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Abstract

A number of recent papers have discussed the fact that difference stationary
and trend stationary processes are nearly observationally equivalent. The
meaning of this fact, however, remains clouded. This paper defines near
observational equivalence and derives several implications of the notion for
classical and Bayesian unit root inference. For example, unless restrictions
are imposed on the general difference and trend stationary models, the exact
size of any consistent unit root test rises to one with sample size. Bayesian
posteriors regarding unit roots are arbitrary in the sense that given any prior,
there are other priors that agree with the first regarding empirical outcomes,

but that imply arbitrarily different unit root posteriors.



Near observational equivalence and unit root processes:

formal concepts and implications
Jon Faust!

Processes with and without unit roots are nearly observationally equivalent.
Statemerts such as this are becoming common in discussions of unit root issues
[Blough 1989,1991; Christiano and Eichenbaum 1990; Campbell and Perron, 1991;
Cochrane 1991], but the precise meaning of such statements remain clouded. As a
result, a number of potentially misleading claims and conjectures have characterized
discussion in this area. This paper makes precise several senses in which data are
uninformative about the existence of unit roots.

The paper formalizes a concept of near observational equivalence that carries
the practical implications of strict observational equivalence. This concept provides
the basis for an exploration of problems with classical and Bayesian analysis of
unit roots. The results flow from a single proposition that can be viewed as a
reinterpretation of an important result of Christopher Sim’s [1971,1972]. Sims’s
result is stated in terms of the continuity of loss functions under certain topologies
on the parameter space. Re-stating the result in terms of the familiar notion of
observational equivalence allows one easily to trace out implications that have been
the subject of considerable speculation.

Many of the paper’s results are stated in terms of the long-run effect of shocks to
a variable, rather than in terms of autoregressive roots of the variable’s time series
process. A well-known fact, made precise below, is that processes in which shocks
have no long-run effect are trend stationary (TS), whereas shocks have a permanent
effect in difference stationary (DS) or unit root processes.

Under very g;aneral assumptions several facts are shown. First, for every DS

process there are nearly observationally equivalent TS processes. For every TS

! The author is a staff economist at the International Finance Division of the Board of Governors
of the Federal Reserve System. The author thanks Steve Blough, Neil Ericsson, Pierre Perron,
Harald Uhlig, and especially Dave Gordon and Christian Gilles for useful discussions.



process there are nearly observdtionally equivalent DS processes, which may have
arbitrarily large long-run effect of shocks. This fact resolves questions about whether
DS processes that look TS must have small long-run effects.2 The result is not merely
a curiosity. Near observational equivalence would not be very troubling if it only
implied difficulty in distinguishing a process with a zero long-run effect of shocks
from ones in which the effect were tiny. This result says we cannot distinguish any
values for the long-run effect of shocks.

Near observational equivalence has two clear implications for classical testing.
First, classical tests to distinguish general TS and DS models, no matter which is the
null, have power less than or equal to size. Second, if a unit root test is consis;ent,
its size converges to one with sample size. While Blough [1991] and Campbell and
Perron [1991] reported the first result in weaker form, the second result is new. It
implies that the exact size of most unit root tests run in practice converges to one
with sample size—if the tests are viewed as tests of general TS vs. DS hypotheses.

Partly in response to problems with classical unit root testing, Bayesian ap-
proaches have received a great deal of attention [e.g., Sims, 1988; Sims and Ullig,
1991; DeJong and Whiteman, 1993]. This work has precipitated a lively controversy.?
Much attention in that debate has focussed on the fragility of results to specifica-
tion of the prior. Below, I sidestep all of these issues and show a more generic
fragility. Given any prior over the DS and TS parameter spaces, there is ancther
prior with the same outlook regarding observable implications, but disagreeing to
an arbitrary degree about the long-run effect of shocks. Thus, even if you agree that
the prior reported in some empirical work correctly captures your feelings about
various outcomes, you need not have any interest in the posterior over unit root
issues. There will be another prior treating outcomes in the same manner, bus for
which the posterior is arbitrarily different.

The results flow from a fundamental property of DS and TS processes laid out

2 Cochrane [1991] conjectures that such DS processes must have small long-run effects; Campbell
and Perron [1991] make the analogous claim in the multivariate context.
% See the debate initiated by Phillips [1991] and the following comments by Sims and others.



in Section 2. Sections 3 and 4 explore the classical and Bayesian implications,
respectively; Section 5 extends the results to the multivariate case; and Section 6

concludes.

1 A fundamental property of DS and TS processes

All of the results below are for a general difference stationary model. After laying
out, this model and the single restriction that trend stationarity places on the model,

the section derives a general convergence property for DS and TS structures.

Any realization, Y7 = (V3,... , Y1), from a discrete univariate time series process
can be represented,
t
Yi=Yo+ ) (1- L)Y (1)
=1
t =1,...,T. Three assumptions define the model of interest here. If the model is

to be called difference stationary, we need,

A 1 The first difference of Yy, t = 1,2,...,T, is covariance stationary.
Thus, Y; is at most integrated of order 1 and (1 — L)Y; has a Wold representation,

where d; (n x 1) is linearly deterministic; v;, has mean zero, constant, finite variance
and is not serially correlated; A(L) = Loaill; and 2, a? < oo.

Under Al, the model is described by A(L), the processes for v and d, and the
distribution of ¥5. The crucial feature of the model for our purposes is A(L). The

remaining elements, Yy, v and d. are parameterized by ¢ € V.

A 2 There are no constraints between the parameters of 1 and A(L).

The restriction between A(L) and the parameters of Yo may seem questionable.
We could just as well assume, following most work on the subject, that Yy is fixed,
or we could push arbitrarily far into the past the date at which the distribution

of some Y; is unrelated to the distribution of sample shocks. This assumption
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is generally appropriate, since we have little basis for views about how economic

variables evolved in the distant, pre-sample past.

A 3 The Wold representation of (1 — L)Y;, (2), satisfies 324 |a;| < oo.

This assumption is convenient and conventional, allowing us to talk unambiguously
about A(1) = Y324 a;, which is the long-run effect of each shock, v, to Y .4

The sole restriction trend stationarity places on the general model is A(1) = 0:
the long-run effect of shocks to a trend stationary process is zero. To see this, note
that if Y;* is (trend) stationary, it can be written Y;* = A*(L)w, + d}, with A*(1)

finite.® Differencing Y;* to put it in the form of (2) above gives,
(1= L)Y = (1= DA* (L + (1- D)

If d} is linearly deterministic then its first difference is as well. Thus, the only
restriction of the trend stationary model is that A(L) can be factored A(L) = (1—
L)A*(L), where A*(1) is finite, implying A(1) = 0.

The model is described by A(L) and 3. Under A3, to each A(L) we can associate
an infinite sequence A = {ay,az,...} € 1!, where [! is the space of absolutely
summable sequences (ap = 1 by convention). I will refer to A as the moving average
(MA) representation of a process with lag polynomial A(L). Thus, the paramesters
of the model are given by § = {A,%}, § € O, where under A2, ® = {! x ¥. Civen
this parameterization of the model, for each sample size T, and each 8 € O there will
correspond a distribution function F7(.|8) and an associated probability measure on

the Borel sets of RT, pg. The T superscripts may be dropped where no ambiguity

should result.

* The processes with square, but not absolutely, summable polynomials are called long memory
processes. Many of the results of the paper can be extended to these processes.
® The deterministic part of the process does not enter the discussions below and is largely

ignored. However, if d; includes a time trend, then Y;* is called trend stationary, rather than
simply stationary.



1.1 A general convergence property of the DS model

The driving result of the paper is that it is difficult to distinguish two processes
whose MA representations, A and A’, are close in the sense that (Y52,(a; — a’)?)1/2
is small. Loosely speaking, if the MA representations of two variables are close in

tte I2 norm then the distributions of the random variables are similar.

Proposition 1 Fiz any T > 0 and ¢ € ¥. Given an MA representation, A, and a
sequence of MA representations, {Ax}, if ||Ax — Al|2 — 0, then

F(.|Ax, %) =& F(|A,9)

where ||||2 is the I> norm, and = means convergence in distribution of the underlying
rendom variables.

Proof: See the Appendix.

This is basically a re-statement of the central result in Sims [1972]. Sims showed
that a mean-square-error-based loss function is topologically equivalent to the I2
norm, and the same logic is used in the proof of this proposition. Consider why the
first observation, Yjx, converges in distribution to Yj. By definition,

oo
Vi =Y =) (ai — e
i=1
The mean square error from approximating Y; by Yiy is
oo
E(|Yie - Y1I*) = 0% ) (air — a:)® = o*|| A — A3
=1
where o2 is the variance of the v process. Convergence in mean square, and hence,
in distribution follows by noting that expectation goes to zero with k¥ whenever
14 — Ag|12 does.

The following general fact about square summable sequences makes the prospects
for learning about A(1) dim indeed: closeness of two MA representations in the [2
norm has precisely no implications for closeness of the sums of coefficients of the
representation. As an illustration, take A, that sums to a. Construct A’ by adding
(a/ — a)/k to the first k elements of A. The sequence A’ sums to an arbitrary a'.

The [2 distance between A and A’ is (a — a')/Vk, which can be made arbitrarily
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small by choosing k large. Formally, for every scalar a, the set of sequences with

sum a is dense in /! under the {2 metric.

1.2 Some intuition

Before proceeding to the results that flow from prop. 1, it may be useful to provide
some intuition about the processes giving rise to near observational equivalence. In
particular, one might wonder whether DS processes that have large long-run effect
of shocks and yet behave like TS processes look strange in some sense. In standard
time domain representations, the answer is a clear no: the DS processes look like
the TS processes. Viewing A and A’ from above as MA representations, A’ differs
from A only in that the first k coefficients have been altered by a tiny amount (for
large k). Similarly, for large k, the autocorrelation functions for the two processes
will look almost identical.

Of course, there are transformations of A and A’ that highlight their differences.
In this case the frequency domain is illuminating. The spectral density at frequency
zero of the (1 — L)Y; is proportional to A(1)2. The intuition for how a DS process
with a large frequency zero spectrum can have similar empirical implications to a T$
process with a zero spectrum at frequency zero, is easy to see: the DS process must
have similar spectrum to the TS process at all but the lowest frequencies, and then
turn upward near frequency zero. The similarity of the spectra at high frequencies

makes the two processes difficult to distinguish in finite data.

2 Near observational equivalence and classical infer-

ence

In this section, I propose a definition of near observational equivalence that pre-
serves many of the implications of the strict notion. Several implications of near
observational equivalence for the TS/DS case are given.

The traditional notion of observational equivalence states that structures param-



eterized by 6, and 6, are observationally equivalent if and only if F(vy|8,) = F(v|0,)
for all /. Any observation generated by 6, might just as well have been generated by
0. It seems reasonable to say some structure q is nearly observationally equivalent
to r if F'(.|8,) is close, in some sense, to F(.|6,). One formalization of this notion is:
Definition 1 The sequence of structures parameterized by {6;} has nearly observa-
tionally equivalent members to a structure 08, if for any fired T, F(.|6;) =1 F(.|6;).
In many senses, this represents only a slight loosening of strict observational
equivalence. For example, strict equivalence of 8, and 6, implies F(y|8,)— F(y|6,) = 0
for all -. With continuous distributions, near equivalence of members of the sequence

{6k} to 6, implies that for any € > 0 we can find a k such that F(y|6) — F(7|6,) < ¢
for all 7.6

2.1 Implications of near observational equivalence

Based on the definition of near observational equivalence and prop. 1, it is clear
that,

Propaosition 2 i) To every TS structure there are nearly observationally equivalent
DS structures with arbitrary long-run effect of shocks. ii) To every DS structure,
there are nearly observationally equivalent TS structures.

Proof: The proof follows directly from prop. (1) and the denseness of sequences
with any sum in /1.

This result says that almost no empirical issue turns on the value of A(1): in-
ference about unit roots, in general, makes no more sense than inference regarding

strictly unidentified parameters. To formalize this claim, define the TS and DS
hypotheses:

HTst A(l) =0
Hps: |A(l)| >n20

I allow the possibility of 7 > 0, to emphasize that the problems discussed here

do not stem from difficulty in distinguishing DS structures with tiny A(1) from

® Convergence in distribution with continuous distribution functions is uniform, see e.g.,
Billingsly, 1979.



TS structures. A central result regarding testing is most easily stated by limiting

discussion to probability distributions that can be represented by a density.”

A 4 For all 8 and T, pg(.) is absolutely continuous with respect to the Lebesque
measure.

" Under this assumption, the following result follows from prop. 2:

Proposition 3 Assuming A4, consider tests of Hrs vs. Hps, regardless of which
is the null hypothesis: 1) Power is less than or equal to size. i) Suppose that under
some test procedure the rejection probability converges to one with sample size when
some structure consistent with the alternative hypothesis is true. The ezact size of
the procedure converges to one with sample size.

Proof: See the Appendix.

Since the intuition behind both parts is the same, consider part (ii). Pick some
alternative hypothesis structure, 6,, for which the test is consistent. In any sample
size, we can find a null structure that is rejected just as often as #,. Since this is
true in any sample size, as the sample size grows, and the rejection probability for
6, increases to one, we are able to find null structures whose rejection probabilities
are similarly close to one.

I paraphrase this result by saying that if a test is consistent, then its size goes to
one. Others, however, may reserve the word consistent for tests of fixed size. In any
case, the result applies to most unit root test procedures used in practice, when they
are viewed as tests of the general TS vs. DS hypotheses. Most test procedures are
specified to attain some fixed nominal size—the size suggested by some asyraptotic
approximation.® The procedures are invariably designed so that the probalility of
rejection converges to one with sample size for some (or all) structures cornsistent
with the alternative hypothesis. Result (ii) says that the exact size of all these

test procedures converges to one with sample size. This result provides a general

" This assumption is needed to rule out test procedures with mass on the boundary of the
rejection region.

® The behavior of exact size under result (i%) is consistent with the nominal size of the test
being fixed based on some asymptotic distribution. These asymptotics provide only pointwise
convergence to the asymptotic distribution for each fixed null structure. Because this convergence

is not uniform, it is always possible, loosely speaking, to find a null structure for which convergence
has not yet begun.



umbrella accounting for a number of analytic and Monte Carlo results regarding the
size distortion in tests of the DS and TS hypotheses [e.g., Schwert, 1988; Hall, 1988;
Campbell and Perron 1991; Blough 1989].

2.2 A fix-up for the classical statistician?

The problem with unit root tests is that absent far stronger restrictions on A(L) than
those imposed by the general DS and T'S models, finite data support no inference
about A(1). As always in cases of observational equivalence, however, imposition
of restrictions can identify parameters of interest. Based on this prospect, some
authors [Cochrane, 1991; Campbell and Perron, 1991] have suggested that we could
define finite-dimensional versions of the hypotheses tha,t“ rule out certain problematic
structures, thereby avoiding the near observational equivalence problem. Further,
we might append T subscripts to the hypotheses and allow the range of structures
covefed by the restricted hypotheses to grow slowly with sample size. Done cleverly,
this could avoid near observational equivalence at each sample size, but allow the
restricted hypotheses td asymptotically approach the hypotheses of interest.

Sims [1971]) demonstrated several results for the growing hypothesis approach.®
I see the results primarily as demonstrating that the approach is of little practical
interest in the case at hand. For example, one can define a sequence of growing,
finite-dimensional hypotheses that will allow asymptotically valid inference regard-
ing A(1)—conditional on one of the two hypotheses being true for some finite T.1°
For this approach to be of interest, one must minimally be willing to assume that the
growing finite-dimensional hypotheses will ultimately contain the true parameter.
This amounts to restricting A to lie in a small subset of /.11

Even if one is willing to rule out much of the parameter space of the general

® Berk [1974] shows how to form consistent, asymptotically normal estimators, but not how
to perform valid inference about unit root parameters. Inference regarding parameters estimated
using Berk’s approach are subject to the problems of prop. 3.

10 Alternatively, one can perform asymptotically valid inference regarding a projection of the true
A onto the parameter set consistent with the restricted hypotheses in the sample size of interest.

11 A small subset here is a meager or first category subset—a countable union of nowhere dense
sets, see Oxtoby [1980].



model, this approach is of little comfort. There will be multiple ways to select
restricted hypotheses. In any finite sample, the answer one gets in under the re-
stricted hypotheses approach depends critically on the particular restriction chosen.
In my view,'? there is generally little basis in economics for choosing one restriction
over another. Thus, this approach requires making an essentially arbitrary choice
of one small portion of the parameter space as opposed to another. This arbitrary
restriction leads to similarly arbitrary test results. The next section puts a finer
point on the manner in which the choice of restricted hypotheses must be arbitrary:
the choice of restricted hypotheses cannot be justified by reference to observable
implications. Thus, one must choose one set of restricted hypotheses over another

for reasons that are unrelated to observable implications.

3 Implications of near observational equivalence for

Bayesians

In the face of the sort of problems discussed here there are two natural ways to go
for a solution. The first, restricting the hypotheses is probably not fruitful. The
second is a Bayesian approach, using a prior that downweights problematic areas of
the parameter space. Although Sims’s [1971] work treated the Bayesian case, recent
examination of Bayesian approaches by Sims and others (cited in the introduction)
may have left impression that Bayesian work sidesteps the near observational equiv-
alence problems faced by the classical statistician. For example, Sims and Uhlig
[1991, p.1592] argue that “flat-prior Bayesian analysis leads to the usual ¢-tests for

generating of posterior probabilities even in dynamic nonstationary models.” Thus,

they conclude [p.1599],

[T]he complicated apparatus of classical unit root asymptotics is of little
practical value. Even econometricians who do not accept this conclusion,
however, should agree that the likelihood function’s shape is valuable
information. (emphasis added)

12 Sims [1972] makes similar arguments.
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While statements such as these have rightly stimulated a great deal of discussion,
this section points up a way in which both the claim and the responses are potentially
misleading. In particular, the results below reconcile the Sims-Uhlig claim with the
seemingly contradictory claim that the likelihood function’s shape is not publicly
informative about unit roots. The argument below is largely unrelated to earlier
criticisms by Phillips {1991] and others. Much of that debate has centered on which
prior one should use; thus, the debate is about how to interpret the information in
the likelihood. The results below apply to any prior and suggest a particular sense

in which the likelihood is uninformative.

3.1 Observational equivalence in Bayesian analysis

The issues raised in this section are best explained in terms of observational equiv-
alence and several related Bayesian notions. Bayesian statisticians are not plagued
by observational equivalence problems the same way that classical statisticians are.
Consider a case in which there are some identified parameters and some unidentified
ones. So long as the prior involves a correlation between the unidentified parameter
and identified ones, then information that data provide about the identified param-
eter will, from the perspective of the person with such a prior, be informative about
the unidentified parameter.

Observational equivalence does present Bayesian statisticians with a problem,
however. In most simple cases with fully identified models, sufficient data will
lead to consensus among a group of observers with non-dogmatic priors. In large
eniough samples, the data do all the talking, the priors become unimportant, and
posteriors converge. This cannot be the case for unidentified parameters: the data
do not speak at all on such subjects. As Leamer [1978] put it, data are not publicly
iriformative about unidentified parameters: differences of opinion reflected in priors
remain unaltered by data. One formalization of this statement is illustrated below.13

The tie between public informativeness and observational equivalence is made

13 Kadane [1974] and Dréze [1974] discuss in det the sense in which the influence of the prior
remains.
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clearer using Zellner’s [1971] notion of observationally equivalent priors. Two priors
are observationally equivalent if the prior probability of any observable events is
the same under the two priors. If there are observationally equivalent priors that
differ in their assessment of some parameter’s value, then data will not be publicly
informative about that parameter [Leamer, 1978].

A simple illustration may be helpful. The model is represented by the family of
densities pX (X|3), and the priors are densities p(8). Given r’s prior, p,, and the

model, the marginal prior density for any outcome is,

p¥(X) = [p¥(X1B)p.(8)d8

Two priors, ¢ and 7, are observationally equivalent if an (X) = pX(X) for all X.
The posterior density for any (3, conditional on observing a particular observation

X, is given by
p(X16)
p(X)

If ¢ and r agree on the model and have observationally equivalent priors, the first

P (B1X) =

P-(B)

term in this expression will be the same; thus,

p.(81X) _ p.(B)
P(BIX)  pe(B)

Any difference of opinion over 3 in the prior remains unaltered, in this proportional

sense, in the posterior.

3.2 Definition of nearly observationally equivalent priors

As with the classical concept of observational equivalence, the related Bayesian
notions can be loosened slightly to shed light on the TS/DS debate. In particular,
this section shows that data are nearly not publicly informative about A(1).

Return to notation for the maintained model used earlier. Assume &, is rs prior

12



probability measure on ©.1* The marginal prior for any set of outcomes T is,

@) = [ na(T)t(d8) )

Definition 2 The sequence of prior probability measures, {€r}, has elements that
are nearly observationally equivalent to &, if for any fized, finite, T, {,’: = &Y,
where = means convergence in distribution of the underlying random variables.

Thus, two priors are nearly equivalent if the prior probability of observing events is
arbitrarily close under the two priors. The definition of public informativeness can

now be loosened to,

Definition 3 Take the prior probability measure &, and a sequence with nearly ob-
servationally equivalent priors, {{x}. Data are nearly not publicly informative about
0 if for all k, £x(©0) — &(©¢) > 6 > 0 for some measurable subset @9 of ©.

In short, data are nearly not informative about a parameter if there are priors that

agree to an arbitrary degree on the prior probability of any observation, but disagree

absolutely on the prior probability of some parameters.

3.3 Data are nearly not publicly informative about A(1)

Given the definitions above, it is now relatively straightforward to show three state-

ments about Bayesian analysis of A(1):

Proposition 4 Take any prior probability measure over the parameters of the main-
tained model. i) Data are nearly not publicly informative about A(1). ii) There are
nearly observationally equivalent priors that differ arbitrarily regarding the distribu-
tion of A(1). iii) Given any observation, YT, there are observationally equivalent
priors that give rise to posteriors differing arbitrarily regarding the distribution of

A(D).
Proof: See the Appendix.

The intuition for the proof can be given for the case in which the prior is rep-

resented as a density. Suppose one prior density takes the value g at 8. Construct

1% Various measure theoretic details about this statement are dealt with more carefully in the
Appendix. There are well-known problems associated with putting probability measures on infinite
dimensional parameter spaces and with Bayesian inference in such cases [e.g., Sims, 1971, and
Diaconis and Freedman, 1986]. The problem discussed in this paper is closely related.
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the observationally equivalent prior by putting prior density g on some 8 that is
nearly observationally equivalent to 8. This is done for each 8. Whatever one prior
says about § the other says about a nearly observationally equivalent 6;. Since 6
and 6 have similar implications, the two priors will agree on observable outcomes.
The s, however, can have quite different long-run effects of shocks than the 6s.

Prop. 4 sheds some light on the discussion of the Sims-Uhlig quote above. They
claim that the likelihood provides useful information about the parameters of the
model. In contrast, prop. 4 states that the data contain no public information about
unit roots. These two views are easily reconciled.

The sort of flat prior analysis advocated by Sims and Uhlig must restrict the prior
to put mass only on a small set of MA representations. No proper posterior—z:hat is,
no probability measure—can put mass more than a meager set of [! [Parthasarathy
1967]. Thus, the implicit flat prior in the analysis is similarly restricted. Frop. 4
establishes that there are other flat priors over a different portion of the parameter
space that will treat observable outcomes in the same manner as the first flat prior,
but that give rise to an arbitrarily different posterior for unit root parameters such
as A(1). Thus, the choice of a support for the flat prior—the choice of a small
set of parameters over which to investigate the likelihood—determines the answer
regarding unit root issues.

The Sims-Uhlig critique of classical procedures and the Phillips response carry
their full weight once both sides have agreed to restrict all analysis to one small
portion of the DS/TS parameter space—as opposed to some other similarly small
portion.!® However, if that restriction is essentially arbitrary and determines the
answer to unit root questions, one must be quite careful in interpreting the debate.
In particular, any statement that the likelihood is informative about unit roots
or even a statement suggesting that one form of inference regarding unit roots is

better than another is suspect. The answer obtained under arbitrary restrictions is

5 Of course, much of the debate has focussed strictly on autoregressive structures of oxder one.
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sirnilarly arbitrary, no matter what the approach.'®

Overall, prop. 4 closely circumscribes the cases under which reported posterior
probabilities regarding the presence of unit roots are of interest. Even if one agrees
that the prior reported in some empirical work correctly captures the prior proba-
bility of observable outcomes, the posterior over unit root issues may be irrelevant:
there will be another prior treating outcomes in the same manner, but for which
the posterior is arbitrarily different. The prior over outcomes has almost no im-
plications for the prior (and, hence, the posterior) over unit root issues. Reported
results are of interest only if one agrees with aspects of the prior over parameters
that are independent of empirical implications. In practice, I believe we have little

or no basis for selection of such a prior.

4 Extension to the multivariate case

The results of this paper all generalize easily to the multivariate case. The main-
tained model generalizes by simply reinterpreting Y; as an N X 1 vector. In the
Wold representation, A(L) is now matrix of lag polynomials, 332, a;L*, where a; is
(N X N). The long-run effect matrix A(1) is now (N x N).

Of course, rather than simply asking whether the process is DS or TS we must
consider cointegration: are any linear combinations of the variables are stationary?
By direct analogy with the univariate case, one can easily show that if w'A(1) = 0,
then this linear combination of the variables is TS. In this case, of course, the vari-
ables are called cointegrated with cointegrating vector w.'” Of course, elementary

linear algebra tells us that if w'A(1) = 0 then A(1) is singular; there can be at

'8 Some care should be taken here. The maintained model in this paper does not allow for
explosive roots, which have played a central role in the Phillips critique. This restriction is probably
a strength of the results in this paper, since they show that inference regarding stationarity is fragile,
even if one rules out explosive roots. Further, when explosive roots are allowed, the argument still
applies to the portion of the parameter space consistent with the DS model, and, hence, shows that
any posterior mass attributed to TS structures could just as well be transferred to the nonstationary
portion of the parameter space. More direct treatment of the explosive case is beyond the scope of
this paper.

'7 Details about deterministic elements are ignored here, as in the univariate results.
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most N such linearly independent vectors wj if there are j such vectors, then the
rank of A(1) is n — j; j is the cointegrating rank of the system. Thus, the rank-j

cointegration hypothesis can be stated
Hepjy : rank(A(1)) =n—j forsome0<j<n

With these changes understood, all the results of the paper generalize directly.
Prop. 1 is proven for the general case in the Appendix. The remaining props.
follow as well: any problem distinguishing TS from DS structures in the univariate

case carries over to distinguishing Hpj(;) structures from Hgj) structures in the

multivariate case.

5 Conclusions

Difference stationary and trend stationary models are nearly observationally equiva-
lent. Just as with strict observational equivalence, .any classical inference regarding
unit roots must be an artifact of implicit or explicit restriction. Similarly, any
Bayesian conclusion is fragile to changes in the prior that have (almost) no impli-
cations for observable outcomes. The restrictions needed to resolve these problerns
for the classical or Bayesian statistician cannot be justified by reference to empirical
plausibility. They must be grounded in some sort of a priori reasoning.

Despite near observational equivalence of DS and TS models, there is, in my ex-
perience, a strong tendency among econometricians to believe that certain empirical
behavior typifies DS processes and that other behavior typifies TS processes. In
this perspective, the DS processes that behave like typical TS processes are peculiar
in some sense, and can safely be ignored or ruled out. The assignment of typical
behavior in this case is hazy at best and arbitrary and misleading at worst. Ab-
sent some clear elucidation of the conditions under which such thinking is justified,

one is probably on safer ground with the view that there is no practical distinction

between the behavior of DS and TS structures.
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For economists, acceptance of this view implies that one cannot distinguish the-
ories by deriving and testing implications regarding the long-run effect of shocks.
For practicing econometricians, this means that no test statistic should be thought
to behave differently depending only on whether the underlying process is DS or
T55. While the behavior of standard test statistics may differ with certain aspects of
the dynamics of the underlying model, those certain aspects are distinct from unit
root questions. As Blough [1991] has emphasized, profitable work in this regard
may come from looking beyond the TS/DS distinction in attempting to resolve the

inference problems that have been highlighted in the unit root literature.
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Appendix

Proof of prop. 1. The proof is done for the multivariate case, Y7 (T x N). The
distribution of YT is described by # = {A, 1}, where A is (N x N). Take the sequence
of random variables {Y,T'} described by 6 = {Ax, ¥}, where ||A;; — Akijllz =&
0. for each 1,7, where A;; is the sequence of coefficients of the scalar polynomial
[A(L))i ;. Such a sequence can be constructed satisfying arbitrary rank and eigen
value restrictions in the discussion following prop. 1.

A sufficient condition for convergence in distribution of Y to Y is that every
finite linear combination of the Y; converges in mean square to the similar linear

combination of Y:

T N
EQ Y win(Yin — Yink))? >4 0 (4)

t=1n=1

The double sum has mean zero, so the term is a variance. The double sum can
be re-stated as a weighted sum of terms Z,jy = (An;(L) — Anjk(L))Vn: where the
number of terms, M, is fixed by T and N and the weights are fixed by T, N, and
the wy,. The variance of such a term is bounded by M? times the maximum weight
squared times the maximum variance of any Z term. Since M and the maximum
weight are fixed independent of k, it is sufficient to show that the variance of all the
Z terms goes to zero with k. Of course, var(Z, ) = ||Anj — Anjkll3 var(v,), which
goes to zero by assumption. Q.E.D.

Proof of prop. 3. Initially consider part ii: Take either hypothesis as the null,
and define the rejection region of the test procedure in a sample of size T to be I'r.
By assumption there is some structure r, consistent with the alternative for which,
limrz_, e ;LZ;(FT) = 1. By near observational equivalence, for any fixed sample size

T, there exists a sequence of structures parameterized by {67}, consistent with the

null, such that
Jim pgr(Tr) ~ 4 (C1) = 0 (5)

Since this relation holds for all T, we can choose one element from each sequence,
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{6%}, T = 1,2,..., to form a new sequence {7} satisfying
lim p (T1)— uT(T76,) =0
T—o0

and, herce, satisfying u(I'r|61) — 1.

Part i can be proven by fixing T, and realizing that for any 6, consistent with
the alternative there is a sequence {f} satisfying (5). Q.E.D.

Proof of prop. 4. Parts ¢ and ii: First, lay out some technical detail to
make sure various objects are well-defined. A prior is a probability measure on
some parameter space and a mapping from that space to probability distributions
for the data. Assume that the parameter space, ©*, is a Borel subset of a complete
separable metric space. To each § € ©* there is associated a probability measure on
the Borel sets of RT consistent with the maintained model. Assume that the map,
H : 0 — pg is one-to-one and Borel. Under these assumptions, the standard joint
prior over Y7 and 6 can be derived, and if £ is a probability measure on ©*, the
marginal prior for observable events is given by (3). For existence of the prior for
A(1), assume that for Borel sets, B, on the real line, the sets S(B) = {6 : s € B}
are {-measurable, where s is the long-run effect of shocks for the parameter 6.

Given any prior over ©* defined by £ and the map H, each member of the
sequence of observationally equivalent priors is formed by choosing a one-to-one
mapping, hi from ©* onto some subset O} of I. The prior probability measure,
then, is defined by £x(00) = £(h;'(@p) for measurable subsets O of O} (the Borel
sets of ©} are generated by h; from those of ©*). Now define h:  and hi(8) have
the same 9. They differ in their MA representations in that Ag has z/k added to
its first k elements for an arbitrary scalar z. Under this formulation, the new priors
can be represented as the prior £ on ©* and the mapping Hy : 0 — Bhy(8)-

By prop. 1, for each 6, Phi(9)(T) =& po(T) for pg-continuity sets I'. That is, for
fixed T, pp, (4) converges pointwise in 6 to ug. Since ug(T) € [0, 1], standard general
convergence theorems apply (e.g., Royden 1968, prop. 18, p.232), and

)= [ i@~k [ po(D)e(d0) = (1)
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for continuity sets I'. This implies 5}: = ¢Y.

Now show that the £ can treat A(1) arbitrarily different from £. By arbitrarily
different we mean that if £ puts mass 1—¢ on A(1) being in some set, there are nearly
observationally equivalent priors that put mass less-than-or-equal-to € on A(1) being
in that set. Take an arbitrary 0 < € < 1, and pick any interval, [b,¢], such that
£(S([b,¢])) = 1 — e. By construction, each member of the nearly observarionally
equivalent sequence assigns mass 1 — ¢ to the interval [b + 2,¢ + z]. Thus, setting

z = ¢—b, the equivalent priors put mass 1 — ¢ to an interval outside [b, c], and must
assign less than or equal to ¢ to [b,¢].

Part i:¢ follows directly. Q.E.D.
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