Board of Governors of the Federal Reserve System
International Finance Discussion Papers
Number 450

August 1993

INTERNAL FUNDS AND THE INVESTMENT FUNCTION

Guy V.G. Stevens

NOTE: International Finance Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment. References in
publications to International Finance Discussion Papers (other than an

acknowledgment that the writer has had access to unpublished material)
should be cleared with the author or authors.



ABSTRACT

An extensive and increasingly persuasive body of empirical evidence
has linked a firm’s fixed investment expenditure to its supply of
internally generated funds. The central concerns of this paper are (1) the
theoretical justifiability of such empirically-based investment functions,
particularly those where internal funds affect only the speed of
adjustment, and (2) the dynamic properties of this latter class of
investment functions. A class of models is explored featuring intertemporal
profit maximization under conditions of increasing costs of external
finance (attributable to bankruptcy or agency costs). The paper shows that,
for a major part of the optimal investment path, the function implied by
the theory is remarkably close to the most Promising variant found
empirically: the supply of internal funds affects the speed of adjustment,
but not the level of the optimal capital stock. Such investment functions
possess the unusual dynamic property that the speed of adjustment increases

monotonically along the optimal path.
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I. Introduction

For more than two decades, researchers have discovered repeatedly
a statistically significant relationship between a firm’'s fixed investment
expenditures and its cash flow or retained earnings. The cumulative
evidence makes it hard to reject an impact of the firm’s internal
financial situation on its capital spending. (See Coen [5], Gardner and
Sheldon [10], Eisner [7], Artus et. al. [3], Fazzari et. al. [9] and, for
earlier work, Greenberg [11] and Hochman [14].)

To many who have followed the theory of investment over the
years, this development seems like an echo from a bygone era -- the
revival of a theory once thought defunct. In the 1960s and early 1970s,
work developing stock-adjustment models and the neoclassical model of
investment seemed to dominate, if not disprove, theories containing
liquidity and financial Variables.2 Thus, for example, in a notable
article, Jorgenson and Siebert [17] tested alternative theories on the
same bocy of (microeconomic) data and found liquidity or finance-based
theories dominated by the neoclassical theory of investment.

The paradox of this revival can be partially explained by noting
that financial variables have returned to the explanation of investment in
an eclectic form, often embedded in models which also contain the
determinants associated with neoclassical and stock-adjustment models.
Thus, in a key article, Coen [5, p. 164], relying on concepts introduced
by Greenberg [11] and Hochman [14], proposed and tested an investment

function where the speed of adjustment to the neoclassically-determined

optimal capital stock was a function of internal funds:
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where I is the level of capital expenditures; K and K¥, the actual and the
desired level of the capital stock; F, the firm’s cash flow; and §, the
rate of depreciation.

In such models the capital stock adjusts dynamically to K*, the
optimum capital stock defined by the neoclassical theory; what is added is
a variable speed of adjustment dependent on some measure of the firm's
level of internal funds. The empirical work noted above has demonstrated
that these financial effects are a statistically significant additional
influence on fixed investment, both in the United States and Western
Europe:

The central concerns of this paper are the theoretical
justification of these eclectic theories of investment and the dynamic
implications of the investment functions that result. Plausible heuristic
stories have been provided to support the inclusion of cash flow variables
in the investment function, but so far no such investment functions have
been rigorously derived from an underlying theory of the firm. The results
presented below indicate that, under certain conditions, investment:
functions similar, but not identical to Coen’'s equation (1) can be
justified theoretically. Moreover, the investment functions that result
exhibit unusual dynamic properties; in particular, the speed of adjustment

increases monotonically until the long-run equilibrium is attained.

ITI. Issues in Linking Investment to Finance
The idea that has been used most frequently in heuristic
justifications for including financial variables in the speed of

adjustment is the notion that the rate of interest on outside borrowing



will be an increasing function of the level of borrowing or the ratio of
debt to assets or equity. Coen [5, p. 150] and Nickell [21] saw this as
one of the most promising explanations of the empirical regularity. Such
an upward sloping supply function for debt can, in turn, be based on
lenders’ perceptions of a positive relationship between the debt/assets
ratio and the risk and costs of bankruptcy. (See Stiglitz [25], Jensen and
Meckling [15], Nickell [20], and Van Horne [26, pp. 260-73].)

Although rigorous derivations of an upward sloping supply
schedule for debt are firmly accepted,3 little has been done to derive
its dynamic implications for the firm's investment function. This, along
with the associated question of the conditions under which Coen-type
investment: functions are justified, is, of course, the goal of this paper.
To pursue this end, I embed alternative versions of an upward sloping
supply schedule for debt into the well-known neoclassical model of the
firm.
Increasing Costs of Debt and the Neoclassical Model

To better understand how to proceed, let us initially explore how
finance is handled in the original version of the neoclassical model
pioneered by Jorgenson [16]. Ignoring tax considerations for the moment,

the (present) value, V(t,), at a given time, ty,, of the neoclassical firm

can be written as:

V(ty) = [ e PDIv(t)de = [ e PY[pQ(t) -wL(t) -qI(t)]dt, (2)
tO t0

where DIV(t) is the level of firm dividends at time t; Q, L, I, are
output, labor input and real investment expenditures, with p, w, and q

their respective prices; p is the firm’s discount rate.



Given Jorgenson's assumption of a Cobb-Douglas production
function, the maximization of the value of this firm leads to the familiar
relationship between the optimal capital stock (K*) and other endogenous
and exogenous variables (with, in addition to the symbols defined atove,

&=dq/dt and vy equal to the output elasticity of capital):

YpPQ(t)
K*(t) = - } (3)
q(é + p - q/q)

So far nothing has been indicated about the financing of the
optimal capital stock. The standard approach to finance in the
neoclassical model is implied by the substitution of the expression (pQ-
wL-qI) on the right hand side of equation (2) for dividends (DIV) on the
left hand side. Since the substitution is derived from the abbreviated
sources and uses of funds identity, qI = pQ-wL-DIV, and since no debt or
interest variables appear in that identity, the implication is that the
firm’'s investment is financed fully by the difference between operating
revenues (pQ-wL) and dividends. When dividends are positive, this would be
called financing investment out of retained earnings.4 However, it is
important to note that dividends cannot be constrained to be positive in
this model. The optimal investment policy may very well imply that for
some periods the value of investment, qI, will be greater than operating
revenues. During such periods, since debt finance is excluded, the above
identity implies that dividends will be required to be negative, i.e., the
firm assesses its shareholders for new infusions of capital.

When debt financing is allowed, flotations of debt (ﬁ) and the

consequent interest payments at rate r (-rD) are incorporated into the



firm’s objective function by adding these terms to the right hand side of

equation (2). The sources and uses of funds identity becomes:
DIV = pQ - wL - qI - rD + D. (4)

The upward sloping supply curve for debt will be represented by
the interest rate, r, being an increasing function of either the level of
debt, r(D), or, alternatively, the debt/assets ratio, r(D/qK).

This paper will not attack the question of the optimal mix of
external sources of finance, so other types of external finance, such as
equity flotations in excess of retained earnings, will bg ruled out. This
will be accomplished by constraining dividends to be nonnegative and by
prohibiting the issuing of new shares of stock. The exclusion of suéh new
equity is meant to mirror the view that it is a high-cost source of
finance, requiring the incurring of substantial transaction or other

costs. (See, e.g., Duesenberry [6] and Myers and Majluf [19].)

IIT. A Neoclassical Model with a Linear Interest Rate Function
In the next two sections we consider the paths of capital and

debt that maximize the following generalized value function for the

neoc.assical firm:

e PY[pQ -wL -qI -r(D,K)D +D]dt, (5)
0

I
t<— 8

@
V(ty) = [ e PtpIv(t)de
tO

subject to DIV(t) > 0, D(t)

v

0; I =K+ 6K; r = r(D) or r(D/qK), 8r/8D>0.

The use of equation (5) as the firm’s objective function requires

that the managers of the firm view the risks of bankruptcy differently



from lenders. While the upward sloping supply curve for debt presupposes
that lenders envisage both a risk and costs of bankruptcy, the use of
equation (5) assumes that the firm either sets its subjective probability
of bankruptcy at zero or does not believe that significant costs are
associated with this state.5 A model based on similar differences of
opinion between lenders and the firm’s managers is analyzed by Stiglitz
{25].

The models that follow also make two fairly innocuous
simplifications. Assuming a linear homogenous production function, one can
express the optimal labor input (L) as a linear function of capital and
the ratio of wage and capital costs; as a result, given fixed input
prices, the net revenue term above, pQ-wL, can be written as the function
paK-bK, where a and b are positive constants.

Further, for a determinate equilibrium to exist, marginal
revenue exclusive of investment costs must be a decreasing function of
output or capital. Given the assumption of constant returns to scale on
the production side, this must come by virtue of the firm's possession of
some degree of market power on the demand side; thus, we will assume a
downward sloping demand curve, p = c-dQ, with ¢ and d positive constants.

Making both substitutions, the net revenue term becomes a quadratic

function of K (a,8 > 0):

PQ - wL = oK - ﬁK2. (6)

Finally, for the model examined in this section we make the
simplest assumption for the interest rate function consistent with the
requirment that it be upward sloping: r(D,K) = p+yD. Since bankruptcy risk

is more properly a function of the debt/assets or debt/equity ratio,



rather than the level of debt alone, this assumption is relaxed in the

next secticn. Making the indicated substitutions, equation (5) becomes:

V(ty) = f e Pt DIV(t)dt = [ e‘Pt[aK - ﬂKz- (p+¥D)D - qI + D]dt, (7)
to t, \ .

subject to DIV(t) > 0, D(t) > 0, where I = R + §K.

The objective becomes to maximize the integral by choosing
optimal paths of capital and debt. Following the results in control theory,
incorporating constraints on state variables in, for example, Arrow and
Kurz [2] or Kamian and Schwartz [18], one determines the optimal. solution
by forming a Lagrangean expression (L) made up of the normal (current: :. ;-
value) Hamiltonian (H) plus multiplier expressions for the inequality

constraints.6 Thus,
L =H + u,DIV + u,D, (8)
where: H = DIV + X (I -6K) + A,D,
by (t), p,(t) are the multiplier functions for the inequality
constraints; A (t), A,(t) are the costate variables; and
ﬂl':t)DIV(t) = 0, l‘z(t)D(t) = 0, l‘]_(t)r l‘z(t) > 0,
Substituting for H and DIV:

L= (14p;)[aK - BK2 - qI - (p+¥D)D + D] + A, (1-6K) + A, D + gD, (9)

An optimal path for the firm's capital stock and debt must satisfy the

following necessary conditions:



AL/AI = 0 = -q(1 + p;) + A, (10)
AL/3D = 0 = (1 + p,) + A, (11)
-9L/3K = X, -pA; = -(1 + p)(e - 2BK) + A,6 (12)
-8L/3D = X, -pr; = (1 + py)(p + 2¥D) - p,, (13)

with, as noted above, p (), p,(t) =0, #,DIV = 0 = p,D.

2
Irrespective of whether the constraint on dividends is binding,
the equations have important implications for the relationship between the
optimum capital stock and debt. Equations (10) and (11) imply that dy=
-X,/q. Although not important, assume for simplicity that q is not a
function of time; then 32 = -il/q. In this case, the left hand side of

(12) equals -q times the left hand side of (13). From this we have:

(L+ p)(a - 26K) - 3,86 = q(l + p,)(p + 2yD) - qu,. (14)
It can be shown, further, that 4, is always zero -- i.e., even in thte
unconstrained problem it turns out that debt cannot violate the
nonnegativity constraint.7 Finally, since it is also true that (1+p,) =
A,/q, equation (1l4) simplifies to:

@ - 28K = q(p + & + 2yD). (15)

Solving for the capital stock, equation (15) becomes:
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a - q[p + 6 + 2yD(t)]
K(t) = 28 . (16)

Except for the term containing D(t), this equation is a familiar
variant of the neoclassical equation for the firm’s optimal capital stock;
q(p+8) is the cost of capital for this latter model. It is also cleér from
(16) that it must be the case that a-q(p+6§)>0, or K(t) can never be
positive. From equation (16) we can also see a familiar implication of the
Jorgensonian theory of investment where no dynamic adjustment costs are
present: depending on the level of debt, equation (16) may imply a jump in
the stock of capital. Instead of the usual differential equation in K(t)
encountered in control theory, equation (16) is a degenerate equation
linking (only) optimal levels of K(t) and D(t).

The system at any point in time is completed by the inequality
constraints DIV > 0 and D = 0, and the equation for dividends (the sources
and uses of funds identity). Except when a jump occurs, which is discussed

below, the dividend expression is:
DIV = oK - BK2 - q(R+6K) - (p+yD)D + D = 0. (17)

Of the four possible combinations of dividends and debt greater
or equal to zero, two can be ruled out as either impossible or irrelevant.
We prove in the appendix (section I) that the two cases D>0, DIV>0 and
D=0, DIV=0 are impossible. Thus, if D>0, the only possible case is DIV =
0: the firm pays no dividends as long as it is paying interest on debt --
at an interest rate higher than the firm’s discount rate. In this case,

unless a jump occurs, the system becomes equation (16) and equation (17)
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holding with an equality; these are sufficient to determine the optimal
path of K(t) and D(t).

The other possible case is D=0 and DIV>0. It turns out that this
is the long-run stationary equilibrium (Appendix, section IV). Using
equation (16) and setting debt equal to zero, one derives the long-run
capital stock, K*: [a-q(p+6)]/2B. Given that D=D=K=0 in this state,

equation (17) 1is sufficient to determine equilibrium dividends.

Investment and Debt: the Initial Jump

To examine the dynamic process of investment, debt expansion and
reducfion, and dividend payments, let us consider the effects of an
exogenous shock to the system. Suppose that initially the firm is in a
state of long-run equilibrium, with a stationary capital stock and debt
equal to zero, as discussed above. Consider the effects of an upward shift
in the firm’s demand curve -- causing a discrete upward shift in the
parameter o to a* in equation (15) or (16).

Since equation (16) holds at every point in time, whether there
is a jump or not, the first point to notice is that either D or K or both
will have to undergo a discrete jump in order that the equation be
satisfied. The necessary conditions for optimal control with possible
jumps in the state variables are discussed at length in the appendix
(section IIT), following work by Vind [27] and Arrow and Kurz [2]. It is
shown there that equation (16) still holds in the presence of a Jjump, and
that the levels of the jumps in capital and debt are related by a variant
of the firm’s sources and uses of funds identity, equation (18), below. At
the instant of a jump, the net impact of any flow is zero, so the sources
and uses of funds equation (17) becomes particularly simple, linking the

value of (jump) changes in liabilities and assets (i.e., the first
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difference in the firm’s balance sheet identity). Incorporating the
assumption of no new equity financing and the finding that dividends are
zero during the jump (appendix, section III), the sources and uses of

funds‘equation over the jump becomes:
o+ - +,.0 -
D (0) -D (0) = q[K'(0) -K (0)],. (18)

where the "+" and the "-" superscript§ refer to the levels of the
indicated variable just after and before the jump. Using (18) to
substitute for the variable D+(0), one can then use equation (16) to
determiné the optimal jump for the capital stock, K+(O). One can show
furtter that, because of the concavity of the relevant functions, there
can te a jump only at time zero.8

The optimal jump and subsequent developments are depicted in
figure 1. In the figure, the capital stock, K(t), is measured along the
horizontal axis. The level of debt and various functions of the capital
stock are measured along the vertical axis; for simplicity, the price of a
unit of capital stock, q, will be set at 1 at every point in time.

The firm is assumed to be initially at a point of long-run
equilibrium, point EO on the K axis: a point with no debt and an
equilibrium capital stock of K'(O).9 In figure 1 the left hand side of
the new equilibrium condition (15), a*-BK, after the upward shift in a to
a*, is represented by the curve MRP (the firm’s marginal revenue product);

the right hand side of (15), the firm’s marginal cost of capital, will be

MRP curve passed through the point (K™ (0), q(p+6)], where the MRP was
equal to q(p+6), the marginal cost of capital in long-run equilibrium when

debt equals zero. Now, however, the discrete increase in a has shifted the
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MRP upward and to the right, indicating that at the initial level of
capital and debt [K (0), 0], the equilibrium condition (15) no longer
holds. Given the discrete shift in the MRP curve, we have seen that only a
discrete jump in capital will reestablish equilibrium; in the very short
run, this jump in capital can only be financed by an equal (in value) jump
in debt.. Since equation (18) shows that changes in debt and capital
during the jump must be proportional to each other, and given the
assumption that g=1, the two jumps in figure 1 must be along the 45 degree
line that passes through the original equilibrium point EO.
With equation (18) satisfied at all points on the 45 degree
line, the optimal jump is determined by that combination of debt and
capital on the 45 degree line that satisfies the other equilibrium
condition, equation (15), i.e., that combination that equates the MRP
curve to the marginal cost of capital, q(p+6+2¢yD). This latter is a
function of D, but during the jump, since (18) shows that debt and capital
jump in proportion, the MCC can be represented as a function of capital;
the MCC curve is shown in figure 1 as a straight line through the old
equilibrium point with a slope of 2¢.10 Thus the new optimal short-run
level of capital is determined in figure 1 by the intersection of the MRP
and MCC curves; this is denoted by K+(O), implying an optimal jump of
K'(0)-K™(0). One finds the optimal level (and jump) of debt, D'(0), by
moving from K+(O) up to the 45 degree line and over to the y axis. Thus,

the point E1 is the new short-run equilibrium.

Determining the Optimal Paths of Capital and Debt after the Jump
Unlike the original Jorgenson model, the determination of the
optimal jump is not the end of the story, but only its beginning. The key

to the movement to the long-run equilibrium is that the firm’s financial
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resources change over time endogenously as the firm operates and gererates
profits. These profits are linked to further capital stock growth, changes
in debt, and dividend payouts through the flow of funds constraint (17).
The dynamic paths of these variables are of course determined by
equilibrium condition (16) and the flow of funds constraint (17). 1

In Stevens [24] considerable space is devoted to solving the
system defined by equation (16) and the differential equation (17), and
describing the dynamic paths implied for K(t) and D(t) after the Jump.
However, the two most important points about the path can be demonstrated
without the full derivation. First, the equilibrium condition (16), which
stilliholds at every point along the dynamic path, implies a negative
linear relationship between capital and debt; thus in (K,D) space in
figure 1, the adjustment path appears as a straight line -- between E1 and
the final new long-run equilibrium, E*, where debt equals zero again and
capital, K*, equals [a -q(p+6)]/28.

A second important point is that, unlike the "normal" dynamic
adjustment path of stock-adjustment models, investment does not gradually
decrease over time, allowing an asymptotic "soft landing" at the long-run
equilibrium capital stock. Rather, in this model, both capital and debt
approach their equilibrium values at ever-increasing rates. This can be
verified by examining equation (17) above, while noting that dividends
equal zero and that the time derivatives of capital and labor are related
linearly by differentiating equation (16): K = -q¢5/ﬂ. Substituting for b

in equation (17), we have along the optimal path:

R[q+8/(q¥)] = [aK - q6K - BKZ] - (p+yD)D (19)



- 14 -

We can show that the rate of change of K, dK/dt, is always positive by
examining the time derivative of the right hand side of (19). The last
term, a function of D, is just the level of interest payments on the debt;
since debt is falling all along the optimal path, both components of the
interest payment are falling over time, implying a positive effect over
time on K. The remaining terms on the right hand side, in brackets, equal
operating profits minus depreciation costs; this will be positive as long
as its derivative with respect to K is positive: a-q§-28K > 0. This, of
course, must hold from equilibrium condition (15), which states that
marginal operating profit, «-2BK, must cover both depreciation costs and
marginal interest costs. Thus the time derivative of the right hand side
of (19) must be posifive along the optimal path and K increases

throughout.

The Investment Function and Cash Flow

A key aim of this paper is to examine the firm’s investment
function in the light of the empirical results of Coen [5], Artus et. al.
[3], and others successfully linking the speed of adjustment to cash flow.
Using equation (16), it is possible to relate the firm’s investment both

to cash flow and to the "gap" between actual capital and the long-run

equilibrium level, K* (defined above):
K¥ - K(t) = qyD(t)/pB. (20)

We have noted how the differentiation of equation (16) or (20) leads to a

linear relationship between K and D (after the initial jump):

R(t) = -qyd(t)/B. (21)
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Combining equation (21) with equation (20) leads to:
R(t) = -D(t)/D(t)[R* - R(£)]. o (22)

Equation (22) shaws that the investment function.can be written as a
flexible,accelerator with a variable speed of adjustment -- the latter
’equal to the absolute value of the percentage rate of change of debt.

One can go further, however, and, using equation (19), relate the
above speed of adjustment to the firm's cash flow.12 Note that the right
hand side of (19) equals net revenues (aK-pK2) minus depreciation charges
(qéK), minus interest costs on the debt, (p+yD)D. The right hand side,
therefore, is a measure of net profits; denote it by II(t). Further, since
K and D are linearly related as shown in (21), the left hand side of (19)

can be expressed as a linear function of D. Thus, equation (19), a version

of the sources and uses of funds constraint, reduces to:
-D(t) [1 + q2y/B] = N(t). | ‘ | (23)

Using (23) to substitute for ﬁ in the investment function (22),.we derive
a final investment function that features a variable speed of adjustment

that is a function of the firm’s net profits:13

pI(E) R
S (T EIES) AR . (24)

-We have in equation (24) an investment function that is
remarkably similar to the suggestive, but ad hoc, formulation of equation

(1) used successfully in empirical work by the researchers noted above.
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‘For the relevant range, optimal investment can. be described by a flexible
accelerator with a variable speed of adjustment. Moreover, the speed of
adjustment is a function of the firm's level of profits, proportional ‘to

the ratio of net profits to its level of debt.

IV. A More Realistic Model: Corporate Taxes and the Borrowing Rate a
Function of the Debt/Assets Ratio

In this section we will see that the general lessons of the
previous section carry over to more realistic models: a dynamic investment
function will again be implied by the upward sloping supply curve for
debt, and the speed of adjustﬁent will be a function --albeit more
complicated-- of the firm’'s cash flow.

One of the most appealing modifications of the preceding model is
to let the firm’s borrowing rate be a function of the debt/equity or the
debt/assets ratio, rather than the level of debt alone. We have alluded to
the 1isk of bankruptcy as the preferred theoretical reason supporting the
upward sloping supply curve of debt. With this justification, the
probability of the firm falling into the bankruptcy state, where it cannot
cover its interest costs, can be shown to be a function of the debt/assets

ratio and not of the absolute level of'debt.la‘

Despite this more realistic supply schedule for debt, the optimal
long-run level of debt would still be zero. An obvious modification that
assures a positive long-run debt/assets ratio is to introduce corporate
income taxation along with the usual deductibility of intefest'.15

The two new assumptions result in predictable changes in the
optimal control problem of section III, equations (5) through (16). The

borrowing rate, r(t), will now be a function of the debt/assets ratio, ¢:
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r(t) = p + ¥ = p + P[D(t)/qK(t)]. , (25)

Corporate taxes reduce potential dividends payable to stockholders. We
shall assume the simplest possible case: a constant tax rate, 7, assessed

on total revenue minus interest and depreciation charges:
2
Tax = 7{aK - BK - (p + ¥¢)D - §qK]. (26)
Incorporating these modifications into equation (7), the

expression for the value of the firm that is to be maximized, leads to the

following modified Lagrangean expression:16
L = (1+p,)(1-7)[aK -BK2 -q8K -(p+¥D/qK)D] +D -gqR + X,R + A,D. (27)

subject to: R = 1I-6K, p,(£)DIV(t) = 0, and u,(t) = 0. The new necessary

.conditions for an optimum are:

dL/BR = 0 = -q(1 + p,) + A, (28)
dL/3D = 0 = (1 + p,) + A, ' (29)
-9L/3K = i, ,'M‘ = ~(L+p,) (1-7) [@ 28K -q§ +qyD /(qK) ] (30)
-8L/8D = X, -pX, = (L+p,)(1l-7)(p + 29D/qK), (31)

and with, DIV = (1l-7)[aK - BK2 - q6K - (p+$$)D] -qk + D > 0. (32)



As was the case for the preceding model, the costate variables
can be eliminated from equations (28) to (31) and, irrespective of whether
the constraint on dividends is binding, one can solve for the capital
stock in terms of the determinants of the firm's marginal revenue product

2
(a,B) and its marginal cost of capital [q(p+6+2¢¥d-9pé )]:

a - qlp + 6 + 20 - pb ]

K(t) = 28

(33)

The solution of this system is qualitatively quite similar to
that of the preceding section. Equation (33) shows that shifts in a or any
other parameter of the model will lead to jumps in K(t) and D(t) -- and
the ratio of the two, ¢. Moreover, by an analysis similar to that above we
can demonstrate that of the various possible combinations of the
inequality constraints on D and DIV, only two are possible. (See the
appendix, section 2.) Denoting the long-run equilibrium debt/assets ratio
as ¢* (to be determined below), the two feasible cases become: DIV=0, ¢=¢*
and DIV=0, ¢=¢*. In the present model, with a positive long-run
debt/assets ratio, when that ratio is above the long-run optimum,
dividends fall to zero. When the debt/assets ratio is worked down to ¢,
both debt and capital attain their long-run equilibrium Qalues and
dividends becomes positive,.

Similar to the approach taken in the earlier model, one can
determine the long run equilibrium values K¥, ¢*, and D* by examining the
solution to the system when pu, becomes zero (dividends become non-
negative). Noting that X, and X, are in this case equal to q and -1,

respectively, from equations (30) and (31) we derive the following:
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¢* = D*/qK* = rp/(1l-7)2% (34)

a - q(p/(1-1) + & -Ypg*?]

K¥* = 28 (35)

We will assume that the parameters p,r, and y take on values such that ¢*
is less than 1.17

In Stevens [24] the dynamic paths of the endogenous variables in
response to a shock to the system are examined in detail. Since we are
primarily interested in the form of the associated investment function,
and since the development is similar to that in the previous section, I
shallvbe brief here. Assume that the system is in long-run equilibrium and
consider, again, the effects of an upward shift of a to a*, related to the
intercept of the firm’s demand curve.

Once again there must be a jump in K and D to satisfy equation
(33); the modified sources and uses of funds equation (18) applies during
the jump, providing a second equation to determine both K and D. Since D
and K increase in proportion, the debt/assets ratio increases above the
long-run equilibrium level ¢* and dividends fall to zero.

From this point, after the initial jump, the dynamics of the
system are governed by equation (33) and the modified dividend equation
(32). Since both equations are nonlinear because of the debt/assets ratio,
it is impossible in this case to derive an explicit solution for the paths
of debt and capital. However, it is shown in the Appendix (section II)
that capital increases monotonically from its initial value to the long-
run equilibrium K*; as well, the debt/assets ratio, ¢, decreases

monotonically to ¢*.



It should be noted that this model, Like‘the previoqe one, leeds
“to -ever-ircreasing rates, of investmeqt,:ﬁ, eloqg theaoptimel path. The
monotonic fall of the debt/assets ratio,,combined Y;th the increasing
generation of after-tax profits, 1eads_tqlcont;nuou$1y igereaeingvfunds

for investment.

4.1 A New Relationship between Investment and Financial Variables

Let us once again return to the ultipgte question: How do the
complications introduced in this particular model affect the yalidity'of
the variable speed-of-adjustment investment function developed by Coen and
others? As might be suspected, the nqnlinearities,introduced by making
the debt/assets ratio the key variable in the interest rate function
‘severly complicate the form.of the investment function. Nevertheless, we
still have the elements that link the,variables R, ﬁ? and after-tax
profits, 1: the dividend equation (32) and the fact that optimaljdividends
are zero during the period when net investment is positive. It should be
noted again that equation (32) holds only after the initial jhﬁp.

In deriving the'inyestmentrfunction, I‘shall take the same
approach ;s'in the ﬁreceding sectien: first ded;eihghthe‘level of capital
in terms of its dev1at10ns from the 1ong run equ111br1um K*, and then
_dlfferentlatlng this expre551on w1th respect teAtlme Equatlon (33)

relates the capltal stock at any glﬁen t1me to e 51ngle endggenous::

varlable. in this case the debt/assets ratio, ¢ Subtractlng the

expression for K(t) in (33) from K*, deflned in equatlon (35) glves

28(K%-K)/q = 29¢ -tp/(L-1) (g -¢%), T . (36)
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From the expression (34) for the optimal debt/assets ratio, ¢*, it can be
seen that the second term of the right hand side of (36) equals -2yg*, so
K*-K may be expressed compactly solely as a function of the difference

between the actual and the long-run equilibrium debt/assets ratio:
2 2
K¥ -K = qyp[2(¢-¢%) -(¢ -¢* )]/28. 37

Differentiating this nonlinear function with respect to time leads to one

form of the investment function:

K = -q¥(1-¢)¢/8(D/D - K/K) > 0. (38)

This is obviously more complicated than the simple relation, K = —qw/ﬁﬁ,
derived for the previous model. However, after the initial jump, the
dividend equation still leads to qk-ﬁ = I, where Il is now defined as

after-tax profits. Substituting qk-TI for D, equation (38) becomes:

(a/B)¥(1 - ¢)¢l
q(q/B)¥é(l - ¢)2 + D - (39)

R = -q¥(1-¢4)¢/B(gK(1-¢)/D - T/D] =

Dividing (39) through by the expression for K*-K, we arrive at a
significantly more complicated form of the variable speed-of-adjustment
investment function, but one which retains the key property that the speed

of adjustment depends on the firm’s profits:

, 26(1 - )
K= {[D T 298(1-9)2/B1[2(3-4%) -<¢2-¢*2>]}[K* - R(®)] (40)




V. Ccnclusions and Caveats

This paper demonstrates that it is possible to provide
theoretical support for the eclectic investment functions tested
successfully by Coen [5], Artus et. al. [3], and others. Models of the
firm featuring intertemporal profit maximization subject to increasing
costs of external debt lead to investment functions that, in important
ways, are close to those estimated empirically. In particular, the
theoretically-implied investment functions are a combination of the
concepts of a flexible accelerator and a variable speed of adjustment,
with the latter dependent on the supply of internal funds.

The dynamic adjustment mechanism implied by investment functions
of this class is unusual with respect to both its cause and pattern.
Unlike the typical dynamic-cost explanation of investment over time, costs
in the above models are static, independent of the rate of change of any
varieble. However, borrowing costs are increasing functions of variables,
debt or the debt/assets ratio, that change dynamically because of the
firm’'s operations. Thus, these static costs also change over time as a
result of the firm's‘actions and, as the costs change, investment is
generated.

Not only is the causal mechanism generating investment
different, but so is the dynamic pattern of the investment. Rather than
havirg the rate of investment decline monotonically as the firm’s capital
stock approaches the equilibrium level, investment in this model increases
monotonically as an increasing supply of internal funds is divided
optimally between debt reduction and investment.

Although the models presented in this paper serve to provide
theoretical underpinnings for this important class of empirical investment

functions, one must note the caveats. We have pointed out that the



investment function does not hold for points where capital and debt jump.
Moreover, the underlying structure of the theoretical model suggests
extensions to more general models and investment functions. The class of
investment functions examined in this paper depends on a model with a
single dynamic element determined by the cost of outside debt and the
supply of internal funds. Models with additional dynamic factors should
imply different investment functions. An illustration is provided by a
small modification of the first model studied in section III: letting the
demand-curve parameter a be a continuous function of time, instead of a
constant. It is easily shown that the same key equations (16) and (17)
hold to determine the optimal paths of capital and debt. However, from
(16) the capital stock now is a function of two dynamic variables, a and
D: and investment, K, equals [&-2q¢ﬁ]/2ﬂ, instead of the previous
-2q¢ﬁ/25. Both terms now enter the variable speed of adjustment. Despite
the presence of this second term, the key relationship between D and
profits (II) is still operational, so the speed of adjustment will continue
to be a function of the firm’'s cash flow. Now, however, cash flow will be

only part of the adjustment story.
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APPENDIX

I. Feasible and Infeasible Cases in the Model of Section III (r = p+y¥D)

A. D and DIV cannot be both positive simultaneously

Assume the contrary: D>0 and DIV>0. This implies that both
multipliers for the inequalities, My.,and p,, must both equal 0; the former
implies, from (14) that Ay= -1 and X;= 0. Substituting these values into
(13), the marginal condition for debt, leads to p=p+y¥D; since Y is
positive, D must be equal to zero -- which leads to the contradiction.

B. If D=0, then DIV>0 (ruling out case D=0, DIV=0)

With D=0, we see from equation (16) that K is a constant equal to
[@-q(p+6)]/28. By assumption the numerator is positive; if it were not,
the optimal capital stock would never be positive, for below, in section
4, this value is shown to be K*, the long-run equilibrium value and the
maximum attained by the capital stock. Mogeovgr, with D=0, the dividend
equation becomes: DIV = [aK -BK2 -q6K] - qK + D. The first three terms
are profits after depreciation costs (II) and, given the positive level of
K, can be shown to be positive. We must rule out the possibility that the
sum of the last two terms could offset the first three. .

From equation (21) the sign of this sum depends on the sign of D.
Since D=0 is at its lower limit, and given that D must have continuous
first derivatives, D cannot be negative or the non-negativity of D would
be violated; hence D must be zero or positive. In both cases DIV > 0 and
the assertion is proved.

II. Feasible and Infeasible Cases in the Model of Section IV (r = p+p¢)

A. If ¢ > ¢*, DIV = 0 (where ¢ = D/qK) .

The proof is similar to that of section I.A above. Assume the
contrary, that DIV > 0. But this implies that #; = 0, and from equations
(28) and (31), ¢ must equal ¢* -- leading to a contradiction.

B. After the initial jump, ¢ decreases monotonically.

Suppose ¢>0. Assume for simplicity that gq=1. Given ¢>0, we have
from equation (33) that R<O0. This immediately rules out the sub-case with
D>0, forr the combination D>0, K<0 violates the sources and uses of funds
constraint K -D = II>0 (where II is profits). Consider the other sub-case
with D<O. From the initial assumption we have ¢=D/D-K/K>0, implying
0>D>K¢, and 0>(1-¢)K>KR-D. But K-D<0 contradicts the implication of the
sources and uses constraint that says it must be positive and equal to II.
Thus ¢ nust be <0 along the optimal path. The case of ¢=0 can be ruled out
by noting that this implies that both K and D also equal zero.

III. Jump Conditions

Conditions under which state variables may have jumps are
developed in detail in Arrow and Kurz [2], pp. 51-57, and Kamien and
Schwartz [18], section 18. Both sources exposit the approach originally
developed by Vind [27], which fits jumps into the normal optimal control
framework by distinguishing between "natural® time, t, which is suspended
during jumps, and "artificial" time, w, which is continuous throughout.
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The approach is adapted to the modified Jorgenson model of
section 3 as follows. Natural time, t, is now assumed to be a state

variable whose motion is determined by an on-off control, u,:

0, during the jump

de/dw = uy(w) = { 1, otherwise (al)

Similarly, all state variables that can have jumps have on-off switches
incorporated into their laws of motion. Thus, in the problem of section
III, the differential equation for the capital stock, K=I-§K, becomes:

dK/dw = uy(I-8K) + (l-uj)u, (A2)

where u,= dK/dw = some constant per unit of w during a jump. Thus, over a
jump occurring at t,, using (A2) and the fact that u, equals zero during a
Jjump:

w w
. KY(ty) - K (tg) = [ (ak/awydw = [* ujdw = u, (w,- w,). (A3)
Wi W,

One can let u; be an arbitrary constant, for by letting W,-w, increase,
the change in K during the jump can attain any positive value. However,
since we have a second state variable subject to jumps, dD/dw during a
jump is not arbitrary, since the change in D can, in principle, be
different from the change in K. Let it equal u,. We show below that, in
the present case, u;= u,.

, A similar approach can be taken toward the sources and uses of
funds identity or dividend equation. During a jump the normal expression
for dividends is switched off [the right hand side of quation (7N1;
during the jump, sources of funds are changes in debt, D (ty)-D (ty)=
u,(w,-w;), and uses are the sum of changes in the value of the capital
stock (qu, per unit of w) and dividends. Thus, we have:

DIV(w) = uglaK - K - (p+yD)D - qI + D] +(L-ugy) [u,-qu, ] (AL)

We can now transform our original problem into this new notation.
Modifying equation (7) in section II, we wish to maximize:

V(ty) = [ e'Pt{uo[aK - ﬂKz- (p+¥D)D - qI + D] +(1-u0)[u2-qu1]}dw (A5)
tO

subject to DIV(w) = 0, D(w) > O, where I = R + 8K, and where t is treated
as a state variable such that dt/dw is defined by equation (Al). We set up
a Lagrangean expression similar to equations (8) and (9) in the text:

L = e'pt(l+pl){uo[aK - 5K2- (p+yD)D - qI + D] +(l—uo)[u2—qu1]}
+ A [ug (T-8K)+(1-ug)uy ] + Ay[ugD +(L-ug)u,] + Aol (A6)

Besides the presence of the switch variable, this equation differs from
the Lagrangean in section III in a few, unimportant ways. Since it turns
out that D is never less than zero (see footnote 7), the non-negativit_:zt
constraint on D has been dropped. Also, because the discount factor e

does not change when a jump occurs, equation (A6) does not use the current
value Hamiltonian. In addition to the original control variables, I and 5,
we also have Uy, 4,;, and u,; moreover, besides K and D as state variables,
there is also t. The necessary conditions for the optimal paths are:
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BL/8T = 0 = -q(L + p)e T uy + u, ‘ (A7)
aL/ab = 0 = (1 + pre Plu, + Ay, (A8)
BL/BK = A, = (1 + pp)(a - 2K)e PRuy + A jbu, (A9)
8L/aD = A, = (1 + uy)(p + 2yDYe Pu, (A10)
aL/du; = 0 = (L-ug) [-q(l + ppde PT + a;)] | (A11)
dL/du, = 0 = (1-ug) [(1 + pye ?T + 2,] (A12)

S9L/8t = Ay = -p(Lp,) [ug{aK-BK - (p+¥D)D-qI+D) +(1-ug) (ug-qu,)]  (A13)

Noting that u, can only take the values O or 1, the maximum of L with
respect to u, is either the value of the original Lagrangean expression of
section III (when u, equals 1) or uj,-qu; +i;u; +i,u, (when uy,= 0). As
noted above, p,(t) = 0 and p,DIV = 0.

The first point to make is that when no jump is occuring (u,=1),
all the findings of section III still hold. For example, one can reduce
equations (A7) to (AlO) to equation (15) of section III:

a - 28K = q(p + &§ + 2yD). (Al4)

Moreover, since the necessary conditions are equivalent to those in
section IIT for u, = 1, all the propositions about the non-negativity of
debt and dividends, as well as those concerning the long-run, also still
hold.

Concerning states when jumps occur, the theorem of Arrow and Kurz
(Proposition 12, p.57) can be applied to show that given the concavity of
the original problem in the state variables, K(t) and D(t), there can be a
jump only at time zero. Thus, immediately after the jump, i.e., using the
notation "+" and "-" introduced in section 3 of the text to denote post
and pre-jump values at time zero, (Al4) must hold:

a - 28KV (0) = qlp + & + 2yD'(0)]. (A15)

+ We need one more relation to determine the values of K+(0) and
D (0). This will be some form of the sources and uses of funds identity.
In fact we can prove that capital and debt jump change in proportion to
each other, thus validating equation (18) of the paper. The first term of
the Lagrangean (A6) is dividends (DIV); given that u, = 0, during the jump
DIV = (u,-qu,;). We want to prove that DIV equals zero during the jump,
thus implying that u,=qu,. Note first that u, cannot be <qu,, for then the
non-negativity of dividends would be violated, since u, is positive.
Suppose, on the contrary, that u, were so high that dividends

became positive during the jump -- a one-shot payment to shareholders. One
can show that this path for dividends would be suboptimal by examining the
costate variable for debt, ),, at the end of the jump. Since u, must be
positive during the jump, at the end of the jump the firm has a positive
level of debt. We have shown above (Appendix, section I) that, therefore,
dividends must be zero at the end of the jump (t=0+¢), if not during the
jump. But, given that the constraint is binding at the end of the jump,
equstion (11) shows that the costate variable for debt must be greater
thart 1 in absolute value: A2=-(1+p1)e-p =-(1l+p,). Thus, at the end of the
jump the marginal value of reducing debt by one unit (-1,) is greater than
one. However, the value of one dollar of dividends during the jump is just
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one, since t=0 and no discounting is involved. Thus, had there been
positive dividends during the jump, it would always be in the interest of
the shareholder to reduce dividends by a dollar in exchange for a dollar
reduction of the debt at the end of the jump. It, therefore, can riever by
optimal to have positive dividends during the jump, and u, must ecual qu,.

We thus have the proof of equation (18) in section III of the
paper -- that during the jump the sources and uses of funds identity
reduces to:

pt(0) -D7(0) = q[K'(0) -K(0)]. (A16)

Given (Al5) and (Al6), the optimal jump is determined.

IV. Long Run Equilibrium

In this section we will show that the point determined by up,=0 is
indeed a long-run equilibrium for both models, in the sense that K(t) and
D(t) are zero at this point. Moreover, it can be show that the equilibrium
is actually reached..

Both equilibria can be computed by setting p, equal to zero. For
both models this implies that A, equals q and X, equals -1, and that the
derivatives of both costate variables equal 0. Thus, for the model in
section III, introducing the above values for the costate variables into
equation (12) implies that K(t) = [a-q(p+6)]/28 and doing the same in
equation (13), noting that pu, =0, implies that D(t) = 0. Using the
corresponding equations (30) and (31) for the model in section 4, one
derives the corresponding values for ¢* and K* shown in equations (33) and
(34).

Two major points must be established with respect to these
asserted equilibria: first, that the respective systems actually reach
them and, second, that the points are stationary equilibria --in the sense
that the derivatives are zero at the point.

Considering the system of section III first, we can prove that
the proposed equilibrium is attained because it has already been shown
that K and D are monotonic and increasing in absolute value. (See equation

(19) and the associated discussion.) Thus, for example, for any feasible
path,
t

we have K(t) - K(t,) = f Rdt > k(to)(t-to), since K is increasing. But
to
since for some t*, we can make the right hand side of the expression equal
to K*-K(t,), we know that K(t) will reach K* at or prior to t*. A similar
argument holds for the model of section IV, since it can be proved that
the debt/assets ratio, ¢, decreases monotonically and, by implication from
equation (33), K increases monotonically (section II.B of this appendix).
For the first model, the monotonicity of the derivatives also
assures that the derivatives are zero at the proposed equilibria. Consider
the derivative D at the point (K¥, 0). Since D has hit its constraint, the
derivative (which is piecewise continuous) cannot be negative at D=0.
Further, the Arrow-Kurz theorem shows that there can be no jump here.
Given the continuity of D, if D(O) were positive, it would also have to be
so for some point O+e; but this is contradicted by the fact that D is
monotonically decrea51ng Thus, D(O) must be zero and the point (K¥*, 0) is
the (unique) long-run equilibrium for the model of section III.
For the model in section IV the argument must be different
because at the proposed long-run equilibrium, ( K¥, ¢*), the system has
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not hit the constraint D=0. One argument is simply to note that any values
of K and ¢ different from K*¥ and ¢* imply that s, must be greater than
zero; but in such a case no dividends are paid and the value of the firm
equals 0. Hence, it is optimal for the firm to settle at K*, ¢*.

Moreover, it would be sub-optimal for the firm to attain (K%, ¢%)
and then depart from the point; first, since it has been shown that ¢
decreases monotonically, once passing through the point, the system will
never return to it, ¢ falling until the constraint D=0 is attained.
Second, one can show easily that of any stationary equilibrium, the point
( K*, ¢*) leads to the highest profits or dividend stream. To verify this
one can find the stationary policy that maximizes either the integral:

'pt 2 o
e {(1-1)[aK - BK - (p+¥¢)D] - qI + D}dt,
o

t“— 8

or the equivalent single-period objective function:
2
(1-7)[aK -BK -(p+¥Y¢)D -qéK] -p(qK -D).

The maximum of both is the long-run equilibrium (K¥*, ¢é*).
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FOOTNOTES

1. The author is a staff economist in the Divison of International
Finance. The views presented in this paper of course represent the views
of the author only, and should not be interpreted as representing the
view of the Board of Governors of the Federal Reserve System or members
of its staff. My thanks go to my colleagues David Gordon and Peter
Tinsley for invaluable discussions of the material in this paper.

2. See, e.g., Eisner [7], Jorgenson [16], and Bischoff [4].

3. However, the existence of significant costs associated directly or
indirectly with the state of bankruptcy is still a matter of debate. (See
Haugen and Senbet [12].)

4. One can defend the assumption of all-equity financing by noting that
with a perfect market for riskless debt (at a constant rate of interest),
the firm’s real decisions for investment and production are independent
of whether financing is from equity or riskless debt.

5. The explicit incorporation of uncertainty and costs of bankruptcy
into the firm’s objective function would severely complicate the
analysis, particularly in view of the sources and uses of funds
constraint introduced into the model. Even if tractable, the analysis of
such a model would probably not change the conclusion of this paper that
financial variables can be shown to account for some of the variability
in the speed of adjustment under some, but not all circumstances.

For discussions of the complications with intertemporal maximization
under uncertainty, see Abel [1], Nickell [20], and Stevens [24].

6. Later in this section and in the Appendix we analyze the
complications introduced when there can be jumps in the state variables,
K and D. It is shown that equations (10) through (16), below, hold
whether a jump occurs or not.

/. Probably the easiest way to show that p#, always equals zero is to
prove that u,=0 when D=0; thus the constraint is inactive at the
boundary. In the appendix, section I.B, we show that D=0 implies that
DIV>0; thus, when D=0, #,=0 and, using the arguments developed in the
text, equation (13) becomes: p=p+2y¥D-p,. Since D=0 by assumption, u,=0.

That there is no tendency for debt to become negative can be seen
intuitively as follows: negative levels of debt, like negative borrowing,
is equivalent to lending; but because of the linear interest rate
function, the rate of return on such lending is less that p. Hence, since
paying dividends has the implicit return p, it will never be optimal to
carry on such lending.

8. This is proved by Arrow and Kurz [2]}, Proposition 12, p.57.

9. See the appendix, section IV, for a proof that this is a point of
long-run equilibrium.

10. Given the expression for NCC in fhe_text or as the right hand ide of
equation (15), using D' -D = D = q(K -K'), and q=1, MCC = p+6+2%(K -K ).
11. It is shown in section I of the appendix that when debt is greater
than zero, dividends must equal zero.

12. It should be emphasized that equation (19) and the implied
relationship between cash flow and D does not hold during the jump.

13. Note that, from equation (19), the measure of profits, In(t), is
defined as net of depreciation and interest expenses. Depreciation is
subtracted because equations (22) or (24) are functions for net
investment, not gross. For an equation for gross investment, one just
adds 8K(t) to equation (24).

14, See, e.g., Nickell [20], Scott [22], and Stiglitz [25].

15. The following treatment of taxation is meant only to be a suggestive
way to get a positive long-run debt/assets ratio; a realistic approach



would require, among a number of things, the integration of corporate
taxation with the personal taxation faced by stockholders.
16. Since it was shown that p,(t) always equals zero (footnote 7), the
term u,D that appeared in equation (9) is dropped.
17. Realistic values for these parameters in the U.S. context seem to
lead to values for ¢* well under 1; for example, assume the interest rate
(p) for a firm with no debt is .10; then, if the firm’s borrowing rate
were to double to .20 as the debt/assets ratio moved from O to 1, the
implied value for 3 would be .10. If one assumes, finally, that the tax
rate, 7, is .25, the implied value for ¢* is 1/6 = 17 percent.

It can be shown that if the firm starts from a long-run equilibrium
at ¢* < 1, the debt/assets ratio, ¢, will be < 1 throughout the optimal
path. (See the Appendix, section II.B)
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