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ABSTRACT

This overview describes the concepts of cointegration and exogeneity, focusing on
analytical structure, statistical inference, and implications for policy analysis. Examples
help clarify the concepts. The remainder of the overview summarizes the articles in a

special issue of the Journal of Policy Modeling entitled Cointegration, Ezogenesty, and
Policy Analysis.
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Cointegration, Exogeneity, and Policy Analysis: An Overview

Neil R. Ericsson!

1. Introduction

The concept of “cointegration” is a central development in the econometric literature
over the last decade. Introduced by Granger (1981) and Engle and Granger (1987), coin-
tegration is a statistical property which may describe the long-run behavior of economic
time series. Importantly, cointegration ties together several apparently disparate fields.
First, cointegration links the economic notion of a long-run relationship between economic
variables to a statistical model of those variables. If a long-run relationship exists, the
variables involved are “cointegrated”. Second, the technical and previously somewhat ob-
scure statistical theory on unit-root processes provides the basis for statistical inference
about the empirical existence of cointegration. Third, cointegration implies and is im-
plied by the existence of an error-correction representation of the relevant variables. Thus,
cointegration establishes a firmer statistical and economic basis for the empirically suc-
cessful error-correction models. Fourth, via error-correction models, cointegration brings
together short- and long-run information in modeling the data. That unification resolves
the “debate” on whether to use levels or differences, with Box-Jenkins-type time-series
models and classical “structural” models both being special cases of error-correction mod-
els. Fifth, via the distributional theory of integrated processes, cointegration clarifies the
“spurious regressions” or “nonsense-correlations” problem associated with trending time-
series data.

Cointegration by itself is proving a useful conceptual and empirical tool. However, to
derive implications of cointegration for policy analysis, it is fruitful to introduce a second
concept, exogeneity.

Virtually concurrent to developments in cointegration, Richard (1980), Engle, Hendry,
and Richard (1983), and Florens and Mouchart (1985a, 1985b) clarified and refined the
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concept of exogeneity, building on Koopmans (1950) and Barndorff-Nielsen (1978). Criti-
cally, the exogeneity of a variable depends on the parameters of interest to the investigator,
and on the purpose of the model, whether for statistical inference, forecasting, or policy
(scenario) analysis. These three purposes define three types of exogeneity, which Engle,
Hendry, and Richard call weak, strong, and super.

A clear understanding of exogeneity is critical for analyzing the implications of coin-
tegration for policy analysis, so this overview discusses exogeneity first (Section 2), then
cointegration (Section 3). Each section considers the analytical structure of the associated
concept, statistical inference, and policy implications, in that order. Examples en route
help demonstrate the roles of exogeneity and cointegration in policy analysis. The issues
in Sections 2 and 3 are discussed at greater length in Ericsson, Campos, and Tran (1991),
itself summarizing David Hendry’s empirical econometric methodology; cf. Hendry and
Richard (1982, 1983), Hendry (1983), Spanos (1986), and Hendry (1987, 1989, 1990). Sec-

tion 4 summarizes the articles in this special issue. The Appendix lists the titles of those
articles.

2. Exogeneity

Whether or not a variable is exogenous depends upon whether or not that variable
can be taken as “given” without losing information for the purpose at hand. The distinct
purposes of statistical inference, forecasting, and policy analysis define the three concepts
of weak, strong, and super exogeneity. Valid exogeneity assumptions may permit sim-
pler modeling strategies, reduce computational expense, and help isolate invariants of the
economic mechanism. Invalid exogeneity assumptions may lead to inefficient or incon-
sistent inferences and result in misleading forecasts and policy simulations. Section 2.A
defines the exogeneity concepts and illustrates them with a static bivariate normal process
(Example 1), the well-known cobweb model (Example 2), and a first-order vector autore-
gression (Example 3). Section 2.B discusses tests of exogeneity and, in particular, tests of
super exogeneity, since that concept is relevant for policy analysis. Section 2.C comments
on the policy implications of exogeneity. The examples here and in Section 3 generalize
straightforwardly to linear multivariate dynamic processes.

A. Concepts and Structure

Weak ezogeneity. The essential concept is weak exogeneity, which is required for
efficient inference (i.e., estimation and hypothesis testing) in a conditional model. Weak
exogeneity can be explained via one of the simplest processes, the bivariate normal. In this
first example, the bivariate normal density is factorized into its conditional and marginal
densities. Analyzing the conditional density leads to the concepts “parameters of interest”
and “variation free”, and so to weak exogeneity. Example 2 discusses these concepts in
greater detail for the cobweb model.

Ezample 1: joint, conditional, and marginal densities. Consider two variables, y; and
2¢, which are jointly normally distributed and serially independent:

(1) [Z:] ~IN(p,Q) t=1,...,T.

The subscript ¢ denotes time, T is the total number of observations on (y;, 2;)’, the nota-
tion “~ IN(p,€2)” denotes “is distributed independently and normally, with mean g and
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covariance matrix {27, and bold face denotes a vector or matrix, rather than a scalar. In
an economic context, y; and z; might be money and an interest rate, or consumers’ expen-
diture and income, or wages and prices. Let z; be (y:,2;)’, and define €; as the “error”
z; — £(z:), which is 2, — p, where £(-) is the expectation operator. Then (1) becomes:

(2) Z:=p+ & et~IN(0,ﬂ).

Equation (2) is in “model form”, rather than being written directly as a distribution, as in
(1). Below, it will be helpful to express g and Q2 explicitly in terms of their scalar elements:

- -ll'l
(8a) h= _#2]
and )
w11 wi2
1= .
(3b) | W21 wzz]

Without loss of generality, (1) may be factorized into the “conditional” density of y;
given 2; and the “marginal” density of z;:2

(4a) Yt| 2t ~ IN(a + bz, 0?)
(4%) 2y ~ IN(ua,w22),

where b = wia/waz, @ = p; — bus, 02 = w11 — w?/wsys, and the vertical bar | is the
conditioning operator. In model form, (4) is:

(5a) yt=a+bz+v v~ IN(0,0%)
(5b) 2t = Pz + €2 g2t ~ IN(0,w22),

where vy; [= €14 — (w12/w22)€2¢] is the error in the conditional model for y: given z;, and
the error &; is (€14,€2;)'. In the standard regression framework, (5a) would be obtained
by conditioning y; on z;. Since (5a) is a conditional model, vy; is y; — E(y: | 2¢). Thus, vy,
contains only that part of y; which is uncorrelated with zt, and so which is uncorrelated
with €34, in light of (5b). It then follows that E(2¢ - v1t) = 0 and &(ey; - vit) = 0.
Symbolically, the relationship between (1) and (4) [or between (2) and (5)] is:

(6) Fe(24; 0) = Fy (e | 25 A1) - Fa(ze; Ag),

where F,(-) denotes the density function for variable v. Thus, Fz(z¢; ) is the joint den-
sity of £:, Fy|,(y:|2:; A1) is the conditional density of Yt given z;, and F,(z; A;) is the
marginal density of z;. The parameter vector @ is the full set of parameters in the joint
process; A; and A, are the parameter- of the conditioral and marginal models; and the
respective parameter spaces are ®, A;, and A,. Defining A as (A}, %)’ and denoting
its parameter space as A, then there is a one-to-one function g(:) such that A = g(9)

2 The word “marginal” is used here and elsewhere in its statistical sense. Its usage

in statistics arises from summing a tabulated joint distribution function across its rows or
down its columns and entering those sums in the margin, to obtain what is known as the
marginal distribution; see Kendall and Stuart (1977, p. 22). “Marginal” as used here is

not to be confused with its economic sense in (e.g.) “marginal versus average cost”.
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Above, 0 = [u',vec(2)')’, A1 = (a,b,02)’, and Ay = (uz,ws2)". The representation in (6) is
important throughout this overview.

In (6), the joint density of z, is factorized into the conditional density of y; given 2z
and the marginal density of z;. This factorization is without loss of generality. Even so,
analyzing the conditional density Fy|2(ye | 2¢; A1) while ignoring the corresponding marginal
density F,(2:; Az) is with loss of generality, and in general implies a loss of information
about the conditional process being modeled. Analyzing the conditional model alone is the
statistical formalization of taking 2z; as “given”, so the remainder of this section considers
the corresponding implications.

Modeling the conditional density (4a) by itself ignores some information about the
conditional model’s parameters (a, b, 0?) when any of a, b, and o2 are linked to the marginal
model’s parameters (uz,ws2), e.g., via cross-equation restrictions. However, in spite of the
definitions of a, b, and 02, such dependence may be absent. For instance, if w;, took values
in proportion to wy; as (e.g) wqg varied across different regimes for z;, then the value of
w22 (in A2) would be uninformative about b, which is wy2/w22, and is in A;.

“Lack of dependence” between A; and X, is an overly strong condition for inference.
Instead, a related concept, the sequential cut of a density function, is used. Specifically,
the factorization (6) operates a sequential cut if and only if A; and X, are variation free,
i.e., (A1,A2) belong to A; x As, the product of their individual parameter spaces. Thus,
A1 and A; are variation-free if the parameter space A is not a function of the parameter
Az, and the parameter space A is not a function of the parameter A;. Expressed slightly
differently, knowledge about the value of one parameter provides no information on the
other parameter’s range of potential values. Thus, under weak exogeneity, permissible 8
are always reconstructed correctly from separately selected values of A; and ),. Example
2 below examines the concept of “variation free” in greater detail.

The parameters A; and A, being variation free is not enough to ensure valid inference
about the parameters of interest, using the conditional model (4a) alone. For instance, if
an investigator were interested in g, both (4a) and (4b) would need to be estimated: p
can not be retrieved from only (a, b,02). Thus, the formal notion of parameters of interest
(denoted ¢) is introduced. This leads to the definition of weak exogeneity.

Definition. The variable z; is weakly exogenous over the sample period for
the parameters of interest 4 if and only if there exists a reparameterization
of 0 as A, with A = (A],A})’ such that

(i) 4 is a function of A, alone, and

(ii) the factorization in (6) operates a sequential cut, ie.,

Fe(z4; 0) = Fyo(ve | 265 A1) - Fy(2y Az)
wher~ A € A; XA,
[Engle, Hendry, and Richard (1983, p. 282)]

If weak exogeneity holds, then efficient estimation and testing may be conducted by ana-
lyzing only the conditional model (4a), ignoring the information of the marginal process
(4b). In economic analysis, there may be many variables in 2; but relatively few in y;, so
weak exogeneity can greatly reduce the modeling effort required.

Ezample 2: the cobweb model. The concepts “parameters of interest”, “

variation free”,
and “weak exogeneity” are illustrated clearly with the standard economic

cobweb model.



5

This model characterizes a market with lags in the production process, as might occur with
agricultural commodities. See Tinbergen (1931) and Suits (1955) for pivotal contributions,
and Henderson and Quandt (1971, pp. 142-145) for an exposition.

The cobweb model is obtained by a simple generalization of the static bivariate normal
model in Example 1. Specifically, let the mean of z: depend linearly upon y;_;, the lagged
value of y;: Example 3 gives details. From (5a) and (5b), the resulting model is:

(7a) yt=a+bz+ vy vt ~ IN(0,0%)
(76) 2zt =kyt_1+ €2 ezt ~ IN(0,w22),

where k is a parameter capturing the linear dependence of z; on y;_;. In the cobweb model,
yt and z; are interpreted as the logs of price and quantity respectively. Denoting those
logs as p; and ¢4, and ignoring the constant a (for ease of exposition), (7a)-(7b) becomes:

(80') pt = bgs + vy Vi~ IN(0,0’z)
(80) qt = kps_1 + €24 €2t ~ IN(0,w22).

As before, E(qt . Vlt) =0 and €(Egt . Vlt) = 0.

The cobweb model (8) has the following interpretation and properties. The first
equation, (8a), is derived from a demand equation: the price (pt) clears the market for a
given quantity (¢;) supplied. The value 1/b is the price elasticity of demand. The second
equation, (8b), is a supply equation, capturing (e.g.) how much farmers decide to produce
this year (¢;), depending upon the price they were able to obtain in the previous year
(pt—1). The value k is the price elasticity of supply. The stability of (8a)-(8b) as a system

is sometimes of interest, and can be determined from the reduced form for pt [e.g., by
substituting (8b) into (8a)]:

9) Pt = ppt—1+ €1t €1t ~ IN(0,wy1),

where p is the root of (9), and is equal to b-k. If |p| < 1, the market is dynamically stable.
If |p| = 1, the market generates prices which oscillate without dampening; and if |p| > 1,
the market is dynamically unstable.

Now, consider how parameters of interest and parameter spaces determine whether or
not the quantity g¢; in (8a) is weakly exogenous. Specifically, consider conditions (i) and
(ii) for weak exogeneity individually, recognizing that both conditions must be satisfied
for weak exogeneity to hold. In the notation from Example 1, the parameters of the
conditional model (8a) are A; = (b,02)’, and the parameters of the marginal model (8b)
are Ay = (k,wq3)’.

Condition (i) for weak exogenei‘~ requires that the parameters of interest % be a
function of the conditional model’s parameters A, only. If the parameter of interest is the
demand elasticity (1/b), this condition is satisfied: b enters A1, and A; alone. However,
if the stability of the system is at issue and so the parameter of interest is the root p,
condition (i) is violated. The parameter p requires knowledge of both b (in A;) and & (in
A2), and so necessitates analysis of the full system. Thus, ¢; is not weakly exogenous for
the root p; but ¢; may be weakly exogenous for the elasticity 1/b, depending upon whether

or not condition (ii) is satisfied. Choosing the parameters of interest is not an innocuous
decision.
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Condition (ii) for weak exogeneity requires that the parameters of the conditional and
marginal models (A; and A;) are variation free. The following three situations show how
these parameters might or might not be so. For ease of exposition, ignore the presence

of 02 and wy in A; and A,, thereby allowing analysis of the parameter space A [now the
parameter space of (b, k)| on a plane.

First, suppose that b and k are completely unrestricted real values. Their parameter
space A is %2 the complete real plane. For every value of k, the parameter b can take any
value in the interval (—oo,+00), which is A 1. The value of the marginal model’s parameter
k does not affect the range of the conditional model’s parameter b, and conversely, so b
and k (i.e., A; and A;) are variation free. Equivalently, the parameter space A is the
product space of A; and Ay, i.e., (—oo0, +00) X (=00, +00), which is ®2. Thus, g¢; is weakly
exogenous for (e.g.) the elasticity 1/b.

Second, suppose that b and k are restricted such that the system (8a)-(8b) is stable,
Le., such that [b- k| < 1. Their corresponding parameter space A appears in Figure 1,
labelled as “stability”. Unlike the previous case, the value of k does affect the range of b.
For instance, if £k = 0.5, then b must lie in the interval (=2, +2), whereas if k = 0.2, then
b lies in the interval (—5,+5). Formally, A, which is the parameter space of b (or ),

depends upon the values of the marginal process’s parameter k (or Az). Thus, A; and X,
are not variation free.

Equally, the parameter space A is not A; x A, the product of the spaces of b and
k. For example, for k = 0.2, A, is (—5,+5); and for b = 1, A, is (—1,+1). However,
the product space A; X A, which is (=5,+5) x (=1,+1), is not the parameter space
A for (b, k), which is defined by |b-k| < 1. Put somewhat differently, the value of k is
informative about the value of b, even though k does not determine the specific value of
b. Inference using the conditional density alone loses information about b from k in the
marginal density, so g; is not weakly exogenous for the elasticity 1/b.

Third, suppose that (e.g.) economic theory or intuition suggests the following restric-
tions: that the supply elasticity k lies in the unit interval [0,1), and that the demand
elasticity 1/b is negative and is greater than or equal to unity in absolute value (implying
that —1 < b < 0). The corresponding parameter space A appears in Figure 1, labelled
as “elasticity restrictions”. The parameter b lies in the interval [—1,0], regardless of the
value of k; and k lies in the interval [0,1), regardless of the value of b. The parameters
are variation free: the product space [-1,0] % [0,1), which is A x A 2, is also the space in
which (b, k) lies, i.e., A. Thus, under the “elasticity restrictions”, ¢; is weakly exogenous
for the elasticity 1/b. As with parameters of interest, the choice of parameter space is
important in the determination of a variable’s status as exogenous or endogenous.

To summarize, the parameter space and the parameters of interest are important
concepts, both statistically and economically. Their choice is critical to the exogeneity
status of a given variable. The introduction of dynamics in (7) above leads naturally to
another concept of exogeneity, strong exogeneity.

Strong ezogeneity. Strong exogeneity is the conjunction of weak exogeneity and
Granger non-causality, and insures valid conditional forecasting. Figure 2 shows the re-
lationship between weak exogeneity, Granger non-causality, and strong exogeneity via a
Venn diagram. Figure 2 also includes a set for the property of invariance, which helps
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Stability: {(b,k) such that [b-k| <1}

Elasticity restrictions: {(b,k) such that -1 <b < 0 and
O<k<1}

Figure 1. Po's,si»b'lve parameter spaces of the cobweb model.
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Weak exogeneity

Granger
non-causality

Strong exogeneity

Super exogeneity

Figure 2. The relationship between Granger non-causality,
invariance, and three forms of exogeneity.
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define super exogeneity (discussed after strong exogeneity).

To discuss the concept of strong exogeneity, Example 1 is modified to include dynamics
by reinterpreting (1) as the joint density of z;, conditional on the past of z; (denoted X;_,).
In general, X;_; may affect the distribution of z; through both g and 2, and in a rather
arbitrary fashion. For simplicity, only linear dependence of g on the first lag of z; is
considered. Thus, the mean g in (1) is interpreted as the conditional mean of z; given
X;_1. That is, p = ®1z;_,, where 7; is a matrix of coefficients, and the constant term is
ignored for simplicity.

Ezample 3: joint, conditional, and marginal densities with lags. Under this simplifying

assumption about lags and linearity, (1) becomes a first-order vector autoregression (VAR)
in model form:

(10) T =T1Zi—1+ & €t ~ IN(O, Q).

Equations (5a) and (5b) become conditional and marginal autoregressive distributed lag
(AD) models:

(11a) yt = bozs + b1z 1 + bays—1 + v1e vit ~ IN(0,0%)

(118) 2 = M22¢_1 + M21Y¢—1 + €2t €2t ~ IN(0,w22),

where 7;; denotes the (1,j)th element of xy, and (bo,b1,b2) are derived from x; and 0,
paralleling the relation between b and (u,{1) in (4a). Specifically, bp = wi2/waz, by =
M1z — (w12/w22)ma2, and by = my; — (wy2/w22)7m21; see Engle, Hendry, and Richard (1983,
p. 297).

Valid prediction of y from its conditional model (11a) requires more than weak exo-
geneity. With weak exogeneity alone, y;_; influences z; if m2; # 0 in the marginal model
(11b), in which case 2; in the conditional model (11a) can not be treated as “fixed” for
prediction of y;. The requisite additional restriction is that w2, = 0, or (in general) that y
does not Granger-cause 2.2 Weak exogeneity plus Granger non-causality generates strong
exogeneity. Strong exogeneity permits valid multi-step ahead prediction of y from (11a),
conditional on predictions of z generated from (11b) (with m3; = 0), where the predictions
of z depend upon only their own lags. With 75; # 0, valid prediction of y must account for
the feedback of y onto z in (11b), period by period: valid multi-step prediction therefore
requires joint analysis of (11a) and (11b), violating the exogeneity of z; in (11a).

“Error-correction” models (and so cointegrated processes) are closely related to the
autoregressive distributed lag model in (11a). By appropriately adding and subtracting
yt—1 and z;_; from (11a), that equation may be written as an error-correction model
(ECM): |
(12) Ay = 7182 + v2(ye—1 — 624_1) + vy,
where v, = bo, 72 = by — 1, and § = —(bo + b;)/(bz — 1).* Equation (12) involves no loss

3 Specifically, Granger non-causality means that only lagged values of 2; enter (11b)
or its generalization. Equally, Granger non-causality means that lags of other variables
(other than of z;) do not enter the marginal model for z;.

4 With the lag operator L defined as Lz; = T¢—1, the difference operator A is (1 — L);
hence Az; = z; — z;_;. More generally, A;-xt = (1-1° )iz, If ¢ (or j) is undefined, it is
taken to be unity.
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of generality relative to (11a), provided b # 1. The term y;Az; is the immediate impact
that a change in 2; has on y;. The term ~v2(y;_; — 62¢_1) (with 42 < 0 required for dynamic
stability) is the impact on Ay, of having y;_; out of line with 6z;_1: y = 6z is the long-run
static solution to (12). Discrepancies between y;_; and 62;_, could arise from errors in
agents’ past decisions, with the presence of ~Y2(Yt—1 — 6z:_1) reflecting their attempts to
correct such errors: hence the name error-correction model. Several papers in this special
issue develop conditional ECMs in the course of modeling.

Hendry, Pagan, and Sargan (1984, pp. 1040-1049) discuss the properties of ECMs
in greater detail, and show that many classes of models common in empirical research
are subsumed by the ECM. The ECM representation is also central to the discussion of
cointegration, as shown in Example 7 below.

Super ezogeneity. Super exogeneity is the conjunction of weak exogeneity and “invari-
ance” (see Figure 2), and insures valid policy simulations. The concept of invariance can
be motivated as follows.

Frequently, the reduced form (2) is empirically nonconstant, due to (e.g.) OPEC
shocks, changes in policy rules, and financial innovations. The factorization (6) may aim
to isolate those nonconstancies into the sub-vector A2, leaving the parameters of the con-
ditional model A; invariant to the changes which have occurred. Thus, the concept of
invariance is introduced. The parameter A1 is invariant to a class of interventions to the
marginal process for z; (i.e., to a set of changes in A2) if Ay is not a function of A for
that class of interventions.® For invariance, lack of dependence between the parameters
themselves matters, and not just lack of dependence between parameters and parameter
spaces.

Policy analysis (or counter-factual analysis) often involves changing the marginal pro-
cess of z;. Valid analysis of the conditional model under such changes requires that the
parameters A; be invartant to those changes (or “interventions”). The relevant concept
is super exogeneity, whereby z; is weakly exogenous for the parameters of interest ¥, and
A1 is invariant to the class of interventions to A2 under consideration (see Figure 2). Im-
portantly, a variable is super exogenous with respect to a specified class of interventions
(e.g., those that occurred within sample): the variable need not be super exogenous with
respect to interventions outside that class, although it may be.

To illustrate the concept of super exogeneity, interpret y; and z; as money and an
interest rate, (11a) as a money demand function, and (11b) as the Fed’s interest rate
reaction function (assuming that there is one). Then, policy analysis of (11a) for money
demanded at different levels of the interest rate is valid only if the parameters in the
money-demand function (A1) are invariant to the specified changes in the parameters of
the interest-rate reaction function (A2) which would generate those levels. That condition
is equivalently that the interest rate is super exogenous for the parameters in the money
demand function with respect to the changes in the reaction function under consideration.

Predeterminedness and strict ezogeneity. Before turning to tests of exogeneity (Section

2.B), the concepts of predeterminedness and strict exogeneity are considered briefly, as they

often appear in discussions of exogeneity. Neither concept specifies parameters of interest;

® Engle, Hendry, and Richard (1983, p. 284)

call this structural invariance, rather than
invariance.
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and that is a major drawback of each concept, given the preceding exposition. For instance,
in the cobweb model, g; is predetermined in the conditional model (8a), and OLS of (8a) is
consistent for b. However, that conditional model is not sufficient to obtain the parameter
of interest if the parameter of interest is the root p. Likewise, z; is strictly exogenous
in (5a), but that conditional equation by itself is not sufficient to obtain u;. Neither
predeterminedness nor strict exogeneity is sufficient for efficient statistical inference; lack
of necessity can be shown as well. See Engle, Hendry, and Richard (1983) for details and
examples, including of the dynamic simultaneous equations model.

B. Inference

Whether or not z; is exogenous depends inter alia upon the process generating y; and
z:, so exogeneity may be testable.

Even so, testing for weak exogeneity per se is often difficult because doing so involves
modeling z;, whereas a motivation for assuming weak exogeneity is to avoid modeling z;.
Also, weak exogeneity depends upon the parameters of interest, which are chosen by the
investigator. Still, a few tests of weak exogeneity have been proposed, notably in the
context of cointegration; see the discussion of Johansen (1990) in Section 3.B below.

While strong exogeneity requires weak exogeneity, the former is refuted by finding
Granger causality of y onto z. Thus, Granger non-causality, which is a necessary condition
for strong exogeneity, generates an easily calculated (albeit incomplete) test of strong
exogeneity.

Super exogeneity requires weak exogeneity of z; for the parameters of interest 4, and
invariance of the conditional model’s parameters A; (on which ¥ depends) to changes in

the parameters of the marginal process (A;). Thus, two common tests for super exogeneity
are as follows.

(i) Establish the constancy of A; and the nonconstancy of A;. With A; constant
and A, not, then A; must be invariant to A;, and so super exogeneity holds;
f. Hendry (1988).

(ii) Having established (i), further develop the marginal model for z; until it is
empirically constant. For instance, by adding dummies and/or other vari-
ables, model the way in which A; varies over time. Then test for the sig-
nificance of those dummies and/or other variables when they are added to
the conditional model. Their insignificance in the conditional model demon-
strates invariance of the conditional model’s parameters A; to the changes
in the marginal process; cf. Engle and Hendry (1989).

Tests of parameter constancy thus are central to tests of super exogeneity.

Parameter constancy is of more general interest as well. Economic theory focuses
on the invariants of the economic process, as reflected by the continuing debates on au-
tonomy, “deep” or “structural” parameters, and the Lucas critique. Given the intimate
link between parameter constancy and predictive accuracy, valid forecasting also relies on
constant parameters; cf. Hendry (1979). Most estimation techniques require parameter
constancy for valid inference, so parameter constancy is a central concept from a statistical
perspective. Even models with time-varying parameters posit “meta-parameters”, which
are assumed constant over time and whose empirical constancy could be tested. Recur-
sive estimation is an incisive tool for investigating parameter constancy, both through the
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sequence of estimated coefficient values and via the associated Chow (1960) statistics for
constancy.

Thus, the constancy of a model bears on its economic interpretability, forecasting, and
policy analysis, the latter specifically via tests of super exogeneity. Because of the critical
role of parameter constancy in policy analysis, many of the papers in this special issue
employ recursive estimation and tests of parameter constancy and predictive accuracy.
Further, several papers in this issue analyze and develop tests of parameter constancy and
predictive accuracy themselves. See Section 4 below.

C. Policy Implications

Super exogeneity has several implications for policy analysis.

First, the empirical presence of super exogeneity immunizes the conditional model
from the Lucas (1976) critique; see Hendry (1988), Engle and Hendry (1989), Ericsson and
Hendry (1989), and Favero and Hendry (1989). For example, suppose that the conditional
and marginal models represent agents’ and policy makers’ decision rules respectively. Then,
under super exogeneity, the agents’ parameter vector A; is invariant to changes in policy
makers’ rules (via A;), which is opposite to the implication of the Lucas critique.

Second, “inverting” the conditional model is invalid. For example, inverting a money-
demand equation to obtain a price equation is invalid. The bivariate normal distribution
in (1) demonstrates how and why that is so.

In (4a) and (4b), the joint density (1) was factorized into the conditional density of
Yt given z; and the marginal density of z;. Equation (1) also may be factorized into the
conditional density of z; given y; and the marginal density of y;:

(13a) zt|ys ~ IN(c + dy;,7?)
(138) Yt ~ IN(uy,wy1),

where d = wy;/wyy, ¢ = py — duq, and 72 = wag — w2 /wy,. The factorization in (13) is
“opposite” to that in (4). In model form, (13) is:

(14a) 2zt = c+dys + vo vt ~ IN(O, 72)
(145) Yt = By + €34 €1t ~ IN(0,wy,),

where vy, is the error in the conditional model for z; given y;. Paralleling results for (5)
€(vat-yt) =0 and E(vgs - €5) = 0. Symbolically, (13) is:

(15) Fe(2e; 0) = Fy(2e | yes 61) - Fy(ye; 62),

where the parameterization is ¢ = (47, $,) = h(8), and h(-) is a one-to-one function. Thus,
via g(-) and h(-), there is a one-to-one mapping between (1], )}) and (61, 43). Specifically,
the coefficient on y; in (14a) is d = bwaz/ (02 + b2was), which is not 1/b unless (5a) is non-
stochastic (i.e., 02 = 0). Further, if 2, is super exogenous for b and 02, then d will vary
as the marginal process for 2¢ varies (via wj;) even though b remains constant. Inversion
does not obtain the correct parameter for the inverted equation, and the parameter in the
inverted model may bz nonconstant even if the “uninverted” conditional model is constant.

Inversion may appear peculiar at first glance, but it is precisely what occurs when
(e.s.) estimated money-demand functions are “inverted” to obtain prices as a function
of money (common among macro-economists) or to obtain interest rates as a function

J
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of money (common among macro-modelers). For example, suppose a conditional money-
demand function is estimated:

(16) m = K1p+ Kot — k3R,

where m, p, and ¢ are the logs of nominal money, the price level, and real income respec-

tively, R is the interest rate, and the {x;} are coefficients, all assumed positive. The two
inversions above correspond to

(17a) p=(1/k1)m — (k2/K1)i + (k3/K1) R

and

(17b) R = (—1/k3)m + (k1/k3)p + (k2/K3)1,

where b = k; in the first instance and b = —k3 in the second. From the analytical

relationship between d and b above, the empirically estimated coefficient on m in (17a) or
(17b) need not be at all close to 1/b, even for large samples. The nonconstancy of the
inverted model can be demonstrated empirically as well, as in Hendry (1985) and Hendry
and Ericsson (1991a, 1991b).

Third, super exogeneity can identify parameters, in the sense of uniqueness, because
any (nontrivial) combination of the conditional and marginal equations would be noncon-
stant; cf. Hendry (1987, p. 40). This contrasts with (e.g.) Cooley and Leroy (1981).

Fourth, Granger non-causality is neither necessary nor sufficient for policy analysis,
and contrasts with a common approach to exogeneity. Lagged y in (11b) may influence
current z (e.g., the Fed might pay attention to lagged money in setting the interest rate),
yet the conditional model (11a) (e.g., a money-demand equation) would still be valid for
policy analysis if z; were super exogenous for A;. Granger non-causality is relevant for
strong exogeneity, but that concept is for forecasting, not policy analysis.

We now turn to the concept of cointegration.

3. Cointegration

Cointegration formalizes in statistical terms the property of a long-run relation be-
tween “integrated” economic variables. In this section, integration and cointegration are
illustrated by (10), first as a first-order scalar autoregression (Example 4), then as a higher-
order vector autoregression (Example 5). Specifically, the first-order bivariate (vector)
autoregression is used to illustrate cointegration (Example 6), the relationship between
cointegration and error-correction models (Example 7), and implications for weak exo-
geneity (Example 8). Then, a first-order trivariate vector autoregression shows how two
cointegrating vectors might arise (Example 9).

Section 3.A describes integration and cointegration via the examples. Section 3.B
summarizes several techniques for testing the order of integration and the existence of
cointegration. Section 3.C draws upon Section 2 (on exogeneity) to discuss the implications
of cointegration for policy analysis.

For the initial development of cointegration, see Granger (1981), Granger and Weiss
(1983), the papers in Hendry (1986), and Engle and Granger (1987). For recent summaries
and extensions, see Johansen (1988), Hylleberg and Mizon (1989), Engle and Yoo (1989),
Dolado, Jenkinson, and Sosvilla-Rivero (1990), Johansen and Juselius (1990a), Campbell
and Perron (1991), Phillips (1991), Phillips and Loretan (1991), Ericsson, Campos, and
Tran (1991), Banerjee, Dolado, Galbraith, and Hendry (1991), and Johansen (1991a)
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For the initial (and much earlier) development of error correction, see Phillips (1954,
1957), who inter alia discusses how error correction in policy makers’ rules might help
stabilize the economy. Important subsequent empirical and analytical contributions include
Sargan (1964), Davidson, Hendry, Srba, and Yeo (1978), Salmon (1982), and Hendry,
Pagan, and Sargan (1984).

A. Concepts and Structure

The essential concepts are integration and cointegration, which apply to individual
time series and sets of time series respectively. A variable is integrated if it requires
differencing to make it stationary. Many economic time series appear to be integrated; see
Nelson and Plosser (1982). A set of integrated time series is cointegrated if some linear
combination of those (non-stationary) series is stationary.

Ezample 4: integration. For a scalar (rather than bivariate) z;, (10) is a first-order
autoregression:

(18) Tt = M1Te—1+ €4,

which may be rewritten as:
(19) Az = wxy_1 + &y,

where 7 = m; — 1 by subtracting z;_; from both sides of equation (18). If m; = 1 or
equivalently # = 0, then z; has a unit root and is said to be integrated of order one
[denoted I(1)], meaning that z; must be differenced once to achieve stationarity. In the
simple case of (18), z; is a random walk if it has a unit root. If |m1| < 1, then z; is
stationary. For general autoregressive processes, (18) includes additional lags of z;, and
(so) (19) includes lags of Az;.

Ezample 5: cointegration. Equation (18) may be generalized to represent a vector of
variables [as in (10)] and to include higher-order lags of z;. Together, these result in:

£
(20) T = Zﬂr;zt_g + & & ~ IN(0,0),
i=1

where £ is the maximum lag, and (20) may include a constant and dummies as well. In
terms of the joint density in (1), the mean of z; conditional on Xi_1isp= Ef___lﬂ',-zt__,'.

Following Johansen (1988) and Johansen and Juselius (1990a), (20) provides the basis

for cointegration analysis. By adding and subtracting various lags of z, (20) may be
rewritten as:

-1
(21) Az; = ;1 + Z riAzt—i + &
1=1
where the {T';} are
(22) l‘,-:—(ar,-+1+...+1rg) t=1,...,—1,

and

£
(23) r=(Cm)-I
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Equation (20) [and so (21)] simplifies to (10) for £ = 1. As in (19), x in (21) could be
zero. If so, Az, in (21) depends upon &; and lags of Az, alone, all of which are I(0); so
z; is I(1).7 If x is nonzero and of full rank with all the roots of an associated polynomial
being within the unit circle, then all the z; are 1(0), paralleling |7| < 1 in the univariate
case. However, because «x is a matrix in (21) rather than a scalar, # may be of less than
full rank, but of rank greater than zero. If so, each of the variables in z; could be I(1), but
with some linear combinations of those variables being I(0). The variables in z, are then
said to be cointegrated.

To show how cointegration can occur, denote the dimension of z; as p x 1 and the
polynomial (Zf=l1r,-z") — Ip as x(z), where z is the argument of the polynomial. Note
that # = x(1), from (23). The three possibilities for rank(x) are as follows.

(i) rank(x) = p. For x to have full rank, none of the roots of |x(z=!)| = 0 can
be unity. Provided [x(z~!)| = 0 has all its £- p roots strictly inside the
unit circle, z; is stationary because %x(L) can be inverted to give an infinite
moving average representation of z;.

(ii) rank(r) = 0. Because x = 0, equation (21) is in differences only, and there
are p unit roots in |x(z~!)| = 0.

(iii) O < rank(x) = r < p. In this case, ¥ can be expressed as the outer product
of two (full column rank) p x r matrices & and B:

(24) x = af’;
and there are p — r unit roots in |x(z~)| =0.8

In (24), B’ is the matrix of cointegrating vectors, and & is the matrix of “weighting
elements”. Substituting (24) into (21) gives:

—1
(25) Az, = aﬂ'zt_l + Z T:Az;_; + €;.

t=1
Each 1 x p row B in B’ is an individual cointegrating vector, as is required for “balance”
to make each cointegrating relation Biz:_; an I(0) process in (25). Each 1 x r row a; of a
is the set of weights for the r cointegrating terms appearing in the Jth equation. Thus, the
rank r is also the number of cointegrating vectors in the system. While & and B themselves

are not unique, B uniquely defines the cointegration space, and suitable normalizations for
a and B are available.

® Johansen (1988), Johansen and Juselius (1990a), and some others write (21) with
the level of z entering at the £th lag rather than at the first lag. Doing so does not alter
the coefficient on the lagged level (which is %) although it does change the coefficients on
the lagged values of Az;. Since the analysis of cointegration concerns the properties of x
alone, the choice of lag on z is irrelevant in this context.

7 Here, we do not consider situations in which z; is of an order of integration greater
than unity. '

® For example, for the first-order univariate model (18), m(z) is 71z — 1, so the root
of |x(z71)| = 0 is m, itself. Possibilities (i) and (ii) correspond to || < 1 and 7, = 1
respectively; and (iii) is not possible because p = 1.



14

In essence, @f'z;_; in (25) contains all the long-run (levels) information on the process
for z:: the only other observables in (25) are current and lagged Az;. The vector 8'z;_,
measures the extent to which actual data deviate from the long-run relationship(s) among
the variables in z;_;.

Engle and Granger (1987) establish an isomorphism between cointegration and error
correction models: models with valid ECMs entail cointegration and, conversely, coin-
tegrated series imply an error-correction representation for the econometric model. [For
an exposition and extension, see Granger (1986).] To illustrate these and related issues,
consider (20) as a first-order bivariate VAR.

Ezample 6: a single cointegrating vector. As a first-order bivariate VAR, (20) is:
(26a) Ayt = m(11)Yt—1 + T(12)2t—1 + €12
(260) Az = T(21)Yt—1 + T(22)2t—1 + €2,
when expressed as (21) with # = {7}, and noting that z; = (y¢, 2:)’.° If there is one
cointegrating vector (r = 1), then « and 8’ are 2 x 1 and 1 x 2 vectors, which may be

denoted (a1, a2)’ and (81, B2) respectively. Without loss of generality, # may be normalized

with 81 = 1. For convenience, denote the normalized 8’ vector as (1,—6). Thus, (26) may
be rewritten as:

(27a) Ay = ay(ys—1 — 6zi1) + €12
(27b) Az = ag(ys—1 — 6z¢_1) + €24,
where a; = T(11), Q2 = T(21), and § = —T(12)/T(11) = —7(22)/T(21)- The cointegrating

relation B'z;_ is (y¢—1 — 6z:t—1). Equations (27a) and (27b) express the growth rate of
each variable in terms of a past disequilibrium and a random error. If lags of Az; appear
in (21) (i.e., £ > 1), then lagged values of Ay; and Az will be present in (27a) and (27b).

Ezample 7: cointegration and error-correction models. Together, (27a) and (27b)
correspond to the joint distribution of z; conditional on its past (X't—1), as described in
Section 2. Equations (27a)-(27b) may be factorized into the conditional distribution of Yt

given z; and lags of both variables, and the marginal distribution of z; (also given lags of
both variables):

(28a) Ay = v1A82 + vo(ys—1 — 6241) + vy
(280) Azt = az(ys—1 — 6z:—1) + €21,

where 71 = wyz/wae and 75 = a; — (w12/w22)az. Equation (28a) is also the ECM in (12),
and the marginal equation (28b) is the same as (27b). Error-correction models imply and
are implied by cointegration.

Ezample 8: cointegration and weak ezogeneity. The parameters in the conditional and
marginal models (28a) and (28b) are (71,72,6,0%)" and (s, 6,wz2)’ respectively, and have
been denoted A; and A, previously. For cointegrated variables, A; and A; are (in general)
linked via 6 and az. The parameter 6 enters both A; and Az directly; ay enters A, directly

and A; via vy, which is a; — (w12/waz)az. Thus, 2z is not (in general) weakly exogenous
for the cointegrating vector 8, or (hence) for 6.

® The notation 7(ij) distinguishes this (7,7)th element of & from the (%,7)th element of
m1, which is denoted 7;; [as in (11b)]
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Weak exogeneity of z; for 8’ is obtained when az = 0, in which case (28) becomes:

(29a) Ays = 11Az + Y2 (ye—1 — 62¢—1) + vyy
(Zgb) Azt = €21,

where 72 = a1, A1 = (71,72,6,0%)’, and A; = (w22). Then, (29a) alone is sufficient for
fully efficient inference about 8, i.e., about 6. Johansen’s (1990) test for weak exogeneity
is a test of ag = 0.

Ezample 9: two cointegrating vectors. Multiple cointegrating vectors for integrated
processes exist between only three or more series. For expositional convenience, consider
just three time series z; = (y4, z;, w;)’ with two cointegrating vectors:

(30) g — B “151 _052‘].

The unit coefficients are normalizations and are without loss of generality. The zero re-
strictions are with loss of generality, and are included for ease of exposition only. From
(21), the VAR representation of z; is:

(31a) Ay = ay1(ye-1— b12¢-1) + arz(2e—1 — Sowy_1) + €14
(31b) Azy = az1(ys—1— 612¢-1) + azz(ze—1 — Sawi_1) + €24
(31¢) Awt = azi(yi—1 — 612¢—1) + aza(2t—1 — Saws_1) + €34,

where @ = {a;;}. In (31), much more complicated interactions may exist between disequi-
libria [i.e., (y¢—1 — 612¢—1) and (z¢—; — dw;_1)] and the variables themselves than in (27).
With £ > 1, lags of Ay, Az, and Aw; enter (31a)-(31c), further enriching the dynamics.

Empirical analysis of data with multiple cointegrating vectors is harder than with
a single vector, but some such studies already exist. Hendry and Mizon (1989) detect
two cointegrating vectors between money, prices, income, and interest rates for the United
Kingdom, with one vector being a money demand function and the other being the relation
between observed and potential income, where the latter is proxied by a trend. Johansen
and Juselius (1990b) find both purchasing power parity and uncovered interest rate parity
in data on the UK effective exchange rate, the UK wholesale price index, a trade-weighted
foreign price index, and UK and Eurodollar interest rates.

B. Inference

The presence of unit roots complicates inference because some associated limiting
distributions are non-standard. Dickey and Fuller (1979) have tabulated the critical values
for the least squares estimator of 7 and its ¢ ratio for the univariate process (19). The
presence of lagged Az; does not affect their limiting distributions under the null hypothesis
of one unit root; cf. Dickey and Fuller (1981).

Numerous system-based test procedures have been proposed, with the conceptually
most straightforward being that of Johansen (1988) and Johansen and Juselius (1990a).

First, Johansen and Juselius develop a maximum likelihood-based testing procedure
for determining the value of , and tabulate the (asymptotic) critical values of the likelihood
ratio (LR) statistic as a function of p — r. This statistic generalizes the Dickey-Fuller
statistic to the multivariate context. Further, noting that rank(#) is the number of nonzero
eigenvalues in a determinantal equation closely related to estimating x, the LR test ties
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back directly to * by testing how many of those eigenvalues are zero. Additionally, the
cointegrating vectors in B’ are a subset of the eigenvectors, being those associated with
the nonzero eigenvalues. Two variants of the LR statistic exist, one using the maximal
eigenvalue over a subset of smallest eigenvalues (the “maximal eigenvalue statistic”), the
other using all eigenvalues in that subset (the “trace statistic”). These tests and & and g
are computed in several of the papers in this special issue.

Second, Johansen and Juselius develop procedures for testing hypotheses about a
and B, such as zero restrictions. Certain zero restrictions on e correspond to weak ex-
ogeneity, and so may be tested (as in Example 8 above). Conversely, weak exogeneity
of z; for the cointegrating vectors 8 is lost if one of those cointegrating vectors appears
in both the conditional and marginal densities (i.e., it has nonzero weights in both). Jo-
hansen (1990) proposes an ingenious likelihood-based test of weak exogeneity pertaining
to the cointegrating vectors. Conditional ECMs by themselves assume weak exogeneity,
thereby excluding the same cointegrating vector from appearing in both the conditional
and marginal processes. If weak exogeneity is valid, cointegration analysis can proceed on
the conditional model without loss of information, and Johansen (1990) shows how to do
so. Related tests of weak exogeneity have been developed by Boswijk (1991) and Urbain
(1991).

Prior to Johansen (1988), Engle and Granger (1987) proposed the use of and estab-
lished the consistency of unit-root tests in the context of cointegration. Specifically, Engle
and Granger proposed testing whether or not an error u; (defined as 8'z;) is 1(0) by testing
whether or not an autoregression in u; had its roots within the unit circle. Test statis-
tics include the Dickey-Fuller statistic and the Durbin-Watson statistic, using bounds in
Sargan and Bhargava (1983) for the latter. Engle and Granger proposed estimating 8 by
least squares in a static regression of the variables in z;. Stock (1987), Phillips (1987), and
Phillips and Durlauf (1986) derived the asymptotic distribution of that estimator, showing
that it is “super-consistent”, converging to 8 at O,(T 1) rather than the usual Op(T”l/z).

Nevertheless, the computationally simple Engle-Granger technique suffers from sev-
eral problems. Inference about B depends upon nuisance parameters; and, as Banerjee,
Dolado, Hendry, and Smith (1986) demonstrate, large finite-sample biases can result when
estimating B by a static regression. Unit-root tests applied directly to u; usually lack power
relative to Johansen’s test because the latter conditions on the dynamics of the system
whereas the former ignores much of that dynamics; cf. Kremers, Ericsson, and Dolado
(1989). The number of cointegrating vectors is often of interest, but the Engle-Granger
approach lacks means to estimate that number. The choice of normalization in regres-
sion affects the finite-sample properties of the Engle-Granger technique. Finally, many
hypotheses of interest relate to the complete conditional model specification, and concern
speeds of adjustment and the constancy of 8 over time.

C. Policy Implications

Changes in policy-maker’s “rules” or reaction functions [such as (28b)] may change the
cointegration and/or exogeneity properties of the system. For instance, if a policy maker
reacts to the same cointegrating vector as appears in the economic agents’ conditional
model [e.g., (28a)], weak exogeneity for that cointegrating vector is lost. If a cointegrating
vector appears in only the reaction function [e.g., v2 = 0 and a3 # 0 in (28)], and the
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policy maker decides to ignore that disequilibrium information (e.g., changing a5 to zero),
that cointegrating vector disappears from the system. Nevertheless, growth rate (short-
run) effects might still be present: for higher-order VARs, lags of Ay; and Az; could enter
(28b) even if a; = 0. More generally, changes in policy-maker’s “rules” may identify
conditional models as “structural” by demonstrating the conditional models’ invariance to
switches in policy. Many of the tests developed and applied by the papers in this issue aim
to address precisely these issues.

4. This Special Issue on Cointegration and Exogeneity

This issue is divided into two parts: (I) applications, and (II) parameter constancy
and predictive accuracy. Papers in the first part test for cointegration and exogeneity on
a range of macro-economic data. All of these papers except Johansen’s (which is more
illustrative) develop and evaluate the specification of their models as well.

Hendry models the demand for TV advertising expenditure in the UK. Both the
presence and amounts of advertising on the various TV channels are regulated by the
government, so the demand for advertising expenditure has been a highly political issue.
Cointegration analysis clarifies the long-run relationships in the data. Modeling the dy-
namics of prices and quantities on quarterly data obtains a large (absolute) price elasticity
and strong within-year feedbacks between prices and quantities. Previous estimated price
elasticities were obtained from annual data, and were all small in absolute value. The
within-year feedbacks in the quarterly model imply simultaneity bias in the annual es-
timates, thereby explaining the difference in price elasticities. Since the price elasticity
directly affects advertising revenues, which accrue to the commercial TV companies and
to a government agency, policy implications are immediate.

The next three papers analyze money demand for the UK, Argentina, and Norway
respectively. Johansen describes his (1990) test of weak exogeneity for cointegrating vec-
tors, shows how cointegration analysis is feasible for z; that are integrated of order two
[I(2)], and applies both developments to UK money demand data; cf. Johansen (1991b).
Nominal money and prices appear to be I(2), and cointegrate as real money to become
I(1). Real money in turn cointegrates with real total final expenditure (the scale variable),
interest rates, and inflation to generate an I(0) linear combination. Prices, income, and
interest rates appear weakly exogenous for the single cointegrating vector in the system,
whereas money is clearly not exogenous.

Ahumada models the demand for notes and coin in Argentina. She applies tests of
cointegration to find a single cointegrating vector. Modeling from a general specification
and simplifying, Ahumada obtains a parsimonious ECM that satisfies a battery of diagnos-
tic tests. She applies both types of super exogeneity tests, and finds that prices, income,
and interest rates appear super exogenous for the parameters of her money-demand equa-
tion, in spite of dramatic changes in the processes for those variables.

Bérdsen models the demand for narrow money in Norway. Paralleling the approach
in Ahumada’s paper, Birdsen develops a data-coherent, parsimonious ECM for narrow
money, which is robust to financial innovation and policy changes during his sample.

Juselius models the domestic and foreign effects on prices in a small open economy,
Denmark. Danish inflation may be influenced by deviations from several markets’ long-run
solutions: purchasing power parity (in the goods market), uncovered interest rate parity
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(in the assets market), money demand (via a portfolio effect), and the real wage share (via
the labor market). Too few observations are available to analyze all markets jointly; and,
even if enough observations were available, system analysis of several cointegrating vectors
jointly and subsequent system modeling of short-run dynamics appears very difficult in
practice. Thus, Juselius analyzes each market separately to determine the corresponding
cointegrating vectors, and then models inflation in terms of all four cointegrating vectors,
plus short-run dynamics. In brief, foreign effects dominate the determination of Danish
inflation, and this result is robust across changes in government and government policy.

Nymoen models the relationship between wages and prices in Finland, distinguish-
ing between real-wage flexibility (i.e., the responsiveness of nominal wages to changes in
the price level and productivity) and hysteresis (whereby real wages may be more or less
responsive to other determinants, such as unemployment). Theoretically and empirically,
this distinction resolves several conflicting results in the literature. Tests of cointegration
help identify the existence and extent of real-wage flexibility, and further single-equation
analysis determines the extent of hysteresis present. Nymoen’s model encompasses previ-
ous empirical models, while none of the latter can encompass Nymoen’s model.

Hunter describes his recent concept of “cointegrating exogeneity”, which has impli-
cations for long-run forecasting of cointegrated variables. Hunter illustrates tests of weak

and cointegrating exogeneity using Johansen and Juselius’s (1990b) data on prices, interest
rates, and the exchange rate for the United Kingdom.

The four papers in the second part of this issue contribute directly to the use of tests
of parameter constancy and predictive accuracy in policy analysis. At first blush, these
papers may appear tangential to cointegration and exogeneity. However, as shown above,
that is not so since tests of constancy are critical in testing for super exogeneity and in
establishing meaningful long-run relationships. Further, empirically constant parameters
are an important element of an economically interpretable model.

Ericsson begins with an exposition of the statistical criteria for model evaluation
and design, including various criteria based on forecasts. Using Hendry and Richard’s
(1982, 1983) taxonomy for model criteria, Ericsson resolves a debate between modelers
emphasizing parameter constancy and those running “horse races” based on mean square
forecast errors (MSFE). Further, the taxonomy implies a new test statistic, model forecast
encompassing, which Ericsson applies to two models of UK money demand. Properties
of several of the forecast-based tests are affected by the presence of I(1) and cointegrated
variables. Ericsson’s Table 2 categorizes numerous model evaluation and design criteria

according to Hendry and Richard’s taxonomy. Many of those criteria are used by other
papers in this issue.

Granger and Deutsch develop tests from the conditional and unconditional forecasts
of a model in which the conditioning variable (2¢ above) is under policy control. If the
conditional model is well-specified and policy “matters” in the conditional model, then the
conditional forecasts should be more accurate than the unconditional ones. Specifically,
Granger and Deutsch develop a test for whether or not the conditional MSFE is smaller
than the unconditional MSFE. If the inequality does not hold, the conditional model is
mis-specified, the policy considered is not influential in the conditional model, and/or (in
finite samples) the test may lack power. To illustrate these and other forecast-based tests,
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Granger and Deutsch examine Barro and Rush’s Natural Rate/Rational Expectations
model of unemployment, Goldfeld and Kane’s and Dutkowsky’s models of the demand for
borrowed reserves, and Hendry and Ericsson’s model of UK money demand.

Hansen explains the basis for his recent, general tests of parameter constancy as
applied to linear models. Applications include a univariate model of GNP and an error-
correction model of consumers’ expenditure, both with US data.

Campos derives the confidence intervals for linear combinations of forecasts from gen-
eral dynamic econometric models. From the associated formulae, tests of parameter con-
stancy are developed. The forecast confidence intervals as well as the constancy of the
associated model may be important inputs to the policy-making process. To demonstrate
the techniques developed, confidence intervals and test statistics are calculated for models
of an oil price and of the Venezuelan CPI.
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