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ABSTRACT

A state—dependent income tax is incorporated into an intertemporal production
economy. Methods are developed for establishing the existence and uniqueness of an
equilibrium, and for explicitly constructing this equilibrium. Some tax—policy experiments
are suggested, the results of which may have important implications in quantifying the

effects of various tax policies.



Equilibrium in a Production Economy with an Income Tax

Wilbur John Coleman II1

1. Introduction

This paper develops a monotone—map approach for studying the equilibrium in a
production economy in which income is taxed. By transforming the study of the
equilibrium into the study of a monotone map, one can prove an existence theorem for the
economy’s equilibrium and develop an algorithm to construct this equilibrium. With an
additional restriction on utility, it can further be proven that this monotone map satisfies a
definition of concavity that ensures the equilibrium is unique. These proofs require
surprisingly few restrictions on the tax function. In particular, the tax rate can depend on
both exogenous and endogenous state variables, which allows one to carry out a wide
variety of meaningful tax—policy experiments. For example, with this dependence one can
analyze the consequences of tax—rate smoothing verses tax—revenue smoothing, or the
consequences of raising distortionary tax rates during periods of relatively high output and
lowering them during periods of relatively low output. As these examples suggest, allowing
tax rates to depend on endogenous state variables allows a deeper examination of the
dependence of an economy’s dynamics on tax policy than is possible with either constant
tax rates or exogenously varying tax rates.

The approach to studying the model concentrates directly on the first—order and
envelope equations that the equilibrium must satisfy, which can be reduced to studying an
equation in consumption as a function of the state variables. Most of the difficulty in

handling this functional equation stems from the endogeneity of one of the state variables,



the capital-labor ratio. This paper deals with this difficulty by setting up a fixed—point
equation in the consumption function that is continuous, monotone, concave (as defined
here), and that maps a rather natural compact set of consumption functions into itself.
These features are sufficient to prove that iterations of this fixed—point equation uniformly
converge to the unique equilibrium.

A monotone—map approach for studying an endowment economy was developed by
Lucas and Stokey (1987). Stokey, Lucas, and Prescott (1989) apply similar methods to
those developed here to study a production economy in a deterministic setting with a
constant tax rate. As they note, however, their proof that some fixed point is nontrivial,
and thus that an equilibrium exists, does not extend to a stochastic setting. Also in a
deterministic setting, but with a constant tax rate on wealth, Becker (1985) showed that
the competitive equilibrium coincided with the unique solution to a concave optimization
problem. Danthine and Donaldson (1986) showed that Becker’s reformulation also works
when production is stochastic.2 Extending the classical approach on the existence of a
competitive equilibrium (Arrow and Debreu, 1954, McKenzie, 1954, and Nikaido, 1956) to
an economy with taxes, as McKenzie (1981) has noted, has not been successful. To
summarize, in the literature just cited it has not been proven that there exists an
equilibrium to a stochastic production economy with an income tax, which is the problem
addressed in this paper.

Many authors have studied the effects of taxes with models similar to the one
developed here. Brock and Turnovsky (1981) and Abel and Blanchard (1983) perform
various theoretical comparitive static and dynamic exercises in a perfect foresight model
with optimizing agents and with a rich array of taxes. Goulder and Summers (1987)
employ a perfect foresight model to focus on the transitional path of the economy when tax
rates change over time. Dotsey (1988), in a model with log utility which allows him to find
a closed form expression for the equilibrium, attempts to match observed measures of the

US economy’s response to changes in tax rates. Greenwood and Huffman (1988) simulate



the effects of tax policies designed to stabilize output fluctuations. Hopefully, the methods
developed in this paper can advance these types of studies in quantifying the dominant

intertemporal effects of taxes.
2. The Model

The model® consists of identical households and firms in an baggregate economy in
which time is discrete and the horizon is infinite. Firms employ capital and labor in a
constant returns to scale production process that reproduces the single capital good. With
constant returns to scale in both factor inputs, the production process can be defined
relative to a per—labor production function f with the capital-labor ratio and an

exogenous shock as arguments.

ASSUMPTION 1: The production function f:R +xZ - R n 18, in its first argument,
continuously differentiable, strictly increasing, strictly concave, and f(0,z) = 0, all z.4 For
any 0< 6 < 1 there ezists some capital-labor ratio 0 < T < o such that f(z,2) + 6z < T,

all 2z, and f(z,2) + 6z = 1, some =z

For a particular choice of § in Assumption 1, which will correspond to a
depreciation parameter, define K = [0,z]. Clearly (f + 6):KxZ - K, which will mean that
z is the (unique) maximum maintainable capital-labor ratio.

The state variables for the aggregate economy at time ¢ consist of the aggregate
capital-labor ratio X ¢ € K and the exogenous shock z € Z (the supply of labor will be
constant). The law of motion for z, which is known by all households and firms, satisfies

the following assumption.



ASSUMPTION 2: Z s finite. The shocks evolve according to the Markovian

probabilities (2’ |z) = Pr{z,, | = 2’ |2, = 2}.

t+1

Each household assumes that the aggregate capital-labor ratio recursively evolves
according to X 4 = g X t,zt), g KxZ -+ K. Solving for the function g which is consistent
with the households’ behavior will be part of the equilibrium problem.

Firms engage in perfect competition and thus they pay each factor input its
marginal product. In terms of the per—labor production function f, the factor payment to
each unit of capital is f’(X,z), and the factor payment to each unit of labor is f(X,z) —
Xf’(X,2). Note that due to constant returns to scale a firm’s total factor payment
exhausts its output, so it does not matter who owns the firms.

Households are equally endowed with a constant supply of labor each period. No
direct utility is derived from labor withheld from the market, so from now on I will simply
assume that their entire endowment of labor is inelastically supplied. Households also owﬁ
all the capital which, along with their endowment of labor, they rent to the firms. With a
household’s capital-labor ratio denoted by Zp its rental income per unit of labor is
f(Xpz) + (zt - X)f (X p%y)- Each household also retains the undepreciated portion of its
capital-labor ratio 6a:t, where 0< 6 < 1.

The government provides each household with the lump—sum transfer d ;= d X t’zt)

per endowment of labor, d:KxZ -+ K, and taxes all income at the rate 1 — Ty = 1-7(X t,zt).

AssuMpTION 3: T:KxZ - (0,1] is continuous in its first argument, and 7(z,2)f’(z,2)

i8 a strictly decreasing function of z.

As with the aggregate investment function g, solving for the government transfer
function d that equals the amount of taxes collected will be part of the equilibrium

problem. Note that while the tax rate depends on the aggregate state variables, which in



equilibrium equals the representative household’s state variables, the households do not
perceive the tax rate as dependent on its actions. This setup thus does not correspond to
one with a progressive tax rate.5

Beginning a period with after—tax income, undepreciated capital, and the
government transfer, a household must decide on an amount ¢, per endowment of labor to

consume, where the remainder T4y is the capital-labor ratio carried over to the next

period:
(2-1) Tyq = (X2 )[f(Xpz) + (2, — X)f (Xpz)] + bz, + d(Xp2) — ¢
Each household’s preferences are defined with respect to consumption per endowment of

labor. Expected discounted utility, defined over (feasible) consumption plans C.R +xKxZ -

R+,1s

E[éoﬂtu(ct)], ¢, = Oz, X,2,),

where 0 < B < 1, (:cO,XO,zO) is known, the expectation is over sequences {zt}, and the

associated sequences {zt} and {X t} are given by (2.1) and g respectively.

ASSUMPTION 4: The single—period utility function wR 4+ R s bounded, continuously

differentiable, strictly increasing, strictly concave, and u’(0) = w.

Denote a household’s state variables at the beginning of a period by (z,X,2). The

constraint set for the choice of consumption during the period is

M(z,X,2) = [0,7(X,2)(f(X,2) + (z— X)f(X,2)) + 6z + d(X,2)],



and the value function V for a household’s problem of choosing an optimal level of

consumption satisfies the functional equation

(2.2) Wz,X,2) = ceM(gzl,lg(,z) u(c) +

FEV{T(X,2)[f(X,2) + (z— X)f"(X,2)] + bz + d(X,2) — c,9(X,2),2" }7(z |z)}

Consider the Banach space of bounded, continuous, real—valued functions w»:R +xKxZ - R
equipped with the sup norm, and let 7 denote the subset that is increasing and concave in
its first argument. For the remainder of this paper, reference to properties such as
continuity, differentiability, and so on, will implicitly refer to a function with respect to its

first argument.

PrOPOSITION 1: Under Assumptions 14, given any continuous aggregate investment
function ¢g:KxZ - K and any continuous transfer function d:KxZ - K, there ezists a
unique V € ¥ that satisfies (2.2). Moreover, this V is a strictly increasing and strictly
concave function. For each (z,X,2) € R +xKxZ, the supremum in (2.2) is attained by a

unique value C(z,X,z), and the policy function C:R +xKxZ - R, s continuous.

+
ProOF: Define the operator T on 7 by

(Tv)(z,X,2) = cEM(i:l,lg(,z){U(C) +

Ev{r(X,2)[f(X,2) + (z— X)f'(X,2)] + 6z + d(X,2) — ¢,9(X,2),2" }n(z’ Iz)}

Banach’s fixed—point theorem ensures the existence of a unique fixed point V € 7 that

satisfies (2.2) if T 1is a contraction that maps 7 into itself. To show that T( 7) c 7,



note that since v and v are bounded, sois 7T(v). Clearly T(v) is ihcreasihg, and since
v and v are concave and M is convex, T(v) is concave. To show that T(v) is
continuous, note that since u is a strictly concave function, a unique policy function Cv
satisfies the supremum. Since » and v are continuous and M is convex, this policy
function is continuous, and thus 7(v) is continuous. Hence T( #) C 7, and since T is
monotone with T(v + k) = T(v) + Pk for constants k, by Blackwell’s theorem (1969,
Theorem 5) T' is a contraction mapping. A unique fixed point V € ¥ thus exists. Since
v 1s a strictly increasing and strictly concave function, so is V. Since, as just mentioned,

Cv is‘unique and continuous for any v € % it has these prOperties under V. Q.E.D.

Proposition 1 establishes that a household’s problem is well posed for any
continuous functions g and d. Consider, then, the following definition of what it means

for g and d to be equilibrium functions.

DEFIRITION: A stationary equilibrium consists of continuous functions (w,c,9,d), w
maps KxZ into R and ¢, g, and d map KxZ into K, such that (i) w(z,2) = V(z,z,2)
and ¢(z,2) = ((z,z,2) where, for the aggregate investment function ¢ and transfer function
d, the value function V€ 7 satisfies (2.2) and C is the associated policy function, (ii) all
tax revenues are redistributed as the lump—sum transfer d = (1 — 7)f (note that this
equality could have been imposed in (2.1)), and (iii) the aggregate investment function g

is such that households choose to invest according to the same rule:
f(z,2) + bz — C(z,2,2) = ¢(z,2).

At the equilibriﬁm, some additional results concerning the solution to (2.2) can be

obtained.



ProrosITION 2: If (w,c,g,d) is an equilibrium with the associated policy function C
and value function V, then C(z,2,2), all > 0, all 2, lies in the nonempty interior M(z,z,2)
of M(z,z,2), and V is a continuously differentiable function at (z,7,2), all z> 0, all 2.

ProoF: Since u’(0) = o and £(0,2) = 0, all 2, C(z,2,2) € M(z,2,2), all > 0, all 2z
By Benveniste and Scheinkman’s theorem (1979, Theorem 1) the value function V is
differentiable at (z,z,2), all > 0, all z, with the derivative V(z,3,2) = v'[C(z,7,2)]. This

derivative is continuous since %’ and C are continuous. Q.E.D.

With the results of Proposition 2, any equilibrium consumption function is a strictly

positive solution (¢(z,2) > 0, all z> 0, all 2) to
(2.3) v [e(2,2)] = fEuw {f(z,2) + bz — c(z,2),2' ]}
{6 + 7[f(2,2) + bz — c(z,2),2’ | [f(2,2) + 6z — c(z,2),2" ]} (2" | 2).

Suppose, on the other hand, that ¢ is a strictly positive solution to (2.3),9=f+ d6—¢, d
=(1-17)f,and w is defined by

w(z,2) = uc(z,2)] + BB f(z,2) + 6z — c(z,2),2" ]n(2’ | 2).

Is this (w,c,g,d) an equilibrium? For this ¢ and d, define V and C as the unique
solution to (2.2). By construction, C(z,2,2) = ¢(z,2) and W(z,z,2) = w(z,2), so this
quadruple is an equilibrium. Note, though, that the zero consumption function ¢=0 isa
solution to (2.3), but it is not an equilibrium, so it is important to explicitly deal with
strictly positive solutions. The remainder of this paper proves the existence and uniqueness
of the strictly positive solution to (2.3), and deveiops a method by which to construct this

solution.



3. Existence

In a stochastic setting, since there does not exist a stationary point of consumption
(which could be shown to be strictly positive) it is difficult to rule out solutions to (2.3)
that are arbitrarily close to zero. Since zero is a solution, any fixed—point equation
representing (2.3) that has zero in its domain had better have two solutions, one at zero
and one that is strictly positive. Since the contraction—mapping theorem delivers a unique
solution, it thus is not well—suited for this problem. Most other existence theorems rely on
a notion of compactness for the set of candidate solutions, which, for infinite—dimensional
spaces, is a considerably more difficult concept to deal with than the completeness
requirement of a contraction—mapping fixed—point theorem. It turns out, though, that for
the economy considered here a rather natural compact set of consumption functions can be
constructed. This compactness property is also preserved under a fixed—point equation
that has a close association with the contraction mapping of a dynamic program. While
this fixed—point equation does not have the contraction property, it does have two
properties mentioned previously—monotonicity and concavity—that are almost as good.

Define the set of consumption functions

Cf(KxZ) =

c:KxZ -+ K is continuous,
c 0
0 -

< e(z,2) < f(z,2) + 6z,
< CEy,z; §ng < f(3:2) = f(z,2) + §(y—z) for y> =

The third condition defining C f( KxZ) is equivalent to requiring that consumption ¢ and

net investment f 4 6 — c are increasing functions of the capital-labor ratio z.

ProrosiTioN 3: With Assumptions 1-2, C f(KxZ) 18 convez and compact.6
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Proor: Clearly C f(KxZ) is convex. To show that C f(KxZ) is compact, note
that since |e(z,2) — ¢(9,2)| < |f(z,2) — f(y,2) + &(z — y)|, by the mean value theorem
C f(KxZ) is equicontinuous at every point z> 0, all 2. At =0 and each 2, for any e
> 0 choose A such that f(A,z) + 6A = ¢ so that |¢(0,2) — e(9,2)| € f(y,2) + by < ¢
whenever y < A, ce C f(KxZ). C f(KxZ) is thus equicontinuous, so by the Arzela—Ascoli
theorem " Cf(KxZ) is compact. ’ Q.E.D.

Define the fixed—point equation A by
(3.1) w [(Ac)(z,2)] = FEuw {f(z,2) + bz~ (Ac)(z,2),2’]}
{6+ 1f(z,2) + 6z — (Ac)(z,2),2’)f"[f(2,2) + bz — (Ac)(z,2),2" |} (2’ | 2).

Clearly any strictly positive fixed point of A can define an equilibrium. Note that
(Ac)(z,2) enters an argument of ¢, and that A(c) is defined pointwise. The function A4
has a well-defined meaning: for the finite—time—horizon version of this economy with the
terminal consumption function fixed at ¢, An(c) corresponds to the optimal consumption
function n steps away from the terminal date. One implication of what follows is thus the
equivalence between the limit of the finite—horizon economy and the infinite—horizon
economy. This result also establishes the close connection between A and the dynamic
programming problem on which A is based.

The following proposition establishes that A is well defined.

PROPOSITION 4: Forany c€ C f(KxZ), a unique A(c) e C f(KxZ) ezists.

ProoF: Define A(c) pointwise as the y for which
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C(y’zaz) =
B {cf(2,2) + 62—y, {6 + 1{f(2,2) + 62— 9,2/ |f'[f(%,2) + 6z — y,2’|}n(2 | 2) — w’ ()

equals zero. Unless y = 0 is the root, ¢ is negative for y close to 0, positive for y close
to f(z,2) + 6z, and strictly increases as y increases. This proves the existence of a unique
A(c), which also proves that A(c) is continuous. Since (¢ increases with y and decreases
with z, A(c) is an increasing function of z, and by (3.1) f+ 6 — A(c) is an increasing

function of z. Hence A[Cf(KxZ)] C Cf(KxZ). Q.E.D.

At this stage, proving the existence of a fixed point ¢ = A(c), ¢ € Cf(KxZ), is
vacuous since we already know that ¢ = 0 is a fixed point.8 For this reason, Skchauder’s
fixed—point theorem is inappropriate relative to the set C f(KxZ). Tarski’s ﬁxedépoint
theorem, on the other hand, contributes something in that it asserts the existence of a
maximal fixed point and provides a particular sequence that converges to it: a continubus,
monotone self-map of a non—empty, partially—ordered, compact set M in which some
efenient m € M is mapped inwards, A(m) < m, has a maximal fixed point in the set {mT:
er <m, m't € M}, and An(m) converges to this maximal fixed point.9 For the economy
considered here, f + 6 will take the place of m so this fixed point is maximal in the entire
set C f(KxZ), and thus I will simply refer to it as the maximal fixed point in C f(KxZ).

To apply Tarski’s fixed—point theorem, a partial ordering on C f(KxZ) is required.
Define the usual partial ordering by ¢ < ¢ if ;(z,z) < ;(a;,z), all (z,2), with which the

monotonicity of A can be established.

PROPOSITION 5: A is continuous and monotone.

Proor: Clearly A(c,) - A(c) pointwise as ¢, = ¢ Since Cf(KxZ) is

10

equicontinuous and KxZ is compact, this convergence is uniform, > which establishes that
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- -~

A is continuous. (A4,<) is monotone since ¢ < ¢ implies
w[(Ac)(z,2)] 2 Fw {c[f(2,2) + bz — (4c)(2,2)2']}
{6+ T{f(2,2) + 62— (Ac)(z,2),2°1f [f(5,2) + bz — (Ac)(z,2),2 [}n(# | 2),
and thus A(c) < A(c). Q.E.D.

The existence of the maximal fixed point in C f(KxZ) as the limit of A™(f) can

now be established.

THKEOREM 6: Among the set of fized points of A there erists one that is mazimal in
C f(KxZ), and A™(f) converges uniformly to this mazimal fized point.

ProoF: By Proposition 3 C f(KxZ) is a compact set, and by Proposition 4 A
maps Cf(KxZ) into itself. By Proposition 5 A is continuous and (A,£) is monotone.
Clearly A(f) < f, so Tarski’s theorem can be applied. Since Cf(KxZ) is a set of

equicontinuous functions defined an a compact set, the convergence is uniform. Q.E.D.

Note that Tarski’s fixed—point theorem does not assert that the maximal fixed point
in C f(KxZ) is not ¢ = 0, but it does assert that if A™(f) converges to 0, then no
equilibrium in C f(KxZ) exists. To prove that a strictly positive fixed point exists, all
that needs to be shown is that An( f) converges to a strictly positive function. For the

following restriction on the production function, this result can be proven.

AssuMpTION 5: There ezists an 1z, such that, for all 2, f(zo,z) + by > 7, and

BE[6 + f'(zy,2")|m(2" | 2) < 1.
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In the deterministic setting, Assumption 1 ensures that Assumption 5 holds. In the
stochastic setting, Assumption 5 requires that productivity under a particular shock is not
too high relative to productivity under other shocks, which will ensure that consumption

under these other shocks is not too low in anticipation of a high productivity shock.

PRrOPOSITION 7: With Assumptions 1-5, a strictly positive fized point ezists.

ProoF: I will first prove that the maximal fixed point is not zero, and then that it
is strictly positive. Choose an z that satisfies the conditions in Assumption 5, and
choose an « such that 0 < a < f(z,,2) + 52:0 — 13, all z To prove that a nonzero fixed
point exists, it is sufficient to show that if ¢(z,,2) > o, all z then (Ac)(z,,2) > o, all 2. A

sufficient condition for (Ac)(zo,z) >a,all zis
w(a) 2 fEu {df(5y,2) + 625 — a,2’]}
{8+ Tlf(z2) + b1y — a2 1f [f(a2) + 850 — 0z }a(z |2),

all z By construction f(z,,z) + 51;0 —a> g and o(z,,2) > a, all 2z, so a sufficient

condition for this inequality is

w(a) 2 ABu (@)[6 + r(ay,2 ) f (a2 (|2,

all z. Since 7 <1, this inequality is true by hypothesis. A nonzero fixed point thus exists.

To prove that the above nonzero fixed point must be strictly positive, define Ty as
the largest z for which ¢(z,2) = 0 for some z, say zt. Suppose that z >0, for then
f(zl,z) + bz > 7, all 2z (note that z, < xO). The left side of
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w[dz, )] = B {lf(zy,2") + b2, — oz, 2),7 1}
{6+ 1lf(zy,2)) + b2, — dz,, 7)1 [f(ey,2) + b2, — e(xy,2), 2 [}a(2 | )

is then unbounded while the right side is bounded, so it must be true that =z

,=0. QE.D.

Since A™(f) converges to the maximal fixed point in C f(KxZ), with Assumptions

1-5 it will converge to a strictly positive fixed point.
4. Uniqueness

To prove that an equilibrium is unique, a notion of the concavity of A is developed
that is similar to the type of concavity needed to ensure, for example, that a production
function has a unique strictly positive fixed point. To get some idea as to where this
argument is headed, consider the following argument to establish that a strictly positive
fixed point of A is unique. Suppose A satisfied the following property: for any strictly
positive fixed point ¢ of A and any 0 < ¢t < 1, (Atc)(z,2) > HAc)(z,2), all z> 0, all =z
Suppose, then, that two strictly positive fixed points ¢y and Co exist such that, for some
0<t<l, ¢; 2 te, and cl(z,z) = tcz(:c,z), some z > 0, some 2 This would lead to the
following contradiction: c¢;(z,2) = (Ac;)(2,2) 2 (Alcy)(2,2) > HAcy)(z,2) = teo(z,2), all z>
0, all z In general, however, no such ¢ > 0 exists, as it cannot be ensured that a strictly
positive lower bound for ¢;(2,2)/cy(z,2) exists. The above property of A is thus not
sufficient to ensure that a strictly positive fixed point is unique. For any 5 > 0, however,
a lower bound for cl(:c,z)/c2(:c,z) does exist over the region z > z,. The idea pursued here

is to somehow strengthen the concept of concavity so that it pertains to this smaller

domain.
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DErFINITIOR: The monotone function A:C f(KxZ) - C f(KxZ) is concave if (i) for any

strictly positive c€ C’f(KxZ) and any 0 < < 1,
(4.1) (Atc)(z,2) > H(Ac)(z,2), all z> 0, all 2,

and (ii) for any strictly positive fixed point ¢, of A there exists some z; > 0 such that
the following is true: for any 0 < z; < z; and any ¢, € Cf(KxZ) such that cl(:c,z) >
cz(z,z), all z> ), all 2,

(4.2) ¢1(z,2) 2 (Acy)(z,2), all z2 2, all 2
With this definition of concavity, the following uniqueness theorem can be proven.

THEOREM 8: A monotone, concave function A:Cf(KxZ) 5 Cf(Kx‘Z) has at most one
strictly positive fized point ce C f(KxZ).

PrOOF: Suppose that two distinct strictly positive fixed points ¢y and Co exist.
Without loss of generality, assume that cl(z,z) < c2(z,z), some z > 0, some z. Clearly for
some small zy > 0, cl(x,z) < c2(z,z), some I > I, some 2z, and for any such 7y a 0<
< 1 can be chosen such that cl(x,z) > tc2(x,z), all z> z,, all 2 and cl(z,z) = tc2(:c,z),
some z > 7, some z Since A is concave, this z, can be chosen such that c¢/(z,2) 2

(Atcy)(z,2), all z2 4, all z This leads to the contradiction

¢(z2) 2 (Atey)(z,2)
> HAcy)(z,2)

= tc2(z,z),

all z> z,, all 2 Q.E.D.
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Theorem 8 is similar to one proven by Krasnosel’skii and Zabreiko (1984). They
define concavity such that a 0 < ¢ < 1 can be chosen to satisfy the required properties
when Ty = 0. The function A does not appear to satisfy their definition of concavity.

The following two lemmas establish the property needed for (4.2) to hold. This

requires the following assumption.
AssumpTION 6: [[6 + 7(0,2")f’(0,2")|7(2" |2) > 1, all 2, all 2.

As shown in the following lemma, this assumption ensures that net investment adds

to the capital-labor ratio when the capital-labor ratio is low.

LEMMA 9: With Assumptions 14 and 6, for any strictly positive fized point ¢ of A
there ezists some 2, > 0 such that fz2) + 62— (2,2) 2 2, all z< 3, all 2z

PrOOF: Suppose that ¢ is a strictly positive fixed point of A and that for every
Ty > 0 there exists some z ¢ z; and some z such that f(z,2) + bz — ¢(z,2) < z. For this

¢, 7, and z, substitute z for f(z,2) + 6z— ¢(z,2) in (2.3) to show
v [e(z,2)] > BEu [e(z,2”)][6 + 7(z,2") ' (z,2" )] 7(2" | 2).
With Assumption 6, z, can be chosen sufficiently small so that
v [dz,2)] > Tu’[c(z,27)),
which is a contradiction. Q.E.D.

Using Lemma 9, a monotonicity—type result over a region =z > % > 0 can be

derived.



LEmma 10:  Allow Assumptions 14 and 6 to hold, suppose ¢ 18 a strictly positive
fized point of A, and define an Zy > 0, as in Lemma 9, such that f(z,2) + b6z — cl(x,z) >
T, all < %y, all z. For any 0 < 2 < T, if Co € Cj(KxZ) is such that cl(z,z) > c2(9:,z), all
T2 ), all 2, then ¢((z,2) 2 (Acy)(2,2), all z> z, all z.

PROOF: f(2,2) + 62— ¢;(z,2) 2 z,all 222, all 750 ¢[f(z,2) + 6z~ ¢(z,2),2°] 2

c2[f(:z:,z) + bz — cl(x,z),z’], all >z, all 2 all 2, and thus

¥
wley(z,2)] < B {eylf(22) + 62— ¢,(5,2),])
{6+ 1lf(5,2) + 62— ¢,(2,9.21f [f(5.2) + bz~ ¢)(5,2),2 }n(z | 2),
all 7 z),all z This proves that c,(z,2) > (4c,)(z,2), all 2> z;, all z Q.E.D.

To establish the property needed for (4.1) to hold, the following assumption is
sufficient.

ASSUMPTION 7: Utility echibits constant relative risk aversion; that is, w’(zy) =
uw (2)u’ ().

THEOREM 11: With Assumptions 1—4 and 6~17, a strictly positive fized point of A is
unique.

PrOOF: Proposition 3 establishes that A:Cf(KxZ) - Cf(KxZ), Proposition 4
establishes that A is monotone, and Lemmas 9 and 10 establish the property needed for
(4.2) to hold. To show that (4.1) holds, in the functional equation determining A(tc),

substitute tA(c) for A(tc) to show that a sufficient condition for (4.1) is
v [t(Ac)(z,2)] > FBu {tc[f(z,2) + bz — tH( Ac)(z,2),2]}

{8 + 7(f(2,2) + bz — HAc)(z,2),2’ | f*[f(z,2) + 6z — t(Ac)(z,2),2" ]} (2" | 2),
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all £>0,all z Use Assumption 7 to cancel the first ¢ in the argument of w/(-) on
both sides of the inequality, and then use Assumption 3 to show that the strict inequality

holds. A 1is thus concave, so by Theorem 8 a strictly positive fixed point is unique. Q.E.D.
5. Construction of the Equilibrium
Proposition 12 summarizes and slightly strengthens the results obtained so far.

PROPOSITION 12: Under Assumptions 1-7, for any strictly positive Cy € C f(Kx Z), the
sequence {cn} defined recursively by ¢ 1= A(cn), n > 1, converges uniformly to the

*
unique strictly positive fized point ¢ .

ProoF: We already know that An( f) converges uniformly to the unique strictly
positive fixed point, so the proof is complete if for any strictly positive ¢ there exists a ¢
< ¢ that also converges uniformly to this fixed point. Define an 7y > 0 as in
Assumption 5, and an 0 < a < f(a:O,z) + 5z0 — Iy, all z asin the proof of Proposition 6.

Also, choose @ small enough such that co(z %) 2 @, all z. Define ¢ by

¢ =inf {c: o(zy,2) = o, all 2},
¢

Since C f(KxZ) is compact, such a ¢ exists. Clearly c< Cor and since A is monotone
A™() < A™(¢y) < A(f).

A(c) > ¢ is proven in Proposition 7, and a similar application of Tarski’s fixed—point

*
theorem guarantees that A™(c) converges uniformly to the fixed point ¢ . Q.E.D.
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As shown by Lucas and Stokey (1987, Theorem 3) in a different context, even

without the additional assumptions guaranteeing uniqueness, if An(g) and  A™(f)
* * *

converge to the same solution ¢ , where ¢ < ¢ < f, then the solution ¢ is unique in the

subset {c: c<c< f} of Cf(KxZ).
6. Concluding Remarks

This paper proves the existence and uniqueness of the equilibrium to a stochastic
production economy in which the income tax rate can be a somewhat arbitrary function of
the entire state vector. The model and solution methodology developed in this paper can
be used to address a variety of tax—policy experiments. In the remainder of this paper I
will sketch out how this paper’s approach may be used to conduct two tax—policy
experiments.

It has often been suggested that via a "Laffer Curve" effect decreasing a relatively
high income tax may actually increase tax revenues by stimulating a sufficiently large
increase in investment. Since uncerta.inty is not an important element of this concept, and
income fully adjusts to a particular tax rate at the steady state, this suggests focusing on
tax revenue at the deterministic steady state. For a constant tax rate 1 — 7, tax revenue

at this state in an economy with a production function f(z,2) = g% is

a

@[ T

Note that this definition of the Laffer Curve does not depend on preferences other than on
*
the time preference parameter f, and the revenue maximizing rate 1 — 7 =1 — «

depends only on the production function parameter a. An a of .33, which is a common
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setting for this parameter in the stochastic growth literature, leads to 1 — 7'* = .67. This
value is probably well above tax rates in the US economy.

To address the issue just discussed requires neither uncertainty nor that taxes be a
function of the capital-labor ratio. Suppose, however, that we want to compare the
equilibrium under tax—rate smoothing, in which case tax revenue varies, versus one with
tax—revenue smoothing, in which case the tax rate varies. The tax—rate smoothing case is
captured by setting the tax rate 1 — 7(z,z) to some constant. The tax—revenue smoothing
case is captured by setting tax revenue [l — 7(z,2)]f(z,2) to some constant, say k. To
bound the implied tax rate to be less than one, some cap 1 — 7 < 1 must be imposed so

that
1 — 7(z,2z) = min{l — 7, ¥/ f(z,2)}.

Assumption 3 is satisfied if

[1 — min{1 -7, k/ f(2,2)}])f* (2,2)

is a strictly decreasing function of z, which, for the production function zza, is satisfied
for any k whenever 1 — 7 <1 — a Clearly to carry out this experiment, and many
others like it, one needs to rely on the full analysis of the problem laid out in this paper,

including the dependence of the tax function on the capital-labor ratio.



ENDNOTES

1. This paper is based on my dissertation, for which Robert E. Lucas, Jr., Lars P.
Hansen, and Robert M. Townsend provided many helpful comments. I would also like to
thank two anonymous referees, Andreu Mas—Colell, Edward J. Green, Ross E. Levine, and
David B. Gordon for very useful criticisms. This paper should not be interpreted as
reflecting the views of the Board of Governors of the Federal Reserve System or members
of its staff.

2. Current work by Kehoe, Levine, and Romer (1989) attempts to extend this
approach, but they are unable to reformulate the type of problem considered here without
using side conditions.

3. I wish to thank an anonymous referee for suggesting that I motivate the model as
a competitive equilibrium in the way done here.

4. Note that no upper bound on the derivative at 0 is imposed, so it is possible to
specify f7(0,2) < w, all z 0or f/(0,2) = w, all 2z A sufficient condition for z> 0 is if

f7(0,2) > 1, all 2, and a sufficient condition for Z< o isif lim f(z,2) = 0,all z
o :

5. An extension which incorporates a progressive tax rate is straightforward. With
an income Yp let the tax rate be 1 — ¢(yt,X t’zt)‘ Modify equation (2.1) to include
$lf(Xpz) + (z, — Xt)f'(Xt,zt),Xt,zt][f(Xt,zt) + (2, - X)f'(Xpz)], and modify
Assumption 3 to assume that y¢(y,X,z) is a strictly increasing and strictly concave
function of y and that {¢[f(z,2),z,4 + $,[f(z:2),5,2f(2,2)}f* (2,2) is a strictly decreasing
function of z. At the equilibrium, define 7(z,z) as the above term in braces, and proceed

as in Section 3.
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6. A set M is sequentially compact if every sequence in M contains a convergent
subsequence; it is compact if this limit lies in M. See Royden (1968, p. 160).

7. The Arzela—Ascoli theorem states that a subset of continuous functions defined
on a compact set is sequentially compact if it is bounded and equicontinuous. A set of
real—valued functions C(K) defined on a metric space K is equicontinuous at z € K if
for every € > 0 there exists a § > 0 such that |c(z) —c(y)| < ¢ whenever d(z,y) < 6, y
€ K, and c € C(K). C(K) is equicontinuous if it is equicontinuous at every point, and
uniformly equicontinous if 6 can be chosen independent of z. Also, a set is compact if it
is sequentially compact and closed. See Royden (1968, pp. 177—179) for the proof of the
Arzela—Ascoli theorem and for the definition of equicontinuity.

8. Bizer and Judd (1989) prove the existence of a fixed point at this stage, which is
why their proof does not establish the existence of an equilibrium.

9. See Dugundji and Granas (1982, Theorem 1.4.2). The theorem only requires
that every countable chain (i.e., every totally—ordered subset) has an infimum, which is
satisfied if the set is compact. I wish to thank Darrell Duffie for bringing this theorem to
my attention, and an anonymous referee for suggesting that I apply it in this case. In a
previous version of this paper, I applied Schauder’s theorem on a set which excluded ¢ =0,
where I used monotonicity to show that A mapped this set into itself.

10. See Royden (1968, p. 178, Lemma 32).
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