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Abstract

Economies with limited communication contain an externality which typically
makes them Pareto inefficient, even taking into account the communication con-
straints agents face. In a two period model it is shown that an open and dense
set of economies with limited communication are constrained Pareto suboptimal.
Thus equilibria of economies with voluntary unemployment, search, or other types
of limits on communication are unlikely to be Pareto optimal, even in the absence

of moral hazard, adverse selection, or search externalities.



Constrained Suboptimality in Economies with Limited Communication

David Bowman!

“In a primitive community, where each family, or small group , is more or less
self-sufficing and directs the main part of its activity to the production of things
to be consumed by itself, the forecast it would have to make on the demand side
(i.e. apart from prospective costs of production) would refer exclusively to its
own future tastes. In modern conditions, however, with industry conducted on
the basis of division of labor and exchange of products, each producer’s forecast
must refer both to the tastes of other people and also their real income and
purchasing power. Naturally this sort of forecast is exposed to much larger error
than the primitive forecast; and the difficulty of judgment is enhanced as the
relevant market comes to include more and more remote groups of purchasers,
about whose circumstances the ordinary producer has great difficulty in informing
himself.” A.C. Pigou, from Industrial Fluctuations (1927) pgs. 82 — 83

1 Introduction

The Arrow-Debreu formulation of general equilibrium can incorporate uncertainty regarding
future ezogenous events. While it is clear that much of the uncertainty in the economy can
in fact be ascribed to the unpredictability of choices made by nature regarding the weather,
natural disasters, technical possibilities, etc., it also seems clear that much uncertainty must
be ascribed to the unpredictability of choices made by individuals within the economy itself.
To forecast future demand one must forecast not only moves made by nature but also cur-
rently planned moves made by others in the economy. In a small economy this may simply
mean that one must forecast the plans of one’s neighbors, which may not be subject to much
error, but in a large economy one must forecast the plans of a much larger group of actors
than one could reasonably hope to communicate with at any point in time. This limited
ability to communicate may translate into the possibility of a large forecast error.

While uncertainty about others’ plans is outside the scope of the original Arrow-Debreu
analysis, models in which communication is limited — and thus in which uncertainty about

other’s plans could occur — have played a prominent role in macroeconomic theory. Search
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Federal Reserve System. This paper represents the views of the author and should not be interpreted as
reflecting the views of the Board of Governors of the Federal Reserve System or other members of its staff.
I wish to thank Roger Craine, Jon Faust, Deborah Minehart, Matthew Rabin, David Romer, and Chris
Shannon for helpful advice and comments.



theory, the “islands” models of Lucas [16] and Phelps [21], and monetary models such as
Townsend [28] all study environments in which communication between groups at any given
point in time is impossible.? Limited communication also appears to play a key, though less
explicit, role in multiple equilibrium models of “coordination failure” (Cooper and John [4]),
since it is difficult to explain why individuals would choose a Pareto dominated equilibrium
if they could freely communicate.

This paper demonstrates that economies with limited communication between groups of
agents typically contain an externality which makes them Pareto suboptimal, even when the
constraints preventing communication are taken into account. Unlike the work of Diamond
[5], the externality studied here is pecuniary and quite separate from any search externalities
arising from the technology by which agents are matched together over time. Rather, the
externality arises from agent’s risk aversion. Limited communication can create uncertainty
about future trading opportunities by creating uncertainty concerning the current plans and
actions of others in the economy, however agents have no incentive to take account of the
effects the unpredictability of their plans have on the welfare of those they do not currently
communicate with. Because each agent’s uncertainty concerns the (endogenous) choices
of others in the economy, there is a possibility of Pareto improvement even when existing
communication constraints are respected. For example, changes which make each agent’s
actions more predictable will be Pareto improving if each individual’s welfare loss from the
constraint that his own choices be more predictable is outweighed by the gain in welfare
from the reduction in uncertainty concerning others actions.

It is interesting to note that the limited communication models studied to this point have
made one or more of the assumptions necessary for constrained Pareto optimal equilibria. In
Lucas [16], no action taken on an island has any effect on future trading opportunities (there
are no endogenous state variables). In Diamond [5], agents’ decisions do affect other trades
(or the probability of other trades), but only through a search externality. In the absence of
that externality any equilibrium of the model is Pareto optimal, but it is so because agents
are risk neutral and (in the absence of the search externality) there are no endogenous state
variables. In Townsend [28], there is no uncertainty. In each of these models, had the
assumptions been relaxed, constrained Pareto optimality would typically have been lost.

Since the externality generated by limited communication is pecuniary, it has obvious
connections to the literature on incomplete financial markets (Radner [24], Hart [9], Stiglitz
[26], Geanakopolos and Polemarchakis [8]). In that work agents trade in one location, but

the state-contingent contracts that they can trade are limited. In the literature on limited

2See Diamond [5], Mortensen [18], Pissarides [22], and Hostos [10] for examples of general equilibrium
search models. See Feldman [7], Kiyotaki and Wright [13, 14], Ostroy [19], and Ostroy and Starr [20] for
other examples of monetary models.



communication there need be no constraints on the type of contracts agents can trade, but
the group of agents they can trade with at any point in time is limited. Unlike economijes
with incomplete financial markets, each agent faces a single budget constraint in the model
studied here; this makes issues of existence simpler since individual demands are continuous
under standard regularity conditions. Further, neither the endowments nor preferences of
any individual are state dependent, a constraint more reminiscent of sunspot models (Cass
and Shell [3]). ;

The analysis will be carried out in a fairly general two-period model. Section 2 provides
an example. Section 3 introduces the general model. Section 4 derives conditions under
which an equilibrium will be constrained Pareto suboptimal and proves that all equilibria of

an open and dense subset of economies are suboptimal. Section 5 concludes.

2 An Example

There are two time periods, time 1 and time 2; two agents, a and b; and two goods, good 0
and good 1. The two agents will trade competitively at time 2, but at time 1 communication
between them is prohibited. Each agent’s problem at time 1 is to decide how much of his
endowment to consume given that what is not consumed can be carried over to time 2 and
traded. At time 1 each agent knows his own preferences and endowment, but may be uncer-
tain about the preferences and/or endowment of the other. Let ¢;; denote 7’s consumption
of good j at time ¢, and w} denote i’s endowment of good j. Let y; = wi — ¢}; denote the
amount of good j that agent ¢ brings into time 2.
The utility function of a is:
1
+

u® = In(chy) + —— (o +In(c3,)

[—

and the utility function of b is:

v’= In ((Clo) (011)(1 ﬁ)) + 1+ 6 In ((620)(1 4 ( 1)ﬂ) .

Given the amounts y* = (y§, y}) carried over by a and b, at time 2 the unique competitive

equilibrium price is p = %?'lﬂ—y[‘})—g where p is the relative price of good 1. Taking prices as
glven at time 1 agent i chooses y' to maximize expected utility, E'(u'), where E(-) = E(- |
w,y').
We begin with a set of parameters which imply that there is no uncertainty. Assume
that it is common knowledge to both agents that § = 3, 8 = 0, (wg,w§) = (2,2), and

(wd, wt) = (0,1). The unique equilibrium is:

a_f(o68Y v_ (1
y ‘(2’25)’y "(0’5)'

3



One can easily show that any other choice of y* or y® will make at least one of the agents -
worse off. '

Now change the parameters so that there is uncertainty. Take § = 3, but assume that
with equal probability either (w§,w$) = (2,1) or (w§,w}) = (2,3). Likewise, assume that
with equal probability either 8 = 0 and (w§, w?) = (0,1), or B =1 and (w},w?) = (1,0).
The unique rational expectations equilibrium is:

. [ @017 ifwi=1 , [ (0,1)ifg=0
(2,059) ifwz =3 'Y T (,00ifg=1 "

In this case it is straightforward to show that for small € both agents will be strictly better

off (regardless of preferences and endowments) if a changes his behavior to:

. wi

7=~ (G )
Which is to say that if ¢ plans to bring a high amount of good 1 into time 2 then he should
bring less, and if he plans to bring a low amount then he should bring more.

These results are robust. While the example is simple, the only thing special about it
is that the parameters were chosen so that in the second case a Pareto improvement could
be effected by changing a’s behavior alone; in general both agent’s plans might have to be
altered. It is important to note that the proposed intervention can be effected without any
more information than agents themselves have — that is, the proposed change in each agent’s
consumption only depends upon information available to the agent.

The optimality of the first example indicates that limited communication does not affect
the optimality of agent’s decisions concerning the delivery of goods per se. This is true
because under perfect foresight agent’s forecasts of the future price of each good will equal
the actual price, and crucially, each agent will in fact have to pay this price in order to
receive delivery of the good. .

In the second example agents are uncertain about future prices. Because prices are
endogenous, a can effectively insure the income of b without making himself worse off by
changing his actions in a way which makes prices less variable. Suppose that at time 1 a were
to take this into account and moderate his actions in way that moderates the unpredictability
of b’s income. Since agents have rational expectations a would correctly forecast the value
of this service to b, however at time 2 b has no incentive to pay for this service because it
has been delivered at time 1. No one will pay for insurance after the fact, however in this
case the entire need for insurance arises because agents cannot communicate at time 1 —
if they could compensate each other for insurance at time 1 there would be no need for

insurance in the first place. With limited communication agents ignore the effect their plans

4



locl loc?2
time 1 (a,b) (a,d)
time 2 (a,¥) (a,b)

Table 1: Trading Patterns.

have on other’s uncertainty about future income, and in this sense there will be too much

uncertainty.

3 The Economy

We present a generalization of the economic structure considered in the Section 2. Consider
an exchange economy with price taking agents. Trading patterns are assumed to take place
as shown in Table 1. At time 1 a and b trade at location 1 while a’ and ¥ trade at location
2. At time 2 partners are switched, so that a trades with & and b trades with a’. No
communication is allowed between locations.

At time 1 one of a finite number of events will have occurred at each location, each event
specifying a different set of preferences, endowments, and/or information for at least one of
the agents at that location.® At time 1 each agent is assumed to observe only the event which
has occurred at his location; at time 2 the events which have occurred at both locations are
made public knowledge. In accordance with the structure of information we differentiate
agents by the event which has occurred at their location; (a;,b;) and (a;,8;) ((a!,5!) and
(a},b})) ¢ # j representing different agents if a different event has occurred at location 1
(location 2). I denotes the set of all agents.*

The state of nature describes which agents are matched in the second period. Let S rep-
resent the set of possible agents at location ! at time 1 (S1 = {(a1, b1), (as,82), . .., (as, , bs, )}
S2 = {(a1,5),(a3, B), - . ., (as,, bs,)}) and take S = S; x S, to be the set of possible states.
We assume that each s € S has nonzero probability 7(s) of occurring and that both S and
7(-) are public knowledge. We let h;, represent the information available in location I at
time ¢, hn € S; and ki € S, so that a market is described by the vector (I,t, hy). Let
I(1,t, ki) represent the set of agents in location [ at time ¢ given hy; if i € I (1,2, ki) then
s deqisions are constrained to be measurable functions of k;;. We will write S™: for the set

{s € S| proji(s) = hn} and xhu(s) for prob(s | proji(s) = hy). It will also be convenient

3In economies with multiple equilibria one might also define an event as distinguishing the equilibrium
choosen at time 1 (the realized event could be imagined to include the possible realization of some set of
sunspot variables which only participants at one location have observed at time 1). This will not be explored
at any depth in this paper, but the analysis of this section would not differ.

“The same symbol will be used to denote a set and the number of elements in the set.



to define 7'(s) = n*1(s) and S* = S™1, where hy; satisfies ¢ € I(l,1,h;1). (S is the set of -
states which agent ¢ participates in and 7%(s) is the probability ¢ attaches to the occurrence
of state s).

At each time and location there is a spot market for G + 1 goods; free disposal of
each good is allowed. In contrast to Section 2 the goods are non-storable — this simplifies
notation and does not siguilicantly alter the analysis. Agent 7’s endowment at time t is
wi € R§!. The consumption of agent i at time 1 is ¢} € R$*!, the consumption of agent
i at time 2 in state s € S* is ¢j(s) € RE*T. (Since 7 is labeled by location and the event
which has occurred at his location, we drop any further reference to location and, when
dealing with time 1 variables. the state of nature, if a variable is labeled by i.) We let
¢ =(c,...,c5(8),...)sesi € RS,_G+1)(86+1).

Each agents’ preferences will be represented by a time-separable von Neumann-Morgenstern

utility function v’ : RS_G+1)(S"+1) SR,

1(C )= “1 01) + E 3)“2 3)),

5€SY

and we make the following assumptions concerning preferences:

A1 4 is C? on REHY.

A2 4 is differentiably strictly increasing on ’Rf:’l).

A3 u! is differentiably strictly concave on R(G+1).

A4 Forany (¢}, ¢;) € REC\ {z € R | 0 < z < €}, where e is a fixed vector satisfying
0 < e < (w,uh), the set {(cr,cz) € REC | wi(cr) + ui(ea) = wi(c]) + ui(e)) s
contained in Ri(f ),

The assumptions that preferences are time-separable and that they can be represented
in terms of a von Neumann-Morgenstern expected utility function are made for convenience.
Assumptions Al-A4 are standard; their primary purpose is to ensure that individual demands
exist and are continuously differentiable at an equilibrium. It is important to note that
neither the preferences nor endowment of any agent depend upon who the agent is matched
with at time 2, and that no agent is uncertain about either his preferences or endowment.

Within each location agents will be allowed to trade a complete set of securities at time
1 as suggested in Arrow [2], each security promising a bundle of one unit of each good if a

given state is announced at time 2 and nothing otherwise, with one such security for each



possible state.® Define y* as #’s purchase of securities, y* = (.-, 5 (8)y -+ )sesi € RS, and
let d = (1,1,..,1) € R%*! so that the bundle of goods 7 brings to a second period market in
state s is (wh + y'(s)d).

p(l,t hie) = (po(L,t, hue), pi(1, 8, hae), . .., pa (L, t, hyt)) € RSt! is the set of spot prices at
time ¢ and location / given hy, and p = (..., p(1,¢, hit),.. Wit b, € RS_CiH)M, where M = S, +
52425 is the total number of possible spot markets. (I, ki) = (..., q(l, s),.. seshu 18 the set
of prices for financial securities at location ! and event Ay, and ¢ = (..., q(L k), ik, €
R%S . Given the structure of the economy, prices at each location, time, and event can be

normalized to sum to one. We therefore take
raas  E G
A={(p,q) € REGTIM¥S | S™p (1,1, hn) + Y a(l,s) =1, py(1,2, ki) = 1 Vl,t,hu}
9=0 seShu 9=0

as the set of prices. At times it will be convenient to refer to the prices faced by some agent
i; define p* = (pi, ..., ph(s),...)sesi and ¢* as the prices which prevail in the locations, times
and events at which i € I trades; p; = p(l,1, kn), py(hi2) = p(1,2, hiz), ¢* = q(I, 1), where
i€ I(l,t, hy).

Agent ¢ can be viewed as solving the following problem:

Given (p,q) € A, choose (¢',y*) € R&GH)(S‘H) x R to max u(c') subject to:
pi- (e —wi) + éiqi(S)PQ(S) +(ca(s) —w3) <0

y'(s) = pi(s) - (ci(s) — w})

The solution defines ’s demand functions for goods and assets,

Ci(p, q) = (Ci(pa q) ERRR) Cé(pa q, 3)7 .- ')sES‘
¥'(P, )= (-, ¥ (P 9,3),-- )sesi-

Define the aggregate excess demand function

o(pq) = ( > (C‘i(p,q)—wi)) :

i€I(l,1,hy1) Vihy

i€I(1,2,h42) i€I(l,1,hy)

( Z (C;(p, q, hlz) - w; - yi(p'; q, h12)d)) ’ ( Z yi(p, q))

Vi,hiy

SSecurties markets are included to make the point that an externality exists even when agents trade
insurance contracts between themselves (though not across locations). As to how this could occur given
the physical environment, consider the following: between time 1 and 2 b takes the time 2 endowment from
location 1 and b’ takes the time 2 endowment from location 2. Meeting in the middle, b and ¥ ascertain
which state has occured and give each what they owe to a and a’ respectively, to be delivered as promised.
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An equilibrium is defined as a set of prices (p,q) € A such that ¢(p,¢) = 0.

Proposition 1: An equilibrium exists under A1-A4.%

4 Constrained Optimality

Throughout this section agents’ endowments are held fixed and the space of economies
considered is the space of utility functions for each agent. We will employ local pareme-
terizations of each agent’s utility function based on a technique developed in Kajii [12]
(see also Suda et. al. [27]). Since the set of feasible allocations is bounded, we can find
z € RE*! such that for any feasible allocation 0 < ¢} < z and 0 < ci(s) < z for all &
and s € S'. Let X = {c € R | 0 < ¢ < z}. Fixing «(-), it is natural to identify
u' with (u},u}) € C}H(X,R) x C}(X,R). We consider the topology of the C? uniform con-
vergence on C*(X,R) and endow C?*(X,R) x C*(X,R) with the product topology. Endow
U = {(ul,u}) € CHX,R) x CH(X,R) | (u},u}) satisfies A1 — A4} with the relative topology
from C%(X, R) x C?(X,R). The space of economies considered is Y = Xx;c;U* endowed with
the product topology. U is an open subset of a separable Banach space (Mas-Colell [17]
(pg. 50) and Dieudonné [6] (pg. 75)). From this point we will consider excess demand as a
function of prices and preferences, Writing ¢(p,q,u) (and &(p,q,u)), where (p,q) € A and
u€eU.

In defining our notion of constrained optimality it will be convenient to treat agents as
solving the problem facing them recursively. Defining agent ¢’s demand for goods at time 2

given spot prices pi(s) and bundle (w} + y*(s)d):7

cy(w + y'(s)d, pa(s)) = arg max{uy(cy(s)) | pa(s) - (ci(s) — wy — y'(s)d) < 0;¢(s) € REM},
agent 2’s indirect utility function is
vi(w; +y'(s)d, py(s)) = up(cy(wh + y'(s)d, pi(s))).

Using these definitions, agent ¢’s time 1 demand for goods and financial claims can be
rewritten as the solution to the following problem:

Given (p,q) € A, choose (ci,y*) € R§H x RS to

max uj(cj) + Z m(s)v*(wi(s) + y'(s)d, pi(s))

subject to: pi - (¢} —wi) +¢*-y* <O.

6All proofs are in the Appendix.
"It should be clear that cj(w} + y(p, ¢, 5)d, pi(s)) = ch(p, ¢, 5)
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Optimality will be defined in terms of a social planning problem. We will constrain
the social planner to choosing only allocations of goods and assets traded at time 1, time
2 allocations will continue to be decided as part of a Walrasian equilibrium. We will also
constrain the social planner to choose time 1 allocations in each location without knowledge
(or use of the knowledge) of the event which has occurred at the other location. In this way
the social planner faces the same information constraints as any private agent.® The social

planning problem is:

Given (..., (wj,w}),...) and (...,~%,...) € RL \ {0}, choose ¢i,y* for each i € I to
max o (e]) + 5 ) h + i), i)

T sEOt
subject to Vi, t, hy; :

(ch —wj) <0

1€1(1,1,h1) ]

> y=0
t€I(l,1,hy) ‘ . ) ) )

E (cl2(w12 + yl(hm)dv p(l,?, hl?)) - w;. - yz(hn)d) =0
1€1(1,2,h1y)

G
p(l7 23 hlZ) € Rfila Eopg(1727hl2) = 1.
g:

Any equilibrium allocation which is a solution to the above problem for some (..., ~%, .. .)€
RL\ {0} will be defined to be constrained Pareto optimal;® any equilibrium allocation which
does not meet this criterion will be defined to be constrained Pareto suboptimal.

As noted in section 3, no agent faces uncertainty about either his preferences or endow-
ment, therefore states of nature are distinguishable to an agent only if the prices facing the
agent differ across states. This is a feature of models of sunspot equilibria as well (Cass
and Shell [3]), however here the states of nature are intrinsic in the sense that they describe
which agents are matched. Nonetheless, for the model to be of interest we must, as with
sunspot models (see for instance, Suda et.al. [27]), find some way to guarantee that equilib-
ria in which prices differ across states do in fact exist, or else agents in the economy face no

uncertainty. This is provided in Proposition 2.

80ne might also consider allowing a social planner to intervene at time 2, however such interventions may
not be time consistent (see Kydland and Prescott [15]).

“This definition corresponds to the notion of weak optimality (an allocation is weakly optimal if there is
no other attainable allocation which all agents strictly prefer). The proof of Proposition 4 establishes that
an allocation is weakly optimal in this economy iff it is strongly optimal (an allocation is strongly optimal if
there is no other attainable allocation which all agents weakly prefer and at least one agent strictly prefers).



Proposition 2: There is an open and dense subset I/* of I/ such that for any u € U*, if
(p,q) is an equilibrium price set then for every ¢ € I and s,s’ € S, %%pg(s) # %,—%%p’z(s') if
s# 8.

In characterizing the solution to the social planners problem we will assume that sec-
ond period prices are differentiable functions of agents’ asset holdings, which is justified
by Proposition 3. (The basic structure of the proof is similar to one in Geanakopolos and

Polemarchakis [8]).

Proposition 3: There is an open and dense subset U** of I4* such that at any equilibrium
time 2 spot prices in each location and state are locally differentiable with respect to the

bundles of goods brought by the agents participating in that market.

Since U* is open and dense in U, U** is open and dense in ¢. To ease notation, we write
vi(s) = w'(s)vi(wh + y'(s)d, py(s)). An equilibrium allocation can be an optimum of the
social planning problem only if it solves the first order (necessary) conditions:

V 1 hyys € 8™ and gk € I(L 1, hyy) ( € 1(1,2,8), k € 1(2,2,5)):

Y aui(e]) = yrouf(c) = 0 (1)
7j yJ(s)'Uj(S)_’Ykayk(s)vk(S) - a;7(2,2,5)[ Z 7ivi(3)]ayk(s)[)(2a273) (2)
t€1(2,2,s)
_ap(1a2,5)[ Z 7ivi(3)]6y](s)p(1,2’3)_
1€1(1,2,s)

In addition, any equilibrium allocation will solve the individual’s first order conditions:
oui(cd) = o'pl, a >0 (3)
Byiv'(s) = a'q'(s) Vse S (4)

Comparison of equations (3) and (4) to (1) and (2) reveals that an equilibrium allocation
can be an optimum of the social planning solution only if the right hand side of equation
(2) is zero and Yol = 7'“0/“ for all [,k and j,k € I({,1,h;). Assuming that the latter
condition holds and using the fact that

Dy(ayv'(s) = =X (s)(e3(s) = wp = y'(s)d)’,

where



is 7’s second period marginal utility of income in state s € S*, this implies that an equilibrium

allocation is constrained Pareto optimal only if V I, hyy,s € Shu:
r()[(c(s) = w} — 47 (s)d)'Byi(yp(1, 2, 8) — (5() — wh — y*(8)d)'By(P(2,2,8)] =0 (5)
where j,k € I(1,1,hn) (5 € I(1,2,5),k € 1(2,2,s)) and
r(s) = (Yo @(s) =y alq"(s)); 5 h € 1(1,2,5),5 # h.

The final proposition is:

Proposition 4: If S; = 1, S = 1, or G = 0 then all equilibria are constrained Pareto
optimal. If §; > 2, S; > 2, and G > 0 then there is an open and dense subset of U such

that all equilibria are constrained Pareto suboptimal.

The following examples should help provide intuition.

Example 1: 5; = S; = 1. In this situation agents face no uncertainty about who they will

be matched with at time 2, so that there is spatial separation but no limited communication.
1

adqy(s)

equation (5) is satisfied. The private equilibrium is therefore constrained Pareto optimal.

It is simple to see that choosing y* = and v = m will make r(s) = 0, so that

Example 2: 5; =2,5; = 1. In this example agents in location 2 are uncertain about what
type of agent they will be matched with at time 2, but the agents in location 1 know that
they will be matched with (a},b}), so uncertainty is one-sided. Suppose that in state 1 (a;, ¥,)
and (a}, b;) are matched and in state 2 (as,b}) and (a}, b;) are matched. One can determine
::;:Zf%%, and 7*2 = g;i{:f% will set r(1) = r(2) = 0, so that
equation (5) is satisfied. The example is constrained Pareto optimal because while agents

that choosing v*1 = 1,4 =

in location 1 can take actions which lessen the uncertainty of agents in location 2, agents in
location 2 cannot return the favor since agents in location 1 face no uncertainty. Because
the actions which (a, b) can take to insure (a’,¥’) are costly, there is no Pareto improving

intervention which satisfies the imposed constraints.

Example 3: $; = S; = 2. In this example agents in both locations face uncertainty about
what type of agent they will be matched with at time 2. Suppose that in state 1 (a;,5}) and

(aj,b1) are matched, in state 2 (ay, b;) and (a}, b,) are matched, in state 3 (az, b,) and (a}, b,)
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are matched, and in state 4 (a,,8,) and (aj},b;) are matched. Examination of equation (5) -

reveals that if
a1(1) _ q2(1) ¢1(3) g2(4)

0:(2)  ¢(3)a(4) ¢2(2)°
then the equilibrium is constrained Pareto optimal, if not then there is at least one state s

such that r(s) # 0. The condition has a simple logic — if marginal rates of substitution are
equal then the equilibrium is optimal — but in this example no two people matched at time
2 desire income in the same two states: a; will trade income in state 1 for income in state
2, by will trade income in state 2 for income in state 4, a; will trade income in state 4 for
income in state 3, and b} will trade income in state 3 for income in state 1. If the above
condition holds then there is no trade of state-dependent incomes that ay, bj,az, b, would
care to make if they were given the option (which is impossible by themselves since only two
of them ever actually meet). If it does not hold then the allocation of incomes across states
is inefficient, and the equilibrium will be Pareto constrained suboptimal if reallocations of

assets can affect prices, and via prices affect agents uncertainty about future income.

From the logic of this analysis, one can see that constrained Pareto optimality is satisfied
only if one or more of a fairly restrictive set of conditions hold: (1) Agent’s marginal utilities
of income across states are such that there is no room for any further trade. This would
occur if all agents were on one island, or under certainty, or if at least one agent on each
island were risk neutral, but otherwise there is no economic force which would cause it to
occur. (2) No action that agents take in the first period affects second period prices. This
would occur if there were only spot markets in the first period, i.e. no trades of contingent
claims was allowed.'® It would also occur if there were only a single good (since the relative
price must be one). (3) There is no trade in the second period (which is also satisfied if there
is only a single good). These conditions seem unlikely to hold in most models of interest.

One might conclude that this externality occurs because agents ignore the irnpact their
actions have on prices, and, through prices, incomes. This in fact is not the case. What
prevents optimality is not so much that agents ignore their effect on prices, but that agents
will quite reasonably (under any circumstances) ignore the effect their actions have on other’s
vun‘certainty unless they are properly compensated. The problem is that individuals cannot
create a system of compensation; if an agent changes his time 1 actions to insure those he

will meet at a future time period, those who benefit have no incentive to compensate him

10There are of course other channels through which first period decisions could affect second period markets,
some type of storage technology or preferences which were not time separable are obvious candidates. These
were not included in the analysis in order to ease an already cumbersome amount of notation. Extension of
the analysis to these cases is straightforward and similar results on constrained Pareto suboptimality could
be attained.
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once they meet since the action has already been taken, and no one will pay for insurance
after the fact. Agents would be willing to pay for insurance before the fact (at time 1),
but the entire desire for insurance arises from the fact that those who are uncertain about
some agent’s actions are those who do not communicate with him at time 1. If they did
communicate with him there would be no uncertainty to insure against.

These problems would be solved if there were a time 0 at which all agents trade in
one location before any privately observed event has occurred. In that environment agents
could set up a proper means of compensation by agreeing at time 0 to pay at time 2 for
actions (taken at time 1) which reduce income uncertainty. A variant of such a model has
been analyzed by Radner [23] , and it is straightforward to show that equilibria must be
Pareto optimal. As a practical matter, however, such a model would appear to be at odds
with the empirical observations which have led macroeconomists to study models of limited
communication in the first place. For instance, job seekers do not generally have contracts

from firms promising to hire them if specific states of nature are revealed to have occurred.

5 Conclusion

Models which seek to explain unemployment or valued fiat money typically must have some
sort of limited communication. Although previous models which have incorporated limited
communication have made sufficient assumptions to guarantee constrained Pareto optimal
equilibria, the results of this paper imply that this feature rests upon quite special assump-
tions and need not be the norm. ‘

There is obviously a question as to the amount of information a social planner would
need in order to institute a policy which could correct for the externality. Nonetheless, the
results are at least suggestive of some type of countercyclical fiscal policy, albeit -at a highly
disaggregated level. The possible role of externalities of this type in increasing economic
fluctuation in a way that is not Pareto optimal, and in generating Pareto ranked equilibria,
may also be of interest. However, whether or not one believes that the government could
plausibly correct the externality, the analysis of this paper indicates that it is likely to affect
welfare analysis in many situations of interest in economics.

Although the analysis was carried out within a two-period, two location structure, with
an exogenous pattern of communication, generalizing the results to a larger number of time
periods or locations should be straightforward once a pattern of communication is specified.
When the choice of communication or matching is endogenous there is a question as to
whether agents will make correct choices (for instance, Diamond [5]), however even when

agents make optimal matching decisions the externality studied in this paper should remain.
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A Appendix

Proof of Proposition 1:

Under Al-A4, ¢‘(p,q) is a C* function on the set {(p,q) € A | (p%,¢") > 0}, and therefore
¥ (p,q) = (..., ph(s)-(ch(8)—w}),...) is a C! function on this set. c(p, q) is also bounded from
below, and since py(s) is bounded from above, y*(p, q) is bounded from below. If (p,,¢,) € A
tends to (p,q) in the boundary of A then ||c¢(pn,¢.) || tends to oo for some . All of this
implies that ¢(p,q) is continuous on A, is bounded from below, and as (p,,¢,) € A tends
to (p,q) in the boundary of A, || ¢(pn,¢x) || tends to co. Monotonicity, agent’s budget
constraints, and the definition of y*(p,¢) also guarantee that (p,q) - ¢ = 0 for all (p,q) € A.
Define

A(z) = { {h €{L,...,M(G+1)+25} | ou(2) = max{‘Pg(z)}y=1,...,M(G+1)+2s} ifze A
{he{l,...,M(G+1)+25} |z =0} if 2 € 9A,

and
p(z)={z € Alzn=0if h ¢ A(2)}, z € A,
where ¢, represents the g’th element of ¢. One can adapt the argument of Hildenbrand and

Kirman ([9], pg. 111) to show that there is a fixed point of g. This implies the existence of
an equilibrium price vector (p,q) € AO

For any vector z € RE*+! we define the vector Z € RC by dropping the first element of z.
Using the version of Walras Law appropriate for this economy and the definition of 3, we
can drop the excess demand equation for good 0 in each spot market from our definition of

an equilibrium. Accordingly we define the function:

@(p,q) = (( > (éi(p,q)~ﬁf§)) ,

i€I(1,1,hy) Viky -

i€1(1,2,h2) i€I(l,1,hy)

( > (5§(P,q,hzz)—ﬁié-y"(p,q,hzz)J)) ( > y‘(P,Q)) )
: Vi,hi2 Vihy

¢(p,q) = 0iff ¢(p,q) =0.
It will be convenient to define

©3(s) = (cj(p, q,8) — wh — y'(p, g, s)d)

as 7’s excess demand at time 2 in state s. Also define

ol2,5)= Y ¢ifs).

i€I(l,2,3)
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It is straightforward to prove that at any equilibrium under assumptions Al-A4,

é =c s i q() qi(SI) 7and s, s’ :
2(p‘,qv ) 2(p,q, )ff () () (,) ( )V d GS

With this in hand we employ Lemmas 1 and 2 to form a recursive proof of Proposition 2.

Lemma 1: There is an open and dense subset U, of U such that for all (p, q,u) € A x U,
&(p, ¢, u) = 0 implies ;,-1(—8% v(s) # 2 ”,(a, ) pi(s') for some i € I and s,s' € S'.

Proof of Lemma 1: The condition —«%—%p (s) = ) S pi (s ') Vi and s, s’ € S* can be rewritten

as

ﬁ(la273) = P VI,SGS7
rhu(s)q(l,s) = 7™ (s")q(l,s') VI, hy and s,s’ € P,

Let R; be a (25(G +1) — 51— S2 — G) x (M(G + 1) 4+ 25) matrix comprised of these linear
restrictions on (p,q) € A such that R;(p,q) = 0 iff they hold. By construction R; has full
row rank.

Fix some state 5§ = (8;,3;) € S and define § C S by § = §4 x S% wm € § by w =
(81,82) if I = 1 and w™ = (81, 82) if | = 2. We first demonstrate that for all (p,q,u) € A xU,
(#(p, 9, %), Ra(p, q)) = 0 iff (4(p, q,u), Ri(p,q)) = 0, where

‘ﬁ(p’q, u) = (( E (Ei(p, q) - ’lf);)) )
Vihiy

i€I(1,1,hs)

i€1(1,2,3) i€I(1,1,hy)

(Z (éi(p,q,é)—u?i—y"(p,q,é)«f)) ( > y"(p,q,w"“)) )
vi,se8 Vi,hy

Since the equations comprising ¢(p, ¢, u) = 0 are a subset of those comprising ¢ (p, ¢,u) =
0, the necessity of (¢(p, g, u), Ri(p,q)) = 0 for (#(p, g, u), Ri(p,q)) = 0 is obvious. Sufficiency
is shown by noting

(1) For any s € ™1 if Ry(p,q) = 0 then

E yi(pqu hll) = Z yi(paqawh“)’

iGI(l,],hu) iGI(l,l,hu)

(2) Let ; be matched with k at location ! in state 5. For any s = (s1,82) € S, let 3

be matched with k£ at location [ in state s, 3 matched with k£ in state w* =(s1,3;) and j
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matched with k in state w? =(41, s2). If Ri(p,q) = 0 then

0(1,2,5) = ¢3(s) + 5(s)
= phw) + %(w”)

(@(1,2,0) = Ph(w™)) + (o1, 2,w") — p3(w™))
= (p(h2,0") = G5(9)) + (1, 2,0%) = #}(3))

(p(1,2,w0™) + ¢(1,2,w") — (¢(1,2,3)).

Let ¥(p,q,u) = (#(p,q,u), Ri(p, q)), we prove that 9¢(p,q,u) has full row rank when
evaluated at any (p,q,u) € A x U satisfying ¥(p, ¢, u) = 0. (The perturbation employed will
closely follow a similar argument in Kajii [12].)

For each i € I, let Bi and X! be open sets of R(6*1) such that ci(p,q,u) € B} C B} C
Xi ¢ X and pi be a C* function from R(5+) to R such that pi(c) = 0 on B and pj(c) = 1
on the complement of Xi. In the same way, let B} and X} be open sets of R(G+1) such that
& (p,q,u,s) € By C BiC Xi C X (s € S) and ph be a C* function from R(G+Y) to R such
that pi(c) = 0 on Bi and pi(c) = 1 on the complement of Xi. For ¢ = (ei,€}) € R+
define a function ¢'(¢') from 'R(GH)(S"H) to R by

)
SH(e)(c') = [pi(eh)ui(e) + (1= pi(c)wile; — &)+
s) [Pa(c(s))u(ca(s)) + (1 = pi(cy(s)))u'(c5(s) — €3)]

We can find an open neighborhood Ni of 0 € R*G+) such that ¢'(e') € U* for all
¢ € N'. ¢ =(...,¢',...) is a smooth parameterization of a 2(G'+1)I submanifold of ¢/ about
(...,¢(p,q,u),...), and one can regard ¥(p,q,-) as a function from AxN, N = X;e/N°,
writing ¥(p, ¢, €). If Op,q,% has full row rank, then so does p,¢..)%-

An individual’s demands for goods and assets must solve the first order (necessary and"

sufficient) conditions

dui(c) = o'pl, >0
m(8)uy(c5(s)) = o'gi(s )PQ() Vs € S
B (ch—wi) < Y q(s)pa(s) - (ch(s) — w))
€S

y'(s) = pis) (cy(s) — wp).

0eis'(€') = O ui(cy — 1) + Z w‘(s)ac;(s)u"(c‘é(s) —¢) for ¢’ sufficiently close to c'(p, q). Let

¢ € N'satisfy pi-ej+ 3 ¢ (S)Pz( )-€, = 0, then (&, §) defined by & = ci(p, q,u)+¢, &(s) =
se S

& (p,q,u,8)+¢€s and §'(s) = y'(p, ¢, u, 8) +pi(s)- €5, s € S*, satisfies i’s maximization problem
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when ¢’s utility function is ¢*(¢‘). This implies that by perturbing €' one can arbitrarily per-
turb (&(p, ¢, €) = B3, 4'(p, ¢, €, W™ ), &(p, g, €', whn) — @ — y(p, g, €, whn )d), i € I(I, 1, hyy).
By perturbing (&(p, ¢, €) — @}, y'(p, g, €', whn), &(p, ¢, €,wh) — @i — yi(p, q, &, wH)d) for
each i € {ay,9,...,as,,a},d},..., s, } in this manner we can arbitrarily perturb o(p, g, u).
(Note, however, that we cannot arbitrarily perturb &(p,q,u) in this manner.) 94 has the

form

R, 0

by our argument 0 has full row rank, and by construction R, has full row rank, therefore 0

o = [ Opa)p Ocp } ,

is a regular value of 4. By the transversality theorem (Abraham and Robbin [1]), there exists
a dense subset U, of U such that for all u € U, 0 is a regular value of Yu(p, q) = ¥(p, q,u).
But since the domain of 9, has lower dimension than its range, this implies that there is no
solution to %,(p,q) = 0.

Let x be the projection from ¢=1({0}) into «. Let H be a closed subset of ¥»~1({0}). For
any sequence {u,} satisfying u, € 3 (H) and u, — u, there is (by definition of X) a sequence
{(Pny Gn, un)} satisfying (pn,qn,un) € H. Because A is compact there is a convergent sub-
sequence {(pn;qnr)} of {(Pn,qn)}, (Pusqnr) = (p,q). Since % is continuous, ¥(p,q,u) = 0.
Since if (pns, gns, Un') — (P, ¢, u) and (p, g) lies on the boundary of A then lle(p, g, u) ||— oo,
we must have (p,q) € A. Hence (p,q,u) € ¥~1({0}), and since H is closed, (p,q,u) € H.
Therefore u € x(%({0})), which establishes that for any closed set HCyp™1({0}), x(H) is
closed. Since i is continuous, 1»~1({0}) is closed. We can define the set U; by

Uy =U\ x(~'({0})).

Which establishes that ¢, is open.O

We can generalize the restriction L%p;(s) = %pg(s’) Vi€ I and s, € S by

Fidd

constructing partitions (Zj,...,Z) of 5 for each i € I and considering restrictions of the
form . i
'(s) ; ; . — .
—%i—p’z(s) = Zi((zlgp’z(s') Vie I and s,5' € =} for some m € {1,.., M*}.

Construct a sequence {Zx} (k = 1..K) by forming all possible collections (collecting over 1)
of partitions of S%, ¢ € I. Since the number of states of nature is finite, this sequence is finite.
Each element of this sequence, =, = (..., (Z,,... ,EiM;), ...)ier, will be taken to represent

a set of ry linear restrictions on (p,q) € A such that

qi‘(s) i(S) _ qi(S,)

= I)p;(s') Vi€ I and s,s' € E,, for some m € {1,.., M}}.
Ti(s
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As in Lemma 1, we can construct a full row rank ry x (M(G + 1) + 25) matrix Ry such
that Ri(p,q) = 0 iff (p,q) € A satisfies the set of restrictions represented by Zx. Order the
sequence {=;} so that if Zx and Zy are elements and Ry (p, q) = 0 implies Ri(p,q) = 0, then
kK <k

Lemma 2: There is an open and dense subset Uy of Uy_1 such that for all (p, q,u) € A x Uy,
©(p,q,u) = 0 implies R;(p,q) # 0, j = 1..k.

Proof of Lemma 2:

Let z(p,q) = (&(p,q) — ®,---,ch(p,q4,8) — wh — ¥'(p,¢,8)d,...) € R(C+HNS*G and
z(p,q,u) = (....,2'(:),...), we can construct a matrix F such that @(p, ¢, u) = 0iff Fz(-) = 0.
Since any equilibrium allocation will satisfy c(p, q,s) = c5(p, g, ') iff ;’r—%—’sl)p‘z(s) = :J;(Z%p;(s’)
for all ¢ and s,s' € S, the set of restrictions Rx(p,q) = 0 places a corresponding set of
restrictions Riz(-) = 0 on z(-). For each ¢ € I and m € {1,.., M}}, choose an element

wi € Zi  and define the subvector '(p, q) of 2(p,q) by
#(p,q) = (&(p,q) — W, -+, &5(Pr g, W) — wh — ¥ (P, ¢, W} )d, . . ) € RIGHIMIAG,

Let 2(p,q,u) = (..., #'(:),...). We can construct a selector matrix E such that Rzz(-) =0
iff z(-) = E2(-). If, as in Lemma 1, some equations in ¢(p,q,u) = 0 are redundant given
Ri(p,q) = 0, then F'E will not be full row rank and we can construct a matrix F by dropping
the redundant rows of FE, so that I is full row rank and F2(-) = 0 iff FE2(-) = 0. By
construction (3(p, ¢, u), Re(p, q)) = 0 iff (F2(p, q,u), Rx(p,q)) = 0.

Let ¥(p,q,u) = (ﬁ'é(p,q,u),Rk(p,q)), we prove that 0¢(p, g, u) has full row rank when
evaluated at any (p,q,u) € A x Ui_, satisfying ¥(p,q,u) = 0. (As in Lemma 1, the pertur-
bation employed will closely follow a similar argument in Kajii [12].) ‘

For each ¢ € I, let Bj and X; be open sets of R(G+Y) such that ¢}(p,q,u) C Bi C
Bi C Xi C X and p!{ be a C* function from R(G+)) to R such that pi(c) = 0 on Bi
and pi(c) = 1 on the complement of Xi. By assumption if (p,q,u) € A x Uy_;, then
¢(p, g,u) = 0 implies Rj(p,q)'yé 0, j = 1..k — 1. The ordering of the sequence {Z;} implies
that if R;j(p,q) # 0, j = 1.k — 1 then for all i€landse Sim, 8 €ZL (mm' €

{1,.., Mi}), ;’r—:%pg(s) = %%pg(s') only if m = m’. In particular, if (p,q,u) € A X Uy, is
such that ¢(p,q,u) = 0, then c(p,q,u,w,) # c5(p,q,u,wt,) if m # m’. We can therefore
also construct open sets, B, and X} , of R(*!) for each i € I and m € {1,.., M}} such
that ¢§(p,q,u,w},) C B, C B, C Xi, C X and X, N Xi., = 0if m # m'. Let pi_
be a C* function from R(%*Y) to R such that p}_ . (c) = 0 on Bj_ and pi_(c) = 1 on the

complement of Xj,,. For € = (ei,...,€,,...) € RMi+t1)(G+) define a function ¢i(¢') from
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REFVEFD (4 R by
$H(e)(e) = [pi(et)uilei) + (1 = pilc))uile; =€)+
2 m(5) [(Paa(ca(s)) -+~ Phags (ch(5)))ui(ci(s)) + mZ;(l = Pam(cy(8)))u(c(s) — ébn)

SESH

For each i we can find an open neighborhood N of 0 € RMi+D(G+) gych that (...,6(€),...) €
Uiy for all (... €,...) € N = x;efN'. ¢ = (...,¢", .. .) is a smooth parameterization of a

Z(M,i+l)(G+1) submanifold of U about (..., ¢ (p,q,u),...), and one can regard 1(p, ¢, -) as
a functlon from AxN, writing ¢ (p, q, ) If Op,4.e)% has full row rank, then so does Opgu)-

Now d.c'(€') = axul(c1 —€)+ Z > mi(s)d. i (s)U u'(ch(s)— ¢, ) for ¢t sufficiently close

m= 156:;
to ¢'(p,q). Let € € N* satisfy pi - ¢ + Z > ¢'(s)ph(s) - €, = 0, then (&,9%) defined by
m=lsezy
& = cl(pygy )+ 6, (s) = lpy 0, 5) + €, and §i(pyg,u,5) = y(5) + () - iy 5 € Ty,
satisfies ¢’s maximization problem when ¢’s utility function is <(¢!). This implies that by
perturbing ¢ one can arbitrarily perturb 2(p, ¢, €'). By perturbing (p, g, ¢') for each i € I in
this manner we can arbitrarily perturb Z(p, q,¢). (Note, however, that we cannot arbitrarily
perturb z(p, ¢, u) in this manner.) 9 has the form
Opay bz Fo2
o = (p.q) € ,
4 [ Ry 0
by our argument 9.2 has full row rank, and by construction /' and Rj have full row rank,
therefore 0 is a regular value of 1. By the transversality theorem (Abraham and Robbin
[1]), there exists a dense subset Uy of Ui_; such that for all u € Uk, 0 is a regular value
of ¥u(p,q) = ¥(p,q,u). But since the domain of 1, has lower dimension than its range,
this implies that there is no solution to ¢.(p,q) = 0. Since Up C Uyp_y, if ©(p,q,u) = 0
then R;(p,q) # 0, j = L.k — 1 for any (p,q,u) € A x Uy, and we have just proved that if
©(p,q,u) = 0 then Ry(p,q) # 0 for any (p,q,u) € A x Us. A argument similar to the one

made in the proof of Lemma 1 shows that U} is open in U;_, O

Proof of Proposition 2: Lemmas 1 and 2 are sufficient for a recursive proof of Proposition
2. Note that since Uk is open and dense in Ux_1, which is open and dense in Uy _,, which

is...open end dense in U, U* = Uy is open and dense in A0

Proof of Proposition 3: Given i, h € I(1,2,s) and y;(s), ya(s), p(/,2, s) must be such that
$(1,2,5) = (&(w} + y'(s)d, p(1,2, 5)) — W, — y*(s)d)+

)d
(5’2‘(w§+yh(8)d,p(l,2,3))—w§‘—yh( ) ) 0
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By the implicit function theorem p(l,2,s) can be written (locally) as a differentiable
function of y;(s) and yx(s) if 051,2,)@(l,2, s) is invertible. Defining the function

1
25

(H Hdet ,25)99125))) ,

le{1,2} s€S

seco:1 period prices will be locally differentiable functions of the assets holdings of market
participants for each state and location if and only if p # 0. Define ¢: A x U — RMG+25+1
by ¢= (&, p).

For each ¢ € I, let B} and X} be open sets of R(¢*+D such that ci(p,q) C Bi C Bi C
X! C X and p} be a C* function from R(“*1) to R such that pi(c) = 0 on B} and pi(c) = 1
on the complement of Xi. By Proposition 2, if (p,q,u) € A x U* then ¢(p,q,u) == 0 implies
that for all z and s,s" € S°, #—lp?‘( ) = ;’r—i%%pg(s’) only if s = &', which in turn implies
e (p,q,s) = ch(p,q,s') only if s = s’. We can therefore also construct open sets, B, and
X}, of R+ for each i € I and s € S* such that ¢i(p,q,s) C B, C Bi, C Xi, C X and
Xi,N X, =0if s #s". Let ph, be a C* function from R(“+1 to R such that pb (c) = 0 on
B, and pb,(c) = 1 on the complement of X3_.

Let £ be the set of symmetric (G + 1) dimension matrices (£ is a manifold). For €' =
(¢,..., 6, ...) € RETDSH) and AP = (..., AL,...) € L5, define a function ¢i(¢!, A?) from
RIEHIEH) (4 R by

_ (e, AN () = [preed)ui(er) + (1 -
z, ' ()[(p21(cy(s)) - - - Pasi(ci(s)))
> (1= pi,(c(s)))

SESt

i P1 (C ))“1(01 - 611)]‘*‘
w(cy(s)) + 0 (1= phy(ch(s)))ur(ch(s) — b))+
s)

(6P ,5) = () Alci(s)))

For each 7 we can find an open neighborhood N of 0 € R(GHD(S'+1) » £5' guch that
(...,6% (e, AY),..) € U for all (...,(¢,AY),...) € N = x;efN*. ¢ = (...,¢%...) is a
smooth parameterization of a M(G + 1) + S(G + 1)(G + 2) dimensional submanifold of &/
about (...,c'(p,q,u),...), and one can regard ¥ (p,q,-) as a function from Ax.N, writing
Y(p,q,¢, A). If O g.e.4)¥ has full row rank, then so does O p,a,u)¥-

Dus'(€,0) = s ui(ch —€e) + 3 7i(s)d )ui(c’é(s) — € ,) for ¢ sufficiently close to
. . se ‘ B . . .
¢(p,q)- Let (¢,0) € N* satisfy pi - €, + 3 q( )py(s) - €5, = 0, then (&', 3*) defined by
SESH

& = c(p,q,u) + €, &(s) = c5(p,q,u,8) + € and §i(s) = yi(p, ¢, u,s) + pi(s) - €},, s € S,

satisfies 7’s maximization problem when ¢’s utility function is ¢*(¢’,0). This implies that by

perturbing € for ¢ € {ay,ay,...,as,,a},a,..., as,}, one can arbitrarily perturb @(p, ¢, €, A).
Recall that

p1,2,5)2(1,2,8) = > K'(s) +m'(s)@'(s),

i€l(1,2,5)
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where K'(s) = Xi(s [ 5 (s)S ] el ),\.(3) m'(s)'th'(s) is a symmetric, negative definite Slut-

sky matrix, m*(s) = yi(5)A'(s) [6.(3)<] py(s) is the vector of income effects for i. By
perturbing 63;(s)§i one can choose K*(s) and m'(s).

0eis*(0, A') = Oui (1) + 3 w(s)du’(ch(s))

SESE

and
(0, A) = () + X ()@ (ci(s) - A)
S€S8

when evaluated at ¢! = ¢!(p,q). By perturbing A’ (in a symmetric manner) one can perturb
802; (s)g"(O,A") (and therefore choose K*(s)) without affecting either ¢ or 850.2,4)3(l,2, s')
for any s’ 3¢ s. By perturbing A} in this manner one can perturb det(95(1,2,5)2(1, 2, 8)) (see
Geanakopolos and Polemarchakis [8]), and in particular one can always choose a perturbation
such that cet(8;,2,5)%(1,2,5)) is perturbed by § # 0. This implies that by perturbing A’
for ¢ € {a1,0as,...,as,,a},d},...,a% }, one can perturb each det(95(1,2,5)2(1,2,5)) by 6 # 0
without perturbing ¢, and therefore one can arbitrarily perturb p without perturbing ¢ .
After a suitable change in coordinates J( 4)% has the form

Jdp 0
Oe,ay¥ = [ v 1]-

By our argument 9. has full row rank, therefore 0 is a regular value of 1. By the transver-
sality theorem (Abraham and Robbin [1]), there exists a dense subset 4** of U* such that
for all (p,q.u) € A x U**, 0 is a regular value of ¥,(p,q) = ¥(p,q,u). Since the range of
¥y is one dimension higher than its domain, this implies that for any (p,q,u) € A x U**, if
&(p,q,u)= 0 then p # 0. An argument similar to the one made in the proof of Lemma 1
shows that {** is open in U*. Since Y** is open and dense in &*, which is open and dense

in U, U** is open and dense in YO

In order to prove Proposition 4 we employ the following lemma:

Lemma 3: If G > 0, then there is an open and dense subset U;** of &** such that for all
(p,q,u) € A x U™, o(p,q,u) = 0 implies

[(ch(s) - ¥ (8)d)' 0, (5)p(1,2, ) — (c5(s) — wh — y*(8)d)' Dy P(2, 2, 8)] # 0

for all s = (s1,82) € S and j,k € I(1,1,s1), 5 € I(1,2,5), k € 1(2,2,5).
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Proof of Lemma 3:
Let },(s) = (ch,(s) — wh, — y*(s)) represent :’s excess demand for good g at time 2 in

G
state s. Since p(l,2, s) is normalized to satisfy Y p,(1,2,s) = 1, we will write dpo({,2,s) =
g=0

e’
— 3" 0py(1,2,s). Under this convention
g=1

(ca(s) — wh — y(s)d)' Api(s) = (Bh(s) — pho(s)d) D} (s).
Now for ¢,k € I(1,2, ),

By ({12, 8) = (Bp(1,2,0)P(1, 2, 8)) 1 (1 (s) — d)

where

Op1.2.)(1,2,5) = (K'(s) + K"(5)) + (1’ (s) — 1" (s))@3(s)'-

The proof will proceed in two steps.

Step 1:

In this step we will prove that there is a open and dense set 23** C U** such that at any
equilibrium of this set there is no i and s € S* for which (B}(s) — pio(s)d) = 0. Consider
the smooth parameterization ¢ = (...,<',...) employed in the proof of Proposition 3. Under
that parameterization for each ¢ we can find an open neighborhood N* of 0 € R(G+D(S'+1)
such that (...,s*(¢'),...) € U** for all (...,€,...) € N = x;c1N*, where

sH(e)(e) = [pi(e)ui(er) + (1 = pi(ch))ui(ci — )l + 4
2 7(8)(pa(c5(5)) - - - psi(ch(s)))u (62(8))+’§',(1 Pas(c5(9)))u'(c3(s) — €3,)].

SESH

Let = {i € I | i € I(I,1,hy) for some h;;} represent the set of agents who trade.

1

s
at location ! at time 1. Define the function p = ([’[ H (‘PzG(S) (pgo(s))) and let ¢ :

i€l; s
A x N — R51+5:1425)G+25+1he given by o = (B, ) Ife € N' satisfies p} -} + ¥ ¢ (s)pz(s)
. . . . . se ‘

v (p,q,u,8) + pi(s) - €,, s € S, satisfies ©’s maximization problern when 4’s utility function

o i g g el — _ Pho(s)s i __ pigls)s : 4 i
is ¢*(¢'). By choosing €}, EATENE and €, m for each : € I and s € S,

one can perturb (phg(s) — ¢io(s)) by 6. If in the same way and at the same time for each
h € I; and s € S*, one perturbs (ph5(s) — ¢(s)) by —6, then @ will remain undisturbed
but p has been perturbed by . Therefore after a suitable change in coordinates d,1 has the

661/)=[66"5 I]
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By our argument in the proof to proposition 3, O.¢ has full row rank, therefore 0 is a
regular value of 4. By the transversality theorem (Abraham and Robbin (1]), there exists
a dense subset Ug™ of U** such that for all (p,q,u) € A x U™, 0 is a regular value of
Yu(p,9) = ¥(p,q,u). Since the range of 1, is one dimension higher than its domain, this
implies that for any (p,q,u) € A x U3, if $(p,q,u)= 0 then there is no p # 0. This in turn
implies that there is no 7 and s € S* in which (4(s) — ¢io(s)d) = 0. An argument similar

to the one made in the proof of Lemma 1 shows that U™ is open in YU**.

Step 2:

In this step we will prove that therc is a generic set U™ C Us* such that at any
equilibrium of this set there is no I, hn,s € SP and j,k € I(l,1,hyy) (5 € I(1,2,s),k €
1(2,2,s)) for which

n(s) = (ch(s) — w] — y(5)d)' By ()P(1, 2, 5) — (ch(s) — wh — y*(5)d)' B,y p(2,2, 5) = 0.

Consider the smooth parameterization ¢ = (...,s,...) employed in the proof of Proposition
3. Under that parameterization for each i we can find an open neighborhood N of 0 €
RGHD(S+1) 5 £5° guch that (cons6i (e, AT, ) eUpforall (..., (€, AY),...) € N = x;eI N,
where
, S, A () = [phu(eh)ui(el) + (1 = pi(c))ui(ch — )]+ .
z T (8)(p21(c2(s)) - - - Phsi(ca(s)))u(ch(s)) + sg;‘(l = Ps(2(8)))u' (c3(s) — €5,)+
Sg;si(l = P2(c2(5)))((ci(p, 4, 5) — ck(s)) Aici(s))]-

5
Define the function p = (H n(s)) and let ¢ : A x N — R(51+51425)G+25+1he giyen
SES

by ¢ = (¢,p). Since (...,s' (€', AY),...) € U™ C U™, we know that (95,2, 0(1,2,5))*
exists and (@5(s) — @ho(s)d) # 0, therefore (Ph(s) — goéo(s)ci)’(aﬁ(z_grs)gé(l,2,3))“1 # 0. By
perturbing A} end A% one can perturb m(s) and m*(s) by the same vector, and therefore one
can arbitrarily perturb (7’(s)—d) without disturbing either @, (Ph—phod), or Op(1,2,5) (1,2, 5).
In this manner one can perturb each n(s) by 6, so that ¢ is left undisturbed but p is perturbed
by é. Therefore after a suitable cha,ngé in coordinates . 4)% has the form

Op *
a(E,A)¢ - [ 0()0 1 ] .

By our argument in the proof to proposition 3 9. has full row rank, therefore 0 is a regular
value of 1. By the transversality theorem (Abraham and Robbin (1]), there exists a dense
subset U™ of g™ such that for all (p,q,u) € A x Up**, 0 is a regular value of Yu(p,q) =
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¥(p,¢,u). Since the range of ¢, is one dimension higher than its domain, this implies that -
for any (p,q,u) € A x U**, if @(p,q,u)= 0 then there is no p # 0. This in turn implies
that there is no s € S in which 9(s) = 0. An argument similar to the one made in Lemma

1 shows that U;** is open in U**. Since U;** is open and dense in U3** which is open and

dense in U, U™ is open and dense in A O

Proof of Proposition 4: ‘

The necessity of the condition G > 0 should be obvious, since if G = 0 then we must
have

(c3(s) — wp = y*(s)d)’ = Byi(ypa(s) = 0

for all ¢+ and s € §*. This immediately proves that if G = 0 then any equilibrium must be
constrained Pareto optimal.

Let s),s3,...,5s be some ordering of the set S, and let ¢;,1,,...,%s5,+5, be some ordering
of the set {t € I'|i € I(1,2,s) for some s € S}. Define the (S; + S3) X S matrix Q = [Q;]
by

0 if s, ¢ S%,

where £(2) = 1 if ¢ trades at location 1 at time 1 and &(z) = —1 if ¢ trades at location 2. If

Qi = { k(2;)q" (sx) if sp € S%

we let 4 represent the vector (a4, a2, ..., a'si+S29%s51452), then the condition r(s) = 0
Vs € S can be rewritten as 4'Q) = 0. Given its structure, if Q does not have full row rank
then there must be a A € R$1*%2 \ {0} such that MQ = 0, which implies the existence of a
(~+es7...) € REN\ {0} such that #/Q = 0. If S; + S; < S then @ obviously cannot have
full row rank. Since S = 5152, 51 + S2 < S only if S; = 1 and/or S; = 1, which establishes
that if 5; =1 or Sz =1 then all equilibria are constrained Pareto optimal.

If @ does have full row rank, then obviously 4'Q # 0. @ will have full row rank only
if there is no sequence of states s, s, 3, and ordering of I such that in state s; (41,42) are
matched at time 2, in state s, (¢2,¢3) are matched at time 2, ..., in state s, (in,%n41) are

matched at time 2, 7,4y = 7;, and

g (s1) _ g%(s1) ¢%(52)  g"(sn1)
¢1(s))  ¢2(s2) @%(ss)  gn(s)

In this step we prove that if S; > 2 and S, > 2 then there is an open and dense subset
U of U™ such that any (p,q,u) € A x U*** satisfying ¢(p,q,u) = 0 must have r(s) # 0
for some s € S (i.e, @ has full row rank).

Recall that

r(s) = (Yl g(s) —vy*alq(s)); j,h € 1(1,2,s),] # h.
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Note that the condition r(s) = 0 Vs € S implies that if ¥* = 0 for some ¢ € I, then v =0
for all 7 € I (since a'q*(s) > 0 Vi — this is essentially a statement that an equilibrium
allocation satisfies the “no isolated communities condition” of Smale [25]). Therefore either
r(s) # 0 for some s, or we can restrict ourselves to considering (.-y7%...) € RL, in the
social planner’s problem (or both). This implies that we may assume that 4.€ R}, and
we can normalize v so that 4 € A%~ = (A € R{}S | T\ =1}

Consider a submanifold of the smooth parameterization ¢ = (...,¢"...) employed in
the proof of Proposition 3. Under that parameterization for each i we can find an open
neighborhood N' of 0 € R(C+D(+1) such that (...,ci(e),...) € U for all (.. E,..) €
N = x;¢/Nt, where

(@) = [pi(ui(e) + (- pi())uileh — )]+ .
z, ™ (8)[(P2a(c5(5)) - - - Pasi(cy(s)))u(ch(s)) + 2 (1= (c(s)))u(cy(s) — €3,))-

Assume that S; > 2 and S; > 2 and define 1: A x N x AfF5-1 , RMG+25  RS1+5, by
P=(4(p,q,€, A), N'Q). Since X > 0, by perturbing ¢%i(s) for each t; who trades at location
1 at time 1 and each s € 5%, one can arbitrarily perturb M'Q . O(e,q)% has the form

op 0
Oe.q)¥ = [ *9NQ ] .

By our argument in the proof to proposition 3, 9. has full row rank and we have just
shown that 8,\'Q has full row rank, therefore 0 is a regular value of 1. By the transversality
theorem (Abraham and Robbin [1]), there exists a dense subset U*** of U™ such that
for all (p,q,u,)) € A x U™ x A3} 71 0is a regular value of v,(p,q,A) = ¥(p,q,u, A).
Since the rarge of 1, is one dimension higher than its domain, this implies that for any
(p,q,u) € A x U™, if ¢(p,q,u)= 0 then there is no Ae A$}*! such that NQ = 0.
This in turn implies that there can be no vector (a7, a27%,..., aisitsiyisies,) € R FS2
satisfying r(s) = 0 Vs. An argument similar to the one made in the proof of Lemma 1 shows
that I{*** is open in U;**. Since U;** is open and dense in U, U*** is open and dense in .

We know that at any equilibrium of this set there is some state s = (s1,2) such that
r(s) # 0. From Proposition 2 we also know that at any equilibrium of this set p(1,2,s) and
P(2,2,s) are (locally) differentiable functions of asset holdings. From equation (5) one can

see that if r(s) # 0 then an equilibrium can only be constrained Pareto optimal if
[(h(5) = w} — 97 (5)d)Byi(a)p(1,2, 5) — (ch(5) — wh — y*(5)d)Bye(yp(2, 2, 5)] = 0
for all I, and j,k € I(1,1,s1), ( € I(1,2,s) and k € I(2,2,s)). Since Lemma 3 implies

that at any equilibrium of (p,q,u) € A x Ur** this condition does not hold for I = 1, no
equilibrium can be constrained Pareto optimalO
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