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ABSTRACT

Structural breaks in stationary time series can induce apparent unit
roots in those series. Thus, using recently developed recursive Monte Carlo
techniques, this paper investigates the properties of several cointegration
tests when the marginal process of one of the variables in the cointegrating
relationship is stationary with a structural break. The break has little
effect on the tests’ size. However, tests based on estimated error correction
models generally are more powerful than Engle and Granger’s two-step
procedure employing the Dickey-Fuller unit root test. Discrepancies in
power arise when the data generation process does not have a common
factor.

Key words and phrases: cointegration, econometrics, error correction,
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the marginal process being estimated, and of the error-correction-based test with no
break in the marginal process. Appendix B presents auxiliary graphical evidence on
the finite sample properties of the cointegration test statistics, including means and
histograms of the statistics and means of the corresponding estimated coefficients.

2. The Data Generation Process, the Test Statistics, and
Some Analytical Properties

This section describes the data generation process for the Monte Carlo simulation
(Section 2.1), the test statistics studied (Section 2.2), and some analytical properties
of those statistics (Section 2.3). The data generation process (DGP) is a first-order
bivariate vector autoregressive process with a possible structural break in one of
the variables’ processes. The test statistics are Dickey-Fuller (static regression) and
error correction t-ratios, and each is considered with and without knowledge of the
cointegrating vector (if it exists). Together, the DGP and the test statistics delimit
the scope of the analysis. Some analytical properties of the test statistics prove helpful
in interpreting the Monte Carlo evidence.

2.1. The Data Generation Process

The DGP is a linear first-order vector autoregression with normal disturbances,
Granger causality in only one direction, and a possible structural break in the strictly
exogenous process. For expositional convenience, this DGP is written as a conditional
error correction model (1) and a marginal process (2):

Ay, = alz+bly— Az)i1 + & (1)
ze = pzim1+ 6D+ uy, (2)
where
Et 0 O'Z 0 _
o] - (BLT ) e w
and

1 lft:To+1,,T1
0 otherwise.

L is the lag operator, A is the first-difference operator 1 — £, T is the sample size,
and Ty + 1 and T} are the beginning and the end of the break (1 < Ty < Ty < T).
For Y = exp(y) and Z = exp(z), a is the short-run elasticity of ¥ with respect
to Z, and X is the long-run elasticity (provided b # 0). The parameter b is the error
correction coefficient in the conditional model of y;, given lagged y and current and
lagged z; and €; and u;, are the disturbances in this conditional-marginal factorization.



Cointegration Tests in the Presence of Structural Breaks

Julia Campos, Neil R. Ericsson, and David F. Hendry!

1. Introduction

Structural breaks in stationary time series can induce apparent unit roots, as shown by
Perron (1989) analytically and empirically and by Hendry and Neale (1991) via Monte
Carlo. Consequently, tests of unit roots have low power when applied to series with
structural breaks. Conversely, such series mimic series with actual unit roots. Using
Monte Carlo, this paper investigates the power of several cointegration tests when
the marginal process of one of the variables in the cointegrating relationship contains
a structural break. The detectability of the structural break itself is also examined,
both by classical constancy tests and by recently introduced tests for invariance.
The data include stationary and non-stationary series with breaks. Calculation and
analysis of results employ recently developed Monte Carlo techniques, as described
in Hendry (1984) and Hendry and Neale (1987, 1990).

A structural break has little effect on the size of the cointegration tests studied.
However, the break does affect the power of cointegration tests when the process
generating the data does not have a common factor. Specifically, tests based on esti-
mated error correction models generally are more powerful than Engle and Granger’s
(1987) commonly used “two-step” procedure employing the Dickey-Fuller unit root
test. The error-correction-based test uses available information more efficiently than
the Dickey-Fuller test, paralleling Kremers, Ericsson, and Dolado’s (1992) results
without a structural break.

Section 2 describes the data generation process for the Monte Carlo study, the test
statistics considered, and some of their analytical properties. Section 3 presents the
experimental design and simulation techniques. Section 4 examines the detectability
of stationarity and of the break in the marginal process. Section 5 interprets the
Monte Carlo results on the cointegration tests. Section 6 concludes. Appendix A
derives asymptotic properties of the unit root estimator in the presence of a break in
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numerical results were obtained using PCNAIVE Version 6.01 and PcGive Version 7.00; c¢f. Hendry
and Neale (1990) and Doornik and Hendry (1992).



case. :

Before describing the test statistics in detail, it should be emphasized that either
Case I or Case IV may characterize empirical time series, and it may be extremely
difficult to distinguish between the two cases in practice. To illustrate, consider real
per capita expenditure on non-durables and services (C'N) and real per capita dispos-
able income (/NC) in Venezuela, graphed in logs in Figure la as cn and inc. Initially,
both series grow smoothly. Then, income jumps by over 30% in 1974 from increased
petroleum revenues, remains relatively constant through 1981, and during the LDC
debt crisis of the early 1980s falls to approximately its 1973 level. Expenditure par-
allels or lags behind income through 1981, but falls only slightly during 1981-1985.
Campos and Ericsson (1988) find that each series appears I(1) empirically, and that
expenditure and income are cointegrated, provided that inflation and liquidity effects
are properly accounted for.

Still, the expenditure and income series in Figure la easily could have been gen-
erated by a stationary process with breaks in 1974 and 1981. Figure 1b plots the
series y; and z, generated by (1)-(4) under Case IV,? and these series’ resemblance to
cn and inc in Figure la is striking. Yet, the power of a Dickey-Fuller test to detect
stationarity in such z; is less than its size; and the power of the Chow test to detect
the break in z; is about 10% (at a nominal 5% level), even when the break point is
known. Such similarities in time series motivate the Monte Carlo study below.

2.2. The Test Statistics

This subsection describes the test statistic for a unit root in the marginal process
(2) and the test statistics for the cointegration of y; and z;.

2.2.1. Marginal Processes

Frequently, investigators pre-test for unit roots in univariate autoregressive repre-
sentations. Many tests exist: see Dickey and Fuller (1979, 1981), Phillips and Perron
(1988), and Banerjee, Dolado, Galbraith, and Hendry (1993) inter alia. While only
the Dickey-Fuller t-statistic (denoted tpr) is considered in this paper, some of its
properties are generic to unit root statistics. The asymptotic distribution of tpp is
well-known for difference-stationary processes (such as Case I), but is shown in (15)
to differ when a break occurs.

2.2.2. Cointegrated Processes

Using the dynamic bivariate process (1)-(4), this paper focuses on the relative
merits of the two-step Engle-Granger and single-step dynamic-model procedures for
testing for the existence of cointegration. See Engle and Granger (1987) on the former
and Banerjee, Dolado, Hendry, and Smith (1986) inter alia on the latter. The former
is characterized by a Dickey-Fuller (DF) statistic used to test for the existence of

ZSpecifically, a=0,b=—0.1,p=0.8,6=1,0. =0, = 1, T = 100, Ty = 25, and T} = 75.



By a suitable scaling of z; (and without loss of generality), A = 1: that is, the
cointegrating vector for (y; : z:)" is (1 : —1) if y; and z; are cointegrated. Knowing
that A = 1 and imposing A at that value for estimation is with loss of generality, so
Section 2.2 considers tests that utilize and that ignore this information.

The parameter space is restricted to {0 < a <1, —1 < b < 0}. In many empirical
studies, @ &~ 0.5 and b &~ —0.1, with 02 > ¢%. That is, the short-run elasticity (a) is
smaller than the long-run elasticity (unity), adjustment to remaining disequilibria is
slow, and the innovation error variance for the regressor process is larger than that
of the conditional process. Also, z; is assumed weakly exogenous for the parameters
in the conditional model (1); see Engle, Hendry, and Richard (1983) and Johansen
(1992a). Section 3.1 gives the precise experimental design.

Four types of process for z; can arise from (2), and they are denoted Cases I-1V.

Case I: z; has a unit root (p = 1) but no break (6§ = 0). The variables y; and
z; are integrated of order one [denoted I(1)] and are cointegrated if —1 < b < 0.
Banerjee, Dolado, Hendry, and Smith (1986) and Kremers, Ericsson, and Dolado
(1992) inter alia analyze the properties of various cointegration estimators and test
statistics under this DGP, both analytically and by Monte Carlo.

Case II: z; is stationary (|p|] < 1) with no break (6 = 0). Then, y; is I(1) if
b = 0, and y; and z; are jointly stationary with an error correction representation
if —1 < b < 0. Davidson, Hendry, Srba, and Yeo (1978) and Davidson and Hendry
(1981) provide some asymptotic and Monte Carlo evidence on the properties of the
error correction test statistic.

Case III: z; is I(1) (p = 1) and has a break (6 # 0). If the break is large enough,
z; may appear to be an I(2) process. While of potential empirical interest for nom-
inal variables, this paper only briefly considers Case III, in Section 4. However, see
Johansen (1992b, 1992c¢) for theoretical and empirical discussions.

Case IV: z, is stationary (|p| < 1) and has a break (6 # 0). This case is the
primary focus of this paper. From extensive Monte Carlo evidence in Hendry and
Neale (1991), z; may well appear to have a unit root when standard unit root tests
are applied, and the break may be difficult to detect (see also Section 4 below). With
z; behaving like a unit root process with no break (Case I), we conjectured that
cointegration tests involving such a z; process would behave as in Case 1. For the
most part, this conjecture appears correct. However, the common factor restriction
in Engle-Granger tests of cointegration plays an even larger role than anticipated, as
shown both analytically and in the Monte Carlo (Section 5).

As implied by Kremers, Ericsson, and Dolado (1992, Section 5), the logical is-
sues arising from common factor restrictions apply to processes more general than
(1)—(4). Specifically, the cointegrating vector or vectors may enter more than one
equation (i.e., no weak exogeneity); and a constant term, seasonal dummies, addi-
tional variables, and additional lags may be included. Some statistics’ distributions
are more complicated with such generalizations, so this paper focuses on the bivariate



a unit root in the residuals of a static cointegrating regression. The latter is based
upon the t-ratio of the coeflicient on the error correction term in a dynamic model
reparameterized as an error correction mechanism (ECM), noting that cointegration
implies and is implied by an ECM. This ¢-ratio is denoted the ECM statistic. Each
statistic may utilize or ignore knowledge about the value of the cointegrating vector
(i.e., that A = 1).> This subsection describes these four test statistics and clarifies
analytical relationships between the test statistics; Section 2.3 presents some of their
asymptotic properties.

The variables y; and z; are cointegrated or not, depending upon whether b < 0 or
b = 0. Thus, tests of cointegration rely upon some estimate of b. The four statistics
considered here are all ¢-ratios on regression estimates of b. Let us denote those t-
ratios by tgcmk, tECMu, tDFE, and tpr,, where the subscripts ECM and DF denote
error correction model and Dickey-Fuller, and £ and u indicate that the cointegrating
vector is assumed known or unknown. These t-ratios on b are derived from the
regressions:

Ayt = K+alAz + b(y — Z)t—l + €kt (5)
Ay = k4+alz+ by — 2)i-1 + czi—1 + €ty (6)
Yt = Ko + 2t + Wkt
Aly—ko—2)t = K1 +by— Ko— 2)t-1 + €xt, (7)
and
Yt i = Ko + AZt ‘L‘ Wit
A(y — Ko — )\Z)t = K1+ b(y — Ko — /\Z)t_l + €ut, (8)

respectively, where &, kg, K1, and c are constants; and a tilde ~ denotes an estimate
from the static regression in (8). The regression errors for tgopk and tgcpr., are g
and e,; respectively. Those for tppy and tpp, are ex; and eyt, with wg; and W, being
the associated static-regression residuals on which tpri and tpp, are based.

The statistics tppr and tgopmi are used to test the null hypothesis that b = 0
in (1), i.e., that y and z are not cointegrated with a cointegrating vector (1 : —1).
The statistics tpr, and tgem. ignore that A = 1, and so are (implicitly or explicitly)
used to test the null hypothesis that y and z are not cointegrated with an arbitrary
cointegrating vector (1 : —\).

Both asymptotic and finite sample properties of the statistics can be better un-
derstood by examining the relationship between the DF regression equation (7) and
the ECM regression equation (5). To do so, subtract Az; from both sides of the
conditional DGP (1) and rearrange:

3A priori knowledge of the cointegrating vector frequently arises in economic modeling: for
instance, of (logs of) consumers’ expenditure and disposable income, of wages and prices, of money
and income, and of the exchange rate and foreign and domestic price levels.
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Figure la. The logarithms of real per capita consumers’ expenditure on nondurables
and services (cn) and of real per capita disposable income (inc).
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Figure 1b. A typical pair of series (y; and z;) from the cointegrated process with a
break but without a common factor.
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Under Case II1, z; has a unit root (p = 1) and a break (§ # 0). Suppose an
investigator, unaware of the break, estimates

Az, = pH4 ¢z + & (14)

in order to test for a unit root (¢ = 0). The probability limit of the least squares
estimator (4 : ¢) of (4 : @) is:
I3 SK(M + K/6)
plim = ZH! , (15)
T 1— (K +2M)

where K is the length of the break (Ty — To)/T, M is the time after the break
(IT'-T)/T,and H = (1 - M — K)M + K(4 — 3K)/12. As found in additional
Monte Carlo simulations not reported below, the estimated means of ft and ¢ appear
to match closely the analytical values in (15).

Three implications of (15) are of interest. First, the estimated intercept has a
nonzero population value, which is proportional to §. Second, the unit root estimator
é +1 differs from unity by only O,(T~!). Third, the corresponding discrepancy does
not depend on § (to 0,(T!)) and is relatively negligible, especially when (K + 2M)
is close to unity.

2.3.2. Cointegrated Processes

Asymptotic distributions of all four cointegration test statistics are known for
Case I (z; with a unit root and no break), providing a baseline for the Monte Carlo
study. Distributions under Cases II-1V are viewed as variants, with Case IV being
the particular focus of Section 5. Because (1)-(4) has a unit root under Case I
distributional results involve Wiener processes. That said, tEcMk is approximately
normally distributed for large ¢ (when a # 1). Derivation of the asymptotic distribu-
tions appear in Dickey and Fuller (1979, 1981) and Phillips (1987b, 1988) (for tDFk);
Banerjee, Dolado, Hendry, and Smith (1986) and Kremers, Ericsson, and Dolado
(1992) (for tgoam); Engle and Granger (1987) and Phillips and Ouliaris (1990) (for
tpru); and Park and Phillips (1988, 1989), Kiviet and Phillips (1992), Banerjee and
Hendry (1992), Boswijk (1992), Banerjee, Dolado, Galbraith, and Hendry (1993), and
Appendix A herein (for tECMuy)-

For expositional convenience, we adopt certain notational conventions concerning
Brownian motion (or Wiener) processes. Consider a normal, independently and iden-
tically distributed variable n,,t = 1,...,T: that is, n, ~ IN(0, o2). Here, 1, is usually
either e, €, or u,. Define Br,(r) as the partial sum i) n/(To2)/?) where r lies
in [0,1], and [T'7] is the integer part of Tr. As discussed in Phillips (1987b), Br,(r)
converges weakly to a standardized Wiener process, denoted B,(r). For simplicity of
notation, the argument r is suppressed, as is the range of integration over r when that
range is [0,1]. Thus, integrals such as Jo By(r)2dr are written as J BZ. The symbol



Aly=2)e = bly—=2)1+[(a—1)Az + ¢
by — 2)t-1 + e, 9)

where the disturbance e Is:
e = ((l — l)AZt + &;. (10)

Equation (7) is (9) with ez, = e, and an explicit constant term. The statistic ¢ppy
ignores potential information contained in Az,. Equivalently, (7) imposes the restric-
tion that the short- and long-run elasticities are equal (@ = 1), or that there is a
common factor in the relationship between y: and z;. A useful measure of the ignored
information is:

q9 = —(a"' 1)37 (11)

where s = 0, /0.. That is, ¢? is the variance of (a —1)Az relative to that of . Also,
¢* = R*/(1 — R?), where R? is the population R? for Awy, (or e; in (10)) regressed
on Az; when b = 0. The value of ¢ directly affects the distribution of tEcMEK; see
Section 2.3. See Kremers, Ericsson, and Dolado (1992) for details on the restriction
a =1, and Hendry and Mizon (1978) and Sargan (1964, 1980) on common factors.

The relationship between (8) and (6) (the regressions with unknown A) parallels
that between (7) and (5). Equation (1) can be transformed to:

A(y — :\Z)t = b(y — :\Z)t—l + [(a - I)Azt + (1 — :\)Azt + b(;\ — l)Zt_l + St], (12)
which is (8) where the disturbance ey, is:
e = (e—=1)Az +(1-NAz+ b= 1)z_, +e, (13)

and the constant in (12) is implicit. Thus, tpp, is affected not only by the common
factor restriction, but also by the discrepancy between estimated and actual values of
the cointegrating vector. While “super consistent”, the static-regression estimate \
may have poor finite sample properties, thereby affecting the properties of ¢ DFuy; See
Banerjee, Dolado, Hendry, and Smith (1986).

2.3. Properties of the Test Statistics

This subsection describes properties of the test statistic for a unit root in the
marginal process and properties of the cointegration test statistics.

2.3.1. Marginal Processes

Dickey and Fuller (1979, 1981), Phillips (1987b, 1988), and Banerjee, Dolado,
Galbraith, and Hendry (1993) derive the asymptotic distributions of tpr under Cases
I and II; and they are identical to the distributions of tprk, as described in Section
2.3.2 below. Appendix A derives properties of ¢ pr under Case III, providing a baseline
for interpreting the Monte Carlo results, which are for Case IV.



conditional on the process for u;. Under the null hypothesis, (22) simplifies to:
tEoME = N(O, 1)+ Op(q'l). (23)

The approximation in ¢ is “small-0” in nature; cf. Kadane (1970, 1971). Thus, as ¢
varies from small to large, the asymptotic distribution of tecmk shifts from the DF
distribution to the normal distribution.

The asymptotic powers of t pri and tgcopk are determined by (18) and (21). When
q = 0, the two tests have the same power. When ¢ is sufficiently large, tgomi
has (arbitrarily) greater power than tprr. That discrepancy arises because tppy is
ignoring substantial information on Az, whereas tgoa, uses that information to
obtain a more precise estimate of b.

The asymptotic distributions of ¢ pp,, and tgcas, resemble those of tpri and tgoms,
but are somewhat more complicated because the hypothesized cointegrating vector
is estimated. Phillips and Ouliaris (1990) derive the asymptotic distribution of ¢pp,
under the null hypothesis that & = 0. Appendix A derives the (null) asymptotic
distribution of tgcopy,, which is:

J B.dB. — (f B.B.)(J B%)~\(f B.dB.)
VI B = (f B.B,)*(J B?)-1 '

Because the asymptotic distribution of ¢ 5o, in (24) does not depend on a, Ou, OF O,

it is invariant to those parameters, and hence tests based on tgcyy, are similar. Kiviet

and Phillips (1992), Banerjee and Hendry (1992), and Banerjee, Dolado, Galbraith,

and Hendry (1993) derive similarity without obtaining the asymptotic distribution of

tecmu. Equation (24) is implicit in derivations by Park and Phillips (1988, 1989),

and it is obtained in a different but isomorphic representation by Boswijk (1992).
An alternative expression for (24) is enlightening. Consider the regression

Yy = PBz+G (25)

“linking” the levels of y, and 2. Let R denote the limiting form of Yule’s correlation
for that regression when a = b = 0 (i.e., under the null of no relation between y: and
z¢) and that correlation is not adjusted for sample means. From Phillips (1986), R is:

R = —JDbB (26)

VU B2)(J B

tECMu = (24)

Thus, schematically (24) is:
tpors = DF —R-N(0,1)
VIR
where DF and N(0,1) denote random variables with Dickey-Fuller and standardized
normal distributions. This demonstrates that tgcps, and the Dickey-Fuller statistic

(27)

have different limiting distributions, so their critical values need separate tabulation.



“= 7 denotes weak convergence of the associated probability measures as the sample
size T — oo. See Billingsley (1968) and Banerjee, Dolado, Galbraith, and Hendry
(1993) for further discussion. Mann and Wald’s (1943) order notation is used where
needed.

The null hypothesis is no cointegration (b = 0). The alternative hypothesis is
cointegration (b < 0), and is characterized as a local alternative with:

b = T—1 ~ /T, (16)

where 7 is a negative fixed scalar. Equation (16) parallels the usual Pitman-type
local alternative except that, in order to obtain statistics of O,(1), b differs from the
null by O,(T!) rather than by O,(T~!/%). Conveniently, distributions under the null
hypothesis are obtained by setting v = 0. The generalization of B, (r) under this
local alternative is the diffusion process:

Ky(r) = J5el=dB,(j)
= By(r) +vf5 "B, (j)dj, (17)
where K, (r) is an implicit function of 4; see Phillips (1987b). If v = 0, then K,,(r) =
B, (r). As with B, the argument r in K, (r) and the limits of integration are dropped

if no ambiguity arises from doing so.
Under the local alternative, tpg; is distributed as:

. K.dB.
tope = ([ K2)72 +f‘__

JIKE

(18)

which simplifies to the Dickey-Fuller distribution:
J BedB.

(19)
VS B
under the null hypothesis.

Under the local alternative, the ECM statistic tgopsi is distributed as:
teome = y(1+¢*)V2(J K2)'?
(a—1) [ K,dB. +s7! [ K.dB.
V0e=12[K2+2(a—1)s7' [ KK, + 52 [ K2
When a =1, (20) simplifies to the DF distributions (18) (for v # 0) and (19) (for

v =0).
For a # 1, (20) can be reparameterized in terms of v and ¢ exclusively:

[ K.dB. — ¢! [ K.dB,
VIK2 =201 [ KK, + ¢ [ K2
For large ¢, (21) is approximately a standardized normal distribution:

teemr = N (y(1+¢)V2(J K2)'2,1) + O,(¢7Y), (22)

lprk =

(20)

teeme = Y1+ @)VH[KH/? + (21)



Critical values are all at the 5% level. For tppx and tpgy, the values are calculated
from MacKinnon’s (1991, Table 1) response surfaces with N = 1 and N = 2 respec-
tively (MacKinnon’s “N”), “with a constant but no trend” for both. The correct
critical values for tgcmk depend upon q as well as T, and those for tgcm. depend
upon T. Both sets of critical values could be simulated. However, ¢ may not be
known in practice, and even asymptotic critical values for tgcm. have not yet been
simulated, so “safe” critical values may be constructed by assuming that tgcome and
tgomw have pure Dickey-Fuller-type distributions (i.e., ¢ = 0). Thus, the critical
values for tgomk and tgome. used here are the same as those for tppy and tpry.

Because ¢ is such an important parameter and because ¢ <1 in (28) is relatively
small by empirical standards, the second set of experiments considers the effect of
q = 3, albeit in a more limited design:

a = 0.0 [no common factor: ¢ = s]

b = (0.0 [no cointegration], —0.1 [cointegration])

s = 3.0

p = 0.8 [stationarity]

§ = 3.0 [abreak of size s]

T = 10,11,12,...,98,99,100

To = 25

T, = 75 (29)

resulting in 182 experiments. The values of s and § are equal in order to keep the
time series properties of z the same as in (28).

3.2. Simulation

Simulation proceeded as follows. Random numbers for &; and u; were generated
by multiplicative congruential generators and transformed to a normal distribution
by Box and Muller’s (1958) method. The first twenty observations of each replica-
tion from (1)—(4) were discarded in order to attenuate the effects of initial values in
stationary relations (such as in y; — z; when b < 0). For a particular experiment, P
replications were generated, with a statistic lying in its critical region 5 of P times (S
dependent upon the statistic). The fraction of rejections S/P is an unbiased Monte
Carlo estimate of the underlying rejection frequency (e.g., of size or power).

Recursive algorithms exist for the statistics tprk, tEcME, and tgcumw, providing a
computationally efficient means for their calculation over the full range of sample sizes
T = 10,11,...,99,100 for any given set of values of the other experimental design
variables.® Thus, a replication of size T = 100 was generated, and the statistics were

calculated recursively on that sample for all sample sizes. Such re-use of the sam-

4The statistic ¢ ppy cannot be calculated recursively, so its properties are considered for T' = 100
only. Also, D, was perturbed by a small error in order to permit recursive estimation for T' < 25 of
equations including D;.
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3. Experimental Design and Simulation

This section presents the experimental design and Monte Carlo simulation of the
cointegration test statistics.

3.1. Experimental Design

To analyze the size and power of the cointegration tests in the presence of a
structural break, two sets of Monte Carlo experiments were conducted with (1)-(4)
as the DGP. The first set is a “broad” design, aimed at highlighting the effects of
common factors, cointegration, and breaks over a range of sample sizes. The second
set focuses on how the lack of a common factor affects the cointegration tests. Without
loss of generality, 02 = 1 and A = 1. Thus, the experimental design variables are the
parameters (a, b, s, p,§), the sample size T, and the break points Ty and T}, noting
that s now is oy,.

The first set of experiments is a full factorial design of:

a (1.0 [a common factor: ¢ = 0], 0.0 [no common factor: ¢ = s])

b = (0.0 [no cointegration], —0.1 [cointegration])

s = 1.0

p = (1.0 [integration], 0.8 [stationarity])

§ = (0.0 [no break], 1.0 [a break of size s])

T = 10,11,12,...,98,99,100

To = 25

T, = 75, (28)

resulting in 1456 experiments. For both sets of experiments, new z’s were generated
for each replication, and the number of replications per experiment was P = 10, 000.

The parameter values were chosen with the following in mind. For @ = 1 (and
so ¢ = 0), the common factor restriction holds, so the distributions of the DF and
ECM statistics should resemble each other. For a = 0, the common factor restriction
is violated, but ¢ = s = 1, which is a “moderately small” value. The two values of
b, 0.0 and —0.1, imply lack of and existence of cointegration respectively, although,
in the latter case, the corresponding root of the system is still large: 0.9. The root
of the marginal process (p) is either unity or large but stationary. The break in the
marginal process is either zero or unity (i.e., 1 - o), where the latter value is rather
small by empirical standards. However, for the purposes of this paper, unity seemed
appropiiate because it is small enough to make its detection by standard Chow tests
difficult.

The sample size includes all values in [10, 100], providing small, medium, and large
values. To ensure that most sample sizes included a break, To = 25, with T} = 75
so as to maximize the power of constancy tests over the full sample; see Hendry and
Neale (1991). For a given length of break (1} — 1p)/T, the particular choice of Tp and
T, matters little for the power of the full-sample constancy tests.
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ple greatly reduces Monte Carlo variation for different values of T'; see Hammersley
and Handscomb (1964). Further, calculation of all test statistics on the same sam-
ple reduces Monte Carlo variation for the differences in properties across statistics.
Graphical (rather than tabular) analysis of the Monte Carlo rejection frequencies is
highly desirable, given the large number of experiments; cf. Ericsson (1991). Graphi-

cal analysis also corresponds to a (pseudo-) nonparametric estimation of the size and
power functions of the tests.

4. Post-simulation Analysis: the Marginal Process

This section briefly examines one unit-root test statistic and two constancy test
statistics on the marginal process for z;. The unit root statistic is the Dickey-Fuller
statistic with a constant term (tpr), which is the t-ratio on ¢ in (14), noting that
the break dummy Dy is explicitly excluded. The first constancy statistic is Chow’s
(1960) predictive failure statistic applied to (14) and is denoted Fopow. The second
constancy statistic is the ¢-ratio on the least squares estimate of § in the correctly
specified marginal process (albeit with a constant term estimated):

Azt =uQ + ¢Zt_] + 6Dt + Ut, (30)

and is denoted t5. This last statistic is also a statistic for testing the invariance of
(14) to Dy, as discussed in Engle and Hendry (1993). Critical values are at the 5%
level and are taken from MacKinnon (1991) for tpp, the F' distribution for Fergow,
and the ¢ distribution for ts.

Figures 2a, 2b, and 2c plot the estimated rejection frequencies of tpr, Forow,
and s respectively. The four lines on each graph correspond to Case I (p =1, § = 0:
—), Case [l (p =08, §=0: --), Case Il (p=1, 6§ = 1: ------ ), and Case IV
(p=08,6=1:---).

From Figure 2a, the estimated size of tpp (Case I) is close to 5% for all sample
sizes. When p = 0.8 without a break (Case II), the power increases monotonically
from about 7% (at T' = 10) to 90% (at T' = 100). When a break is added to that
stationary series (Case IV), the power falls from 13% at T' = 25 to less than 1% by
T = 40, increasing to only around 23% by 7' = 100. As examined in greater detail
by Hendry and Neale (1991), even small breaks can dramatically reduce the power of
unit root tests. The size is also affected by breaks, noting that the rejection frequency
for Case III varies between 0% and 25%, depending upon what fraction of the sample
includes the break.

From Figure 2b, the estimated size of Foyow (Cases I and IT) is about 7-9% for
small samples, tending to its nominal 5% value by T' = 100. For stationary 2, with a
break, the power is never higher than 12%, even for a sample split at 7' = 25 where
the first break occurs. The power is somewhat higher for non-stationary z;, but still
never exceeds 30%. In essence, a break of one standard deviation over half the sample
is small and hard to detect, in spite of its consequences on the unit root test.
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The statistic t5 should provide a highly powerful test, given that the dates and
nature of the break are treated as known. However, controlling its size is problematic,
as Figure 2c documents. Intuitively, D; behaves like an integrated process and so the
distribution of ¢; is affected by the correlation between z,_; and D, in (30). This
effect is lessened but not eliminated when z; has a stationary root.> The “power” of
ts appears impressive, but must be treated with caution, given the large distortion to
size.

To summarize, the break in the marginal process is difficult to detect with the
Chow statistic, yet it dramatically reduces the power of the Dickey-Fuller statistic for
detecting a stationary root. A stationary process with a break is virtually observa-
tionally equivalent to a unit root process with no break.®

5. Post-simulation Analysis: Tests of Cointegration

Figures 3 and 4 plot rejection frequencies by the four cointegration tests for the
first set of experiments. These rejection frequencies are under the hypotheses of
no cointegration (Figure 3) and cointegration (Figure 4), and correspond to size and
power, provided the correct critical values are used. Figures 3a-3d plot estimated sizes
for(a=1,6=0),(a=1,6=1),(a=0, 6§ =0), and (a =0, 6 = 1) respectively:
that is, for DGPs with and without a common factor in the conditional process
and with and without a break in the marginal process. Figures 4a—-4d present the
corresponding plots for estimated powers. The primary interest here is in discerning
the differences between Cases I and IV, so p =1 when 6 =0 and p = 0.8 when § = 1.
Appendix B documents other finite sample distributional aspects of the test statistics
and their associated estimators.

From Figures 3a and 3b, the estimated sizes for tgopmi and tppr are both ap-
proximately 5%, which follows from the asymptotic equivalence of the two statistics
when there is a common factor (¢ = 1). The size of tgom. is around 3% because
of the conservative choice of using MacKinnon’s critical values. All three sizes are
virtually unaffected by the sample size T, confirming the accuracy of MacKinnon’s
response surfaces for the critical values. The estimated size of tpg, 1s available at
only T' = 100, and is approximately 5%.

Invalidity of the common factor restriction (Figures 3c and 3d) clearly affects
tgcmk and tprr. As anticipated from the asymptotics with no break, the rejection
frequencies for tgopi are below 5% (typically, between 2% and 4%), while those for
tecmw are unchanged (at 3%) from simulations with a common factor. The rejection
frequency of tppy is about 5% in Figure 3c, in line with its invariance to the existence
or lack of a common factor when there is no break; cf. Kremers, Ericsson, and Dolado

5Note, however, that if the root of z; were treated as known, the distribution of t; would be
exactly a ¢.

6Faust (1992) formally establishes the near observational equivalence of trend-stationary and
difference-stationary processes. His framework also may help establish a parallel result here.
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Figure 2c. Estimated rejection frequencies of the invariance statistic ts for the

marginal process (Cases I-IV).
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Figure 3a. Estimated sizes of four test statistics (tprk, tDFu, tECME, tECMuy)-
The experiments have: a common factor, no break, and no cointegration.

tDFX e tecMun - - - toFu™

tEcMk

10—

Figure 3b. Estimated sizes of four test statistics (tpFky tDFus tECME, LECMu)-
The experiments have: a common factor, a break, and no cointegration.
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Figure 4b. Estimated powers of four test statistics (¢tppk, tDFu, tECME, tECMY)-
The experiments have: a common factor, a break, and cointegration.
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Figure 5b. Estimated powers of four test statistics (tprk, tpFu, tECME, tECMY). The
experiments have: no common factor, a large break (6 = 3), and cointegration.

14a



(1992). However, its rejection frequency is not invariant to the lack of a common factor
when there is a break. The residual in the estimated equation for ¢pry involves Az,
which includes D; and a stationary error: see (9). The average size for tpry is about
6%%, which is substantially higher than the sizes for tgcame and tgop.. The lack of
invariance of tpri to a break when there is no common factor is even more apparent
for powers and for larger ¢, as seen below.

In Figures 4a and 4b, the DGP has a common factor, and y; and z; are cointe-
grated. As under the null of no cointegration, the presence or lack of a break has no
effect on the test statistics; and the estimated powers for tppy and tgopi are virtually
identical, ranging from 5% at T' = 10 to 33% at 7' = 100. The rejection frequency of
tEcMmu 1s somewhat less, and unsurprisingly so because its rejection frequency under
the null is less than 5% and because it ignores A being unity.

When there is no common factor and no break (Figure 4c), the power of tgcak
substantially dominates that of tpry, with the former increasing to 70% by T' = 100.
Even tgcnm, does better than tpry at moderate to large samples, in spite of ignoring
the value of the cointegrating vector. In fact, the power of {ppy is invariant across
Figures 4a, 4b, and 4c. By contrast, the powers of tgcpi and tgopr., increase when
the common factor is invalid, as predicted by theory.

With a break but no common factor (Figure 4d), the power of tgcari exceeds that
of tpri except for very small samples, where both powers appear approximately equal
to size. Discrepancies between their powers at larger sample sizes appear smaller than
without a break, but this is probably a spurious result due to inadequate control of
the rejection frequency of ¢pry under the null hypothesis (see Figure 3d).

Figures 5a and 5b plot estimated sizes and powers for the second set of experi-
ments. The DGP has no common factor and a large break (§ = 3), so these figures
are qualitatively similar to Figures 3d and 4d, but effects of the break are more pro-
nounced from having a larger q. The rejection frequency of tgcpi in Figure 5a is
even smaller than in Figure 3d, as predicted by the asymptotic distribution of tgoass
shifting towards a normal distribution as ¢ increases. Rejection frequencies for tppy
resemble those in Figure 3d, but with a larger range, 2-11%. The distribution of
tEcmu still appears invariant to the break.

The powers for tgoami and tgom. in Figure 5b increase more rapidly with T' than
their powers in Figure 4d because of the greater information content in Az, The
“power” of tppi has more pronounced dips after the breaks occur than in Figure 4d,
and is somewhat inflated because its rejection frequency under the null hypothesis is
inadequately controlled. Even so, the power of tgoa dominates that of tppy for all
sample sizes, as does the power of tgcpr, for T > 40. By contrast, the power of tpp,
is less than its size at T' = 100.

While this Monte Carlo study is limited by a relatively small experimental design
for a, s, and b, both asymptotic theory and these simulations point to the advan-
tages of the ECM statistics for empirically common values of a and s. Control of size
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breaks anywhere in the DGP, properly accounting for the dynamic relationship be-
tween variables can be critical in testing for a long-run relationship between them.

Appendix A. Analytical Results

This Appendix derives asymptotic properties of the unit root estimator in the
presence of a break in the marginal process being estimated (Section I) and of tgoas,
with no break in the marginal process (Section II). The asymptotic distribution of
tprr with no break was solved by Dickey and Fuller (1979), and the distribution of
tecmy With a break is the focus of the Monte Carlo study in the body of the paper.

I. Breaks and the Distribution of the Unit Root Estimator
Consider the DGP for z; in (2) under Case III:
Azt = 5Dt+u¢ U ~ IN(O, 0'5), (Al)

where 2o = 0. Let K, L, and M be the length of the break (T3 — Ty)/T, the time
until the end of the break T} /T, and the time after the break 1 — L respectively, all
relative to the time period T'. An investigator, unaware of the break, estimates

Az = p+dz1+& (A2)

in order to test for a unit root (¢ = 0). This section derives large sample properties
of:

T -1 T
ﬁ T 221 2 Az
1 1
= , (A3)
(2) T T 2 T
21: Zt-1 ; Zt-1 ; 2410z

the least squares estimator of (4 : ¢) in (A2), when (A1) holds for fixed nonzero &
and K. Here and below, summations are over ¢t unless otherwise indicated.

Evaluation of the four different summations in (A3) is required. Without loss
of generality, set 02 = 1, so § is measured in standard deviations of u;. Also, all
summations utilize an explicit representation for z;:

t
zy = Az;
i=1
i 11
= 4§y DJ' + > Uj
1=1 1=1
- 6It + ht; (A4)



~ appears relatively straightforward for the ECM statistics in the presence of breaks.
Tests with tgop. are insensitive to breaks under the null hypothesis, and MacK-
innon’s Dickey-Fuller critical values provide a “safe” choice for teomk and tgopa.
Further, the power of the ECM statistics commonly exceeds that of DF statistics for
empirically interesting parameter values.

Recursive algorithms helped reduce Monte Carlo imprecision across statistics and
across (econometric) sample sizes, with graphical analysis providing a clear, simple
summary of a vast array of estimated sizes and powers. Recursive procedures are also
appealing empirically. Because statistics are affected by the accrual of information
over time, full-sample and partial-sample inferences may differ, especially with breaks.
Recursive estimation and testing offer a window on those effects.

6. Summary and Remarks

Testing for cointegration has become an important facet of the empirical analysis of
economic time series. Various tests have been proposed and widely applied, but most
distributional results rest on the assumption of unit root processes with no structural
breaks. Even so, regime shifts and structural breaks are empirically and economically
plausible, as indicated by extensive discussion of the Lucas (1976) critique. Using
Monte Carlo methodology, this paper examines the finite sample properties of four
common tests of cointegration in the presence of a structural break.

When conditioning is valid, Dickey-Fuller statistics used to test for cointegration
have no particular advantage over their ECM counterparts; and there is much to gain
from using the latter when the common factor restriction is invalid, and especially
so if a break occurs as well. These differences arise because the DF statistic ignores
potentially valuable information by imposing a possibly invalid common factor re-
striction. Because common factor restrictions are generic to univariate-based tests
of cointegration, these results should hold for the augmented Dickey-Fuller statis-
tic, Sargan and Bhargava’s (1983) statistic, Phillips’s (1987a) Z, and Z, statistics,
and generalizations thereon by Phillips and Perron (1988) and Gregory and Hansen
(1992). The problem is in using these univariate-based statistics to test a multivariate
hypothesis, and not in the statistics themselves.

Conversely, maximum likelihood procedures such as those developed by Johansen
(1988, 1991, 1992a), Johansen and Juselius (1990), Phillips (1991), and Boswijk
(1992) do not impose common factor restrictions and so can have more desirable
properties. Some caveats apply in practice. First, systems procedures may require
modeling the break itself, and that may be difficult. Second, while conditional model-
ing is often simpler than dealing with complete systems, the assumed weak exogene-
ity may be invalid, implying trade-offs between conditional and systems modeling.
Third, even in conditional models, general dynamics may not be sufficient to account
for breaks. If breaks occur in the cointegrating vector itself, the Lagrange multi-
plier statistic of Quintos and Phillips (1992) may help detect them. With or without
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2 _ PSPy R 4265 Lh
Ezt Zl:t+;t+ ;tt

Ty T T T T
= [y I+ > 1+ hi+26[ 3y Lh+TK 3 h
To+1 Ty+1 1 To+1 Ti+1

TK ‘ T TK ™
= 52[2112+T2K2TM]+Zlih?+25[ZthTo+j+TK 2 hradl
J= = )=

= 18T3K2(K +3M]
0,(T?)

TK ™ )
+ 26[21.7”"1"04-.7' +TK 21 hT1+J'] + OP(T ) (Ag)
1= =
0,(T%/?)

Because z% is O,(T?), the summation ¥7 22 ; is (A9), to O,(T?).
Noting (A1), the summation YT z,_;Az, is obtained by evaluating each of the
summations Z? zi_1u; and 2? zi—1Dy:

T T T
Zl:zt—lut = 621:It—1ut+zl:ht——lut

TK ™ T
= L3 duress + TK Lungs] + Thow + 0T, (A10)
1= 1=
0,(T%/?) O,(T)

and

T T T
Xllz:_lDt = 521: LD + Zl:ht—-lDt
TK  TK
= 6 ity hro+i-1 + Op(T)
1= J=
TK
= 16T*K? + ) hrgri-1 + Op(T). (A11)
J:

0,(T?) O0,(T%7%)
From (A10) and (Al1), it follows that:
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where

=4 t—Tp, . ift=To+1,...,T, - (A5)
| TK ift=Ty+1,...,T
and °
t
ht = EUJ t=1, ,T, (A6)
j=1 :

with &, being a random walk.
Evaluating (A4) at ¢t = T obtains the summmation 21 Azt:

ZAzt = 27

= éTK + ht, (AT)
Op(T)  Op(T/?)
where orders of magnitude appear below the component terms in the last.line. While
terms such as 6T K are non-stochastic, it is convenient (and legltlmate) to use prob-
abilistic orders throughout.
The summation 21 Zi—q1 18 (21 zt) — 21 + 20, where ET z; can be obtained by
using (A4) and evaluating the summation of I; over the three subsamples.

T T
1z = 621:114‘21:}”

1

Ty T T
= 046 Y L+6 It+;ht

To+1 Ti+t
. T
To+1 : Ti+1 R |

TK  TM T
= §Li+8y TK+3h
J= J=

= LST2K[(K + T-') +2M] + 3" h,
1
T
WIKIK+2M) + She + O(T). (A8)
0,(T*) O,(T%/%)

Because 27 is Op(T') and 2 = 0, the summation 7 2z, is (A8), to O,(T).
The summation Z{ zf_l is obtained in a similar fashion.
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Case III, p = 1, so the error is comprised of a break (a — 1)6D, and white noise
(a — 1)u; + €, paralleling the regression (A2) under the DGP (Al). Under Case IV,
| p|< 1, so the error also includes z,_;, which has a break in it. Thus, whenever the
marginal process has a break and the conditional process has no common factor, the
regression for tpgx induces a break in the error, which may reduce the power of the
corresponding cointegration test. By contrast, cointegration tests based on tgcmk
and tgoum. do not suffer from this problem because their corresponding regressions
are still properly specified.

II. The Distribution of tgcy, When There Is No Break

The test of b = 0 using tgcmy is known to be similar when the conditioning
variable z, is strongly exogenous for the regression parameters (a, b, ¢, 02); see Kiviet
and Phillips (1992) and Banerjee and Hendry (1992). The null limiting distribution
of tgcma is implicit as a special case of Park and Phillips (1988, Theorem 4.1a; 1989,
Theorem 4.1b) and Boswijk (1992). The explicit representation provides insights not
apparent from their general formulae, so it is derived here.

The DGP is (1)-(4) with b = 0 under Case I (i.e., with p =1 and § = 0):

Ayt = aAZt+Et EtNIN(O 0'2
rre Alr
Az = u ue ~ IN (0,02). (A15)
The estimated model is:
Ay, = alz+ by — 2)i-1 + czim1 + v, (A16)
which is (6) without a constant term.
The rescaled parameter estimates from (A16) are:
r T T T 17!
T-'y uf T3y wiquy T3 2w
1 1 1
\/T(dA— a) r r T
ThH = T=3/2 % wequy T2y wi, T-23 w1241
Té 1 1 1
a3 & T T
T3z qu T2 wizi T2y 2,
L 1 1 1 |
i T 1
T‘_—I/2 E UEy
1
I
T lewt_ﬂt (A17)
T
T1Y 218
[ 1 _
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S T T '
,?Zt—lAZ; = _;Zt—lutf}f.a;.zt—ll)t ,

= 1872K? .
Op(T7)

+ AT (bryios +jum) + TK S urg] + O,(T)  (AL2)
) oyrory
The probability limit of'(A3)’can now be evaluated. Pre-multiplying (A3) by
[ (1) ;), ] and substituting (A7), (A8), (A9), and (A12) into that equation obtains:

-1

T
ﬂ 1 T_Z;Zt—l K + Op(T—l/2)
plim. = plim phm
T¢ T-2 § 2t—1 T-3 i Z?—l %621{2 + OP(T_I/z)
1 1
~ 1 LSK(K+2M) 17 [ 6K
| M6K(K +2M) 182 K%K +3M) 162K

N

H- [ SK(M + K/6) ] , (A13)
1—(K+2M)
where H = (L — K)M + K(4 — 3K)/12.
The limiting distribution of (A3) is somewhat complicated. Because (i : T'¢) has

a nionzero plim, the stochastic components of the first as well as the second matrix

on the right-hand side of (A3) must be taken into account. We plan to derive that
limiting distribution in due course.

; A break in the marginal process has similar effects on the unit root statistic tpp
and the cointegration statistic ppy when the common factor restriction is not valid

~ for the latter (a #1). For tppy, the equation being estimated is:

Aly—2)e = by — 2)e-1 + e
= by —2)i-1 +[(a— 1)Az + &)
= b(y — 2)e
+[(a - 1)6D; + (a — i)(p — Dzio1 + (@ — Duy + &4 (A14)

where the constant is implicit and the term in square brackets is the error. Under
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Appendix B. Estimated Finite Sample Properties

This Appendix documents certain distributional aspects of the test statistics
and their associated estimators. With the exception of the means of the statistics
themselves, there is little to distinguish the properties of the test statistics across
DGPs (e.g., with or without a break) and even across test statistics for a given DGP.

Figures B.1-B.5 plot the Monte Carlo mean of the estimate of b for each test
statistic and each DGP, estimated recursively over T'. The values reported are “biases”
relative to a value of zero, even under the alternative of cointegration. The estimated
biases are graphed with plus-or-minus twice their (average) estimated standard error
(ESE), as would be computed by a regression package, and plus-or-minus twice the
Monte Carlo standard deviation (MCSD), reflecting the actual sampling distribution
of the estimator of b. The MCSD is always larger than the ESE for these experiments.

Figures B.6-B.10 plot the Monte Carlo mean of each statistic, with plus-or-minus
twice its MCSD. As predicted by theory, the means of tppy and tgca. appear invari-
ant to ¢ when there is no break. The mean of tgops shifts toward zero as ¢ increases
(under the null), and becomes more negative as ¢ increases (under the alternative).

Figures B.11-B.15 plot the histograms of all four statistics at 7' = 100. While
10,000 replications is only a moderate number of replications for examining full dis-
tributional properties of the statistics, their distributions overall appear normal, in
line with Banerjee and Dolado’s (1988) result that the Dickey-Fuller distribution is
well approximated by a normal distribution with a negative mean.
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where, from (A15), w; is the random walk:
Wy = Yt~ 2
= Wi-1 + €y (A18)
and e; = (@ — 1)u; + €, as in (10). Asymptotic distributions of the elements in (A17)
involve the Brownian motion processes B,, B., and B., where the last is related to
the first two by:
oeB. = 0.B:+ (a—1)o,B,. (A19)

Also, 0% = 6% 4 (a — 1)?c2. Hence, by partitioned inversion in (A17):
Oc ([ B2)(J B.dB.) — (/ BuB.)(J B.dB.)

T = T B B - U BB, (A20)
Thus, the limiting distribution of tgcar, 1s:
b BB~ (] BB B BB
’ VI B2 = (f BuB.)*(J B2)!
_ [BdB - (UBB)UB)UBMB)

VI B2 = (J B.B.)(J B2)~
using (A19). Because the asymptotic distribution of tgcar, does not depend on a, oy,

or o, it is invariant to those parameters, and hence tests based on tgcas, are similar.
An alternative expression for (A21) is enlightening. Consider the regression

Yo = Pzt (A22)

“linking” the levels of y; and z;. Let R denote the limiting form of Yule’s correlation
for that regression when a = b = 0 (i.e., under the null of no relation between y; and
z;) and that correlation is not adjusted for sample means. From Phillips (1986), R is:

S i (A23)

VU B BY)

Thus, schematically (A21) is:

DF —R-N(0,1)
vi-R

where DF and N(0,1) denote random variables with Dickey-Fuller and standardized

normal distributions. This demonstrates that tgca, and the Dickey-Fuller statistic

have different limiting distributions, so their critical values need separate tabulation.

Also, (A24) mirrors Park and Phillips’s (1988) Lemma 5.6, in which a related problem
is addressed and R is a constant.

tECMy = (A24)
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Figure B.2. Biases of estimated b for three statistics (¢prk, tECME, tecmu), T2ESE,
and £2MCSD. The experiments have no common factor and no cointegration.
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Figure B.1. Biases of estimated b for three statistics (tprk, tEcMr, tECMu), £2ESE,
and £2MCSD. The experiments have a common factor but no cointegration.
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Figure B.4. Biases of estimated b for three statistics (tprk, tEcMk, tECMu), T2ESE,
and £2MCSD. The experiments have no common factor but have cointegration.
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Figure B.3. Biases of estimated b for three statistics (tprk, tECMK, tECMuY), T2ESE,
and £2MCSD. The experiments have a common factor, with cointegration.
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Figure B.6. Means of three test statistics (tpFky tECME, tECMu), With Z2MCSD of
the statistics. The experiments have a common factor but no cointegration.
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Figure B.5. Biases of estimated b for three statistics (¢tprk, tECME, tecmy), T2ESE,

and +22MCSD. The experiments have a large break (6 =
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3) and no common factor.
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Figure B.8. Means of three test statistics (tpFk, tECME, tECMa), With 22MCSD of
the statistics. The experiments have a common factor, with cointegration.
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Figure B.7. Means of three test statistics (tprk, tEcMK, tECMu), With £2MCSD of
the statistics. The experiments have no common factor and no cointegration.
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Figure B.10. Means of three test statistics (¢prk, tEoME, tECMY), With £2MCSD of
the statistics. The experiments have a large break (§ = 3) and no common factor.
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Figure B.9. Means of three test statistics (tprk, tEcMks tECMY), With 22MCSD of
the statistics. The experiments have no common factor but have cointegration.
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Figure B.12. Histograms of four test statistics (tppk, tEcME, tDFu, tECMW) at T = 100.
The experiments have no common factor and no cointegration.
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Figure B.11. Histograms of four test statistics (tprk, tEcMk, tDFus tEOM) at T = 100.
The experiments have a common factor but no cointegration.
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Figure B.14. Histograms of four test statistics (tprk, tEocMmk, tDFu, tEOMu) at T = 100.
The experiments have no common factor but have cointegration.
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Figure B.13. Histograms of four test statistics (tprx, tEcmr, tDFu, tECMY) at T = 100.
The experiments have a common factor, with cointegration.
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