function of its unconstrained elements #:

(2) a = AY = RO+,



where ()V denotes the column vectorizing operator, and all the elements of R and r are

known.
Next, assume that #is estimated by # which is asymptotically distributed as:
(3) Ja-(8—-6 B N
and so
4) Vi-(a—a) 2 N(OF)
where I' = RYR’. In finite samples, the approximate distribution of fis:
(5) # ~ N(0, ¥/n) .
For the remainder of the derivation, (5) is treated as if it were the exact distribution of ,
i.e., terms smaller than Op(n_l/z) in the distribution of 8 are ignored.
Using the data [yl...yn] to forecast Ynts gives:

~ xS

the ez ante s—step-ahead forecast. By repeated substitution of (1) into itself at successive

lags, the actual outcome Vs is:

_ S sal ]
(7) Yngs = Ay, + igoAun+S—i’

where A0=I if A=0. Thus, the discrepancy between actual and forecast Ynats is:

- gl 4d S aS
() Unps = Ined) = [ Ao + (R0,

Selecting the variable of interest gives the corresponding forecast error gn+s:

(9) gn+s = S/ (yn+s - &n_{_s)
_ a5t Al /( AS_AS
= s LgoAunH_J ;o SI(A-AS)y

The two terms on the RHS of (9) correspond directly to the two sources of uncertainty
being investigated. The first, S’ [iZ; Aiun-{—s—i}’ is the cumulation of the shocks to which
y; is subject over the interval [n+1,n+s], where each shock is weighted by the degree to
which it influences S’yn+s, the variable being predicted. The second, S’(AS—AS)yn,

reflects the uncertainty present from using an estimated value of A rather than its true

value in forecasting S’

yn+s'

We denote these two terms a. _and b_ .
n,s n,s



Straightforwardly, the variance of the first term is:
(10) Vara, |y) = § [fz’:l Ain(Aif)]s = AsyMSFE |
II,S n 1=0

which is the "asymptotic" (i.e., large n) MSFE. The approximate variance of the second

term 1is:
(11) Var(by (ly,) = nt(Iey)[D(s)' ID(s)](Iey )
where D(s)’ = 8(S’A%)Y/da’ = (S'eI) [SZ; Ai®(AS_i_1)’} : Its derivation is more

complicated and is given in Appendix A.3 Because AS and the U 4 are independent (by

assumption’, a and bIl g are as well, so we can add their variances together to obtain the
)

)

approximate MSFE (AppMSFE):

(12) AppMSFE(§ |y,) = § [i):; AiQ(Ai’)}S+n-1.(I®yI’1)[D(s)’PD(S)](I®yn)

Var(an,slyn) increases monotonically as s increases, but Var(bn,s|yn) may increase before
decreasing o zero. Hence, AppMSFE(gn +s|yn) may decrease as well as increase, as s
increases. Equation (12) is relatively easy to implement in a computer program because it
involves only sums of products of matrices. S and y, are known, and the unknown
elements of A, ©, and T" may be replaced by consistent estimates of them.

The univariate AR(1) provides insight into the approximation, i.e., (1) is:

(1) Vo = Byt ow u, ~ IN(0,02)  t=2,..,n+s
with some initial condition for y, such as
(13) y, ~ IN(0,6202)
for arbitrary 6. The OLS estimator of §is asymptotically distributed as:
(4) i(B-9 B N, -6
Thus,
(14) A = a = 6 = p
Q = 02
R = 1

3Higher-order approximations could be obtained by employing a higher«)rder Tayler-series
expansion in (A.5) and using distributional resulis in Shenton and Johnson (1965).



I = 0
o= T o= ()
= 1
D(s) = s@t .
In that case, the forecast error (9) simplifies to:
sal . -
= @)+ BBy,

and the approximate MSFE in (12) is:
1-(62)s
1-02

Note that (12/) immediately identifies the separate contributions of the different sources of

(127) AppMSFE(g , (ly;) = 02[ + (n7ty2)-(sf1)2(1-52) .

uncertainty: the first term on the RHS is the asymptotic term, the second is the part
arising from coefficient uncertainty.4

Analytical Properties. The AppMSFE in (12/) is a function of (o2, Yy g, s, n). As
forecasters, we are particularly interested in knowing how and why (12’) varies as these
determinants vary and in knowing how well (12’) approximates the ExMSFE. Thus, the
remainder of this section considers analytical properties of the components of (127), and the
following section compares the AsyMSFE, AppMSFE, and ExMSFE numerically.

The properties of the first term on the RHS of (127) (i.e., AsyMSFE) are relatively
simple and well-known. Starting at the conditi-onal variance of y, (0?) for s=1, the
AsyMSFE increases monotonically in s, tending to the wunconditional variance of Yy
(02/(1-p2)).5 Because the two sources of uncertainty are additive and independent, both the
AppMSFE and the ExMSFE are always larger than the AsyMSFE (with possible equality
for the AppMSFE).

4Although the original derivation of (127) is difficult to ascertain, it appears as early as
1970 in Box and Jenkins (1970, p. 269).

SFor the one-step-ahead forecast, (127) simplifies to the more familiar formula (cf. Chow
~ n
(1960)): AppMSFE(g  1ly,) = o2+ y2(1-8)/n » 0?1 + yi( U yi) .



The structure and properties of the second term on the RHS of (12’) require some
examinatior. Its functional form can be easily explained and interpreted via its derivation.
The term (s in (9), viewed as a function of f, is approximated by a first-order Taylor-
series expansion about § to give f(ﬂ) =05 = f5 + D(s)(ﬁ—ﬂ) + Op(n-t) = f5 + sﬂs'l(fi—ﬁ) +
Op(n-t).  Substitution into (ﬁS—BS)-yn gives sﬂS'l(ﬁ—B)-yn+ Op(n-1), from which the
second RHS term in (12) follows immediately, using (4/).6 That term is always non-
negative (and generally positive) for finite n and s, and vanishes as either s or n becomes
large. However, for a given sample size n, final observed value Yo and (#0, it can either
decrease monotonically as the forecast horizon s increases, or increase first and then
decrease. Its path depends upon the behavior of the sequence {(sfs-1); s=0,1,2,...}, and so
upon the particular value of F.  The contribution of coefficient uncertainty to the
AppMSFE can be large or small relative to the latter, so the functional relationship
between the AppMSFE and the forecast horizon s itself depends upon £ and Yo

To examine the behavior of the MSFE as a function of s and 3, we have evaluated
(12’) numerically for a range of values of (yn, B, s, n).7 Figures 1—6 plot the AsyMSFE,
AppMSFE, and ExMSFE (stationary case) for §=(0.2,0.7,0.9) in combination with
n=(10, 20). Both here and in following sections, the term y2 in (127) is chosen to be a
"representative" value, 02/(1—f2), i.e., equal to its unconditional expectation.8 The values

of f imply Yy ranging from being nearly white-noise to highly autoregressive.

6The effect of s on the distribution of Js also can be seen through the following analogy
with a standardized normal variate x. Var(xs) = (2s)!/(2s-s!), e.g., Var(xs) = 1, 3, 15, 105
for s =1, 2, 3, 4. Clearly, taking a power of § can increase its variance dramatically.

"Because o is a scale factor in (1’) (and hence (127)), we can set o2=1 without loss of
generality: in that case, y, is measured in standard deviations of u;.

BAnother justification for this choice is that the unconditional expectation E[(#5—f5)%y2] is
approximately E[(ﬂS—BS)Q]-E[yﬁ] because [ and y, are approximately independent. See
Phillips (1¢79) for an extensive discussion on the conditional and unconditional finite
sample distributions of the forecast error.



The figures reveal three distinct patterns which depend upon the values of § and n:
steadily decreasing AppMSFE, steadily increasing AppMSFE, and an AppMSFE which
increases and then decreases. For small 4, the AppMSFE is declining almost uriformly as
the horizon increases, with the initial (one-step-ahead) AppMSFE being the largest. That
arises because the uncertainty from estimating g is large (from (4)), but that uncertainty
is unimportant in forecasting Ynas except for s=1: mathematically, sgs-1 in (12’) is
approximately zero except for s=1, when it is approximately unity. Because the AsyMSFE
changes little as s increases, the AppMSFE is declining from the start (Figures 1 and 2).

For larger values of f, the variance from coefficient uncertainty increases first and
then falls because the multiplicative coefficient s in sf5-1 dominates for small s but the
exponential term (f5-1) dominates for large s. As the sum of two components, one
monotonically increasing and the other increasing and then tending to zero, the AppMSFE
can either increase first and then fall towards the unconditional variance of ¥y (Figures
3—6) or increase monotonically, approaching that asymptotic variance (also increasing in s)
from above. The latter would be the case for all the figures if the sample size n were large
enough. Thus, the potentially large and varying contribution of coefficient uncertainty to
the MSFE explains the puzzling phenomena that HMP (pp. 333—335) note on the behavior
of the exact MSFE as s increases; cf. Chong and Hendry (1986, p. 685). The second
component of the AppMSFE provides a simple analytical explanation of this behavior, to
the extent that the AppMSFE offers a good approximation to the ExMSFE. Although
there are some notable discrepancies between the AppMSFE and the ExMSFE in the
figures (primarily for n=10 with s=4), the AppMSFE does remarkably well in
approximating the ExMSFE, so well that it is difficult to distinguish them at n=20. The
accuracy of approximation is the focus of Section 3, which compares the AsyMSFE,
AppMSFE, and ExMSFE numerically for a range of values of (o2, Y G, s, n). Before
doing so, we note some empirical implications of these results.

Estimated autoregressive coefficients in dynamic econometric models range from the

very small (e.g., for equations in first differences) to those close to unity (e.g., for equations
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in levels). Even for the corresponding (and wide) range of values for 8, the maximum of
the AppMSFE is often between one and twelve periods, precisely the range over which we
are interested in forecasting most accurately. That is also the range for which the
AsyMSFE appears the poorest approximation to the approximate and exact MSFE. In
fact, the AsyMSFE generally underestimates the AppMSFE (and ExMSFE) for finite

horizons, and the former need not even be the main component of the latter.

3. Numerical Properties of the Asymptotic, Approximate, and Exact MSFL

This section contrasts the AsyMSFE and AppMSFE with the ExMSFI derived by
HMP and with Monte Carlo estimates of the ExXMSFE calculated by Orcutt and Winokur
(1969). In both of these studies, the AsyMSFE captures much of the variation across
experiments, and the AppMSFE does even better in doing so. The inaccuracy of
approximation appears related to how close conditions for the existence of the ExMSFE are
to being violated, so we discuss the existence of the ExXMSFE in the context of both papers.

HMP. Taking advantage of the explicit relationship between the OLS estimator and
the disturbances {ut}, HMP derive an analytical expression for the exact MSFE for the
univariate AR(1) process given by (1/)+(13) for OLS and tabulate it for two cases: (a)
§2=(1-f2)"t (the "stationary case") and (b) 62=1 (the "non-stationary case"). Tables la
and 2a give the percent discrepancies between the AsyMSFE in (10) and the associated
ExMSFE from HMP (Tables 1 and 2) under each of those assumptions; Tables 1b and 2b
likewise give percent discrepancies between the dpprozimate and exact MSFE.9 Because
(10) holds exactly, discrepancies between the approximate and exact MSFE arise because
(a) the asymptotic and finite sample variances of 3 differ (and hence so do the respective
variances of 45 in (9/)), (b) J is biased in finite samples but not asymptotically (likewise for
ﬁS), (¢) the first-order Taylor-series approximation of s about f5 ignores important terms,

and (d) the approximate MSFE is conditional upon y ~whereas the exact MSFE treats y

9Because only (n—1) observations are actually used in estimating f, the calculation of (127)
for the tables uses (n—1) rather than n.

Appendix B describes the calculations here and with respect to Orcutt and
Winokur’s experiments, and lists the corresponding values of AsyMSFE and AppMSFE.
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as stochastic.10 Discrepancies between the asymptotic and exact MSFE arise because Ziis not
identicelly £.

The asymptotic formula captures the behavior of the ExMSFE well for small to
mediunm values of § and for large n, with deviations of the order of 5-15%, but it does
poorly otherwise. The AppMSFE fares better: typical departures are 2—3% or less. As
with the AsyMSFE, more sizable discrepancies appear for large s paired with small n
and/or large B the concept of "effective sample size" predicts the possibility of such
departures under those conditions (cf. Sims (1974) and Hendry (1984)). Almost invariably,
the AppMSFE is smaller than the exact MSFE.

The accuracy and the generality of the approximate MSFE do not in any way
belittle HMP’s exact results for the AR(1) process. To the contrary, exact results are
highly desirable because they involve no approximation error; and they are essential for
assessing the accuracy of approximations such as (12/).

Orcutt and Winokur. In a Monte Carlo study evaluating numerous facets to least-
squares estimation of the univariate AR(1) process, Orcutt and Winokur (1969) estimate
the ExMSFE for all combinations of f=(0.0, 0.3, 0.6, 0.9, 1.0), n=(10, 20, 40), and
s=(1, 2, 3, 4). Unlike HMP, they include a constant term in the estimation of the AR(1)
process: that is easily incorporated into the Schmidt-Baillie approximation by including a
non-stochastic variable in the vector Yy which is equal to its own lag and is initialized at
unity. Because of the additional uncertainty introduced by estimating a constant, the
resulting AppMSFE is always larger than that for equations with a known constant, even if
(as in Orcutt and Winokur’s experiments) the constant is zero. Equation (3) is not valid
for Orcutt and Winokur’s experiment with f=1, so we use #=0.9999 instead. That should
(and does) offer a good approximation, given the difficulty in finite samples in

distinguishing between a unit root and a root close to (but less than) unity.

Tn actaal forecasting, yn is given, in which case the conditional MSFE seems more
appropriate than the unconditional MSFE. At another level, yn is often subject to data
revisions, so it may be invalid to treat its (latent) value as known. This exemplifies
another source of uncertairtv and it is outside our analysis.
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Tables 3a and 3b respectively list the percent discrepancies of the AsyMSFE and
AppMSFE from the estimated exact MSFE (ExMSFE) of Orcutt and Winokur (Table VII).
The overall pattern parallels that in Tables 1 and 2: the AppMSFE generally fares better
than the AsyMSFE, with the latter almost invariably ﬁnderestimating the estimated exact
MSFE. Both the asymptotic and approximate MSFE fare better for larger n and smaller S.
Orcutt and Winokur’s estimates of the exact MSFE are subject to sampling errors from the
Monte Carlo simulation. As Appendix C shows, the standard error for their estimated
ExMSFE is'about 4.5%, so the discrepancies between their estimates and the AppMSFE
appear to be due almost exclusively to simulation uncertainty.tt

Ezistence of the MSFE. HMP show that the ExMSFE exists for the AR(1) model if
and only if the forecast horizon s is not greater than (n—2)/2 [not greater than (n—3)/2 if a
constant term is included in the regression, cf. Magnus and Pesaran (1989)]. For instancé,
for n=10 in Tables 1 and 2, the ExMSFE exists for s<4 only. The worsening of the
approximation error as s increases may be due to the declining‘, number of moments of the
forecast error. The effects of the existence of moments are also suggested by Tables 1—2
and Figures 1—6, where the convergence of the exact and approximate MSFE appears faster.
than O(n-2) for large s.

Interestingly, the ExMSFE does not exist for Orcutt and Winokur’s experiments
with (n=10, s=4), yet the A'ppMSFE still does quite well at approximating their estimates.
We interpret this surprising result as follows. For values of s for which the ExMSFE does
not exist, the AppMSFE still can be calculated and may provide accurate confidence
intervals for the forecasts. However, because there is a significant probability of ﬁ being
greater than unity and thus causing the forecast error to explode for large s, the tails of the
exact density of the forecast error are too thick for its variance to eﬁst. Sargan (1982)

examines a similar situation in which an estimator is well-behaved asymptotically but has

UThe accuracy of AppMSFE for the univariate AR(1) processes in HMP and Crcutt and
Winokur (1969) adds to Chong and Hendry’s (1986) Monte Carlo evidence on the accuracy
of the Baillie-Schmidt approximation for a two-equation model.
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Percent Deviations of the Asymptotic and Approximate MSFE
from Orcutt and Winokur’s (1969) Monte Carlo Estimates of the Exact MSFE

Table 3a: 100-[1 — (AsyMSFE/ExMSFE)].

B
n s 000 030 0.60 0.90 1.00
10 1 254 235 238 229 227
10 2 96 257 268 206 274
10 3 207 242 340 352 354
10 4 184 240 42.0 415 43.4
20 1 47 158 9.6 16.0 13.0
20 2 103 86 11.1 238 22.3
20 3 3.3 23 142 235 233
20 4 1 90 188 240 24.7
40 1 11.3 0 56 82 95
40 2 70 21 54 103 8.0
40 3 92 100 4.0 11.1 106
40 4 -22 48 86 149 16.2

Table 3b: 100-[1 — (AppMSFE/ExMSFE)].

g
n s 000 0.30 060 090 1.00

10 1 89 6.5 6.9 5.8 5.5
10 2 -5 10.2 2.9 0 —4.9
10 3 11.9 8.8 93 =35 1.7
10 4 94 84 190 -26 —6.9
20 1 54 6.9 1 7.1 3.9
20 2 56 —4 =26 8.6 5.9
20 3 -18 —-7T1 -9 1.9 -1.0
20 4 5.2 2 36 =31 7.0
40 1 6.7 5.1 T35 4.9
40 2 46 27 -138 16 -—1.4
40 3 6.8 58 43 -12 =32
40 4 49 3 2 1 -1.0
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no moments in finite samples. In light of his paper, the approximation in (12) may be
interpreted as analogous to the Nagar approximation for the moments of an estimator.
Conversely, the lack of existence of the ExMSFE (when fhat occurs) must be due to terms
smaller than Op(n-!) in the squared forecast error (i.e., op(n-!) and probably Op(n-t-5))
because the AppMSFE accounts for all terms Op(n-t) and larger, and it exists for all s.
The existence or otherwise of the ExMSFE at relatively large s is an issue racurring in the

following section.

4. The MSFE for the Maximum Likelihood Estimator

Because the Schmidt-Baillie approximation relies on only the asymptotic distribution
of the estimator used, the formulae in Section 2 for OLS are equally valid for all estimators
asymptotically equivalent to OLS (cf. (4) and (4’) above). Exact maximum likelihood
(ML) is such an estimator, and one which has several desirable features in the present
context.!? In particular, its ExXMSFE exists at all forecast horizons s, indeperdent of the size
of the estimation period n. We show this by examining the properties of th: ExMSFE for
truncated estimators: truncation at an arbitrary value implies the existence of the ExMSFE
at all finite forecast horizons, and truncation at the unit circle (as with ML) implies a
bound on the ExMSFE, independent of the forecast horizon. The first of these results
allows us to assess the generality of the Schmidt-Baillie approximation at forecast horizons
longer than those feasible for OLS. However, because the analytical formula for the
ExMSFE with ML is unknown, we compare the AppMSFE with Monte Carlo estimates of
the exact MSFE. Again, the AppMSFE is a remarkably good approximation, even for
short estimation periods and long forecast horizons.

Truncated estimators of[? and ezistence of the ezact MSFE. Consider a truncated
estimator f such that |f|<v for some positive bound 7. The corresponding forecast error
1s:

C Bups = 5 BV, o+ (BB)y,

12Cf. Maekawa (1987) who shows an equivalence to O(n"t) between the distributions of the
forecast error for OLS and approximate ML.



13

A bound can be placed on the MSFE for gn+s by application of the triangle and Schwartz
inequalities and by noting that E(y2)=0?/(1-5?).
[1-(62)5] _

(15) ExMSFE(g,, (ly,) = o? *J— + E[(F—5°)2-y2]
[1-(62)5]
162
[1-(52) 5] .
< ol ———| + E[(|55]+]65])Y-E(y2)

[ 1-6% o
1= f2s + (1+75)?
, | 1-42
~ If the bound is the unit circle (y=1), then a slightly looser bound exists which is

+ E[(6—F°)%-E(y2)

< o2

independent of s: i.e., 502/'( 1—(2), five times the unconditional variance of the process. The
‘existence o’ the ExMSFE doesvnot‘require that the estimator be consistent for any value
whatsoever&.' Converéely, because neither bound makes use of the asymptotic properties of
B, neither converges to the AsyMSFE as n-o. Even so, fhe existence of a bound (and so of
the ExMSFE) indicates how sensitive the existence conditions are to minor changes in the
distributional assumptions of the estimator being used. 13
The MSFE for Mazimum Likelihood. 1In order to assess the accuracy of fhe
AppMSFE in approximating the ExMSFE for ML without the advantage of exact
analytical formulae, we have estimated the exact MSFE by Monte Carlo for a wide range of
B, n, and s, and compared those estimates with the_vasy‘mptotic and approximate MSFE.
Specifically, we chose § = (0.0, 0.1, 0.2, ..., 0.8, 0.9, 0.95, 0.99), n =.(10, 15, 20, 25, 40),
and s = (1, 2, ..., 30), with §2=02/(1-(?) to ensure stationarity'. Thisb design embeds the
range of values evaluated by HMP for OLS with a stationary AR(1) process. However,

because the ExXMSFE for ML exists for all forecast horizons, we can compare its values with

BBE.g., the truncated estimator based on OLS and with y=1031° (the range permitted by
double-precision calculations on a computer) implies existence of the ExXMSFE for all s, yet
that truncated estimator will look like OLS for virtually all practical purposes.
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the AppMSFE at much longer forecast horizons than available to HMP. To obtain
reasonably accurate Monte Carlo estimates, we used 10,000 replications per experiment and
in addition implemented a control variate; Appendix D provides details.

Tables 4a and 4b respectively list the percent deviations of the AsyMSFE and the
AppMSFE from the control variate "pooled" estimates of the exact MSFE for ML
(PoMSFE) with n=10. Tables 5a—b, 6a—b, 7a—b, and 8a—b likewise list percent deviations
for n = 15, 20, 25, 40. To condense presentation, values for s>10 appear for s a; multiples
of five: at long horizons, the exact, asymptotic, and approximate MSFE all change slowly
as a function of s in any case.14 As with OLS, the AsyMSFE does reasonably well for small
to medium values of # and for large n, with the AppMSFE doing better, and over a wider
range of # and n. As n increases, both deviations generally decline, as would te expected
because the ExMSFE is tending to the AsyMSFE. Unlike with OLS, the AppMSFE often
over-estimates the ExMSFE for § in the range of [0.80, 0.95]. However, for 8 very close to
the unit circle (#=0.99), the AppMSFE again under-estimates the ExMSFE. The
boundedness of the ML estimator is affecting the ExMSFE for large §, but little more can
be said without considering terms smaller than O(n-!) in the MSFE. Even so, the
AppMSFE offers a remarkably simple and accurate summary of the behavior cf the ezact
MSFE for ML.

Figures 1-6 graph the estimated values of the ExMSFE for ML as well as the
ExMSFE for OLS, the AsyMSFE, and the AppMSFE. For (=0.2 with n=10, the
AppMSFE approximates the ExMSFE for ML better than it does the ExMSFJ for OLS.
At medium and large values of 4 (0.7 and 0.9) with n=10, the AppMSFE still does well,
but it over-estimates the ExMSFE at short to medium horizons and under-estimates it at
very long horizons. Relatedly, the "hump" so evident for the AppMSFE is less pronounced
(but still present) for the ExMSFE for ML. For n=20, the deviations betweer. the exact

and approximate MSFE are much smaller than for n=10, as expected.

14 Al values of the respective MSFEs for s<30 are tabulated in Appendix D.
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Percent Deviations of the Asymptotic and Approximate MSFE
from Pooled Monte Carlo Estimates of the Exact MSFE for Maximum Likelihood (n

10)

Table 4a: 100-[1 — (AsyMSFE/PoMSFE)].
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Percent Deviations of the Asymptotic and Approximate MSFE
from Pooled Monte Carlo Estimates of the Exact MSFE for Maximum Likelihood (n

15)

Table 5a: 100-[1 — (AsyMSFE/PoMSFE)).
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Table 5b: 100-[1 — (AppMSFE/PoMSFE)].
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Percent Deviations of the Asymptotic and Approximate MSFE
from Pooled Monte Carlo Estimates of the Exact MSFE for Maximum Likelihood (n=20)

Table 6a: 100-[1 — (AsyMSFE/PoMSFE)].
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Percent Deviations of the Asymptotic and Approximate MSFE

from Pooled Monte Carlo Estimates of the Exact MSFE for Maximum Likelihood

25)

n=
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Table 7a: 100-[1 — (AsyMSFE/PoMSFE)].
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Table 7b: 100-[1 — (AppMSFE/PoMSFE)].
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l4de

Percent Deviations of the Asymptotic and Approximate MSFE
from Pooled Monte Carlo Estimates of the Exact MSFE for Maximum Likelihood (n

40)

Table 8a: 100-[1 — (AsyMSFE/PoMSFE)].
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Table 8b: 100-[1 — (AppMSFE/PoMSFE)].

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

0.00

S

eneee

e

— AN <M1

Qemn o

|MRAQ2

erdee

—eeee

cocae

SEESE

S

O~ o
—

e

— —

SR

—— OO

—eee

eeee

o OO

eee=e

[enl en N e an)

SEEE

eee=

15
20
25
30




15

Before concluding, three issues are worth brief mention: sample size, exogenous
variables, and model linearity. The smallest sample size for our numerical results (n=10) is
very small in the context of empirical work. However, it may be a reasonable number to
use for comparison with empirical work, given that only one coefficient is being estimated.
The sample size relative to the number of coefficients is a plausible measure in this context
(cf. Sargan (1975)); and since much empirical work involves fewer than ten observations per
coefficient estimated, n=10 may be large rather than small for practical purposes.

Forecasts of endogenous variables often are based on forecasts (rather than known
values) of exogenous variables, adding another source of uncertainty. The algebra of
Section 2 readily addresses this because it analyzes a complete system: exogenous variables
can be included in the system in the same manner as the endogenous variadles, but the
former are not simultaneously determined with the endogenous variables nor are they
Granger-caused by the endogenous variables. However, for even relatively small systems,
the AppMSFE in (12) can become awkward to compute because of the large matrices
arising from vectorizing and from Kronecker products. Calzolari (1987) provides an
ingenious analytical technique which dramatically reduces the computational burden,
making the calculation of the AppMSFE feasible for medium- to large-scale mcdels.

The system in Section 2 is linear. Analytic approximations to confidence intervals
could be constructed for nonlinear equations (ot systems) as well, but Mariano and Brown
(1983) show that simulation may be preferable, not only for the MSFE but for the forecast

itself. In the context of (9), both the u , . and the A would be replicated a number of

+s—1
times by Monte Carlo simulation according to their estimated distributions, and Monte
Carlo estimates of the forecast mean and the MSFE would be constructed from the
resulting "pseudo-forecasts". Marquez (1988) applies this simulation approach to estimate
confidence intervals for the response of the US trade account to alternative exchange rate

realizations. That analysis examines the sensitivity of the confidence intervals to the two

types of uncertainty addressed here. His application also demonstrates that the uncertainty
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of coefficient estimates can have implications for economic questions other than just those

dealing with forecasts, e.g., paths of dynamic multipliers.

5. Conclusions

The Schmidt-Baillie formula provides a simple, accurate analytical approximation to
the exact MSFE for the AR(1) process and conveniently summarizes a wealth of
computationally intensive calculations given by Orcutt and Winokur (1969) and Hoque,
Magnus, and Pesaran (1988) for OLS with and without a constant term, and given herein
for maximum likelihood without a constant term. Further, the approximate MSFE can be
used to provide confidence intervals for forecasts in instances where formulae for the exact
MSFE are not known (e.g., multi-equation, multiple lag, dynamic simultaneous equations
systems), and when the exact MSFE may not even exist. In contrast to the asymptotic
MSFE, which increases monotonically with the forecast horizon, the exact MSFE can
decrease as well as increase as the forecast horizon increases, and the approximate MSFE
simply and accurately captures why that occurs. That non-monotonicity can be present
even when the economic process has little dynamics. What is important is that the extent
of the dynamics is unknown and so must be estimated.!’® For dynamics common to
econometric models, the approximate MSFE often has a mazrimum at a forecast horizon of
one to twelve periods, i.e., at horizons that are of principal concern to forecasters and
policy makers. Although exact results are seldom available for realistic econometric
models, the Schmidt-Baillie approximation is easily' calculated and appears more accurate

than the standard asymptotic formula.

15n our framework, autoregressive errors constitute dynamics, even if associated with static
models.
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Appendiz A. The Derivation of Vabr(bn S|yn).

First, note that (ABC)” = (AeC’)BY for conformable matrices A, B, and C, where

the Kronecker product  is defined as (AeB) = (bijA)‘ Thus,

(A.1) (s'A%y) = (15'A%)”
= (Iey;)(S'A%)”
where I is the identity matrix. Hence the second term on the RHS of (9) is:
(A:2) S'(A-A%)y, = (Iey!)[(S’'A%)'~(S'A%)"]
= (ey;)If(6) —1,(8)]
where £ () = (S’ A%)” = (S’eI)(A%)”. The derivative Of(8)/ 09’ is D(s)' R where:
(A.3) D(s)’ = 8(S'A%Y/8a’
= (S’eD){9(A%)"/de’}
= (sen[E] Ala(a% )]
by application of the matrix form of the chain rule, noting that:
(A.4) (AS)Y = [AiA(As—i—l)]V _ [AiQ(As—i—l),}(A)V
for i=0,...,s—1. Expanding fs(b) in a Taylor series about fs(ﬁ) gives:
(A.5) Va-[£(8) - £(8)] = [D(S)'JJ 0+-R- [Vin- (6-6)]
where 6* lies between # and 4. Because D(s)’ is everywhere continuous in 6, ther:

(A.6) plin D6, = (06)]),

I-m

By application of Cramér’s (1946, p. 299) Linear Transformation Theorem and Mann and
Wald’s (1943) Corollary 2,
(A7) VA-[£,(6) — £,(9)
and so at last we have:

(A.8) Var(bn,slyn) — n-1.(Igyl’l)[D(s)’I‘D(s)](1®yn) ,

ignoring terms of op(n'i).

1

N(0, D(s)’ T'D(s))

bl

See Schmidt (1974), Baillie (1979), and Chong and Hendry (1986) for deta:ls.
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Appendiz B. Asymptotic and Approzimate MSFE
for Hoque, Magnus, and Pesaran (1988) and Orcutt and Winokur ( 1969)

This appendix lists the asymptotic and approximate MSFE corresponding to the
values of (8,n,s) for which the exact MSFE is numerically evaluated in Hoque, Magnus, and
Pesaran (1938, Tables 1 and 2) and for which Orcutt and Winokur (1969, Table VII)
conducted Monte Carlo experiments.

For HMP, (12’) in the text above is the basis for the calculations of the AsyMSFE
and AppMSFE, reported in Table B.1, noting that the AsyMSFE is the first term on the
RHS of that equation. The same asymptotic and approximate MSFE are used for both the
stationary and non-stationary cases in Tables 1 and 2 in the text.

For Orcutt and Winokur (1969), the AsyMSFE and AppMSFE are derived below,
directly from (12), and are reported in Table B.2. However, (3) is not valid for their
experiment with (=1.0, so we use (=0.9999 instead. That should offer a good
approximation, given the difficulty in finite samples in distinguishing between a unit root
and a root close to (but less than) unity.

The derivation of the AsyMSFE and AppMSFE for the AR(1) process with an
unknown constant proceeds as follows. Equation (1) is a two-equation system, with the

first equation being the AR(1) process and the second equation defining the constant term:

Yit g a Uy
(B.1) v, = = Ay, | + u o = Vg t ,
Yot 01 0
where y,, = 1. The vectors and matrices necessary for solving (12) are as follows.
(B.2) a = AY = (fo0al)
§ = (ap)
020
Q =
00
S = (10)

ot +a?(1+5)/(1-6) —a(1+5)
~o( 1+5) (1-62)
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(01
R - |00

10

_O 0_«
r = (0001)

In Orcutt and Winokur’s experiments, a=0, simplifying ¥ and hence I' and D(s).

o? 0
B.3 ¥ =
e o ol

(1-82) 0 0 0]
I = RUR' = 0 0 0 0
0 0 o 0
0 0 0 0
56510 0 0
D(s)’ = .
0 0 %4 0

The summations in D(s)’ are over j=0,..s—1. Substituting (B.2)«(B.3) into (12) and

simplifying, the AppMSFE for a univariate AR(1) process with an unknown constant is:
1-(82)5 1-6)2 )

1-p2 1_—5*} J

where we have set y2 =o02/(1—(42), its unconditional expectation. The first term on the

(B.4) AppMSFE = 02{

+ (n-l. 0-2).{ (Sﬂ5‘1)2 +

RHS of (B.4) is the AsyMSFE and is the same as when the constant is known. The first
term in the braces is the effect from estimating § (as in (12/)); the second term is from
estimating o and is additional to what appears in (127). These three sources of uncertainty

can be seen clearly from the generalization of (9/), the equation for the forecast error.

“ sal , .. - sal R anSal o,
(B5) Upysdurd = &0 ey + BBy, + o5 (05 + (ca)s b
The first two terms on the RHS are the same as in (9’), the third is zero for a=0, and the

fourth is the contribution from estimating rather than knowing «. Fuller and Hasza (1980)

derived (B.4) directly from (B.5).
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Table B.1: Values of AppMSFE and AsyMSFE for HMP (1988, Tables 1-2)

s

n s 000 010 020 030 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

10 1 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111
10 2 1.000 1.014 1.058 1.130 1.231 1.361 1.520 1.708 1.924 2.170 2.304 2.416
10 3 1.000 1.010 1.043 1.106 1.211 1.375 1.619 1.970 2.459 3.122 3.532 3.901
10 4 1.000 1.010 1.042 1.100 1.197 1.356 1.619 2.057 2.778 3.942 4.759 5.556
15 1 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071
15 2 1.000 1.013 1.051 1.116 1.206 1.321 1.463 1.630 1.823 2.041 2.160 2.260
15 3 1.000 1.010 1.043 1.103 1.202 1.353 1.573 1.884 2.313 2.888 3.241 3.558
15 4 1.000 1.010 1.042 1.100 1.194 1.346 1.590 1.982 2.611 3.605 4.292 4.958
20 1 1.053 1.053 1.0563 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053
20 2 1.000 1.012 1.048 1.109 1.194 1.303 1.436 1.593 1.775 1.981 2.092 2.186
20 3 1.000 1.010 1.042 1.102 1.198 1.342 1.551 1.844 2.244 2.777 3.103 3.396
20 4 1.000 1.010 1.042 1.099 1.193 1.341 1.576 1.947 2.532 3.445 4.071 4.675
25 1 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042
25 2 1.000 1.012 1.047 1.105 1.187 1.292 1.420 1.572 1.747 1.945 2.053 2.143
25 3 1.000 1.010 1.042 1.101 1.195 1.336 1.538 1.820 2.203 2.712 3.022 3.301
25 4 1.000 1.010 1.042 1.099 1.192 1.339 1.567 1.926 2.487 3.352 3.942 4.510
o 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
o 2 1.000 1.010 1.040 1.090 1.160 1.250 1.360 1.490 1.640 1.810 1.903 1.980
o 3 1.000 1.010 1.042 1.098 1.186 1.313 1.490 1.730 2.050 2.466 2.717 2.941
o 4 1.000 1.010 1.042 1.099 1.190 1.328 1.536 1.848 2.312 2.998 3.452 3.882
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Table B.2: Values of AppMSFE and AsyMSFE for Orcutt and Winokur (1969, Table VII)

p

n s 0.00 0.30 0.60 0.90 1.00

10 1 1.222  1.222 1.222 1.222 1.222
10 2 1.111  1.318 1.804 2.571 2.889
10 3 1.111  1.321 2.046 3.938 4.999
10 4 1.111  1.323 2.145 5.256 7.553
20 1 1.106 1.106 1.105 1.105 1.105
20 2 1.0563 1.198 1.571 2.171 2.421
20 3 1.063 1.204 1.753 3.163 3.946
20 4 1.053 1.205 1.825 4.068 5.682
40 1 1.051 1.061 1.051 1.051 1.051
40 2 1.026 1.143 1.463 1.986 2.205
40 3 1.026 1.150 1.618 2.806 3.461
40 4 1.026 1.151 1.677 3.519 4.819
o 1 1.000 1.000 1.000 1.000 1.000
o 2 1.000 1.090 1.360 1.810 2.000
o 3 1.000 1.098 1.490 2.466 3.000
o 4 1.000 1.099 1.536 2.998 4.000
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Appendiz C. The Imprecision of Monte Carlo Estimates of the MSFE

This appendix provides an approximate lower bound on the uncertainty of Monte
Carlo estimates of the exact MSFE. This bound is valid for the AR(1) model both with
and without estimating a constant term, and it generalizes straightforwardly to the MSFE
from a general linear dynamic system by using a Wishart rather than a y2 distribution.

In (9], and so in (9”) and (B.5), the source of "inherent" uncertainty is independent
from that of coefficient uncertainty. In a Monte Carlo analysis such as Orcutt and

Winokur’s, all the u,’s are simulated; thus, both the "future" errors u and the § are

n+s—i
simulated.  Throughout this appendix, we ignore the latter effect because the first
dominates, at least for large n. From independence, that results in a lower bound on the

associated variability from Monte Carlo simulation. The forecast errors (ignoring

coefficient uncertainty) are a linear combination of the future shocks uﬁ T where £
denotes the £th of L replications.
{ ~ N Sl 4
The ur€+s—i are jointly normal, so the linear combination of them on the RHS is normal.
sal . !
(C.2) i{Jo (ﬂl)'un—i-s—i ~ N(0, AsyMSFE)

The Monte Carlo estimator of the MSFE is the average of the squared forecast errors:

L
¢ .t
(C.3) McMSFE = §1 (s ~Inpe/L v ASyMSFE. x(L)/L .

{=
Because the first two moments of a x2(L) are L and 2L, and because L typically is quite

large, we have the following approximation:

(C.4) McMSFE/ExMSFE @ McMSFE/AsyMSFE  »  x2(L)/L o N 2/1))
That is, the estimated MSFE is unbiased for the ExMSFE (which is an exact result,
following directly from the estimated MSFE being a sample mean of the ExMSFE), with a
percent standard deviation approximately equal to 100-(2/L). Monte Carlo simulation
indicates that the approximation errors in (C.4) are small for the values of (8,n,s) in (e.g.)
HMP and with 112100. Orcutt and Winokur (1969) use L=1000, so the 95% confidence

interval on a typical estimate in their study is approximately £9.0%.
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Appendiz D. Details of the Monte Carlo Simulation of the MSFE
Based on the Mazimum Likelihood Estimator

This appendix describes methodological and computational aspects of the Monte
Carlo simulation of the MSFE for ML, and tabulates the resulting asymptotic,
approximate, and Monte Carlo estimates of the MSFE.

Ezperimental Design. In the notation and terminology of Hendry (1984), the data
generation process is (17) plus (13), the relationship of interestis (1”) (but would not be if,
e.g., the econometric model were mis-specified), the objective of the Monte Carlo study is to
estimate the (exact) MSFE over a wide range of the parameter space © x 7, so that:

(D.1) 4 (6,0 € © = (6] ][8]<1; 02>0)

T (n, s) € I = (7] ne[na,n, s€[sa,sy]) ,
where ng, nyp, s, and sy, are pre-assigned. We chose o2=1, and without loss of generality.
For 3, n, and s, we chose the same values as in Hoque, Magnus, and Pesaran (1988), but
included n=40 and s=5,6,...,30 as well, given the interest in the performance of the
analytical formulae at medium to long forecast horizons. A full factorial design was
adopted for (4,n) given by:
(D.2) g = (0.0,0.1,0.2 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99)
n = (10, 15, 20, 25, 40) ,

with 60 experiments in all. For each experiment, the MSFE was estimated at horizons:
(D.3) s = (1,2,3,4,5,6, ..., 29, 30) .

Stmulation. For each experiment, L replications of n+s normal pseudo-random

numbers {(uf, t=1,...,n+s), =1,...,.L} were generated from pairs of uniform pseudo-random

l
t’
t=1,...,n+s) was created from (1’) and (13) with §2=(1-(2)"! (i.e., stationary yt’s), and the

numbers using Box and Muller’s (1958) transformation.t For each replication, a set (y

ML estimate was found by solving the cubic in § from setting the score of the likelihood

The uniform random number generators are Carrier, Atkins, and Taylor’s (1969) mixed-
congruential generator RNDM (but converted from COMPASS to FORTRAN) and NAg’s
(1984) multiplicative-congruential generator GO5CAF. Different random number generators
were used for each number in the pair of uniform pseudo-random numbers in order to avoid
potential difficulties with Box and Muller’s transformation: see Neave (1973).
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equal to zero; see Koopmans (1942), Anderson (1971, p. 354), and Beach and MacKinnon
(1978). Given the ML estimate, the forecast error was calculated for each value of s.
Explicitly, let f=p(0n,n;j,¢) denote the ML estimate for the £th replication of the experiment

with =0y and n=nj, and let {gr(f-?-sk(ﬂh); sx=1,2,...,30} be the corresponding set of
j
observed forecast errors.
-1
(&) (&) _ kTt Sk_7Sky . ¢
nj+Sk ynj+sk - 120 (’B}ll) unj-}-sk—i + (’Bh ﬁs ) ynj ’

@4 g, @) = v

The Monte Carlo estimator of the MSFE is:

' . 5 (¢) 2
03  Mowsee, () = 8 {60

which, in Hendry’s (1984) terminology, is the naive Monte Carlo estimator. When
normalized by the ExMSFE, it is approximately distributed as N(1, [2/L]). In our design,
L is 104, so the standard deviation of McMSFE/ExMSFE is (2/104) or about 1.4%.
Increasing L tenfold would reduce the standard deviation to only about 0.5%, an indication
of the difficulties in obtaining precise estimates by such Monte Carlo techniques. Cf.
Ansley and Newbold (1980) who compute the McMSFE for several estimators (including
ML) of various ARMA processes, but use 1000 or fewer replications per experiment.

Clontrol variates provide a powerful method for variance reduction of naive Monte
Carlo estimators; cf. Hammersley and Handscomb (1964) and Hendry (1984) for details.
To be useful, a control variate (CV) should be highly correlated with the naive estimator
and should have a known distribution.2 Because the purpose of the Monte Carlo study is to
estimate a moment which is wunknown, those two properties might seem to conflict.
However, often it is possible to partition a statistic into an "asymptotic" component and a
finite sample one, with the former having an exact distribution; cf. Hendry (1984) on doing
so for econometric estimators. The McMSFE has a natural control variate beéause the first
term on the RHS of the equality in (D.4) (and more generally, of (9)) is ezactly normal, and

independent of the second term. The implied control variate is:

20ften, knowing the first two moments of the CV suffices.
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(D.6) CYMSFE = % [3 (Bi)u
(=1 i=0

2
nj+Sk—i] /L,
which, as is shown in Appendix C, is exactly distributed as AsyMSFE-x%(L)/L and has a
mean of AsyMSFE.
The CV is used to reduce the simulation uncertainty by subtracting it from the
naive estimator (with which it is positively correlated) and adding back the known mean of

the CV. The resulting Monte Carlo estimator is called a pooled estimator, anc. here is:

(D.7) PoMSFE = McMSFE — CvMSFE + E(CvMSFE)
L Sk Sk L
= AsyMSFE + Zzl[(ﬁh ;e )-ynj]2/L .

By construction, the pooled estimator has the same expectation as the naive estimator. Its
variance is smaller than that of the naive estimator by the extent to which the CV is
correlated with the naive estimator. In the present casé, the reduction in variance is
obvious because the CV has eliminated the term in the naive estimator which simulates the
AsyMSFE. The efficiency of the CV will vary across experiments, but from a cursory
comparison of the fluctuations in the naive and pooled estimatés, it is readily apparent that
they are considerable for the MSFE.

The entire Monte Carlo study for the MSFE with ML took 12 hours 45 mihutes on
an IBM PS/2 Model 70 (80386 PC running at 20 MHz with an 80387 math chip).

Tables. Tables D.1-D.5 list the values of the POMSFE for n=10, 15, 20, 25, and 40
respectively. Tables D.6—D.10 list the corresponding values of AppMSFE. Table D.11 lists
the values of AsyMSFE (applicable to all values of n).
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of the Exact MSFE for Maximum Likelihood (PoMSFE) for n=10.

g
s 000 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1116 1.106 1.116 1.104 1.106 1.111 1.122 1.091 1.093 1.071 1.067 1.168
2 1.034 1.049 1.081 1.138 1.232 1.331 1.472 1.617 1.782 1.958 2.093 2.631
3 1.011 1.030 1.064 1.135 1.237 1.392 1.606 1.877 2.227 2.694 3.077 4.403
4 1.007 1.022 1.054 1.118 1.227 1.380 1.638 1.990 2.504 3.312 4.019 6.441
5 1.004 1.012 1.050 1.110 1.221 1.378 1.634 2.044 2.693 3.809 4.906 8.788
6 1.001 1.016 1.046 1.104 1.214 1.378 1.622 2.063 2.801 4.245 5.770 11.221
7 1.001 1.014 1.046 1.106 1.209 1.372 1.614 2.071 2.889 4.597 6.602 14.008
8 1.001 1.015 1.043 1.102 1.199 1.364 1.614 2.070 2.921 4.867 7.416 17.080
9 1.001 1.011 1.042 1.102 1.200 1.351 1.599 2.065 2.957 5.092 8.165 20.418
10 1.000 1.012 1.042 1.102 1.201 1.350 1.592 2.048 2.968 5.292 8.833 23.980
11 1.000 1.011 1.042 1.100 1.195 1.349 1.587 2.038 2.981 5.449 9.491 27.650
12 1.000 1.011 1.042 1.100 1.193 1.346 1.581 2.039 2.951 5.593 10.189 31.724
13 1.001 1.010 1.043 1.099 1.191 1.344 1.577 2.026 2.953 5.709 10.819 35.812
14 1.000 1.010 1.042 1.100 1.192 1.342 1.576 2.009 2.952 5.834 11.413 40.078
15 1.000 1.010 1.042 1.100 1.194 1.339 1.576 2.007 2.925 5.858 11.911 44.643
16 1.000 1.010 1.042 1.099 1.193 1.340 1.574 1.994 2.915 5.942 12.413 49.584
171000 1.011 1.043 1.099 1.193 1.337 1.571 1.987 2.905 5.974 12.905 54.764
18 1.000 1.010 1.041 1.099 1.192 1.337 1.568 1.988 2.903 6.032 13.393 59.840
19 1000 1.011 1.042 1.099 1.191 1.336 1.567 1.985 2.885 6.046 13.799 65.245
20 1001 1.010 1.042 1.099 1.191 1.335 1.568 1.981 2.870 6.060 14.197 70.630
21 1000 1.010 1.042 1.099 1.191 1.335 1.567 1.978 2.863 6.093 14.475 75.965
221000 1.010 1.042 1.099 1.191 1.334 1.567 1.979 2.858 6.090 14.783 81.850
23 1000 1.010 1.042 1.099 1.190 1.333 1.567 1.973 2.852 6.066 15.058 88.023
24 1000 1.010 1.042 1.099 1.191 1.334 1.565 1.973 2.844 6.054 15.323 94.019
25 1000 1.010 1.042 1.099 1.191 1.334 1.565 1.974 2.837 6.032 15.574 100.169
26 1000 1.010 1.042 1.099 1.191 1.334 1.564 1.973 2.829 6.028 15.829 106.487
27 1.000 1.010 1.042 1.099 1.191 1.335 1.564 1.970 2.823 6.024 16.083 112.841
28 1.000 1.010 1.042 1.099 1.191 1.334 1.563 1.971 2.828 5.985 16.388 119.275
29 1.000 1.010 1.042 1.099 1.191 1.334 1.563 1.972 2.833 5.946 16.678 125.746
30 1.000 1.010 1.042 1.099 1.191 1.334 1.563 1.971 2.827 5.925 16.910 131.839
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of the Exact MSFE for Maximum Likelihood (PoMSFE) for n=15.

s
s 000 010 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.065 1.078 1.083 1.070 1.072 1.067 1.072 1.072 1.062 1.051 1.041 1.152
2 1.014 1.027 1.059 1.127 1.207 1.297 1.447 1.583 1.756 1.941 2.034 2.586
3 1.003 1.016 1.051 1.124 1.220 1.360 1.569 1.839 2.198 2.648 2.977 4.283
4 1.003 1.014 1.046 1.105 1.209 1.369 1.597 1.962 2.477 3.256 3.867 6.280
5 1.000 1.012 1.045 1.104 1.204 1.363 1.607 2.000 2.661 3.756 4.710 8.453
6 1.001 1.010 1.042 1.103 1.198 1.352 1.611 2.032 2.763 4.147 5.491 10.973
7 1.000 1.011 1.042 1.100 1.195 1.348 1.602 2.030 2.820 4.482 6.255 13.634
8§ 1.000 1.011 1.041 1.100 1.192 1.343 1.590 2.037 2.869 4.737 6.955 16.574
9 1.000 1.010 1.041 1.100 1.193 1.340 1.586 2.027 2.906 4.949 7.618 19.685
10 1.000 1.010 1.042 1.100 1.193 1.342 1.582 2.024 2.917 5.117 8.194 23.056
11 1.000 1.010 1.042 1.100 1.193 1.339 1.580 2.016 2.913 5.267 8.791 26.588
12 1.000 1.010 1.042 1.099 1.192 1.338 1.572 2.003 2.914 5.375 9.358 30.521
13 1.000 1.010 1.042 1.099 1.191 1.335 1.572 1.992 2.905 5.452 9.883 34.334
14 1.000 1.010 1.042 1.099 1.191 1.334 1.569 1.991 2.887 5.51510.339 38.636
15 1.000 1.010 1.042 1.099 1.191 1.337 1.571 1.985 2.869 5.558 10.714 42.911
16 1.000 1.010 1.042 1.099 1.191 1.335 1.566 1.979 2.862 5.599 11.168 47.296
17 1.000 1.010 1.042 1.099 1.191 1.334 1.567 1.973 2.853 5.641 11.520 51.791
18 1.000 1.010 1.042 1.099 1.190 1.334 1.565 1.972 2.852 5.640 11.864 56.558
19 1.000 1.010 1.042 1.099 1.191 1.334 1.564 1.970 2.844 5.646 12.192 61.286
20 1.000 1.010 1.042 1.099 1.191 1.334 1.564 1.969 2.839 5.641 12.434 66.431
21 1.000 1.010 1.042 1.099 1.191 1.334 1.562 1.969 2.837 5.673 12.763 71.834
22 1.000 1.010 1.042 1.099 1.190 1.335 1.563 1.970 2.831 5.689 13.020 77.132
23 1.000 1.010 1.042 1.099 1.190 1.335 1.563 1.966 2.820 5.688 13.277 82.578
24 1.000 1.010 1.042 1.099 1.191 1.334 1.564 1.962 2.818 5.712 13.518 88.121
25 1.000 1.010 1.042 1.099 1.191 1.334 1.564 1.963 2.811 5.691 13.790 94.025
26 1.000 1.010 1.042 1.099 1.190 1.334 1.564 1.967 2.807 5.712 13.950 99.598
27 1.000 1.010 1.042 1.099 1.191 1.334 1.564 1.964 2.804 5.708 14.167 105.510
28 1.000 1.010 1.042 1.099 1.191 1.333 1.563 1.963 2.799 5.694 14.351 111.464
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.964 2.797 5.690 14.520 117.633
30 1.000 1.010 1.042 1.099 1.191 1.333 1.563 1.963 2.791 5.677 14.631 123.824
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of the Exact MSFE for Maximum Likelihood (PoMSFE) for n=20.

p
s 0.0 010 0.20 0.30 040 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.057 1.054 1.054 1.065 1.059 1.059 1.042 1.046 1.047 1.028 1.039 1.123
2 1.008 1.017 1.058 1.109 1.196 1.299 1.413 1.563 1.739 1.896 2.023 2.509
3 1.000 1.013 1.047 1.109 1.207 1.351 1.538 1.819 2.177 2.609 2.937 4.146
4 1.001 1.011 1.043 1.104 1.199 1.353 1.575 1.933 2.456 3.179 3.811 6.024
o 1.000 1.010 1.042 1.101 1.197 1.351 1.583 1.986 2.622 3.653 4.615 8.061
6 1.000 1.010 1.043 1.100 1.194 1.347 1.582 2.009 2.730 4.044 5.336 10.375
7 1.000 1.010 1.042 1.099 1.193 1.340 1.582 2.007 2.803 4.372 6.062 12.865
8 1.000 1.010 1.042 1.099 1.192 1.338 1.579 2.004 2.849 4.640 6.687 15.592
9 1.000 1.010 1.042 1.099 1.191 1.337 1.576 1.996 2.883 4.846 7.265 18.504
10 1.000 1.010 1.042 1.099 1.190 1.336 1.571 1.992 2.891 5.028 7.842 21.550
11 1.000 1.010 1.042 1.099 1.191 1.334 1.568 1.988 2.886 5.170 8.378 24.881
12 1.000 1.010 1.042 1.099 1.191 1.334 1.568 1.983 2.891 5.281 8.841 28.284
13 1.000 1.010 1.042 1.099 1.191 1.334 1.565 1.984 2.876 5.380 9.315 31.905
14 1.000 1.010 1.042 1.099 1.191 1.335 1.567 1.983 2.862 5.457 9.748 35.593
15 1.000 1.010 1.042 1.099 1.190 1.335 1.566 1.977 2.853 5.506 10.133 39.527
16 1.000 1.010 1.042 1.099 1.190 1.334 1.565 1.976 2.840 5.562 10.497 43.559
17 1.000 1.010 1.042 1.099 1.191 1.334 1.567 1.974 2.836 5.607 10.868 47.818
18 1.000 1.010 1.042 1.099 1.191 1.333 1.565 1.971 2.833 5.605 11.204 51.068
19 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.967 2.829 5.638 11.524 56.220
20 1.000 1.010 1.042 1.099 1.190 1.334 1.563 1.968 2.825 5.672 11.781 60.862
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.966 2.824 5.657 12.027 65.446
22 1.000 1.010 1.042 1.099 1.191 1.333 1.563 1.968 2.816 5.642 12.282 70.448
23 1.000 1.010 1.042 1.099 1.191 1.334 1.562 1.965 2.809 5.651 12.491 75.559
24 1.000 1.010 1.042 1.099 1.190 1.334 1.562 1.962 2.804 5.648 12.713 80.547
25 1.000 1.010 1.042 1.099 1.191 1.334 1.563 1.963 2.802 5.621 12.866 85.965
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.797 5.611 13.022 90.991
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.791 5.602 13.183 96.572
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.790 5.596 13.274 102.169
29 1.000 1.010 1.042 1.099 1.190 1.334 1.563 1.963 2.793 5.590 13.428 107.023
30 1.000 1.010 1.042 1.099 1.190 1.334 1.563 1.963 2.788 5.588 13.540 113.626
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of the Exact MSFE for Maximum Likelihood (PoMSFE) for n=25.

g
s 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.038 1.045 1.037 1.041 1.038 1.040 1.038 1.042 1.040 1.034 1.030 1.122
2 1.006 1.018 1.049 1.109 1.186 1.289 1.406 1.558 1.721 1.903 2.008 2.463
3 1.001 1.011 1.045 1.103 1.205 1.337 1.532 1.801 2.170 2.618 2.922 4.033
4 1.001 1.010 1.044 1.102 1.198 1.346 1.574 1.920 2.451 3.199 3.750 5.806
5 1.000 1.011 1.042 1.100 1.194 1.344 1.579 1.961 2.608 3.669 4.529 7.713
6 1.000 1.011 1.041 1.100 1.195 1.340 1.576 1.979 2.720 4.068 5.259 9.822
7 1.000 1.010 1.042 1.100 1.192 1.338 1.579 1.994 2.801 4.378 5.922 12.175
8 1.000 1.010 1.042 1.100 1.191 1.338 1.576 1.988 2.827 4.643 6.532 14.692
9 1.000 1.010 1.042 1.099 1.191 1.334 1.572 1.985 2.843 4.831 7.092 17.384
10 1.000 1.010 1.042 1.099 1.191 1.335 1.570 1.986 2.852 4.988 7.603 20.285
11 1.000 1.010 1.042 1.099 1.191 1.333 1.569 1.982 2.863 5.138 8.107 23.305
12 1.000 1.010 1.042 1.099 1.190 1.334 1.567 1.969 2.862 5.250 8.535 26.582
13 1.000 1.010 1.042 1.099 1.190 1.334 1.565 1.964 2.861 5.357 8.960 29.712
14 1.000 1.010 1.042 1.099 1.190 1.334 1.566 1.963 2.848 b5.423 9.356 33.256
15 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.965 2.835 5.471 9.637 36.877
16 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.969 2.840 5.489 10.001 40.741
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.968 2.831 5.538 10.296 44.612
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.968 2.826 5.543 10.654 48.773
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.967 2.821 5.559 10.871 52.859
20 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.965 2.820 5.569 11.101 57.374
21 1.000 1.010 1.042 1.099 1.191 1.333 1.563 1.964 2.815 5.565 11.277 61.868
22 1.000 1.010 1.042 1.099 1.191 1.333 1.563 1.963 2.817 5.583 11.479 66.301
23 1.000 1.010 1.042 1.099 1.191 1.333 1.562 1.964 2.808 5.593 11.633 71.171
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.808 5.592 11.853 75.694
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.960 2.802 5.573 12.025 80.584
26 1.000 1.010 1.042 1.099 1.190 1.334 1.563 1.961 2.802 5.587 12.194 85.633
27 1.000 1.010 1.042 1.099 1.190 1.334 1.563 1.962 2.800 5.568 12.336 90.631
28 1.000 1.010 1.042 1.099 1.190 1.334 1.563 1.961 2.795 5.576 12.412 95.607
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.792 5.554 12.469 100.474
30 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.793 5.545 12.558 105.541




Table D.5: The Pooled Monte Carlo Estimates
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of the Exact MSFE for Maximum Likelihood (PoMSFE) for n=40.

B
s 000 010 020 0.30 040 050 0.60 0.70 0.80 0.90 0.95 0.99
1 1.022 1.031 1.025 1.029 1.022 1.026 1.019 1.026 1.022 1.020 1.021 1.099
2 1.003 1.012 1.047 1.098 1.175 1.278 1.392 1.532 1.691 1.866 1.971 2.371
3 1.001 1.010 1.042 1.100 1.193 1.325 1.513 1.781 2.115 2.583 2.836 3.790
4 1.000 1.010 1.042 1.100 1.195 1.338 1.555 1.894 2.388 3.155 3.626 5.359
5 1.000 1.010 1.042 1.100 1.192 1.339 1.566 1.945 2.566 3.619 4.356 7.088
6 1.000 1.010 1.042 1.099 1.191 1.338 1.568 1.971 2.679 4.018 5.009 8.993
7 1.000 1.010 1.042 1.099 1.190 1.337 1.568 1.975 2.743 4.329 5.635 11.023
§ 1.000 1.010 1.042 1.099 1.191 1.335 1.568 1.981 2.776 4.575 6.197 13.225
9 1.000 1.010 1.042 1.099 1.190 1.334 1.565 1.979 2.794 4.791 6.721 15.557
10 1.000 1.010 1.042 1.099 1.190 1.334 1.565 1.975 2.801 4.942 7.185 17.967
11 1.000 1.010 1.042 1.099 1.191 1.333 1.565 1.970 2.809 5.051 7.630 20.450
12 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.966 2.812 5.142 8.039 23.063
13 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.969 2.809 5.240 8.417 25.659
14 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.964 2.808 5.303 8.742 28.448
15 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.810 5.340 9.045 31282
16 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.808 5.368 9.335 34.305
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.964 2.806 5.382 9.601 37.339
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.965 2.804 5.407 9.821] 40.631
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.798 5.418 10.034 43.852
200 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.963 2.794 5.435 10.252 47.145
21 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.962 2.792 5.457 10.415 50.553
22 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.794 5.457 10.596 54.235
23 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.962 2.794 5.432 10.730 57.833
24 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.790 5.436 10.869 61.580
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.791 5.427 11.002 65.137
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.789 5.426 11.126 68.910
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.786 5.416 11.210 72.868
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.785 5.436 11.307 76.749
29 1000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.784 5.445 11.298 80.818
30 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.783 5.440 11.420 84.840
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Table D.6:  The Approximate MSFE (AppMSFE) for n=10.

g
s 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1111 1111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111
2 1.000 1.014 1.058 1.130 1.231 1.361 1.520 1.708 1.924 2.170 2.304 2.416
3 1.000 1.010 1.043 1.106 1.211 1.375 1.619 1.970 2.459 3.122 3.532 3.901
4 1.000 1.010 1.042 1.100 1.197 1.356 1.619 2.057 2.778 3.942 4.759  5.556
o 1.000 1.010 1.042 1.099 1.192 1.343 1.600 2.066 2.946 4.624 5.958 7.368
6 1.000 1.010 1.042 1.099 1.191 1.337 1.583 2.047 3.016 5.171 7.109 9.327
7 1.000 1.010 1.042 1.099 1.191 1.335 1.573 2.023 3.030 5.597 8.197 11.429
8§ 1.000 1.010 1.042 1.099 1.190 1.334 1.568 2.002 3.012 5.915 9.210 13.642
9 1.000 1.010 1.042 1.099 1.190 1.333 1.565 1.988 2.981 6.141 10.144 15.979
10 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.977 2.946 6.291 10.293 18.423
11 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.971 2.912 6.379 11.758 20.965
12 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.967 2.883 6.419 12.438 23.596
13 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.964 2.858 6.421 13.037 26.309
14 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.838 6.395 13.356 29.095
15 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.823 6.348 14.001 31.948
16 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.811 6.288 14.375 34.860
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.802 6.219 14.584 37.825
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.795 6.146 14.932 40.836
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.790 6.071 15.125 43.886
20 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.787 5.996 15.267 46.970
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.784 5.924 15.364 50.083
22 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.782 5.856 15.420 53.219
23 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.781 5.792 15.440 56.373
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.780 5.732 15.428 59 540
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.678 15.388 62.716
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.628 15.324 65.897
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.583 15.238 69.077
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.543 15.136 72.254
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.507 15.018 75.424
30 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.476 14.389 78.583
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Table D.7: The Approximate MSFE (AppMSFE) for n=15.

p

s 000 0.10 0.20 0.30 0.40 050 0.60 0.70 0.80 0.90 0.95 0.99
1 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071 1.071
2 1.000 1.013 1.051 1.116 1.206 1.321 1.463 1.630 1.823 2.041 2.160  2.260
3 1.000 1.010 1.043 1.103 1.202 1.353 1.573 1.884 2.313 2.888 3.241 3.558
4 1.000 1.010 1.042 1.100 1.194 1.346 1.590 1.982 2.611 3.605 4.292  4.958
5 1.000 1.010 1.042 1.099 1.192 1.339 1.583 2.008 2.779 4.197 5.300  6.453
6 1.000 1.010 1.042 1.099 1.191 1.336 1.575 2.006 2.863 4.673 6.254 8.035
7 1000 1.010 1.042 1.099 1.191 1.334 1.569 1.996 2.896 5.048 7.146 9.698
8 1.000 1.010 1.042 1.099 1.190 1.334 1.566 1.985 2.901 5.334 7.072 11.436
9 1000 1.010 1.042 1.099 1.190 1.333 1.564 1.977 2.891 5.545 8.729 13.242
10 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.971 2.874 5.695 9.417 15.111
111000 1.010 1.042 1.099 1.190 1.333 1.563 1.967 2.857 5.796 10.036 17.037
121000 1.010 1.042 1.099 1.190 1.333 1.563 1.964 2.841 5.856 10.589 19.015
13 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.826 5.886 11.078 21.040
14 1000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.815 5.892 11.506 23.106
15 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.805 5.881 11.877 25.210
16 1000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.798 5.858 12.194 27.346
171000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.793 5.826 12.462 29.511
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.789 5.788 12.684 31.700
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.786 5.748 12.864 33.910
20 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.783 5.707 13.007 36.136
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.782 5.666 13.115 38.376
22 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.781 5.626 13.192 40.626
23 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.780 5.588 13.243 42.883
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 9.553 13.269 45.144
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.520 13.273 47.407
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.490 13.260 49.667
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.463 13.230 51.924
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.438 13.186 54.173
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.416 13.131 56.414
30 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.396 13.065 58.645
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Table D.8: The Approximate MSFE (AppMSFE) for n=20.
g
s 0.00 0.10 020 0.30 040 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053
2 1.000 1.012 1.048 1.109 1.194 1.303 1.436 1.593 1.775 1.981 2.092 2.186
3 1.000 1.010 1.042 1.102 1.198 1.342 1.551 1.844 2.244 2.777 3.103 3.396
4 1.000 1.010 1.042 1.099 1.193 1.341 1.576 1.947 2.532 3.445 4.071 4.675
5 1.000 1.010 1.042 1.099 1.191 1.337 1.575 1.981 2.700 3.994 4.988  6.019
6 1.000 1.010 1.042 1.099 1.191 1.335 1.571 1.987 2.790 4.437 5.849 7.493
7 1.000 1.010 1.042 1.099 1.191 1.334 1.567 1.983 2.833 4.787 6.648 8.882
8 1.000 1.010 1.042 1.099 1.190 1.334 1.565 1.977 2.848 5.058 7.385 10.391
9 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.972 2.848 5.263 8.059 11.946
10 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.968 2.841 5.413 8.670 13.543
11 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.965 2.831 5.519 9.221 15.177
12 '1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.821 5.590 9.714 16.845
13 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.811 5.633 10.151 18.544
14 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.804 5.654 10.536 20.269
15 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.797 5.660 10.871 922.018
16 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.792 5.654 11.162 93.787
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.788 5.639 11.410 25.572
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.786 5.619 11.619 927.372
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.783 5.595 11.794 29.184
20 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.782 5.570 11.936 31.004
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.781 5.543 12.050 32.831
22 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.780 5.517 12.137 34.661
23 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.492 12.202 36.493
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.468 12.246 38.325
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.44512.272 40.155
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.42512.282 41.979
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.406 12.278 43.798
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.388 12.262 45.609
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.373 12.236 47.410
30 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.359 12.202 49.200




34

Table D.9: The Approximate MSFE (AppMSFE) for n=25.

g
s 000 0.10 020 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042
2 1.000 1.012 1.047 1.105 1.187 1.292 1.420 1.572 1.747 1.945 2.053 2.143
3 1.000 1.010 1.042 1.101 1.195 1.336 1.538 1.820 2.203 2.712 3.022 3.301
4 1.000 1.010 1.042 1.099 1.192 1.339 1.567 1.926 2.487 3.352 3.942 4.510
o 1.000 1.010 1.042 1.099 1.191 1.336 1.571 1.965 2.654 3.876 4.807 5.766
6 1.000 1.010 1.042 1.099 1.191 1.334 1.568 1.976 2.748 4.300 5.612 7.066
7 1.000 1.010 1.042 1.099 1.191 1.334 1.566 1.976 2.796 4.636 6.358 8.405
8§ 1.000 1.010 1.042 1.099 1.190 1.333 1.564 1.972 2.817 4.898 7.043 9.781
9 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.969 2.823 5.099 7.668 11.190
10 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.966 2.821 5.249 8.235 192.628
11 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.964 2.815 5.358 8.745 14.092
12 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.809 5.434 9.203 15.580
13 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.803 5.485 9.610 17.088
14 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.797 5.515 9.969 18.614
15 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.792 5.531 10.285 20.156
16 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.789 5.53510.559 21.710
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.786 5.530 10.796 23.275
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.784 5.520 10.998 24.848
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.782 5.506 11.169 26.427
20 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.781 5.489 11.312 28.011
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.780 5.472 11.428 29.596
22 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.454 11.522 31.182
23 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.436 11.595 32.766
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.418 11.649 34.347
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.402 11.687 35.924
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.386 11.711 37.495
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.372 11.723 39.058
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.359 11.724 40.613
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.347 11.715 42.157
30 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.337 11.698 43.691
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Table D.10: The Approximate MSFE (AppMSFE) for n=40.
B
s 000 0.10 0.20 0.30 040 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026
2 1.000 1.011 1.044 1.099 1.176 1.276 1.397 1.540 1.706 1.893 1.995 2.081
3 1.000 1.010 1.042 1.100 1.192 1.327 1.520 1.786 2.144 2.618 2.905 3.162
4 1.000 1.010 1.042 1.099 1.191 1.335 1.555 1.896 2.419 3.216 3.754 4.268
5 1.000 1.010 1.042 1.099 1.191 1.335 1.564 1.942 2.587 3.704 4.541 5.396
6 1.000 1.010 1.042 1.099 1.191 1.334 1.565 1.960 2.686 4.099 5.267 6.544
7 1.000 1.010 1.042 1.099 1.190 1.334 1.564 1.965 2.742 4.414 5.934 7.709
8 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.965 2.772 4.663 6.543 8.890
9 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.964 2.786 4.858 7.097 10.084
10 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.963 2.792 5.008 7.598 11.290
11 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.793 5.122 8.050 12.506
12 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.962 2.792 5.207 8.456 13.730
13 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.790 5.269 8.819 14.960
14 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.788 5.312 9.142 16.196
15 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.785 5.342 9.427 17.435
16 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.784 5.361 9.679 18.676
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.782 5.371 9.899 19.917
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.781 5.376 10.091 21.159
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.780 5.376 10.256 92.398
20 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.780 5.37310.399 23.635
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.367 10.520 24.868
22 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.779 5.361 10.622 26.096
23 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.353 10.707 27.318
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.346 10.777 28.534
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.338 10.834 29.741
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.331 10.878 30.941
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.323 10.912 32.131
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.317 10.936 33.311
29 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.311 10.953 34.481
30 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.305 10.962 35.639
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Table D.11: The Asymptotic MSFE (AsyMSFE).
g
s 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.010 1.040 1.090 1.160 1.250 1.360 1.490 1.640 1.810 1.902 1.980
3 1.000 1.010 1.042 1.098 1.186 1.313 1.490 1.730 2.050 2.466 2.717 2.941
4 1.000 1.010 1.042 1.099 1.190 1.328 1.536 1.848 2.312 2.998 3.452 3.882
5 1.000 1.010 1.042 1.099 1.190 1.332 1.553 1.905 2.480 3.428 4.116 4.805
6 1.000 1.010 1.042 1.099 1.190 1.333 1.559 1.934 2.587 3.777 4.714 5.709
7 1.000 1.010 1.042 1.099 1.190 1.333 1.561 1.947 2.656 4.059 5.255 6.596
8 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.954 2.700 4.288 5.742 7.464
9 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.958 2.728 4.473 6.182 8.316
10 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.959 2.746 4.623 6.580 9.150
11 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.960 2.757 4.745 6.938 9.968
12 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.960 2.765 4.843 7.262 10.770
13 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.769 4.923 7.554 11.556
14 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.772 4.988 7.817 12.326
15 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.774 5.040 8.055 13.080
16 1.000 1.010 1.042 1.099 1.190 1.333 1.562 1.961 2.776 5.082 8.270 13.820
17 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.776 5.117 8.463 14.545
18 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.777 5.145 8.638 15.256
19 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.777 5.167 8.796 15.952
20 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.777 5.185 8.938 16.635
21 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.200 9.067 17.304
22 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.212 9.183 17.959
23 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.222 9.288 18.602
24 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.230 9.382 19.232
25 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.236 9.467 19.849
26 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.241 9.544 20.454
27 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.245 9.614 21.047
28 1.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.249 9.676 21.628
29 2.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.251 9.733 22.198
30 2.000 1.010 1.042 1.099 1.190 1.333 1.563 1.961 2.778 5.254 9.784 22.756




37
References

Anderson, T.W. (1971) The Statistical Analysis of Time Series, New York, John Wiley.

Ansley, C.F. and P. Newbold (1980) "Finite Sample Properties of Estimators for
Autoregressive Moving Average Models", Journal of Econometrics, 13, 2, 159—183.

Baillie, R.T. (1979) "Asymptotic Prediction Mean Squared Error for Vector
Autoregressive Models", Biometrika, 66, 3, 675—678.

Beach, C.M. and J.G. MacKinnon (1978) "A Maximum Likelihood Procedure for
Regression with Autocorrelated Errors", Econometrica, 46, 1, 51—58.

Box, G.E.P. and G.M. Jenkins (1970) Time Series Analysis: Forecasting and Control, San
Francisco, Holden-Day.

Box, G.E.P. and M.E. Muller (1958) "A Note on the Generation of Random Normal
Deviates", Annals of Mathematical Statistics, 29, 2, 610—611.

Calzolari, G. (1987) "Forecast Variance in Dynamic Simulation of Simultaneous Equation
Models", Econometrica, 55, 6, 1473—1476.

Carrier, N., E. Atkins, and C. Taylor (1969) "Report on the London Atlas Random
Number Generator", mimeo, London, University of London Computing Centre.

Chong, Y.Y. and D.F. Hendry (1986) "Econometric Evaluation of Linear Macro-economic
Models", Review of Economic Studies, 53, 4, 671—690.

Chow, G.C. (1960) "Tests of Equality Between Sets of Coefficients in Two Linear
Regressions", Econometrica, 28, 3, 591—605.

Cramér, H. (1946) Mathematical Methods of Statistics, Princeton, Princeton University
Press.

Fuller, W.A. and D.P. Hasza (1980) "Predictors for the First-order Autoregressive
Process", Journal of Econometrics, 13, 2, 139—157.

Hammersley, J.M. and D.C. Handscomb (1964) Monte Carlo Methods, London, Chapman
and Hall.

Hendry, D.F. (1984) "Monte Carlo Experimentation in Econometrics", Chapter 16 in
Z. Griliches and M.D. Intriligator (eds.) Handbook of Econometrics, Amsterdam,
North-Holland, Volume II, 937-976.

Hoque, A., J.R. Magnus, and B. Pesaran (1988) "The Exact Multi-period Mean-square

Forecast Error for the First-order Autoregressive Model", Journal of Econometrics,
39, 3, 327—346.

Koopmans, T.C. (1942) "Serial Correlation and Quadratic Forms in Normal Variables",
Annals of Mathematical Statistics, 13, 1, 14—34.

Maekawa, K. (1987) "Finite Sample Properties of Several Predictors from an
Autoregressive Model", Econometric Theory, 3, 3, 359—370.



38

Magnus, J.R. and B. Pesaran (1989) "The Exact Multi-period Mean-square Forecast Error
for the First-order Autoregressive Model with an Intercept", Journal of
Econometrics, forthcoming.

Mann, H.B. and A. Wald (1943) "On Stochastic Limit and Order Relationships", Annals
of Mathematical Statistics, 14, 3, 217—226.

Mariano, R.S. and B.W. Brown (1983) "Asymptotic Behavior of Predictors in a Nonlinear
Simultaneous System", International Economic Review, 24, 3, 523—536.

Marquez, J. (1988) "The Dynamics of Uncertainty or the Uncertainty of Dynamics:
Stochastic J—Curves", International Finance Discussion Paper No. 335, Federal
Reserve Board, Washington, D.C.

Neave, H.R. (1973) "On Using the Box-Muller Transformation with Multiplicative
Congruential Pseudo-random Number Generators", Applied Statistics, 22, 1, 92—97.

Numerical Algorithms Group (1984) Handbook for the NAG Fortran PC50 Library
(Release 1), Operating System: PC-DOS 2.0 or later, Fortran Compiler: Microsoft
rortran, Version 8.20, Edition 2, Oxford, Numerical Algorithms Group.

Orcutt, G.H. and H.S. Winokur, Jr. (1969) "First Order Autoregression: Inference,
Estimation, and Prediction", Econometrica, 37, 1, 1-14.

Phillips, P.C.B. (1979) "The Sampling Distribution of Forecasts from a First-order
Autoregression", Journal of Econometrics, 9, 3, 241—261.

Sargan, J.D. (1975) "Asymptotic Theory and Large Models", International Economic
Review, 16, 1, 75-91.

Sargan, J.D. (1982) "On Monte Carlo Estimates of Moments That Are Infinite" in
R.L. Basmann and G.F. Rhodes, Jr. (eds.) Advances in Econometrics: A Research
Annual, Volume 1, JAI Press, Greenwich, Connecticut, 267—299.

Schmid-, P. (1974) "The Asymptotic Distribution of Forecasts in the Dynamic Simulation
of an Econometric Model", Econometrica, 42, 2, 303—309.

Shentor, L.R. and W.L. Johnson (1965) "Moments of a Serial Correlation Coefficient",
Journal of the Royal Statistical Society, Series B, 27, 2, 308—320.

Sims, C.A. (1974) "Distributed Lags", Chapter 5 in M.D. Intriligator and D.A. Kendrick

(eds.) Frontiers of Quantitative Economics, Amsterdam, North-Holland, Volume II,
289—-338 (with discussion).



IFDP
NUMBER

348

345

344

343

342

341

340

339

338

337

336

335

- 39 .

International Finance Discussion Papers

TITLES
1989

Exact and Approximate Multi-Period
Mean-Square Forecast Errors for Dynamic
Econometric Models

Macroeconomic Policies, Competitiveness,
and U.S. External Adjustment

Exchange Rates and U.S. External
Adjustment in the Short Run and
the Long Run

U.S. External Adjustment: Progress
and Prospects

Domestic and Cross-Border Consequences
of U.S. Macroeconomic Policies

The Profitability of U.S. Intervention

Approaches to Managing External
Equilibria: Where We Are, Where We
Might Be Headed, and How We Might
Get There

A Note on "Transfers™"

A New Interpretation of the Coordination
Problem and its Empirical Significance

A Long-Run View of the European Monetary
System

1988

The Forward Exchange Rate Bias: A New
Explanation

Adequacy of International Transactions
and Position Data for Policy Coordination

Nominal Interest Rate Pegging Under
Alternative Expectations Hypotheses

The Dynamics of Uncertainty or The
Uncertainty of Dynamics: Stochastic
J-Curves

AUTHOR [s)

Neil R. Ericsson
Jaime R. Marquez

Peter Hooper

Peter Hooper

William L. Helkie
Peter Hooper

Ralph C. Bryant
John Helliwell
Peter Hooper

Michael P. Leahy

Edwin M. T:ruman

David B. Gordon
Ross Levine

Matthew B. Canzoneri

Hali J. Edison

Hali J. Edison
Eric Fisher

Ross Levine
Lois Stekler
Joseph E. Gagnon

Dale W. Henderson

Jaime Marquez

Please address.requests for copies to International Finance Discussion
Papers, Division of International Finance, Stop 24, Board of Governors of the
Federal Reserve System, Washington, D.C. 20551.





