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ABSTRACT

This paper presents an algorithm to solve recursive systems, formulated in discrete
or continuous time, which have an endogenous state variable. The basis of the algorithm is

a fixed point equation in the function from the state variables to the control variables.



An Algorithm to Solve Dynamic Models
Wilbur John Coleman I

Consider a system, evolving through time (or space), whose state at time ¢ can be
completely described by a finite dimensional vector 8 In general, this state consists of
variables which evolve exogenously, and those which evolve endogenously, that is, their
evolution is determined such that certain equilibrium conditions are satisfied. In addition
to this state vector, the system consists of endogenous variables which are not part of the
state of the system, but which nevertheless influence the evolution of the endogenous state
variables (e.g., control variables). The following pages present an algorithm which may
solve this type of system. Three contexts will be developed to describe the algorithm: the
stochastic discrete time system, the deterministic continuous time system, and the
stochastic continuous time system. Each section will also contain a specific example, and
Table 1, which is towards the end of this paper, summarizes the results of applying this
algorithm to these examples.

There certainly exist many other methods which have been employed to solve these
systems, some of which have clearly been quite successful for particular problems. Value
function iteration for discrete time problems, for example, has proven to be quite robust,
although its handling of equilibrium conditions (i.e., properties which the control functions
must satisfy, but which are not directly part of the maximization problem) is less than

satisfactory. For example, how does one go about solving for an equilibrium price function

*The author is a staff economist in the International Finance Division of the Federal
Reserve Board. This paper represents the views of the author and should not be
interpreted as reflecting the views of the Board of Governors of the Federal Reserve System
or other members of its staff.



(in a dynamic non—Pareto Optimal economy), as there is no natural iterative method
which may be used to solve for these functions? The algorithm proposed here essentially
integrates the equilibrium conditions with the optimality conditions on the original control
functions, thus obtaining a new set of "controls" which has a likewise recursive
specification, and thus suggests a natural iterative method for its solution. A benefit of
this approach is that often the new set of endogenous functions is defined on a much lower
dimensional state space (e.g., in a representative agent economy, individual and aggregate
variables are equated in equilibrium). Even without the problem of equilibrium conditions,
though, the algorithm seems to compare favorably with other methods (e.g., see the
discussion in ’i‘aylor and Uhlig, 1989).

The approach in discrete time has apparently been successful for a wide variety of
problems (e.g., the multisector optimal growth and monetary growth models, and various
other models of asset prices and trade flows), so it seemed natural to attempt to duplicate
this success for continuous time models. For these problems the finite difference methods
for solving differential equations (e.g., Runge—Kutta) has proven to be quite robust, and in
fact it is not clear, for these continuous time setups, if the algorithm proposed here is any
better. It is nevertheless a general method to construct control functions (and not simply a
particular path), and since it is a much different approach, which works for the specific

examples described here, it may at least be useful when these other methods fail

The Discrete Time Formulation

Let z,€2¢C R™ denote the exogenous state variables. If z, is Markovian, then its

evolution can be written as

21 = fzper ),

where ¢ t11 € E consists of iid random variables drawn from a fixed cdf pE -+ [0,1], and



fiZxE -+ Z. Let T, € XC R™ denote the endogenous state variables and u € Uc RP

denote the "control" variables, which evolve according to

Ty = 9z ’Zt’ut)’ §XxZxU~ X,

uy = h(zt,zt), h:XxZ - U.
The task at hand is to find an & € H which satisfies a set of equilibrium conditions.
For many problems these equilibrium conditions take one of two forms. Temporal

conditions can often be written as

B(z,2,u,) =0, B:XxZxU-RPTY,
whereas intertemporal conditions can be written as

= . x x -3 q
N(;vt,zt,ut) = jM(zt-}-l’zt-i-l’ut-{—l)dﬂ(Et—{-l)’ N,M:XxZx U - R

Using these equations, and the laws of motion defined above, define the function A(h),

A:H- A(H), such that
(1) | Blz,2,(Ah)(z,2)] = 0,
(2 Maza(AR)(2,2)] = [ M{glz.2(AR)(2,2)].f(2€), hlo(2.2( AR)(2,2)),f(2,€)]} due).

The equilibrium control function is the fixed point h = A(h). Note that A(h) is an

argument of &, that A(h) is defined pointwise, and that A’s existence depends upon a



unique Brouwer fixed point. If A is continuous, isotone, strictly concave, and if it maps a
nonempty, convex, and compact subset H into itself, then a unique fixed point h* € H
exists to which the sequence An(h) converges uniformly. The existence of a fixed point
follows from Schauder’s fixed point theorem, and the uniqueness and convergence results
can be found in Krasnoselskii and Zabreiko (1984).

There exists an intuitive reason for why this algorithm should work. Suppose that
the time horizon for the control problem is 7, and that the equilibrium conditions above
are required to hold for each period up to 7-1. Suppose, also, that the control function is
fixedat h at T (ie, up=hzpzp)). The "optimal" control at T-1 is then A(h), and,
given this control at 7T—-1, the optimal control at 7-2 is A2(h), and so on. The further
back you go, the less dependent should be the control on h, and thus A’(h) should
converge to the optimal control.! This argument is not meant to substitute for a rigorous
proof, especially since many algorithms which should work simply don’t. At this point,
though, I think proofs are most usefully carried out for particular examples (e.g., see

Coleman (1987) for an application to the optimal growth and monetary growth models).

A Program for a Digital Computer

To implement this algorithm on a digital computer, clearly some modifications need
to be made. First of all, H must be approximated by a finite dimensional set. This can
be achieved by imposing a grid on (z,z) (heavily concentrated, say, around an estimate of
the mean of the steady state distribution) and only requiring that equations (1)—(2) hold at
these grid points. Since, though, ~ must be evaluated at arbitrary points of its domain
(see eq. 2), an interpolation routine must be used. I have had success with multi—linear
interpolation (in logs), but for small dimensional problems a more sophisticated

interpolater (e.g., splines) might be more efficient. With multi—linear interpolation, H is



thus approximated by a finite dimensional set of piecewise linear functions, and if H is
compact, this approximation is uniform.2

Another problem is the integration in equation (2). In general, an adaptive
quadrature rule will compute the integral to within some prespecified tolerance, but this
often proves to be too slow. A much faster route is to rely on a fixed—point quadrature
rule based on the weight function du. If du takes on a standard form then existing
routines may compute the points and weights (such as Hermite—Gauss quadrature for the
Normal distribution, and clearly any distribution can be transformed into the Normal). In
effect, this imposes a discrete probability model on ¢ (but not on z), and thus the
integration is approximated by a fixed summation.

Some extensions may be possible to speed up the convergence of A™. The

generalization of Newton’s method as developed by Kantorovitch (1948),

hyr = by = [47 (R AR,

which uses the Fréchet derivative A’, may speed things up, provided that this derivative
(and its inverse) can be easily constructed. There may also exist a satisfactory extension of
the multi—dimensional secant method (a discussion of the secant method can be found in

Ortega and Rheinboldt, 1970) which can be applied to this problem.

Ezample 1
Consider the stochastic optimal growth model,3 where a control function A is

sought which solves (some of the notation is switched)



1]
¢
maxE ¥ f'u(c), c, = h(z,2),
b =0 " 0t

subject to
Ty = fEp2) — ¢y
where the exogenous state variable evolves according to
21 =Pyt € g, € isiid Normal(O,oz).
The state vector is then s = (z,z), and eq. (2) becomes (eq. (1) does not apply)4
w[(Ah)(2,2)] = Blw {h[f(z,2) — (AR)(z,2),p2 + €]} f*[f(z,2) — (AR)(2,2),02 + €] dp(e).
The Continuous Time Formulation: The Deterministic Case

Suppose now that the control and state variables satisfy the ordinary differential

equation system
z(t) = g[:c(t),u(t)], gXx U~ [Rm)

wt) = flo(t),u(?)], FXxU-RE.

Embedded in f are the equilibrium conditions which define the problem. Write the

equilibrium control as a function of the state variables,

u(t) = Alz(t)], kX~ T,

where

Yt) = b [o(t)]a(t) = b’ [of )] g{o{ £), [=(1)]}.



Substitute in for u(f), and drop the time argument, to obtain

flai(2)] = k' (2)gz,h(z)],

which is a first order quasi—linear partial differential equation in A.

To obtain an approximate solution, note that

h' (z)glz,h(z)] Mz + glz,h(z)]d(z)} - h(z)’
i d(z)

where d(z) is some small increment step, say some fixed A. Define, then, the fixed point

equation as5’6

fl(AR)(z)] = M2 + g[z, (4h) (2)]d(a)} - (4h) (2)
d(z)

Boundary conditions can easily be imposed by requiring that the initial 4 satisfy these
conditions, and never updating A at the boundary.
Unfortunately, one shortcoming of the above algorithm is that A(h) - h as d-0

whether or not 4 is a fixed point. To see this, write

(AR)(2)] = Mz + glz, (4h)(2)]d(2)} - h(z) | h(z) — (4h)(z)
flz,(AR)(2)] ) .

Clearly, to prevent the last term from blowing up, (Ah)(z) must tend to A (It is
necessary that (Ah)(z) determines the derivative directly by entering the last term on the

right hand side, otherwise an incorrect guess of the derivative for & has too much



influence on the iterations.)7 To construct a sequence which rapidly converges to the fixed

point, define a sequence of functions d_- 0 and corresponding fixed points A(hn) =h,,

where each set of iterations to find h,, begins from the previous solution h, 1
Ezample 2

Consider the deterministic continuous time optimal growth model,8 where a control

¢ is sought which solves

max JePlu{ (D)} dt,
C

subject to

2(t) = fla(8)] - (t).

The solution for the control can easily be determined to satisfy

o(t) ==Y L (p1at)] - p}.

w'le(t

Define the control function as ¢(t) = h[z(t)], and derive the ordinary differential equation

_ L)) 1h(0) ol = B (2)(2) — B2,
W[f (2) = p] = b (2)[f(2) — A(<)]

The functional equation in A then becomes9

_w [N ()] — 5 = Mo + [F(3) = (40)(9)]d(2)} = (4h) (z)
AN )] (z)

where the boundary condition is A(0) = 0.



The Continuous Time Formulation: The Stochastic Case

Suppose now that the state evolves according to the stochastic differential equation
def(t) = b[a(t),u(?)]dt + ofa(t),u(t)]dx(t), b:XxU-R™, ¢:Xx U RY,
where we wish to find an optimal control function
u(t) = Ala(t)], h:X~ U,

such that certain optimality conditions are obtained. For many problems, the partial
differential equation of dynamic programming can, after some effort, be reduced to the

partial differential equation in the control

P{oh(a) b (D) 1"(2), - - - W @)} =0, Pxars g™Mm+D/2, . e
(h(r)(z), e.g, denotes all derivatives of order r) where boundary conditions are imposed on
h. At this point, as expected, there is no clear cut way to proceed. If P corresponds to an
analytic non—characteristic Cauchy initial value problem, then the nonlinear rth order
differential equation can, by differentiation, be reduced to a first order quasi—linear system
which can be solved via the method developed above. Often (if not always), though, the
problem at hand suggests a natural way to proceed in estimating the directional
derivatives, and with these estimates the fixed point equation can be constructed
analogously to the one constructed above. This is the route which I will follow in the

example below.
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Ezample 3
Consider the continuous time stochastic optimal growth model, where a control

function h is sought which solves

max B Ze-ﬂtu[c(t)]dt, «(t) = hla(2),0(2)],

subject to

dx(t) = {f]=(2),0(t)] — c(£)} dt,
di(t) = =A0(t)dt + ad(t).
The differential equation then becomes (the derivation is in Appendix A)

-—%U’(%H) — il = [f(s0) - Kz, (=)

—Mha,0) + L B0 200 1 L2y (00,
2

2 u"Th(z,0)] g

with the boundary conditions A(0,6) = hy(0,6) = 0. This equation can be represented as
the system (this does not correspond to the quasi—linear system obtained by differentiating

P)

9(z,6) = _oh(x,6),

1
Y]

_%[f'(z,ﬂ) — o] + Ahya,6) - %f(m -

[f(2,6) — h(z,0)|h (2,0) + 4 %agg(z,ﬁ).
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The following approximations can then be used:

[£(2,0) - (a0 (5,0) = M= * U(2:0) - h(=,0)]d(2),0} - h(z,0)
d(z)

= Mz,0 + d(0)} - h(z,0)
h0(270) d(ﬂ) )

and similarly for g(z,0). Construction of the fixed point equation A(h,g) is then
straightforward. Note that, given the solution A above, Ito’s Lemma provides us with

de) = =2 LI 140,000 = plat = Lo? ¥ U ot g + ot 000

U

Some Demonstrations of the Algorithm’s Performance

Table 1 demonstrates the algorithm’s convergence for specific parameterizations of
the above three examples. Appendix B contains the program to solve Example 1, the
discrete time stochastic growth model. The entries in the table correspond to distances
between succesive iterates of the control function. As can be seen, the succesive distances
monotonically decrease, although the rate of decrease is much faster for the discrete time
algorithm.

Concluding Remarks

I have had considerable success in applying the discrete time version of the
algorithm described here to a wide diversity of problems. Given the prevalent use of
discrete time models in economics and engineering, as well as in other disciplines, this
algorithm could be useful in solving a wide variety of problems. The continuous time
version, since it involves the additional approximation of a derivative, is probably less
robust, but I have included a discussion of it here since I think it offers some new insight

into solving these types of systems.
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Table 1
sup |log hn+1(3) —log h (s)]
s
1ter. no. Ex. 12 Ex. 2b Ex. 3¢

h g
1 0.7254 dz=1.0 0.4899 dr=.20 0.6135 d0=.10 0.2106
2 0.3227 0.1937 0.2373 0.0857
3 0.1938 0.0964 0.1737 0.0331
4 0.1205 0.0508 0.1303 0.0245
5 0.0756 0.0303 0.1057 0.0210
6 0.0471 0.0191 0.0890 0.0197
T 0.0292 0.0118 0.0777 0.0160
0.0178 0.0075 0.0685 0.0144
g 0.0109 0.0048 0.0623 0.0121

10 0.0066 . . .
11 0.0039 dr=0.10 0.0052 dr=.10 0.0013 d0=.08 0.0014
12 0.0024 0.0043 0.0012 0.0004
13 0.0014 0.0040 0.0011 0.0003
14 0.0008 0.0038 0.0011 0.0002
15 0.0005 0.0034 0.0011 0.0002
16 0.0003 (.0030 0.0010 0.0002

17 0.00062 . . .
18 0.0001 dr=0.05  0.0000 dz=.05  0.0007 d0=.05  0.0002
19 0.0000 0.0000 0.0007 0.0001
20 0.0000 0.0000 0.0006 0.0001

a. B=.95, ulc)=—1/c, f(2,2) =e*z, p=.7, ¢ =.1, initial Mz,z) = f(z,2).
b. p=.05 wu(c)=-1/c, f(z) =z + z, initial A(z) = flz) — z. The -’s symbolize the

remaining iterations for the indicated values of dz.

c. p=.05 ulc)=-1/c, f(z,0) = 60\/2_7 + 1z, A=.3, oc=.1, initial A(z,0) = fz,0) — z,

o(z,0) = Zh(z,0). The distances under column g correspond to levels, not logs.

J2
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In terms of economic applications the solution methodology presented here may
enhance cur ability to study sophisticated intertemporal general equilibrium models.
Indeed, I think this technology can truly operationalize general equilibrium rational
cxpectations models and put them on the same footing as the econometric models which

preceded them, and which are still in wide use today.
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APPENDIX A

This appendix derives the solution to the continuous time stochastic growth model.
Let u(t,z,0) denote the maximum value of the objective function starting at time ¢ with

#t) and 6(t). The solution solves the partial differential equation of dynamic

programming

(A1) ~0, = max {e P u(h) + v (f~ ) —u)0 + 5020}
The first order condition for A is then

(A2) | 0= e_ptu'(h) —- .

Differentiate (A1) with respect to z to obtain

—pt_, 12
(A3) —u,=e Py (h)h + v (f—h) + v(f—h,)— Vg0 + 50%0_g0

Using (A2), we can derive the following expressions for Vo Uppp Vzppr 20 Upp

—pt
0=¢?” u'(h)h— Vo

0= e-'ptu"(h)ha ~Up

0= e_ptu’"(h)h% + e—ptu"(h)hoo-— Vog

0= —pe P tu’(h) ~ Uy
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Substituting these derivatives of v into (A3) yields the desired differential equation in the

control A.

To obtain the equation for dc(t), use Ito’s Lemma, to obtain
de(t) = f h) — hg)\ﬁ + hﬁﬂ]dt + headz(t).
Use, then, the differential equation in the control to rewrite the term in brackets as

-0+ Jothgy= 2O (e
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APPENDIX B
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HARAARF AR RAAHTEEATRAECNTRRETRK AARAARTHHAATATARTARTTTACARTTERTEERTTRERXTL TN

PROGRAM TO SOLVE THE STOCHASTIC OPTIMAL GROWTH MODEL,

WRITTEN BY WILBUR JOHN COLEMAN II (APRIL, 1989).
R e S S U U R U A FOR SO C R SOR S SOORNS

b

*

){.

THE PROBLEM IS TO FIND THE FIXED POINT OF A, WHERE HP = A(H) IS DEFINED BY

UP[HP(S)] = BETA*E{UP[H(SP)]*FP(SP))

SP(1l) = LOG[F(S) - HP(S)]

SP(2) = RHO*S(1) + QX, QX DISTRIBUTED NORMAL(O,SIMGA%%*2),
LET NH = # OF FUNCTIONS THAT ARE BEING SOUGHT; HERE NH = 1. LET (NX,NZ)
# OF (ENDOGENOUS,EXOGENOUS) STATE VARIABLES, AND NS = NX + NZ: HERE NX —
= 1. LET {NSD(I),I=1,NS} = # OF GRID POINTS FOR CORRESPONDING STATE
VARIABLES {S(I),I=1,NS}, SO THERE ARE NSP = NSD(L)*NSD(2)% % *NSD(NS)
POSSIBLE SATES INDEXED BY {(N=1,NSP). LET {SMIN(I),SMAX(I)} CORRESPOND TO
THE (MINIMUM,MAXIMUM) VALUES OF THE GRID POINTS FOR S(I). PLACE EQJIDISTANT
GRID POINTS FOR S(1) INTO {SM(I),I=1,NSD(1)}), THOSE FOR S(2) INTO
{SM(I),I=NSD(1)+1,NSD(1)+NSD(2)}, AND SO ON. FOR EACH INDEX N THERE
CORRESPONDS A POINTER K INTO SM SUCH THAT S(1) = SM(K(1)), S(2) = SM(NSD(1)
+ K(2)), AND SO ON, AND THERE CORRESPONDS A VALUE OF H AT EACH SUCH S WHICH
IS STORED IN (HM(N,J),N=1,NSP} FOR EACH FUNCTION J=1,NH, AND SIMILARLY FOR
HPM. DEFINE H AT AN ARBITRARY STATE BY MULITLINEAR INTERPOLATION BASED ON
HM. THE ALGORITHM THUS COMPUTES HPM FOR A GIVEN H, COMPUTES THE DISTANCE
BETWEEN HPM AND HM, PLACES HPM INTO HM, AND ITERATES UNTIL CONVERGENCE IS
OBTAINED.

NZ

oNeoNoNoNeoNoNoNoNeoNeoNeoNoNeoNoNoNoNoNoNeNoNoNoNo e RO N®)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION SM(1000),HM(10000,1),HPM(10000,1),EPS(2),NSD(10)
DIMENSION SUPH(10)

COMMON /COMN/SM, HM,HPM, EPS,BETA,NX,NZ,NS,NSD,NSP,NH, MAXIT
WRITE(*, ' (A35)') ' STOCHASTIC OPTIMAL GROWTH MODEL’

CALL INIT
DO 300 NUMIT = 1, MAXIT
CALL A
DO 100 I = 1, NH
100 SUPH(I) = SUP(HM(1,I),HPM(1,I),NSP)
WRITE(6, ' (A10,15,A10,10F10.4)")
* ‘A ITER. #' NUMIT, 'NORM = ', (SUPH(I),I=1,NH)
DO 200 I = 1, NH
200 IF (SUPH(I) .LE. EPS(1l)) GOTO 400
300 CONTINUE

WRITE(*,' (A40)') ' MAXIMUM NO. OF ITERATIONS EXCEEDED'’
400 CONTINUE
DO 500 T = 1, NH

500 WRITE(1l) (HM(N,I),N=1,NSP)

STOP

END
c
C*k**'kk%%*%**i*%%kkkkkk*k2%%&*k%k£k%*kkk%k*k*ik%%%k*kkkkkkk**kk*k%%*

SUBROUTINE A

C INPUT: FUNCTION H, ETC. OUTPUT: HPM
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SM(1000),HM(10000,1),HPM(10000,1),EPS(2),NSD(10)
DIMENSION K(10),S(10),HGUESS(10),HROOT(10),NSMPRD(10) ,NSMSUM(10)
COMMON /COMN/SM,HM,HPM, EPS, BETA,NX,NZ,NS,NSD,NSP,NH,MAXIT
COMMON /CNSM/NSMPRD,NSMSUM
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COMMON /CZ/S

EXTERNAL SC
DO 100 I = 1, NS
K(I) =1
100 S(I) = SM(1 + NSMSUM(I))

DO 200 N = 1, NSP
HGUESS(1) = DLOG(HM(N,1)/(F(S) - HM(N,1)))
CALL DNEQNF(SGC,EPS(2),NH,MAXIT,HGUESS , HROOT , ZNORM)

C DNEQNF IS AN IMSL ROUTINE TO SOLVE NH NONLINEAR EQS. IN NH UNKNOWNS.
C INPUT: SUBROUTINE SC(HGUESS,ZVEC,NH) WHICH EVALUATES ZVEC AT HGUESS,
C CONV. CRITERION EPS(2), MAX. # OF ITER. MAXIT, GUESS OF ROOTS HGUESS.
C OUTPUT: SOLUTION IN HROOT SUCH THAT ZVEC = O, SUM OF SQUARES IN ZNORM.
HPM(N,1) = F(S)/(1.0D0 + DEXP(-HROOT(1)))
CALL UPDS(K,S)
200 CONTINUE
RETURN
END
C

OO U AT T PR R SRR S K P SR O S PC R TR SR DU DU DR S D P T T T TC T T T TR TR TR TR RO TR T TC T OO O Loabeabeabeabealoatonte alonbe ale el ato it ntou
Ck&x*){xxxxxXXXXXXXXXAKKKX‘KK RARARARARAR AR AR A I AR IR PP B B T P T AP S Ao o e S L o e e o g b o L D LS

SUBROUTINE SC(HGUESS,ZVEC,NH)
o INPUT: GUESS OF TRANSFORMED HP(S) AS HGUESS, DIMENSION NH, STATE §.
C OUPUT: ZVEC = RHS - LHS OF EACH FOC-EQUIL. COND.
Ck****k**************************************************************

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION HGUESS(10),ZVEC(10),S(10),HP(10)

COMMON /CZ/S

HP(1) = F(S)/(1.0D0 + DEXP(-HGUESS(1)))

CALL Z(S,HP,ZVEC)

RETURN

END

C
C***kkkkikk*kkikkikk%k%*k*ik&k**k%k*kkkkkkkk%k*ki%kkkii&kkkk%ii*ikkkk
SUBROUTINE Z(S,HP,ZVEC)
c INPUT: STATE S, GUESS HP. OUTPUT: ZVEC.
C*******************************************’************************
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SM(1000),HM(10000,1) ,HPM(10000,1),EPS(2),NSD(10)
DIMENSION $(10),SP(10),HP(10),ZVEC(10),QX(100),QW(100)
COMMON /COMN/SM,HM, HPM, EPS, BETA,NX,NZ NS ,NSD,NSP , NH , MAXIT
COMMON /CPDF/SIGMA,RHO,QX,QW,NGAUSS

SP(1l) = DLOG(F(S) - HP(1l)) ! SP IS NEXT PERIOD'’S STATE
W = 0.0D0
DO 100 T = 1, NGAUSS ! INTEGRATE TO COMPUTE EXPECTED VALUE

SP(2) = RHO*S(2) + QX(I)
W =W + UP(H(SP,1))*FP(SP)*QW(I)

100 CONTINUE
ZVEC(1) = BETA*W - UP(HP(1l)) ! RHS - LHS
RETURN
END

C

C********************************************************************
DOUBLE PRECISION FUNCTION UP(C)
C INPUT: C. OUTPUT: MARGINAL UTILITY.
C********************************************************************
IMPLICIT REAL#*8 (A-H,0-Z)
COMMON /UTIL/TAU
UP = 1.0DO/C**TAU
RETURN
END



C
C********************************************************************
DOUBLE PRECISION FUNCTION F(S)
C INPUT STATE S. OUTPUT: PRODUCTION.
(0% R T e R o g R R e e e e L S e S e P S R S R R R
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION S(10)
COMMON /PROD/ALPHA ,DELTA
F = DEXP(S(2))*DEXP(S(1))**ALPHA + DELTA*DEXP(S(1))
RETURN
END
C
O3 ¥ 3% 3 3% 9 9 3 3 3 9 s S v s sk b b b e s s sk sl o o s s s ek b e b s e e sk sk s b v e b b e e b b b e e e e e ek ek e ket
DOUBLE PRECISION FUNCTION FP(S)
C INPUT: STATE S. OUTPUT: MARGINAL PRODUCTIVITY.
C

[ORRON)

e o v T T o T T T o S v T e o v v vk b e o v S S ke sk e e S v s sl b e s e s e e e e e e e ke e e e e ke e b e e e e e e e e e e ke e e

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION S(10)
COMMON /PROD/ALPHA,DELTA
FP = ALPHA*DEXP(S(2))*DEXP(S(1l))**(ALPHA - 1.0DO) + DELTA
RETURN
END

C

G dedesee dededkdb s v o v o vk v e vl v e oo e e e e e e e e e e s e e e e e e e e e e e e e e e e e e e e e e e
DOUBLE PRECISION FUNCTION H(S,I)

C INPUT: STATE S, FUNCTION # I. OUTPUT: INTERPOLATED FUNCTION VALUE.

C*““*****x*****x****x**%**********x*x***xxxx***xx%**xx%w*%k*%******xk
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SM(1000),HM(10000,1),HPM(10000,1),EPS(2),NSD(10)
DIMENSION S(1)
COMMON /COMN/SM,HM,HPM,EPS,BETA,NX,NZ /NS ,NSD,NSP,NH,MAXIT
H = GRID(S,SM,HM(1,I),NS,NSD)
RETURN
END

O e do ke oo s v v dedk e v ek e e sk e e sl e s e e s sl b e e e b e e e e e e e e e e e e e e e e e e e e e e
DOUBLE PRECISION FUNCTION SUP(FO,F1,NSP)
¢ INPUT: VECTORS FO, Fl. OUTPUT: SUP DISTANCE, AND F1 —=> FO.
e v v vk T v v v v T T v vk v o v v T v vk v v v v e v v o S v e v e S st o St e o e o s e Yo s v e o ek S e sl v e ok e e e e e e e ke b X
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION FO(1),F1(1)
SUP = 0.0DO
DO 100 N = 1, NSP
SUP = DMAX1(SUP, DABS(DLOG(FL(N)) - DLOG(FO(N))))

100 FO(N) = F1(N)
RETURN
END
C
G ek e de de Ttk sk sk sk s sk sk sk e ook sk sk sk ek s e s s sk sk e s s ded sl e el e e e

SUBROUTINE UPDS(K,S)

C INPUT: POINTER K. OUTPUT: NEXT K, CORRESPONDING STATE S.

Gk Ak ko d b ek s de oo e skt oo e e e ek s dedede ool e oo de e sl ek
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SM(1000),HM(10000,1),HPM(10000,1),EPS(2),NSD(10)
DIMENSION K(10),S(10),NSMPRD(10),NSMSUM(10)
COMMON /COMN/SM,HM,HPM,EPS,BETA,NX,NZ,NS,NSD,NSP,NH,MAXIT
COMMON /CNSM/NSMPRD,NSMSUM
K(1) = K(1) + 1
DO 100 T =1, NS -1

17



18
IF (K(I) .LE. NSD(I)) GOTO 200

K(I) = 1
K(I+1l) = K(I+1l) + 1
100 CONTINUE
200  CONTINUE
DO 300 I = 1, NS

300 S(I) = SM(K(I) + NSMSUM(I))
RETURN
END

c

-------------------------------------------------------
Cnxxxx?(xnnnKnxnxaKnxnnxnxxxxnxnnnxannxxnnnxnnnnxnxnnnKnxnxxnxxxnxx?txx

SUBROUTINE INIT
C INITIALIZE PARAMETERS, ETC.

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION SM(1000),HM(10000,1),HPM(10000,1),EPS(2),NSD(10)
DIMENSION QX(100),QW(100),NSMPRD(10),NSMSUM(10)

DIMENSION K(10),S(10),SMIN(10),SMAX(10)

COMMON /COMN/SM,HM, HPM, EPS , BETA,NX,NZ,NS,NSD, NSP, NH, MAXIT
COMMON /UTIL/TAU

COMMON /PROD/ALPHA, DELTA

COMMON /CPDF/SIGMA,RHO,QX,QW,NGAUSS

COMMON /CNSM/NSMPRD , NSMSUM

C
READ(10, ' (10X,110)’) NH,NX,NZ
NS = NX + NZ :
READ(10, ' (10X,F10.4) ") BETA,TAU,RHO,SIGMA,ALPHA,DELTA, EPS,
*  (SMIN(I),SMAX(I),I=1,NS)
READ(10, ' (10X,110)') (NSD(I),I=1,NS),NGAUSS,6MAXIT
C
NSMPRD(1) = 1 ! PARTIAL PRODUCTS OF NSD
NSMSUM(1) = 0 ! PARTIAL SUMS OF NSD
DO 100 I = 2, NS
NSMPRD(I) = NSMPRD(I - 1)*NSD(I - 1)
NSMSUM(I) = NSMSUM(I - 1) + NSD(I - 1)
100 CONTINUE
NSP — NSMPRD(NS)*NSD(NS)
C
SCALE = 1.0DO/DSQRT(DCONST('PI'))
CALL DGQRUL(NGAUSS,4,Al,B1,0,QXFIX,QX,QW)
c DGQRUL IS AN IMSL ROUTINE TO COMPUTE HERMITE-GAUSS QUADRATURE POINTS
C AND WEIGHTS FOR A NORMAL(0,1) DISTRIBUTION.

C INPUT: # OF QUAD. POINTS NGAUSS. OUTPUT: POINTS QX, UNSCALED WEIGHTS Qw.
DO 200 I = 1, NGAUSS

QX(I) = SIGMA*QX(I)

200 QW(I) = SCALE*QW(I)
C
N=20 ! INITIALIZE SM
DO 400 J = 1, NS
N=N+1
SM(N) = SMIN(J)
DO 300 I = 2, NSD(J)
N=N+1
SM(N) = SMIN(J)
* + (DFLOAT(I - 1) /DFLOAT(NSD(J) - 1))*(SMAX(J) - SMIN(J))
300 CONTINUE
400 CONTINUE
C ! INITIALIZE HM

DAPC = 1.0D0 - ALPHA*BETA/(1.0D0 - (1.0DO - ALPHA)*DELTA*BETA)
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DO 500 T = 1, NS

K(I) =1
500 S(I) = SM(l + NSMSUM(I))
DO 600 N = 1, NSP
HM(N,1) = DAPC*F(S)
CALL UPDS(K,S)

600 CONTINUE
RETURN
END

C

G333 3 73k b ok ok 3% v ok b b b S S ob 3k 5k o v S 3 S S S S T T S S S S db S o B T T S ok S o S T S v v S S e e v v sk e e e e sk ke ok
DOUBLE PRECISION FUNCTION GRID(S,SM,GM,NS,NSD)
C INPUT: STATE S, STATE GRID SM, FUNCTION VALUES GM, DIMENSIONS NS, NSD.
C OUTPUT: MULTILINEAR INTERPOLATION OF FUNCTION AT S BASED ON GM AT SM.
CFdkab Rk 3k ok vb e o v ok ob ah S ot S 9 ok 5 s S S S S S S S 3 S S T T T e T Y d B S S T T dE ak ok Sk S S sk sk Sk S sk e s sk ek s ek
IMPLICIT REAL*8 (A-H,0-Z2)
DIMENSION S(1),SM(1),GM(1),NSD(1),KS(10),KS2(10),T(10),IP(10)
DIMENSION NSMPRD(10),NSMSUM(10)
COMMON /CNSM/NSMPRD , NSMSUM

DO 100 I = 1, NS ! FIND SURROUNDING GRID POINTS

J =1 + NSMSUM(I)

CALL LOCATE(SM(J),NSD(I),S(I),KS(I))

IF (NSD(I) .EQ. 1) THEN
T(I) = 1.0DO

ELSE ! COMPUTE POSITION OF STATE RELATIVE TO GRID POINTS
T(I) = (SM(J+KS(I)) - S(I))/(SM(J+KS(I)) - SM(J+KS(I)-1))

ENDIF

100 CONTINUE

, 2%%NS ! LOOP OVER ALL CORNERS OF NS DIMENSIONAL CUBE

1, NS ! FIND WEIGHT FOR A CORNER

ELSE
TP = TP*(1.0D0 - T(J))

ENDIF

IF (NSD(J) .EQ. 1) THEN ! PLACE CORNER INTO KS2
KS2(J) = KS(QJ)

ELSE
KS2(J) = KS(J) + IP(J)

ENDIF

200 CONTINUE ! ADD WEIGHT TIMES VALUE OF CORNER
GRID = GRID + TP*DLOG(GM(KMAP(KS2,NS)))

IP(1) = IP(l) + 1 ! UPDATE CORNER
DO 300 J =1, NS - 1
IF (IP(J) .LE. 1) GOTO 400
IP(J) = 0
300 IP(J +1) = IPJ + 1) + 1
400 CONTINUE
GRID = DEXP(GRID)
RETURN
END
c
O R e o e o e e T T T s S o b S b o e S e S S o o v b s s s e sk b s b b o S v e s e e e ok
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FUNCTION KMAP(K,NS)

c INPUT: POINTER K, DIMENSION NS. OUTPUT: INDEX N AS KMAP.

------------------------------------

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION K(1),NSMPRD(10),NSMSUM(10)
COMMON /CNSM/NSMPRD , NSMSUM

KMAP = K(1)
DO 100 I = 2, NS
100 KMAP = KMAP + NSMPRD(I)*(K(I) - 1)
RETURN
END
C
C** ',1kk%.k*v’ck;&:’ckkka‘ck;’w’ck)w'w‘n'w'skk:‘w‘w’w‘w’w’w‘sk;‘w‘ckk)’cka’u’(%;‘ck*kk%&k%;‘ckkk:‘ca‘ck&v‘(;\kkk*
SUBROUTINE LOCATE(XV,N,X,J)
C INPUT: INCREASING VECTOR XV, DIMENSION N, VALUE X.
C OUTPUT: LARGEST J SUCH THAT XV(J) < X, WHERE 0 < J < N.

---------------------------------------------------------

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION XV (1)
JL =1 ! SET BOUNDS
JU = N
100 CONTINUE
IF (JU - JL .GT. 1) THEN

JM = (JU + JL)/2 ! COMPUTE MIDPOINT
IF (X .GT. XV(JM)) THEN ! LOCATE X RELATIVE TO MIDPOINT
JL = JM ! MIDPOINT BECOMES LOWER BOUND
ELSE
JU = JM ! MIDPOINT BECOMES UPPER BOUND
ENDIF
GCTO 100
ENDIF
J = JL ! RETURN LOWER INDEX
RETURN
END

SAMPLE DATA FILE

NH 1
NX 1
NZ 1
BETA 0.95
TAU 2.00
RHO 0.70
SIGMA 0.10
ALPHA 0.50
DELTA 0.00
EPS1 1.0D-4
EPS2 1.0D-5
XMIN -5.00
XMAX 0.00
ZMIN -0.30
ZMAX 0.30
NSD1 20
NSD2 10
NGAUSS 5

MAXIT 1000



ENDNOTES

1. Robert Lucas suggested something like this to me a few years ago, and subsequent to
this discussion I realized that a version of this story works for the finite horizon optimal
growth setup. Marianne Baxter’s paper then clarified the discussion for me (also in the
context of the optimal growth setup), which led to the generalization of the story presented
here.

2. That is, within the set of piecewise linear functions a sequence can be constructed which
converges uniformly to any given h e H.

3. This problem (with iid shocks) is described in Brock and Mirman (1972).

4. In Coleman (1987) I construct a set H which is convex and compact, and a function
A:H-H which is continuous, thus guaranteeing the existence of a fixed point. In the
deterministic setting, and with a specific assumption on the utility function, I essentially
prove A’s monotonicity and strict concavity, thus proving the uniform convergence of
A™(h) to the unique fixed point.

5. The intuitive argument for convergence given above also has a loose analogue here. In
this case, h fixes the control for tomorrow, and A(A) is the optimal control which takes
into account both the effect on the state today and the direction of the state into
tomorrow.

6. Approximating h’(z)g[z,h(z)] via partial derivatives results in an unnecessary
interaction between A(h) in the derivative and A(h) in ¢ (e.g., if ¢ is linear then a
quadratic in A(h) appears).

7. In the following example, if f1) = 0 and if A’(1) does not equal the true value

exactly, then (A4h)(1) =0 if A(h) does not enter the derivative as above. The correct
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solution is A(1) > 0, and the above algorithm results in (AA)(1) > 0.
8. This problem was solved by Cass (1965) and Koopmans (1965).
9. Suppose —u’(c)/u"(c) is increasing in ¢, then, if A is increasing, and if A is small,

A(h) is uniquely defined since

Av.2 :-ul_(y) () — _h{z + [f(Z) - y]A} )
(3,7) W[f (z) — o] :

53

is increasing in y (these statements need only be true for some large upper bound on g,
say ¢ such that f(z) = 0). Provided, again, that A is small, then A(h) will be
increasing since 2(y,z) is decreasing in z. These results, though, do not guarantee

convergence or existence, but only that A(h) is well defined at each step of the iteration.



REFERENCES

Baxter, Marianne, 1988, Approximating Suboptimal Dynamic Equilibria: An Euler
Equation Approach, Rochester Center for Economic Research Working Paper 139.

Brock, William A. and Leonard J. Mirman, 1972, Optimal Economic Growth and
Uncertainty: The Discounted Case, Journal of Economic Theory 4, 497—513.

Cass, D., 1965, Optimum Growth in an Aggregative Model of Capital Accumulation,
Reveiw of Economic Studies 32, .

Coleman, Wilbur John II, 1987, Money, Interest, and Capital, unpublished Ph.D.
Dissertation, The University of Chicago.

Courant, R. and D. Hilbert, 1962, Methods of Mathematical Physics, Vol. II (John Wiley
and Sons, New York).

Fleming, Wendell H. and Raymond W. Rishel, 1975, Deterministic and Stochastic
Optimal Control (Springer—Verlag, Berlin).

John, Fritz, 1971, Partial Differential Equations (Springer—Verlag, New York).

Kantorovitch, L. V., 1948, Functional Analysis and Applied Mathematics, Uspekhi
Matematicheskekh Nauk 3, no. 6, 89—185, translated from Russian by: Curtis D.
Benster, 1952, National Bureau of Standards Report 15009.

Koopmans, T. C.; 1965, On the Concept of Optimal Economic Growth, in: The
Econometric Approach to Development Planning, Pontificiae Academiae
Scientiarvm Scriptvm Varia (North—Holland, Amsterdam).

Krasnosel’skii, M. A. and P. P. Zabreiko, 1984, Geometrical Methods of Nonlinear
Analysis (Springer—Verlag, Berlin).

Ortega, J. M. and W. C. Rheinboldt, 1970, Iterative Solution of Nonlinear Ejuations in
Several Variables (Academic Press, New York).

Taylor, John B. and Harald Uhlig, 1989, Solving Nonlinear Stochastic Growth Models: A

Comparison of Alternative Solution Methods, unpublished working paper, The
University of Minnesota and The Institute for Empirical Macroeconomics.

23



24

International Finance Discussion Papers

IFDP
NUMBER TITLES AUTHOR(s
1989
351 An Algorithm to Solve Dynamic Models Wilbur John Coleman II
350 Implications of the U.S. Current David H. Howard
Account Deficit
349 Financial Integration in the European Sydney J. Key
Community
348 Exact and Approximate Multi-Period Neil R. Ericsson
Mean-Square Forecast Errors for Dynamic Jaime R. Marquez
Econometric Models
347 Macroeconomic Policies, Competitiveness, Peter Hooper
and U.S. External Adjustment
346 Exchange Rates and U.S. External Peter Hooper
Adjustment in the Short Run and
the Long Run
345 U.S. External Adjustment: Progress William L. Helkie
and Prospects Peter Hooper
344 Domestic and Cross-Border Consequences Ralph C. Bryant
of U.S. Macroeconomic Policies John Helliwell
Peter Hooper
343 The Profitability of U.S. Intervention Michael P. Leahy
342 Approaches to Managing External Edwin M. Truman
Zquilibria: Where We Are, Where We
Might Be Headed, and How We Might
Get There
341 A Note on "Transfers" David B. Gordon
Ross Levine
340 A New Interpretation of the Coordination Matthew B. Canzoneri
Problem and its Empirical Significance Hali J. Edison
339 A Long-Run View of the European Monetary Hali J. Edison
System Eric Fisher
1988
338 The Forward Exchange Rate Bias: A New Ross Levine
Explanation
337 Adequacy of International Transactions Lois Stekler

and Position Data for Policy Coordination

Please address requests for copies to International Finance Discussion
Papers, Division of International Finance, Stop 24, Board of Governors of the
Federal Reserve System, Washington, D.C. 20551,



IFDP
NUMBER
336

335

334

333
332

331

330
329
328

327

International Finance Discussion Papers

TITLES

Nominal Interest Rate Pegging Under
Alternative Expectations Hypotheses

The Dynamics of Uncertainty or The
Uncertainty of Dynamics: Stochastic
J-Curves

Devaluation, Exchange Controls, and
Black Markets for Foreign Exchange in
Developing Countries

International Banking Facilities

Panic, Liquidity and the Lender of
Last Resort: A Strategic Analysis

Real Interest Rates During the
Disinflation Process in Developing
Countries

‘International Comparisons of Labor

Costs in Manufacturing

Interactions Between Domestic and
Foreign Investment

The Timing of Consumer Arrivals in
Edgeworth’s Duopoly Model

Competition by Choice

25

AUTHOR(s)

Joseph E. Gagnon
Dale W. Hendarson

Jaime Marquez

Steven B. Kamin

Sydney J. Key
Henry S. Terrell

R. Glen Donaldson

Steven B. Kamin
David F. Spigelman

Peter Hooper
Kathryn A. Larin

Guy V.G. Stevens
Robert E. Lipsey

Marc Dudey

Marc Dudey





