Board of Governors of the Federal Reserve System

International Finance Discussion Papers
Number 461

December 1993

FLUCTUATING CONFIDENCE AND STOCK-MARKET RETURNS

Alexander David

NOTE: International Finance Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment. References in
publications to International Finance Discussion Papers (other than an
acknowledgment that the writer has had access to unpublished material)
should be cleared with the author or authors.



Abstract

The drift of two different diffusion processes (asset returns) is determined by a state variable
which can take on two values. It jumps between the two according to Poisson increments
(this is called a ‘regime-switch’). For any given position of the state variable the drift of one
process is high and the other is low. I find that the posterior probability that the 1st asset has
higher average returns, conditional on observing the path (returns) of each process, follows a
diffusion process and calculate its infinitesimal parameters. I also derive analytical expresssions
for its stationary density and for some of its path properties. I compare the filtering problem
to the Kalman Filtering problem and find that even though the dynamics of the mean of the
distribution are very similar, the dynamics of the variance are subject to stochastic fluctutations.
The model is parsimonious in that the conditional mean and variance are functions of a single
variable.

I characterize the interest-rate and total-returns processes in a Cox-Ingersoll-Ross[1985] style
model where the productivities of assets are unobserved, but inferred as above. I find that this
model is capable of reproducing three stylized facts of stock-market returns and interest-rates.
These are the skewness and kurtosis of returns and the ‘Predictive-Asymmetry’ of returns:
excess-returns and future changes in volatility are negatively correlated. Further negative re-
turns cause reactions of larger magnitude. The success of the model in generating these features
depends on the speed of learning about the regime switches. Parameter values which lead to
faster learning, are consistent with large negative skewness of returns and the Predictive Asym-
metry property. The slower learning version leads to greater kurtosis of returns. I show that
a model based on the same fundamentals but with observed ‘regime-shifts’ is not reconcilable
with these feratures. My analysis suggests that learning about the productivities of assets of the

kind introduced here may be an important determinant of portfolio choices and observed asset

returns.



Fluctuating Confidence and Stock Market Returns

Alexander David !

This paper has three purposes. Firstly, the presentation of a Filter in continuous
time which characterizes the dynamics of Bayesian learning about recurrent ‘regime-
switches’ to be defined shortly. Secondly, to show how “fluctuating confidence’ which
arises due to this updating process, is reflected in the statistical properties of inter-
est rate and stock-return processes in a Cox-Ingersoll-Ross[1985] (henceforth CIR)
stochastic production economy. I also discuss the nature of the risk associated with
these fluctuations and the form of the optimally chosen portfolios to hedge this risk.
Finally [ draw some relationships between the speed of learning and the ability of the

mode. to replicate three stylized facts about stock-market returns.

A ‘regime-switch’ is said to happen when the average productivities of two differ-
ent sets of assets in the economy are reversed. The switching occurs due to a Poisson
process. We assume that the switching is unobserved and that the total output from
each asset which is the sum of the average productivity and ‘noise’ is observed. In con-
trast “o learning models based on Gaussian distributions of the the underlying state
variables and ‘noise’, the updating process here exhibits stochastically fluctuating
conditional variance. The regime-switch defined here is to be distuingshed from that

of Hamilton[1991], where a switch is a change in the rate of growth of ouptput in an
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economy. Both here and in Hamilton’s model the regime switching is described by a
2-state Markov chain. However, the implications of a regime-switch on output growth
in this model depend on the speed of learning about these switches, the expected-time
to retain certain levels of confidence and the resulting portfolio choices. Further, due
to unobservability of these switches there are effectively a continuum of states for

the decision maker, a state being identified by the belief of the agent regarding the

current regime.

The inference process is described as follows. The agent receives signals continu-
ously from a source which jumps ‘infrequently’ between two values. I emphasise that
this is different from the assumption used in the Kalman Filtering problem, Jazwin-
ski[1970], and its variants, that the source moves according to a diffusion process. I
find that the updating process follows a diffusion process and calculate its infiritesi-
mal parameters. This implies that the updating process has continuous sample paths
even though the source follows a jump process. Furthermore the updating process
satisfies certain regularity conditions which enable us to characterize its stationary
density and several of its path properties. I show that the dynamics of the condi-
tional mean of the agent’s estimate are very similar to that of the Kalman filtering
problem. However as opposed to the Kalman Filtering problem, the dynamics of the
conditional variance are stochastic and subject to cyclical fluctuations. This rnakes

my model particularly suitable for studying the effects of fluctuating confidence.

It is somewhat surprising that the updating process has continuous sample paths
even though the drift may jump by a large amount, and the process is observed
continuously. The increments of a diffusion process are the sum of a term which is
proportional to the drift and the the length of the observation period, and a noise term
whose increments are distributed like a Brownian motion. The standard deviation of
the increments in the noise term are proportional to the square-root of the observation
interval. Over intervals of small length, the drift has negligible effect while the arount

of noise 1s of a larger magnitude. So over very small intervals the increments of the



observed process are not informative and do not lead to large changes in estimates.

A model of Non-Gaussian learning has been worked out by Detemple[1991]. In
that model it is assumed that the prior distribution is Non-Gaussian. In that economy
too the conditional variance process is stochastic. The mean and a set of sufficient of
statistics for the conditional variance characterize the updated distribution. In the
model] presented the mean and variance of the distribution are completely charac-
terized by a single parameter. This is completely analagous to the static binomial
distribution. This parsimony allows us to make precise several properties of the updat-
ing process including the stationary distribution of the updated priors, the boundary
behaviour of the process and the amount of time spent in various regions of the state
space characterized by hitting times. Further we are able to solve for optimal decision

rules and equilibrium rates of return in a one-factor CIR model.

I point to three stylized facts about stock-market returns. These are the observed
kurtosis and skewness of excess-returns and the asymmetric feed-back effect of excess-
returns on stock-market volatility. A number of time-series models have been written
to replicate these features and to estimate the strengths of these effects. Without
attempting an exhaustive survey of the literature I refer readers for a vivid description
of the facts to Black[1976] and to the the models of Nelson[1991] and Campbell and
Hentschel[1992]. These models are generalizations of ARCH and ARCH-M models
(Bollerslev, Engle and Woolridge[1985] and Engle, Lilien and Robins[1987]) which
documented the autoregressive fluctuating volatility of stock-returns. In the model
economy presented here fluctuations in returns and their feedback to conditional
variance arise due to unobservability of the regime shifts. The inherent inertia n
Bayesian learning and changing portfolio choices account for the changing means and

the autocorrelation in the volatility of return processes.

I show that in an economy with the same fundamentals and observable regime
shifts the interest rate and volatility of returns is constant and the three features

of stock returns cannot be replicated. The ability of the model with unobservable



regime-shifts to replicate these features depends on the parameters of the model
chosen. In models where the difference in drifts is large, the level of noise is low
and regime switches are less frequent, the agent spends a large proportion of time in
states with high confidence regarding his knowledge of the current regime. I czll this
the ‘Fast Learning’ model and the one with the opposite set of parameters the ‘Slow
Learning’ model. I find that the Slow Learning model generates returns which exhibit
excess-kurtosis (fatter tails than the Normal Distribution) and that the Fast Learning
generates negative- skewness. A model with an intermediate speed of learring is
needed to replicate both features simultaneously. I also find that the Fast Learning
model generates a negative relationship between realized excess-returns and future
increases in volatility (as found in the data) and that the relationship is not so clear

in the Slow Learning model.

Before carrying out the analysis I refer to some empirical evidence for ‘realloca-
tive’ shocks, i.e. shocks which create a desire to move resources between ‘sectors’.
The literature has developed since the Sectoral Shifts Hypothesis of Lilien[1982|, who
argued that employment fluctuations in the U.S. economy can be explained due to
shocks which unevenly affect the productivities of different sectors in the U.S. econ-
omy. The exact definition of a ‘sector’ has been a subject of debate. I do not attempt
an exhaustive survey of the literature . Loungani, Rush and Tave[1990] created a
dispersion measure and found evidence of reallocative shocks between 60 industrial
indeces constructed by Standard and Poor. Davis and Haltiwanger[1992] argue that
the effects of these shocks is experienced at the plant rather than the industry level.
The literature is still evolving yet supportive of the Reallocative Shock Hypotheis
at different levels of disaggreation. I find it satisfactory to assume for now that the
effects of asymmetric shocks to different industries may be a useful paradigm for

understanding various features of stock-market returns.

The plan for the rest of this paper is as follows. In Section 2 the structure of

the two models is presented. In Section 3 I solve the model under the assumption



that regime-switches are observed. In Section 4 the filtering problem associated with
unobserved regime-switches is solved. In Section 5 the model with unobserved regime-
switches is analyzed and the nature of optimally chosen portfolios is discussed. In
Section 6 some results from the numerical evaluation of the model and statistics
from simulations are presented. The success of the model in its ability to replicate
stylized facts about stock-market returns is evaluated in Section 7. The conclusion is

in Section 8.

ot



2 Structure of the Models

In this section we introduce the main features of the model. These are closely related

to those in CIR[1985].

Feature 1. Single Good There is a single physical good which may be allocated to

consumption or investment. All values are expressed in terms of units of this good.

Feature 2. Production Technology Production possibilities consist of two linear
activities. The transformation of an investment of 5; amount of the good in the ith

production process. is governed by a stochastic differential equation of the form

dBi

—_— =
Bit

for 2 =1,2. (; are independent S.B.M.’s ( Simple Brownian Motions ),! where

7

(2z0) - dt + o - dC (1)

ay(z) = 2

ax(z) = a+b— z
a>b

(1) specifies the growth of an initial investment when the output of each process is
continually reinvested in that same process. The production processes have stcchastic
constant returns to scale in the sense that the distribution of the rate of return on
an investment in any process is independent of the scale of the investmen:. The
drift rates of the processes are determined by a state variable z, which accounts for

random productivity switches between technology 1 and 2.

'A real valued process (; is a S.B.M. if () ¢i has continous sample paths with probability one

(#7) ¢; has independent increments and (749) Cis — Ci¢ has a normal distribution with mean zero and

variance s — t.



Feature 3. Productivity Switches The dynamics of the state variable z, which
affects the drift rate of the production technologies is given by the Poisson stochastic

differential equation

dzt:(b—a)-[l—TT]~dq, (2)

a > b, q; is a Poisson Process i.e.,
ge+at — g = 0 with probability 1 — AAt + o( At)2.
qe1.at — q¢ = 1 with probability AAt + o(At)

G144t — gt = n.n > 2 with probability o( At)

We call (2) The Transition Equation The Transition Equation implies that the
unobserved state variable z; can take only the two values a and b. It switches between
the two with Poisson increments. The probability of no switches in a ‘small’ interval

of time is 1 — Adt, of one switch Adt, and of two or more switches is ‘negligible’.

Feature 4. Representative Consumer There is a representative consumer in

the economy. He seeks to maximize an objective function of the form:

El[ " exp(—p- (s — )U[C.Jds] 3)

In (3), £, is an expectations operator conditional on the current state of the
economy. C; is the consumption flow at time t. Throughout this paper we shall
assume that

y

UlC] = 'l (4)

(4) implies that the consumer’s utility function exhibits constant relative risk-

aversion with a risk-aversion coefficient of 1 — 4.

?We shall use the standard notation, z(At) = o( At) if lima;—.g :—%l =0



Feature 5. Two Industries Investment is done through competitive value-
maximizing firms in two different industries. Firms in each industry have access to
one of the technologies mentioned above. There is free entry of firms within each

industry.

Feature 6. Financial Assets In Zero Net Supply There is a market for
instantaneous borrowing and lending at an interest rate r. The market clearing rate is
the rate at which lending is at zero net supply. The market clearing rate is determined

as part of the competitive equilibrium of the economy.

Feature 7. Continous Decision Making Physical investment and tracling in
real and financial claims take place continously in time. Trading takes place cnly at

equilibrium prices.



3 Model 0. Observable Regime Switches

[ first solve the stochastic control problem associated with the social-planning prob-
lem. I then define equilibrium in the economy, decentralize the decision-making and

providz explicit expressions for the risk-free rate and the excess-returns.

n this model, I shall assume that the state variable z, is observed by the represen-
tative agent. With these assumptions the firm faces, in the terminology introduced
by Merton[1973], a constant opportunity set . At any moment of time, there exist
two assets with average rates of return of a and b respectively. Since the chance of z
switching from a to b in a small interval of time At is A - At and asset choices can be
revisec. after this small span of time, the firms expected payoffs are unaffected up to
an order o(At) by the potential switch. In this situation the only risk in the firm’s
return is due to the noise in the payoff of each technology. The aggregate wealth

dynamics are given by

Wirar = W, — CiAL] - Z w1+ Py 4 o(a)

it

Proposition 1 When regime-switches are observed the value function of the social-

planner’s problem is of the form

~

J[W;, t] = exp(—pt) - A- —‘/%— (5)

where A 1s a constant determined by the parameters of the problem. Optimal portfolio

choices are constant and satisfy

11 (a—b)
= §+§.02(1—7)
1.1 (b-a)
Wy = —2—+§.a2(1—7) (6)

The P-oof is in Appendix 0. The analysis is completely straightforward and can be

found in for example Ingersoll[1988].

Comments on Proposition 1 The value function does not depend on the state

z;. Both states offer the same opportunities to invest and grow. The portfolio choices

9



reflect the desire to hedge noise, the only source of risk in this model. The portfolio
is more diversified when the gap in average productivities @ — b is smaller, the level

of noise is higher and the coeflicient of risk-aversion is higher.

Decentralization Investment is done through competitve value maximizing firms.
We recall there are three types of firms, each with access to one production process.
With free-entry within each industry and stochastic constant returns to scale, there
is no incentive for firms to enter or leave the industry if and only if the returns on
the shares of each firm (the rate at which it can acquire capital) are identical to the
technologically determined physical returns on that process. The equilibrium scale of
cach industry would then be determined by the supply of investment to that industry.

Let wo be the share of his wealth allocated to riskless borrowing /lending.

The agent’s- wealth dynamics at t are, Wy a, =
2
[Wt el CtAt] ‘ [Z 'Lf),'t(l -+ ai(zt)At + UACit) + ’li)()t(l -+ T‘tAt)] + O(At) (7)
1=1 .

where w;, > 0 , Wo; + 22, Wiy] = 1 and g, can take either sign.

1=1
Definition 1 An equilibrium is defined as a set of stochastic processes (Cﬂ’t,zbit,rt)’

satisfying the first order conditions (38), (39) of the social-planning problem in Ap-

pendiz 0, and the market clearing conditions W, > 0 and [L2, W] = 1 and W, = 0

The ezcess returns in the economy are the difference in the rates of return on

optimally invested wealth and the riskless security. l.e. the excess returns equal

21'2:1 ai(zt) c Wi — Tt

Corollary 1 The ezcess returns in the observable economy are constant and equal

(1=7) (L, w?) - 0%, where w; are the choices in Proposition 1.

The proof is in Appendix 0.

10



4 The Filtering Pro‘blem

The filtering problem is described by two equations. The first describes the dynamics
of an unobserved state variable and is called the Transition Equation.. The second,
describes the composition of a variable which is observed. It consists of the sum of
a drift term which is determined by the state variable and a noise term, which has
increments distributed like a Simple Brownian Motion. It is called the Observation

Equation. Both equations fall under the class of Ito stochastic differential equations.

THE TRANSITION EQUATION

2-(zx—a

dzy = (=) [1 = 2220y gy ®
—a

a > b, g, is a Poisson Process 1.e.,

qr+at — g = 0 with probability 1 — AAt 4 o(At)°.

G+t — ¢¢ = 1 with probability AA? + o( At)

Gi+at — G = n.n > 2 with probability o(At)

The Transition Equation implies that the unobserved state variable z, can take
only the two values a and b. It switches between the two with Poisson increments.
The probability of no switches in a ‘small’ interval of time is 1 — Adt, of 1 switch Adt,

and of two or more switches is ‘negligible’.

THE OBSERVATION EQUATION
dﬂtZ(zt)dt-}-O‘dTh (9)

o > 0, n, is a Simple Brownian Motion i.e., if t,15,t5,... is ainy sequence of times,

then

3We shall use the standard notation, z(At) = o(At) if limas—o KAATQ =0

11



1) the increments n,... — n,. are independent.
Mgy — T P

(i1) 74,,, — M, 1s distributed Normal with mean zero and variance t;,, — ;.

The Observation Equation falls under the class of Ito Processes which we define

below.

Definition 2 (Ito Process) * Let (Q,F,P) be a complete probability space, with
(Fi,t € T) being a right continuous filtration defined on it. Let (n,, F,, € T) be a
Brownian motion process. The continuous random process (X;, Fi,t € T) is called
an Ito Process (relative to the Brownian motion process (W, F,,t € T) if there

exist two nonanticipative Fi-measurable random processes ai(w) and b,(w) satisfying

for eacht €T

A las(w)|ds < 0o (a.s.) (10)

t
/ by (w)[2ds < oo (a.s.) (11)
0
with b,(w) being left continuous, and if, with probability 1, X,(w) satisfies the iategral
equation

X,(w) = Xolw) + /Ot ay(w)ds + /Ot by(w)dn, teT

or equivalently its stochastic differential equation (S.D.E)representation as

dXi(w) = ay(w)dt + b,(w)dn;, teT (12)

Since z; switches by Poisson increments, its paths are piece- wise continuous and 10
is satisfied. Also, for the Observation Equation 11 is trivially satisfied (b, is a non-
deterministic and constant process) and hence the integral form of the Observation

Equation 1s an Ito Process.

THE PROBLEM Let F; be the o-field generated by the sample path (Br)ocr<t. We

are interested in characterizing the infinitesimal dynamics of 7, = Prob[z; = a Fil.

*Definition 6.2.1 in Krishnan[1984)

12



Theorem 1 m, is the solution of the Ito stochastic differential equation
Tdr, =(1-2-m)- Adt | (13)

+7r:-(1—7f%)'(a—b).[dg,—(a-erb-(l—m))-dt]

o2 {

To prove the Theorem we shall find lima;_o[mi4a: — 7). The analytical expression for
[7y-at— ] is found in lemmas 1 to 3. We state the lemmas below but leave the proofs
for the appendix. Since both the Normal and Poisson distributions satisfy a temporal
homogeneity property ( Chung and Williams[1990] ) , the analytical expression does
not depend on the lehgth At. The limiting expression gives the dynamics of the
inference process when no information is received between t and t+ At, and At tends

to zero.

Lemma 1 Let L,, Ly be the densities of observable increments AB, = Birar — By
conditional on the drift of the output being a,b respectively. Then

Lo=1Ly-[1+ (a—b)-(if:—b-m)“o(m).

)

Lemma 2 mar =
T (L= AAL) - L, + (1 — ) - AAL- L,
e (L= AAE) - Lo+ (1 =m) - AAL- Ly + 7 - AAL- Ly + (1 — 7)) - (1 — AAY) - L,
+o( At)

Lemma 3

TigAt — Ty = (1—-2-m)-AAt +
T (1 —m)-(a—b)

o2

[AB ~(a 7 +b- (1)) At] + o(At)

Lerama 1 calculates the difference of the densities of the Observation Process arising
from the two possible regimes. Lemma 2 is mostly an expression of Bayes Law, with

a tiny twist explained in its proof. Lemma 3 simply completes the algebré.

13



REMARK.S ON THEOREM 1 The Ito S.D.E. is the sum of two components. The
first (1 — 2 - 7)- Adt we call a mean-reverting component. It is an adjustment to
accommodate for the constant unobserved Poisson switching probability. The second
1s a produc£ of two terms. ﬂil"—gg—(“—“’l which We call the information weighting term
and [dB; — (a7 + b (1 — m)) - dt] = dv; the innovations component, because it
contains new information. We notice that (a - m + b (1 = m,)) = E7*2,(w). Result 1,
below, from filtering theory is used to show that the process v, is a Brownian Motion
with respect to (F;) and that the S.D.E. 13 can be written in the form

dm(w) = pe(m(w))dt + oo(me(w))dve(w) (14)

In this form the infinitesimal coefficients of the S.D.E. are functions of 7, only. The-
orem 1 only states that the updating process satisfies the S.D.E. 13. It will be useful
in defining the updating process as a diffusion process which arises as a solution to
a S.D.E.. Result 2 below provides conditions on the coefficients of the S.D.E. (14)
to have a unique solution. Result 3 states that under the same conditions of the
coefficients the coefficients of the S.D.E. 14 are the infinitesimal mean ana variance
of the process. We will then use results from theory for diffusion processes to provide

several interesting properties of the updating process in Subsection 3.

Result 1 ° Let {X,,B,,t € T} be an [to process defined on a complete probability
space (2, F, P) represented by the S.D.E.

where

/tETElat(w)|dt < 00

with B, being the o-field generated by (a,, W;,s < t,t € T). Let {F,,t € T} be the
‘right continuous o-field generated by {X,,s < t,t € T}withF, C B, C F, end define

*Theorem 8.1.1 Krishnan[1984]

14



a fur.ctional

a(Xe(w)) = EFtay(w)

Ther. the innovations process (; given by

D S

dct = dXt - at(Xt)dt t e T (15)

is an F;-measurable Brownian motion process, and the Ito process (X,) has a S.D.E.

representaion,

dXt = at(Xt)dt + dct t € T

As discussed earlier, the process (9) is an Ito process of the form (12) and that
(@ 7w +b-(1 —m)) = Eftz(w). Hence, [dB; — (a -7, + b - (1 = =) - dt] = dv,
is ar. “innovations” process in the sense of Result 1 and the process (13) has the
representation

T (1 —m) - (a —b)

dﬂ't :(1"‘27rt)/\dt+ 2
g

- dy, (16)

To ascertain that a solution to the S.D.E (16) exists and that the solution is a

diffusion process (defined below) we shall use a result from Karlin and Taylor[1982].

Definition 3 ® A continuous time parameter stochastic process which possesses the

(strang) Markov property and for which the sample paths X, are (a.s.) continuous

functions of t is called a diffusion process.

Definition 4 (Growth Condition) The coefficients u(r,t) and o(n,t) satisfy the growth

conaition if there exists a constant K independent of t and 7 such that

pi(r,t) + o¥(m,t) < K(1 + %)

®from Karlin and Taylor[1982], Chapter 15

15



Definition 5 (Lipschitz Condition) The coefficients p(z,t) and o(z,t) skkatisfy the

Lipschitz Condition if there ezisté a constant L independent of t and z such that
u(z,t) = uly, )] + lo(z,t) — o(y,t)| < Liz — y|

Result 2 7 Let p(z,t) and o(x,t) satisfy the growth and Lipshitz conditions defined

above. Then there exists a unique solution to the S.D.E. (14) as a continucus process.

It is easy to check that the coefficients of (16) satisfy the growth and Lipshitz condi-

tions and therefore the conclusions of Result 2 hold.

Result 3 8 Let m, be the diffusion that arises as a solution of the S.D.E. (1/), where
the coefficients p(z.t) and o(x,t) satisfy the growth and smoothness conditions. Then,

1
}llir(l) EE[TQ'F}L = m|me = 2] = p(z,1)

|
lim —E{{miyn — 7} *|r, = 2] = 0*(z,1)

Result 3 suggests the names ‘infinitesimal mean’ and ‘infinitesimal variance’ for the

coefficients p(w.t) and o*(r,t) of the S.D.E. (16)

4.1 Properties Of The Updating Process

We shall briefly introduce some notation and terminology standard to the literature

9

of diffusion processes®. We then focus our attention on three properties of the up-

dating process. Finally we look at a numerical example which has been of interest in

formulating a model of Business Cycles in David[1992b].

"Theorem 16.5, Chapter 15 Karlin and Taylor{1982]
®Theorem 16.6, Chapter 15, Karlin and Taylor{1982]

This subsection relies heavily on the analysis in Chapter 15, Karlin and Taylor[1962]

16



4.1.1 Terminology

Let p(z,t) and o(z,t) be the coefficients of a S.D.E. as in (14). Define,

= eTp{— : &
s(z) = eap{- [ [20(5)1@}

S(a) = [ stnidn = ["eani- ["2EEde)an
1
s(z) - o*(x)

m(z) =

HEURISTICS: From a classical viewpoint 1/s(z) is an integrating factor for the
differential operator L defined by

Li(z) = u(z)(2) + 50%(z) /" (2)

A modern view of the function s(z) is the following. Let [ and r be the left and right
boundaries of the diffusion process X,. Let u(z) = Prob(T; < T,| X, = ), where T,
is the hitting time to a. u(z) is the probability that the process hits ! before hitting
r, starting at x. [t can be shown that u(z) = %%%):)—g(%l So the function S(z) can
be used to rescale the state space (I,7) in terms of probabilities of achieving various
levels and is hence named the scale function. We note that the process ¥; = S(X,)

has a linear scale function in that

b —
Prob{T,(Y) < Ty(Y)|Yo = y} = b—ﬂ
—a
i.e. its hitting probabilities are proportional to actual distances. The modern and
classical views are reconciled when we realize that u(z) satisfies the differential equa-

tion Lu(z) = 0,u(a) = 0,u(b) = 1.

The function m(z) is called the speed-density of the process. The name is moti-

vated by the fact that

lim E[Tz € I+E|X0 - .’L‘] - m( )

e—0 5

17



where T, , = min{T,,T,}. The function m(z) can also be thought of as a measure of
‘volatility’ of the process at z. The functions introduced here will be used to classify

the diffusion process.

4.1.2 Boundary Classification

An entrance boundary is one that cannot be reached from the interior of the state
space. It is possible to consider processes that start there. Such processes quickly

move to the interior never to return to the entrance boundary.

Let S[a,b] and M{a, b] be the Stieltjes measures induced on the state space by the
functions s(z) and m(z) respectively, for example Sa,b] = [’ s(z)dz. Let N(I) =
7S, zldM(n) = [ M(1,£]dS(€). N({) roughly measures the time it takes to reach
an interior point x in (/,r) starting at the boundary [. To show that a boundary [ is
entrance it suffices to establish '° that S(/, z] = oo while N({) < oo ( please note that
it is sufficient to establish this for any point in the interior of the state space and so

the argument z is suppressed in the definition of N (/).

Property 1 (Entrance Boundary) 0 and 1 are entrance boundaries of the S.D.E. =,
as defined in (14)

We recall for the updating process m;, u(m,t) = (1 — 27¢) - A and that o(m,,t) =
M Before proving the statement we argue that these parameters suggest
that 0 and 1 are entrance boundaries. The infinitesimal mean of the process is of
non-negligible size and pulls the process towards the center as the process roves
close to its boundaries, while the infinitsimal variance declines to zero as the process

approaches either boundary. So the process never hits either boundary.

Proof We shall prove that S(0,z] = oo and N(0) < oo The proof for the other

boundary 1.e. 1 is similar,because all the functions considered are symmetric about

10Page 234 Karlin and Taylor{1982]
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4.1.3 Stationary Distribution

If it exists, a stationary density ¥(z) of a diffusion process X, necessarily satisfies

w(y) =/

where p(t,z,y) is the transition density function i.e., P(t,z,y) = Prob(X, < y|X, =

U(z) - p(t,z,y)dzx vVt >0

r) and éﬂ;;—‘yl = p(t,z.y). It can be shown that the stationary density ¥ (z) satisfies,

Solving the differential equation yields,
Y(z) = m(z)[CiS(z) + C]

where C', and C are constants that guarantee that ¥(z) > 0on (I,7) and [/ ¢(£)dE =
1
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When [ and r are both entrance boundaries ( 0 and 1 are both entrance boundaries
for 7, ), then S(z) — c0as T — lor z — r, as discussed in the previous sub-

subsection. In this case, C; is chosen equal to zero and the stationary density is

_m(z)

i m(€)dé

where m(z) = m as defined earlier.

U(z) = (18)

Property 2 (Stationary Distribution) For the updating process m, the stationary dis-
tribution ¥(x) is

—2\co? 1 o?

vie) =Crerl o= T G o) (19)

Proof Substitute s(z) from (17) into (18). O

The shape of the stationary distribution depends on the characteristics of the
learning process which depends on the parameters A, o* and (a —b)%. When A is large
a ‘lot” of switching occurs and so a relatively large amount of time is spent with 7
close to a l. When o? is large the signal are noiser and again 7 spends a larger time
around a 1. When (a — b)? is large the diferrence in the drifts from the two regimes
is large, so learning occurs faster and a relatively large amount of time is spent near

the boundaries.

4.1.4 Path Properties

So far we have characterlzed the mﬁmtemmal dynamics of the learning p-ocess in
Theorem 1 and Ehg_xggfy

stationary dlStrlbuUQﬁ 1r1 fhe prev1ous subsubsectlon For some problems in decision

long term behav1our of the process as measured by the

theory it is interesting to have estlmates of the ‘intermediate-term’dynamics of the

sample paths of the process. In this sub-subsectlon7 we estimate the expected time

to be spent in different ‘regions’ of the state space conditional on being in the region.
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For example it might be important to calculate how long the agent expects to be
in a region of ‘low-confidence’” which may be defined as 7, € (.4,.6) or the length of
time the agent expects to be ‘confident’ in a regime as measured by the time spent
in 7, € (.8,1).

Define v(z) = E[Top|Xo = z] = € (a,b). v(z) is the length of time the agent
expects to be in (a,b) conditional on being at z. It can be shown !! that v(z) is the

solution of the differential equation

The solution to this is

v(z) =

2(u(x.a,b) - [ 1S5 = SEIm(E)dE + 11 ~ u(z,a,8)] [15(6) - S(a)m(e)de} (20)

where,

u(z,a,b) = Prob{T, < T,| Xy = z}

We give a numerical example to illustrate these properties next.

4.1.5 Example

Time is measured in "vears’. A = 2 which implies that there are approximately two
switches in a year and a 9 percent chance of having a switch. a = .07 and b = —.045
and o =: .02 The stationary distribution is almost U-shaped and is drawn in Figure
1. With these parameter values the process spends a relatively large proportion of
times a’ the ends rather than in the middle. When =, = .5, the expected time to
be spent in the interval (.3,.7) = .09 years, roughly a month. Once the process hits
the level .9, the expected time spent before it goes back to a level of .6 is .47 years.

The process moves out of regions faster when in the middle. This represents fairly

page 192 Karlin and Taylor{1982]
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qulck learnlng when the level of conﬁdence reaches a low level An agent i In such an
environment knows that when he reaches a level of middling beliefs, he expeacts to
receive news relatlvelv soon and move fairly qu1cklv to a level of higher conf dence
Once he reaches a level of high conﬁdence in one of the reglmes he expects to retaln
approxunatelv the same beliefs for a relatively long perlod In Dav1d[1992b], we ﬁnd
that the environment described here, causes cychcal investment patterns if there 18
some inflexibility regarding the agents investment choices. When all parameters are
kept at these values, except that the level of noise is raised to .07, learning is slow and

the stationary distribution has most of its mass around .5. This is shown in Fizure 2.
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5 Comparison With The Kalman Filter

In this section we briefly discuss some similarities and differences in the assumptions
and results between the Kalman Filtering problem, Jazwinski(1970] and the filter
introduced in this paper. We will not write the Kalman filtering problem in its most
general form, but instead concentrate on a few broad features which are apparent

from the simplified version discussed here.

The Kalman Filtering Problem As in the problem considered in Section 1,

the problem is described by the Transition and Observation equations.

THE TRANSITION EQUATION

dzy = fz, + qd(, (21)

f > 0,¢ >0 and (; is a Standard Brownian Motion. The unobserved state
variable z; follows a diffusion process. This is different from the transition described
in (1), where the state variable could take on only two values and switched between
the two with Poisson increments. The distribution of z at time zero is assumed

Gaussian with mean 2, and variance vy.

THE OBSERVATION EQUATION
dﬁt = tht + O'dnt (22)

o > 0 and 7 is a Simple Brownian Motion. This is identical to (2), the Observation

Equation for the filtering problem considered in this paper.

Let 2, = E7¢[z], where F, is the o-field generated by the sample path (8:)o<r<:.

Let v, = Var®t[z,)].
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Result 4 ( Results of the Kalman Filtering Problem)

ds, = f-3dt+ b“; t(dg, — 2dt) (23)
d : b
FUtE = (2fv+¢h) — (T2 (24)

Remarks UPDATING THE CONDITIONAL MEAN The dynamics (23), of the con-
ditional mean are analagous to the dynamics of d= described by (13). Notice that
(23) may be decomposed into the sum of two parts. The first is a deterministic drift
component and it equals E7t[dz,]. This is the counterpart of the ‘mean-reverting’

component of (13) which equalled E**[dz,] in that context.

The second component is the product of two terms. al(dﬁt — zdt) 1s an innovations
process as defined in (15), and is a F;-measurable Brownian Motion by Result 1. We
recall that the updating rule (13) had a similar ‘innovations’ term.

b—”:”‘ is the weight give to the ‘innovation’ term in updating. This matches the

‘information weighting’ term in (13) which was Ml_—’;’)—ia—_bl It is easy to show in both
cases that the information weighting term equals C(";’af: ‘f@‘gﬁ" . The correspondence
of the conditional mean dynamics is complete. This identification of the information

weighting term also shows that the estimator 7, which we obtained from Bayesian

Updating, coincides with the optimal Least Squares estimator.

UPDATING THE CONDITIONAL VARIANCE The dynamics of the conditional vari-
ance are deterministic and this is reflected in the fact that (24) is an Ordinary Differen-
tial Equation. In particular, the path taken by the conditional variance is completely

determined by the parameters of the problem and can be pre-computed. The solation
of (24) is*?

2

— UOO‘ N —
vy = —Uot n P lf w=0
1
vy = 2wl — ? 0 25
t [ 1+2w}_vov0exp(2:;t)] f w # ( )

12Gee for example Gennotte[1986].
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where w = fo? —go. f w < 0, limymeo ve = 0. If w > 0, limy—oo vy = 2w. Intuitively,
if the ratio of the speed of the drift to the strength of the signal as in the case w > 0,
then the agent is always a step behind in his evaluation. Even asymptotically he does
not get an exact estimation of the drift. The tracking problem in this paper also has

this property, since the drift can always jump.

The deterministic path of the conditional variance is a property particular to the
Kalman Filtering problem. The deterministic dynamics of the conditional variance
for the Kalman Filtering problem is based on a well >known result on Normal Dis-
tributicns in statistics. From (22) dB: and z, have a jointly Normal distribution,
conditional on all information until until . More precisely!® if (X,Y) has a nonde-
generate N[uy, y1, 07, 03, p] distribution, then the conditional distribution of X given
Y o=y is My + pZ(y — pa),07(1 — p?)], ie. the conditional variance of X given
Y =y is a constant. Our model lacks the property that makes the Kalman Filter
tractable. However. since both the conditional mean and conditional variance depend
only on 7, we were able to write the updating as a diffusion process in one variable

and analyze its properties.

13Theorem 1.4.2, Bickel and Doksum({1976)
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6 Model 1 Unobsefvable Regime Switches

In this model I shall assume that the state variable z, is unobserved. The agent
observes the rates of return on both physical assets which are as in (1). The agent
has beliefs about the underlving value of the state variable z;. I assume that he uses
Bayes Law in updating his beliefs. The agent updates his belief by observing the
difference in the rates of returns from the two investments. If the difference in the
rates is positive his beliefs shift in the direction of asset 1 having the higher drift
and vice versa. This filtering problem has been solved in Section 4. Unobservability
of the regime switches lead to various degrees in ‘confidence’ for the representative
agent. These can also be viewed as wealth or ‘prospect’ changes. When the agent is
confident about the current regime, he can invest in two assets with similar expected
returns, approximately the average productivity of the two assets in the economy.
On the other hand if he is confident of the current regime, then one asset has high
expected productivity and the agent can receive higher returns by investing mostly
in that asset. Furthermore the expected time to be spent in different regions of
the state space changes with changes in beliefs. This implies that these changes in
confidence have payoff consequences for periods larger than an ‘instant’. So unlike the
situation in Model 0 where the agent faced a constant opportunity set, the agent here
faces an entire spectrum of opportunity sets. The constantly changing ‘confideace’ /

‘prospects’ introduces a class of risk, which we outline next.

Recall that the belief updating process is a diffusion process. It contains a dis-
turbance term which has a standard deviation of the order o((At)z). In other words
uncertainty about the future position of belief is ‘large’ relative to the length of the
interval considered. Lets consider the case where the probability of asset 1 Faving
drift a is greater than .5. In this case asset 1 promises a higher average return. When
the total return of asset 1, which is the sum of the drift and noise , is high it increases

the updated probability of the regime being in favor of asset 1 When the return of
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asset 2 is high it lowers this probability. Effectively, asset 1 pays off in states of
greater wealth (or lower marginal utility ) and asset 2 in states of lower wealth (higher
marginal utility) Therefore holdings in asset 2 help hedge the risk of wealth changes
at this infinitesimal horizon. In particular if the the size of the infinitesimal move-
ments is large, the agent can hedge the risk at the cost of lower expected returns.

This risk-hedging behaviour is illustrated in the portfolio choices in Corollary 2.

The Control Problem et J[W,, 7, t] be the value function of the social-
planning problem at time t, given the wealth and beliefs of the agent. The dynamics
of the beliefs are given by (13) in Section 4. The updating depends on d8,, which
depends on z; the underlying productivity variable. (13) is not a Markov process
in 7. Therefore the consumer’s decision problem with (13) defining the state vari-
able dyaamics 1s not a Markov decision problem. However the identification of the
‘innovations’ process as a Simple Brownian Motion on the filteration of the agent’s
information. in Result 1 rectifies this. A similar result has been proved for models
based o1 the Kalman Filter such as Dothan and Feldman[1986], Gennotte[1986] and
Sundaresan[1984].

Proposition 2 (Separation of Updating and Optimization) The consumer’s consump-
tion and portfolio decision in the economy with unobservable regime-shifts would be
the same as in an economy with an erogenous state variable which follows a diffusion

process (in particular Markov).

Proof By Result 1, the statisical distribution of (16) is identical to that of (13) on

the filteration of the agent’s information. 0.

Henceforth (16) shall be used to define the dynamics of beliefs. As for the previous

model the value function is separable in wealth, beliefs and other state variables.

y

J[We e, t] = exp(—pt)—v‘% (] (26)

Furthermore the optimal policy is independent of time and wealth and depend only

on beliefs.
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Proposition 3 When regime-switches are unobserved I[r] satisfies the differential
equation

0= max (=—DI[F)™ —p-Ilx] +

2

0 S aslrus + 56— D(Eude? )+

A[ﬂ(@le—uu)-(w)-(l—w)-(a—b) )+

=0 (%) Ly () (27)

The proof is in Appendix 2. The transversality condition for this model has not
been explicitly discussed. If parameter values are chosen so that the condit.on is
satisfied for Model 0, then it will be satisfied for this model. This is because for any

strategy, the value for the unobservable case cannot be larger than for the observable

case.

Boundary Conditions. Its evident that the value function is symmetric about
.5. Therefore it reaches a local minimum at .5 and we impose I'[.5] = 0. In Section
4 we showed in Property 1 that the belief process did not hit the boundaries ) and
1 although it got arbitraily close to them. As 7 approaches either boundary it is
pulled inward with probability 1. I therefore use the Reflecting Boundary condition
I'll] = 0.

As in Model 0 the portfolio choices are partly determined by the desire to hedge
noise. In this model the agent also attempts to hedge the risk due to wealth changes.

This lowers his demand for asset 1 and raises it for assets 2.
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Corcollary 2 When regime-switches are unobserved portfolio choices are made to
hedge the risk associated with ‘fluctuating-confidence’. In the case of interior so-

lutions the portfolio choices are determined by

_l L am)—an(r) (r)-(1—m)-(a=b) I[r]
w1(7r)—§+§- o}l —7) + 2-(1=7)-02 (7]

11 am—aln) (1) (1=m)(a=b) Ll
wa(m) = 2 + 2 o} 1—7) 2- (1l —~)-o? I[x] (28)

The excess-returns vary with the ‘level-of-confidence’ of the agent(s). and are

given by

'] 2 - 2
i +(1=7)e*)_ w (29)

erfr] = —(wy — wy)(x)(1 = 7)(a — b)

The proof is in Appendix 2.

Just as in the observable case the agent diversifies the noise in the payoff from each
asset. However, in this model the opportunity cost of diversification, the difference
in the drifts depends on the beliefs of the agents varies with the agent’s beliefs. The
2nd term in the portfolio choices reflects the noise diversification. Further, the agent
hedges the risk of the changing opportunity set as described in the introduction of this
section. The last term in the first portfolio choice equation measures the reduction
in hcldings of this asset, because its payoff has positive comovements with growth
‘prospects’.

The characterization of the risk-free rate in this model, the expected returns minus
the excess-returns from Corollary 2, is formally identical to that in the Consumption-
Based-Asset Pricing literature, for example Lucas{1978]. This follows from Theorem
1 CIR{1985], which only depends on the state variable following a diffusion process. I
provide a proof which is similar to theirs, but is specialized to this model. It extends
the CIR result to the case of unobservable productivity parameters. Let MU|r]

deno:e the marginal-utility of consumption, which by the envelope condtion equals
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the marginal-utility of optimally invested wealth. Let rf[r] be the risk-free rase when

the agents beliefs are 7. This is as calculated in Corollary 2. Then

Proposition 4

_ 1 AMUIn]
rflr] = % W

The proof is in Appendix 2. From Corollary 2, the risk-free rate equals the best
net-returns in value terms from any asset in the economy. The CCAPM literature
prices a risk-free asset in zero net-supply so that its equilibrium rate equals minus
the expected rate of change of the marginal rate of substitution. Propostion 4 shows

that at an optimum these two quantities are the same.

A VERY ROUGH UPPER BOUND ForR THE EXCESs RETURNsS IN THIS MODEL.
A very rough bound on the size of (7)(1 — 7)(a — b)%ﬁl can be obtained from the
solution of Model 0. Let A be the value when 7 is always .5 and A be the value when
m 1s always 1. These numbers can be calculated from (44). Then the above quantity
is less than _

A-A

.25-(a—b)-—“2‘1—4-— (30)

This puts a bound on the excess returns arising out of unobservability. For example

ifa=.07,b=-.05v= —1, 0 = .03, then the bound equals 0.015 or 1.5 %.
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7 Fluctuating Confidence and Properties of Stock
Market Returns

[ state three stylized facts about stock-market data. The facts are well documented in
the literature. Here I do not cite all the papers but direct the reader to Black[1976] for
a description of the facts and to Campbell and Hentschel[1992] and Nelson[1991] for
formal time-series models which measure these effects. To evaluate the capability of
Model 1 these features, I solve the model numerically and then simulate sample paths
of real and financial variables. Equation (27), the value function for the consumer’s

problem is solved using an implicit finite-difference method!.

[ show that with appropriate parameter choices, the stock-market return process
of Model 1 is capable of replicating these features, while Model 0 the case with
observable regime-switches is not. Illustrative pictures and informal explanations for
the success of the model are provided. I also discuss to what extent models based on
Kalmran Filter learning models might replicate these facts. I do not argue that the
model presented here is the only one capable of replicating these features. The idea is
to examine the extent to which learning about the relative productivities of different

assets 1n the economy affects the qualitative properties of equlibrium returns.

THREE STYLIZED FAcCTS

(2) Kurtosis or Fat-Tails of Excess-Returns. Large realizations of returns hap-
pen more often than consistent with normality. Using stock-returns monthly data
from CRSP (1/26 - 12/88) and T.Bill Data from Ibbotson Associates, Campbell and

Hentschel[1992] report Excess-kurtosis of 6.82 in excess-returns.

(21) Skewness of Excess-Returns. Large negative returns are more common than
large positive ones. Campbell and Hentschel report a skewness parameter of -0.443

for the above series.

14The program is written in Gauss. It is available upon request from the author.
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(¢42) The Predictive Asymmetry of Stock-Market Volatility. Black[1976], Nel-
son{1991] and Campbell and Hentschel[1992] find a negative correlation between cur-
rent returns and future returns volatility. Further, reactions to unfavorable news tend

to be larger than reactions to favorable events.

I start by showing that Model 0, the case of observable regime switches is incon-

sistent with these stylized facts.

Proposition 5 The conditional distribution of returns is unchanging in Model 0.
The unconditional distribution of returns over any horizon (may be non-infinitesimal)

ts Gaussian.

Proof. In Proposition 1 in Section 3 I showed that the fractions of resources
invested in the high and low productivity is constant over time and independent of z
the productivity variable and wealth. Therefore the statistical distribution of rate of
return to optimally invested wealth is unchanging. The rate of return over horizon
At therefore has a normal distribution, with a mean (w, - @ 4+ w; - b) - At and variance

(w} +w}) - o - At, where w; and w; are given by (6). a.

The success of Model 1 in generating these stylized facts depends on the param-
eter chosen. I distinguish between parameters which lead to a U-shaped stasionary
distribution of beliefs from one which lead to an inverse U-shape. The former is called
the Fast and the latter Slow learning model. Numerical results from the two models

are presented in Figures 3.1 - 3.8 and 4.1 - 4.8 respectively which I discuss now.

Figures 3.1 and 4.1 show the empirical densities of beliefs for the two models
respectively. The shapes are the same as the theoretical shapes discussed in Section
4. Figures 3.2 and 4.2 show the conditional variance of beliefs. The concitional
variance is given by iﬂ“—’;)zﬂ“——bﬁ The shapes of the two curves are the same, though
the absolute values differ. Figures 3.3 and 4.3 show the percentage of the portfolio
allocated to the high productivity asset. The portfolio choices are as given in (28)

in Section 6. I discussed the motives to diversify in that section. The figures show
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that the agent plunges less readily in the Slow Learning model. This reflects both the
greater level of noise and the larger variance of the belief process. Figures 3.4 and 4.4
give the risk-free rate in the two situtions as calculated in Section 6. The interest rate
in both models is lowest when confidence is lowest, i.e. 7 = .5, This reflects because in
this state beliefs are most volatile. This leads to a large volatility of the consumption
process and by Proposition 4 a low risk-free rate. Another way of interpretlng this
is that the risk-free rate is a measure of the opportunity cost of lending. Notice that

the agent completelv diversifies under these cond1t10ns and effectlvely faces a market

with poor prospects

Figures 3. 5 and 4. 5 show the condrtlonal excess-returns in the two models Flgures
3.6 and 4 6 show the expected market returns The market returns reﬂect the fact
‘that when the agent 1s conﬁdent of the current reg1me and therefore allocates his asset
in the high- product1v1tv asset he recieves hrgh expected returns. In the Slow learnmg
case the agent wailts to get more confident before he plunges and correspondmgly the
expected rate of returns rises at a slower rate than i in the Fast learmng case. The
excess returns reflect that the rlsk in the market portfoho does essentrally Increases
as the agent becomes more confident. The relat1onsh1p is not monotonic however As
beliefs approach 0 or 1, the agent has already plunged and taken the maximum risk
with respect to noise. However, because the volatility of the belief process declines,
the risk due to "prospect" changes as discussed in Section 4 also declines. So the

excess—returns due to this effect taper off as 7 a‘pproaches either 0 or 1.

F1gures 3.7 and 4.7 show the relat1onsh1p between the speed of learnrng and the
negatrve skewness and excess-kurtosis of unconditional realrzed excess-returns. The
plctur(s reveal that the Fast Learmng model leads to negatrve skweness while the
Slow Learnlng model leads to excess- kurtosrs Further results on these statistics are

‘glven in Table 1. In the Table I cons1der various sets of parameters and watch the
.effects of changmg only the level of noise. A large level of noise gives slow learning.

The same finding as the pictures are also found for other parameter choices. Besides
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the Z-values show that the statistics are statistically significant.

The relationship between the speed of learning and the potential negative skew-
ness or excess-kurtosis of the unconditional distribution is as follows. The -eturns
from the two assets over any given time horizon are given by normal distributions
with different means. In the slow learning case, the agent spends a large amount of
times in regimes with low confidence. Because his beliefs are rational, this means
that essentially he is getting returns from the high and low mean asset with about
equal probability. Therefore the distribution of returns is obtained from norrnal dis-
tributions with different means!®> The resulting distribution has fatter tails than a
Normal density. In the Fast Learning case, the agent spends a large proportion of
time with high confidence regarding his knowledge of the current regime. In this
case he allocates his investment to the high productivity asset. Because his beliefs
are rational, he gets returns from a Normal density with a high mean most of the
time and an occasional small return from the smaller mean density. This makes his
distribution negatively skewed. In Figure 5, the approximate modal positions in the

Fast and Slow Learning cases is depicted.

Figures 3.8 and 4.8 show the conditional variance of realized returns for different
levels of the belief variable. Again the pattern for the Slow and Fast learning cases
are different. For the Fast learning model the conditional variance of returns is
highest when the agent is least confident or = = .5. For the Slow learning model
the opposite is true. The reason this happens is due to the relative impor:ance of
noise and different drifts as well as the portfolio choices in the two models. Over any
horizon, the variation in returns is caused by two different sources of fluctuations. (1)
The difference in the drifts of the assets and (2) the amount of unhedged noise. In
both models when confidence is low, the agent choses diversified portfolios. Therefore

the noise in the assets is hedged against. Returns are generated with close to equal

I5]f the means are very far apart, the unconditional distribution will be bi-modal. For the param-

eter choices which I made the distribution has a single mode.
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probabilites with either drift a or drift b. The variance due to (2) is relatively large.
When confidence is high, the returns are generated by the same drift with a high
probability. Therefore the variation due to (2) is low. Most of the variation in
returns is caused by (1), because noise is unhedged in high confidence states. In the
Slow learning model, the level of noise is large relative to the difference in drifts.
Therefore variance of the realized returns is smallest at # = .5 and largest when = is

near 0 or 1. In the Fast learning model the opposite holds.

The connection to stylized fact (zz) is as follows. In the Fast learning model,
the agent is mostly in a state of high confidence and low conditional variance of
returns. A large negative realized returns leads to a a loss of confidence and his
beliefs move closer to .5 where realized returns exhibit higher conditional variance.
There ‘s therefore a negative correlation between realzied returns and future changes
in volatility. Further a large positive returns, merely confirms the agents’ belief
regarding the underlying regime and leads to small revisions. Therefore negative
returns have lager effects in absolute value. Things are not so clear for the Slow
learning case. Here the conditional variance of realized returns is high when the
agent 1s confident. Therefore the relationship between realized returns and future
changes in volatility is in contradiction with the stylized fact for the Slow learning

case.

In oassing [ compare the success of my model to the explanation put forward
by Clark[{1973] regarding the kurtosis of returns. Clark showed that a process of
returns which was ‘Subordinated’ to the Normal distribution could explain the kur-
tosis of returns. The subordinated process has a constant conditional mean but a
varying condtional variance. The fact that large conditonal variance is followed by
large conditional variance is enough to generate fat-tails. He motivated the fluctuat-
ing conditional variance by differing amount of trading volume in different periods.
Large trades are motivated by differing ‘news’ recieved by traders as well as other

idiosyr cratic factors. However, the conditional mean of returns was constant. My
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explanation, has a clearer expostion of the ‘news arrival’ process, with the updating
explicitly described. The results are driven by changing conditional means as well as
changing conditional variance of returns both of which leads to differential portfolio

choices. Further my model is also consistent with the other stylized facts discussed.
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8 Conclusion

I have constructed a Cox-Ingersoll-Ross model which is 'capab'le of replicating three
stylzed facts about the U.S. stock-market. The model is built around the dynamics of
the beliefs of agents in the economy who are tracking unobserved regime-switches. I
find that pérameter values which permit faster leex-fning are better able to replicate the
observed stylized facts. The paper complements the Conditional Heteroskedasticity
literature which argues that several U.S. economic time series are best described by
ARCH and GARCH models and their variants. The analysis here has the added
advantage ofkbeing in a General Equilibrium framework. The required persistence

properties of stock-returns are inherited from the inertia in Bayesian Updating.
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Appendix

0

Proof of Proposition 1.

The aggregate wealth dynamics are given by

‘Btt

2
Wt+Al = [Wt - CtAt] Ewtt ]. + - O(At)

(1= A

AL Y wilei(z) At + 0 AG)

=1

+(A-At)- fj wi(ai(a+ b — z)At + 0 AG)] + o( At)

Therefore,

therefore.

=1

AWt = —CtAt

+[W — C,At] - [Ew,, {(z0) At + 0 Aly)] + o At)

i=1

EJAW,] = —C,At+ W, - [zzj wieai(20) At] + o( At)

for k > 2.

=1

2
Var[AW,] = W2 - D wl] - o®At + o(At)

1=1

E[(AW)H] = o(A¢)

J[W, z,t] the derived utility of wealth function satisfies

0=

maXx

s.t[2?=] wit]=1

0 = Lr[Cg]'f‘

[U[Ct] +Ji++Jdw - ["Ct + Wt[z witai]

=1
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The first order conditions are
Uc = Jw (38)
JWWai(z,) + waW2w,'t02 S AO (39)
forz = 1,2,3. A\°is the Lagrange multiplier associated with the constraint S wy =
1. The complementary slackness condition is .

2 .2
wa Z Z, wn + wa[,Vz[Z wtt]a [Z wiz]AO = )\0 (40)

=1 .

As noted at the beginning of Section 3, the model has a constant opportunity set
i.e. even though the productivities of activity 1 and 2 change over time, there is
always one with an average productivity of a and one with an average productivity
of b. This implies that the production decision may depend on the wealth at time
t, but not on the value of t. Also with a power utility fuction and opportunities to
scale up or down wealth proportionately that optimal decision rules are independent
of wealth.

We now guess and verify that the value function is of the form

W
J(Wi, t] = exp(—pt) - A- — (41)

R
With this guess J; = —pJ | Jy = % and Jyw = h—;,—lzﬁ Subcripts of J denote
partial derivatives. Substituting these into the first order conditions (39) gives us the

conditions

(42)

and equality holding whenever w;, > 0 for 7 = 1,2,3 which imply that the portfolio
choices w;; are independent of time. From now on we shall avoid the time subscript t.

Let asset 1 have productivity a and asset 2 have productivity b with the understanding
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that the choices given below are for the case z = a and that w, and w; would be

reversed when z = b. We explicitly write the portfolio choices in the case of interior

solutions.
S )
e R R TE R
1 1 (b—a)
S A A )

From (38) we get C = ATTW. Substituting the optimal choices of consumption
and portfolio shares and the expressions for the partial derivatives into (37) yields

2

0= ———+Z[w,a, )+ (v = Do 3 wf]

which implies that

A= (2 4+ S wian(a)] + o YLl (44)
’Y

The transversality condition!® for this problem is that

p > max{0, vy Z: w;a;(a - 1)o? Z_:[wf]} O

Proof of Corollary 1.  The first order conditions for the C', w and w, are

same as before. The condtion for wyq is
JwWr = )\° (45)

A% is the Lagrange muliplier associated with the constraint "2, w;, = 1. Let J W, ¢
be the value to the social planning problem, solved in the previous subsection \*
be the Lagrange multiplier associated with the constraint [{°2 wy] == 1, w?, the

portfolio shares in the two industries, and C; the consumption flow rate chosen by

'®The transversality condition rules out strategies which make the value function unbounded.
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the social-planner. Then we claim that C, = Cf, Wy = wi, and 7y = w T constitute
a competitive equilibrium. Inspection of (45) reveals that g = 0 is optimal, so there

is no borrowing / lending. Confirmation of the other conditions is straightforward.

Substituting the value of 7, into the complementary slackness condition and col-
lecting terms implies
2

[Z ai(zt)u?,'t] — T‘f W JWW Z (46)

=1

For the Power Utility function and the resulting value function the right-hand side
of '46) is (1 — v)(X%, wio?. O
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Appendix 1

Lemma 1 Let L,, L, be the densities of observable increments ABy = Byynt — Bt

conditional on the drift of the output being a, b respectively. Then ,

L (a=b) (A8 —b-A)

La:Lb [l 2 ]—+— o(At)
ag
Proof
1 1 —
Ly = - - - ex (AL, — b At)?
ol ooant Pl oaa (A% ]
L=
: L ap T (AB,—b- At —(a—b)- At)]
. e C(AB — b At —(a—b).
2.1 (0-anF CPRTeIA T

=L, -exp[éﬁ- fa=0)%-(At)* —=2-(a—b)- At (AB, —b- At)]

+  o(At)

. 2
since, €I'—_1+1‘+€—,+...

Lb[1+ (a_b)(ABt"bAt) _(a_b)2At+ (a—b)2

o? 2.0% 2.04

(AB)]

+  o(At)

but (AB)* = o*At a.s., since the Quadratic variation process (Chung and Will-
iams[1990]) of a diffusion process is indistinguishable from {o?-¢,t € R, }. Therefore,

(a—b)-(AB, — b, oA

L,=1Ly [l +

g
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Lemma 2

Tty ot =

- (1= AAL) - Ly + (1 — m,) - AAL - Ly
e (L= AA) - Lo+ (L=m,) - AAt- Ly + 1 - AAEL- L, + (1= 7,) - (1= AAL) - Ly

+o(At)

Proof By Bayes Law,

Tt+At =

m (1= AAL) - Lo+ (1 — ) - AAL- L,
oo (L= AAL) Lo+ (1 =) - AAL- Ly + 70 - AAL- Ly + (1 — ) - (1 — AAL) - Ly
(47)

+ o At)

We have used the property of the Poisson process that one switch occurs with
probability A&t +  o(At) ,no switches with probability (1 — AAt) +  o(At) and
n = 2 switches with probability o(At). Please recall from lemma 1 that L, and L,

are conditional densities.

Now in (47) interchange L, and L,, whenever they are multiplied by the AAt
term. but not when they are multiplied by the (1 — AAt) term. This gives an error

of size o(At), since L, — Ly = o((At)Z) by lemma 1. O

Lemma 3
Tiyat — Ty =
(I_Q'Ft)‘/\At +

T (Il —=m) - (a—1b)

o2

[AB—(a-m +b- (1 —m,)) - At]

+  o(At)

Proof By lemma 2,
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Tt+At =

T (L= AAL) - 22+ (1 =) - AAL
- (L= AAL) - f2 + (1= m) - AMAE+ - AAE - 22 4 (1 =) - (1 = AAt)

+o(At) Tpar =

T (1= AAD) 2 + (1 — 7)) - AAt

b

Wg'%:‘+(1“7rt)

+  o(At)

substituting for A‘: from Lemma 1,

T (1 — AAt) - [1 4+ L=B8b80) 4 () ) AAL
| =, - [t (BEbaT)

+  o(At)

since 7= =14z + 2%+ ...

Ti+At =

Wt-(a—b)-(ﬁt—bAt)+7rt2~(a—b)2-02-At

2

(Numerator) - [1 — - g

+  o(At)

= (Numerator)-

- o? o2 ]
+  o(At)
Numerator =
AAt—Q-wt-AAt+7rt+7rt.[(a—b)'(UAzﬂt—bAt)]
+  o(At)
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Numerator =

T+ (a —b)

Aﬁ_l_[ﬂ',-(b—a)-b
o? !

> +A—2-m - AAt (49)

Tt +

+  o(At)

substituting (49) into (48),

Ttrat —
(b—=a)- 2. (b—a) -7, - (b—aqa)-
[l+7r, (b ;z) Aﬂt+7rt (b—a) :‘t (b—a) b)At] y
o o
(7, — TL;I’)A@ + ﬂﬁ’_’_;i)_fAt +A-(1=2-71)Al
o o
+  o(At)
= ”"("2"[’).A5t+”"(b_2a)'bm
o o
2. (p— 2, 2
+/\~(1—2-7r,)At+7rt—%2—a)-ABt—7r‘ (32 a) At
472 (a—b)2At — 72 - (b—a) - bAL
+  o(At)

T (l—m)-(a—0b)

= + p AB 4+ (1—-2-m) - AAL
_7rt2-(1 -th'(a—bz) N T (b—a) -2b-(1 —7rt)At
o o
+o0(/\t) collecting terms,
TipA: — T =
Al=7)(a—b
(1-2.m) Aat 4+ =t ’;‘3 (a - 6) AB = (a-m+b-(1—m))- Al
+ o(At)O
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Appendix 2

Proof of Propostion 3 The Ist moment of AW, is analagous to (34) with z,
replaced by m, its expected value. The 2nd moment and kth moments are the same
as (35) and (36). In addition, from (16) and because the agent takes the diference

in output from the two industries to update

CoviAW,Ar] = W - (w; —wy) - (1) - (1 =) - (a — b) (50)

Using Bellman’s Principle of Optimality,

2
0= max [UIC]+ Ji + +dw - [=C + Wi[>_ wype]

let,Zf:l wit=1w; >0

T (L =2m) At Jwr - W(wy —wy) 7 (1 =7) - (a —b)

+ %/ﬂ]ww : [Z wizt]az + Jpam? - (1- ”)2(0 - b)z + o(At)] (51)

1=1

The first order conditions are

U = Jy (52)

Jw Wea(z) +Jwe - Wen(l —1)(a —b) + Jyww Wwyo? < AW

Jw - Waa(z) = Jwe - W (1 = 7)(a = b) + Jww Wiwyo® < AW (53)

A is the Lagrange muliplier associated with the constraint Y2, wy = 1. Equality

holds for 7 only when w; > 0. Summing the complementary slackness conditions for

the assets implies

2 2
Jw W[Z ai( 2 )wi] + Jww W2 [Z w?]o?

i=1 1=1

+ Jwr - (wi— w7t (1 =7) - (a = b) = AW (54)
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Now guessing that the value function is separable as in (26) and substituting

completes the proof. O

Proof of Corollary 2 The decentralization for this model is the same as in

Model 0 (and that in CIR) and we shall be brief. The risk-free rate r;, the rate at

which borrowing and lending are in zero net supply equals W .- This is the same
characterization as in Model 0 and for the general case considered in CIR. Using the

complementary slackness condition (54) yields the result. O

Proof of Proposition 4 The value function is of the form (26). Suppose the

statement 1Is true.

MUpni(m + Ar] = exp(—p - (t + At)) - I+ Ax] - (W + AW )1 (55)

Using Taylor’s theorem,
(W+ AW =W p (y = 1) WL
2 g2 2
Zwia, JAt + 0o - szdfz (I[x])7- lAt ? Z
=1 i=1

+o(At)

and 1sing the dynamics of # from (13)

Ilr + Ar] = I[x]

V)] (1 —2m) AAr 4 T 2)2(“ =) (o(de, — dey) — (27 — 1)(a— b)At ]
+% (a ;26)2 w31 — 7)1 [7]) At + o( At)

and exp(—p(t + At)) = exp(—pt) - (1 — pAt)

Substituting these into (55) and taking expectations conditonal on 7 implies that
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2
0-2 Zi:l w12

rflrl=p—(v-1)-[ Zwiai(vr)+(7~2)

2
From Proposition 3,
: ' Ilr] 1 ,& ,
rflr] = Zw;ai(ﬂ) + (w1 —w2)7(1 = 7)(a - b)m +50 (Z w;)

These two characterizations of the risk-free rate are the same only if the differential

equation (27) is satisfied. O
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Table 1
Model 1 Skewness and Kurtosis

Unobservable Regime Switches

# a b A o kr Zy sk Zs

1. 09 -04 2 .02 294 -.6 -.32  -9.23
209 -04 2 04 299 -008 -05 -1.5
3. .09 -04 2 .07 319 211 .-06 -1.9
4. .09 -04 2 09 316 1.79 .04 1.24

509 -04 1 .02 299 -004 -36 -10.37

6. .09 -04 1 .04 3.006 .05 -10 -29
7...09 -04 1 .07 3.08 93 -.02  -58
8. .09 -04 1 .09 323 2488 -.014 -.39

High Productivity Drift Value

Low Productivity Drift Value

Poisson Regime Switching Parameter

Noise Level

Kurtosis

Z value for Kurtosis. Null Hypothesis of Normality
Skewnesss |

Z value for Skewness.Null Hypothesis of Normality
Impatience Parameter. 0.04 for all simulations

Risk-Aversion Parameter. CRRA 4 for all simulations
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Figure 1
Implementation of Filter
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