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Abstract

We present a model in which the addition of an option market leads to sunspot
equilibria in an economy which has no sunspot equilibrium before the market is
introduced. This phenomenon occurs because the payoff of an option contract
is contingent upon market prices, and while prices are taken as exogenous by
individuals within the economy they are endogenous to the economy as a whole.
Our results provide robust counterexamples to the two most prevalent views of
options markets in finance. Following Ross [1976], it is often assumed that the
addition of option contracts to an incomplete markets economy can help complete
markets. We demonstrate that the addition of option markets can instead increase
the number of events which agents need to insure against. Following Black-Scholes
[1973], it is often assumed that the economy is such that options are redundant.
We demonstrate equilibria in which an added option market is not redundant even

when markets were complete before its introduction.



Options, Sunspots, and the Creation of Uncertainty

David Bowman and Jon Faust !

The past twenty years have witnessed an impressive expansion in the number
and type of financial derivatives available to investors. There are two common views
of these markets within finance. First, many of them are viewed as redundant. In
particular, there is a large body of work on pricing options when the returns they
generate can be duplicated using existing assets (e.g. Black and Scholes [1973]).
Second, financial innovation is explained as the natural outcome of an incomplete
se" of existing financial markets — each new financial instrument is conjectured to
allow for insurance against a larger set of states of nature than could be insured
against before its introduction. Ross [1976] demonstrated the potential role for
options in this process by proving that when prices of existing assets differ across
states, the introduction of the right set of option contracts on existing assets can
complete the market in the same way that adding Arrow securities would in an
incomplete financial markets extension of Arrow [1953].

Options differ, however, in a fundamental way from the assets originally envi-
sioned by Arrow. While the payoffs of Arrow’s assets were explicitly contingent
upon the realized state of nature (state contingent), the payoffs of options are con-
tingent upon the price of some underlying security (price contingent). State con-
tingent securities provide insurance contracts against events which are exogenous;

price contingent securities are insurance contracts against price movements, which
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may be taken as exogenous by individual agents, but are endogenous to the econ-
omy. We demonstrate that the price contingent nature of options can create robust
counterexamples to both of the prevalent views of option markets: the addition of
option contracts to a complete markets economy can endogenously increase the set
of events against which agents wish to insure, leaving markets incomplete.

We present two examples within the context of a simple three-period production
economy. The first involves two intrinsic states of nature and a single asset, so that
markets are incomplete.? As in Ross [1976], adding an option can complete markets
and lead to a Pareto optimal equilibrium. However we also demonstrate a second
outcome in which a sunspot equilibrium is created, so that there are three states
and the two assets do not provide a complete set of markets.

The second example begins with two intrinsic states and two assets, a stock and
a bond, which give rise to a unique, Pareto optimal equilibrium allocation. TThis
economy conforms to the environment studied in Cox, Ross, and Rubinstein’s [1979]
discrete-time version of the Black-Scholes option pricing model. In this case adding
an option on the stock leads to one equilibrium in which the option is reduncant
as in Black-Scholes. However there is also a second sunspot equilibrium in which
there are four states and the three assets do not provide a complete set of markets.
Despite the existence of a complete set of markets before the option was added the
option is not, and cannot be priced as if, redundant in the sunspot equilibrium.
Thus, even the fact that existing asset markets are complete and support a unique
equilibrium is not sufficient to guarantee that a new option market will be redundant.
The common practice of pricing newly introduced option contracts as if they were
redundant must rest on stronger assumptions.

The intuition behind these results is straightforward. A movement in the price of
an asset on which an option has been written would not change the return of a state-

contingent security, but it will change the return of the option contract and thereby

% In the terminology of Shell [1977] and Cass and Shell [1983], an intrinsic state of nature is
any state which distinguishes agent’s endowments or preferences. An extrinsic state of nature is
the realization of some random variable which affects neither endowments or preferences (e.i., a
sunspot).



reallocate wealth across investors. This wealth reallocation will, in general, change
excess demand and can help support the price change as a new equilibrium. For this
reason the introduction of option markets can create equilibria in which uncertainty
about endogenous market events (e.g., sunspots) is supported — the payoff of an
option contract depends only on price movements, and does not distinguish whether
these price movements are caused by market fundamentals or non-fundamentals. If
individuals take prices as given, then they will treat price movements as exogenous
in the same way that states of nature are taken as exogenous, and so will be unable
to realize that the effects of introducing price contingent assets may differ from the
effects of introducing state contingent assets. This argument has a family resem-
bliance to arguments made about the contribution of price contingent trading to the
October 1987 stock market crash—an initial move in stock prices triggered price
contingent trades, reallocating wealth and leading to a new equilibrium (see, e.g.,
Gennotte and Leland [1990])).

Our results can be usefully contrasted with other work studying economies with
option markets. Polemarchakis and Ku [1990] construct a robust example of nonex-
istence of an equilibrium in an exchange economy with options which relies on a
discontinuity in excess demand generated by the option contract.®> Qur examples
stem simply from the price contingency of options and do not rely on any disconti-
nuity in excess demand. Extending an argument in Mas-Collel [1992], Kajii [1991]
demonstrated that a continuum of options contracts on any single underlying asset
will generically rule out any sunspot equilibrium with a finite set of states. Qur
point is the opposite: even when there is a unique, no-sunspot equilibrium of the
underlying economy, the addition of option markets can generate sunspot equilibria.

It is well-known that sunspot equilibria may be generated when there are mul-
tiple equilibria of the underlying economy, and that in incomplete markets mod-
els with nominal assets there may be a large degree of indeterminacy (see Cass

(1089,1992] and references therein, Balasko and Cass [1989], Geanakoplos and Mas-

% Krasa [1989] derives sufficient conditions for existence in such a setting.



Collel [1989], and Krasa and Werner [1991]). In our examples agents trade only real
assets. We highlight the role of price contingency by demonstrating that options can
give rise to endogenous uncertainty even when the underlying economies—atsent
price contingent assets—have unique equilibria for any distribution of endowments.
This answers a question posed by Mas-Collel [1992] as to whether sunspot equi-
libria were possible in such a context. Hens [1994] provides an example in which
agents trade assets which are explicitly contingent upon the realization of a sunspot
variable which also has this feature.

In Section 1, we present the three-period economy from which our results are
derived. Section 2 presents an example in which financial markets are initially in-
complete and the addition of an option market can either complete the market or
create sunspot equilibria. Section 3 presents an example in which markets are ini-
tially complete and the addition of an option market leads to a sunspot equilibrium
in which markets are incomplete. Section 4 discusses the robustness of these results

and concludes.

1 The Economy

We consider a three-period economy with two agents, one firm, and two intrinsic
states of nature. In each of the first two periods agents receive an endowment of a
single consumption good and trade both the good and a set of financial assets. In
the initial period the firm decides how much of the consumption good to purchase
and invest in a production technology which will pay off in the last period. The
firm distributes the proceeds of this investment as a final period dividend. Both the
agents and the firm take prices as given; agents maximize expected utility; the firm
maximizes its market value.

We label the two individuals, h = 1, j, and the three periods, t = 0,1,2. Agent h

receives positive endowment wy, at time ¢t = 0, 1; there are no endowments at time

* Hen’s conclusion is cited in Mas-Collel [1992).



2. Defining cp; as h’s consumption at time ¢, h’s preferences are given by:

2
un = Eo ) (Br) In(cnt)

=0

For simplicity, the sole source of intrinsic uncertainty regards the realization of
agents’ preferences at time 1 . We assume that it is common knowledge that with
equal probability either (3;,6;) = (8;,0) or (8:,8;) = (0,5;) at time 1, where §;
and f3; are strictly positive.®> Under this assumption, when time 1 arrives only one
of the two agents will desire consumption. This allows for closed form solutions and
sitnple intuitions regarding equilibria, however it is not central to the results. As
discussed in Section 4, we have numerical solutions with similar results in examples
which do not make this assumption.

The firm has an irreversible linear production technology which transforms one
unit of the consumption good at time 0 into A units at time 2. At time 0 the initial
shareholders of the firm decide upon an amount to be invested. This amount is
rajsed from initial shareholders in the form of a negative dividend at time 0, and
the proceeds are paid out as a dividend at time 2. No dividend is paid at time 1.
The dividend at ¢ is d;.

In addition to uncertainty concerning the realization of preferences at time 1, we
allow for the existence of extrinsic uncertainty concerning market prices. Define a
state at time f to be a realization through time ¢ of all variables taken as exogenous
by agents. For convenience, we collapse any extrinsic states of nature in which prices
are identical into a single event, so that each state, s;, is assumed to represent a
unique realization of preferences, endowments, and asset prices up to and including
tirne ¢.6 There is a single state at time 0, so. Let S; be the full set of states which
may occur at time ¢, and S be the set {S;},t = 0,1,2. The probability with which

each state occurs—the joint distribution of elements of §—is public information.

5 When 8r = 0 and agent h has positive income at time 1, we take h’s time 1 and 2 demands
(conditional on time 1 income) to be the limit of these demands as 85 — 0.

6 We thus ignore trivial sunspot equilibria, in which extrinsic uncertainty exists but has no effect
on equilibrium allocations — by our definition the set of states consists only of events which have
sorne effect on the economy.



For each s;, let 7(s;) be the unconditional probability that state s, occurs. Define
cn(s¢) as h’s consumption at time ¢ in state s;, and define Bx(s:) € {0,81} as ks
discount factor at time t in state s;, t = 1,2.7

At each time agents may trade a set of N assets. The N x 1 vector of gross
one-period returns in terms of the consumption from holding assets to time ¢, state
Sty is 2(8¢) = (...,Zn(8t),...). Similarly, the vector of er dividend asset prices in
terms of the consumption good is p(s¢) = (..., pn(St),...). Agent h’s end-of-period
asset holdings in s; are ya(s¢) = (..., Yhn(St), ...). Initial time 0 holdings are yp(s-1).

Each individual’s problem is to choose (cx,yn) = {cn(st),yn(st); t=0,1,2, sy €

S¢} to maximize u, subject to:

cn(st) = wpe + yn(se-1) - z(s¢) — yn(se) - p(se) (1)
Ch(St) Z 0 (2)

Let p1(so) be the price of a sure claim to one unit of consumption at time 2.

The firm’s problem is to choose dy to maximize®

do + p1(s0)d2

subject to

dy = —Ady, dp<0. (3)

It is convenient to think of agents as directly trading equity contracts, rather
than claims to consumption at time 2. If we define p.(s;) and z.(s;) as the orice
and return of equity in the firm, then p.(s;) = p1(s¢)dz and z.(s;) = z1(s¢)d2.

Following Radner [1972], given a set of states S and probabilities 7, an equilib-
rium is an allocation {(c;,¥:), (¢;,y;), do} such that given prices and asset returns,

(ch,yr) maximizes up, subject to (1) and (2), h = 4, J; dp maximizes the market value

7 We impose the rational expectations constraint that the joint distribution of preferences ‘1nder
7 and S is consistent with the true exogenous distribution.

® In parts of what follows there may be an incomplete set of financial markets, but because the
firm’s technology is linear it satisfies a spanning condition which implies that at any equilibrium
initial shareholders will unanimously agree upon maximization of the market value of the firm
regardless of market completeness (see Ekern and Wilson [1974] and Radner [1974]).



of the firm subject to (3); and

ci(st) +¢i(s)) = wi+ wje +d (4)

yi(s)) +yi(s)) = 9. (8)

where ¥ = (..., ¥n,...) and ¥, is the net supply of asset n. The net supply of equity
is normalized to one, and all other assets are in zero net supply.

A sunspot equilibrium is defined as an equilibrium in which at time ¢t = 1 or
2 there exist at least two states in which preferences are the same, but prices are
different. That is, there exist s;,s; € S; such that Bi(s;) = Br(s}), h = 4,j, and
p(s:) # p(s1)-

A Pareto optimal allocation at time 0 must satisfy cio = 125x¢jo = 7(wio + wjo),
where A € (0,1) and 7= H—A%l—_(-ll\'—/\ﬁf The Pareto optimal allocation at time 1
and 2 is obvious — all available resources will be consumed by the agent with the

positive discount factor:

0 if Br(s:) =0
ch(st) = , - (6)
wir + wir +dy if Br(s) #0
Given logarithmic utility, preferences satisfy the gross substitutes property, which

is sufficient for a unique, Pareto optimal equilibrium of the economy with a complete

set of Arrow-Debreu state contingent claims.

2 Adding an option to complete the market

In this Section we begin with an economy in which the only asset is equity in the
firm. An equilibrium of this “stock market economy” is free of sunspots, but agents
cannot fully insure against the two possible intrinsic states with one asset, implying
that the equilibrium is not Pareto optimal. Following Ross [1976], the addition of an
option on the firm’s equity can support a Pareto optimal allocation of the economy.
There are, however, also sunspot equilibria of this “stock-option economy.”

When equity is the only asset, z(s;) and p(s;) are scalars, and the gross return

to holding the equity is z(s;) = p(s;) + d;. We immediately have the following:

7



Claim 1 (i) There are no sunspot equilibria of the stock market economy. (i1) No

equilibrium of the stock market economy is Pareto optimal.

Proof: (¢) At at time 2 there is no further demand for financial contracts, there-
fore p(s;) = 0 for all s; € S; in equilibrium. Thus, all uncertainty is resolved at time
1. In this case it is sufficient to show that there is a unique equilibrium equity price
for each realization of preferences at time 1. Taking y,(so) as given, h’s demand for

time 1 consumption in state s; is:

ch(81) = 6n(s1)(wh1 + Yr(s0) - (1)), (7)

where 65(s1) = y- In equilibrium, (7) holds for both agents and the resource

1
1+8n(s1
constraint (4) holds at time 1. The implies the unique solution:

p(s1) = Bi(s1)é:(s1)win + Bi(s1)8;(s1)wj
' 6:(s1)yi(s0) + 8;(s1)yj(s0)

(8)

Since the right hand side of this equation depends only upon the realization of
preferences, p(s1) cannot depend on the realization of any sunspot variable.

(7i) Using (6) and (7), an equilibrium allocation of the stock market economy
can be Pareto optimal only if wx; + yr(so) - 2(s1) = 0 whenever 8,(s;) = 0. However
since equilibrium prices must be strictly positive, yn(so) = —p“(’n) would imply
that both y;(so) < 0 and y;(sp) < 0, which violates the equilibrium condition
yi(s0) + y;(s0) = 1.m

The suboptimality of the stock market equilibrium provides an incentive to in-
troduce a further set of assets in order to complete the market. Ross [1976] provides
conditions under which, in a partial equilibrium setting, adding a set of call and
put options on a portfolio of existing assets can bring about a equilibrium in vshich

markets are complete.® McManus [1986] has extended Ross’ argument in a general

® See also Friesen [1979], Green and Jarrow [1987], and Brown and Ross [1991]). Ross assumed
that the returns on existing assets would not change when options contracts were introduced. In
general equilibrium this is generically not the case (Detemple and Selden [1991]).



equilibrium setting by demonstrating that prices in Arrow-Debreu equilibria gener-
ically differ across states, so that a set of options contracts can be chosen which
support an equilibrium with complete markets. In the present case consider the
economy resulting from the addition of a one-period European call option on equity
with strike price k. Now z,,p,, and y*, n = e, 0, are the gross return, price, and h’s
end-of-period holdings of the equity (n = €) and option (n = o) respectively, where

z,(8¢) = max|pe(s¢) — k,0].

Claim 2 There is an equilibrium of the stock-option economy which supports a

Pcreto optimal allocation if and only if B; # (; and
k < min[Bi(wia + wj1), Bj(wi + wjr)].

Proof: To prove sufficiency assume that there are two states at time 1, s; and
s;. where B; > 0 in s; and 3; > 0 in s;. Equations (6) and (7) imply that p(s;) =
Bl wiy + wj1) and p(s;) = ﬁj(w,-l + wj1) at a Pareto optimal allocation. If pe(s;) #
Pe’s;) and k < min[ pe(s;), pe(s;)] then the stock and option allow for a complete
sel, of markets and support a Pareto optimal allocation. To prove necessity, note
that if pe(s;i) = pe(s;) or k£ > min[ pe(si),pe(s;)], then the option is redundant and
the equilibrium allocation must correspond to an equilibrium allocation of the stock

market economy.®

The top panel of Table 1 provides an example of a stock market equilibrium
and the bottom panel presents the unique Pareto optimal stock-option equilibrium.
Ezch equilibrium has two states, one associated with each realization of preferences.

While the addition of the option contract to the stock market economy can
support a Pareto optimal allocation, it does not necessarily do so. In fact, as we
next demonstrate, it can instead increase the number of events agents wish to insure

against:

Claim 3 There are sunspot equilibria of the stock-option economy.

9



t, 8¢ pe(st) po(st) C,‘(St) cj(si) d0

stock market economy

0,s0 0.38 094 118 -0.38
l,s; 1.60 1.78  0.22
1,s; 0.36 1.54 0.46

stock-option economy
0,s0 067 028 1.02 0.81 -0.67
1,s; 1.8 2 0
1,s; 1.6 0 2

P‘arameters: Bi > 0in state s, B; > 0 in state s;.
(ﬂn,inawll) = (126,%71)1 (Bva101wJI) = (%)1!1);
A=k=1 =x(si)=1x(s;) = 3.

Table 1: Using an option to complete the market.

Proof: See the Appendix.

The intuition of this result can be seen in a partial equilibrium setting begin-
ning from the Pareto optimal equilibrium in the bottom panel of Table 1. Focus
exclusively on time 1 state s;. We demonstrate that there may be two equilibrium
outcomes for this intrinsic state when agents hold option contracts. This makes
three possible outcomes for the economy seen at time 0, and implies that the two
financial assets cannot provide a complete set of markets. In the bottom panel of
Table 1, the option is executed in state s;. Suppose instead that agents did not exe-
cute the option. To compute the time 1 equity price in this case, form an expression
for the time 1 equity price conditional on the asset holdings at the end of time 0

and the stipulated execution or non-execution of the option. The generalization of

(8) is

Bi(s1)8i(s1)(wir + x¥io(s0)k) + B;(51)6;(s1)(wj1 + XYjo(S0)k)
6i(s1)(yie(s0) + x¥io(50)) + 6;(51)(Yje(s0) + XxYjo(50))

pe(sl) =

where x is 1 if the option is executed, and 0 otherwise. If x = 1, the equity price
from the bottom panel of Table 1 obtains, pe(s;) > k, and execution of the option

is rational. However, if x = 0 and p.(s;) < k then presumed non-execution is

10



Agent j

Good

Good 2

Figure 1: Time 1, state s;

rational as well. This raises the possibility of an equilibrium in which at time 1 the
equity price may be either greater or smaller than the option strike price depending
upon the realization of some extrinsic random variable. Of course, this discussion
has been conditional on time 0 decisions. The proof of Claim 3 makes clear that
sunspot equilibria are possible when agents’ time 0 decisions take account of the
possibility of two outcomes in state s;.

A graphical representation of the partial equilibrium argument may be useful.
Suppose that time 1 state s; is represented by the Edgeworth box in Figure 1. The
endowment point is E, and we stipulate that equilibrium consumption would be
at point O if there were state contingent markets for both goods and all states at
time 0 (associate O with the allocation in at time 1 in state s; in the bottom panel
of Table 1). Clearly, point O could be achieved if agent i came to time 1 with a
claim to good 1 in state s; in the amount represented by the length of segment O F,
and j arrived with a claim to an amount FF of good 2. The implied equilibrium
spot market relative price of good 2 in terms of good 1 is p. Point O is the unique

equilibrium if the agents arrive at state s; with these assets.

11



t,st pc(st) po(st) Ci(st) Cj(st) do
0,50 0.42 0.04 1.03 1.05 -0.42

1,s; 18 2 0
1,5 0.90 1.00 1.0
1,s; 0.44 145  0.55

Parameters: 8; > 0 in states s; and §;; 8; > 0 in
state s,. w(si) = n(5:) = 1; =(s;) = ;. All other
parameters identical to Table 1.

Table 2: A sunspot equilibrium of the stock-option economy.

Point O can also be attained using option contracts. For example, suppose -hat
at time 0 there were a call option on good 2 with terminal date 1 and strike price
k. Point O could be attained if agent j arrives at state s; holding call options for
EG units of good 2. The state obtains, and the relative price p is called in the spot
market by the Walrasian auctioneer. Since p > k, 7 executes the option, moving
the agents’ holdings to point H. From that point, spot market trades at the price
p take the agents’ to O, supporting p as an equilibrium price. Another outcome is
possible, however. If the auctioneer calls out p’ < k, the option will not be executed,
and p’ is supported as an equilibrium with the allocation at point 1.

Table 2 presents a sunspot equilibrium of the stock-option economy. In this
equilibrium there are three states s;, 5;, and sj, where ¢ desires consumption in
states s; and §;, and j desires consumption in state s;,. We have thus split the
intrinsic state in which ¢ desires consumption into two states from the standpoint
of the agents. The sunspot has important welfare effects: the equilibrium shown in
Table 2 is Pareto inferior to both the stock market equilibrium and the stock-option

equilibrium shown in Table 1.

3 Adding an option to an already complete set of markets

We now consider the same economy when agents can trade equity and a one-period

risk-free bond. These two assets will generically provide a complete set of markets

12



so that this “stock-bond economy” has a unique, Pareto optimal equilibrium. Let
Ty, P, and yg‘ be the gross return, price, and A’s end-of-period holdings of the bond,

where zp(s¢) = 1.

Claim 4 (i) There are no sunspot equilibria of the stock-bond economy. (ii) There
is an equilibrium of the stock-bond economy which supports a Pareto optimal allo-
cation if and only if B; # B; . (iii) If in addition

(2 + (8;)*)(B:)*wio — 2(Bi)*wjo , (1 + Bi)Bjwj1 — Biwa
BiB;(wio + wjo) (wip + wj1)

y

£

then this equilibrium is unique.

Proof: (¢) The proof that no sunspot equilibria exist is identical to the proof of

part (i) of Claim 2, except that (8) is changed to

Bi(s1)éi(s1)(war + yi1(30)) + Bi(51)8;(s1)(wjn + yj1(s0)) | 1
6:(51)yio(s0) + 6;(s1)yj0(s0) ds

p(s1) =

(i2) By (7), any equilibrium has two states at time 1, which we label s; and s;, where
B; > 0in s; and Bj > 0in s;. The proof that there is an equilibrium of the stock-
bond economy which supports a Pareto optimal allocation when §; # ﬂ-j is identical
to the proof of Claim 2. The assertion that there is only one such equilibrium follows
from the fact that preferences satisfy the gross substitutes property. (zi:) Since (i?)
implies that there is a unique equilibrium in which p.(s;) # pe(s;), we must only
consider the possibility of equilibria in which pe(si) = pe(s;). If pe(si) = pe(s;), then
agents consider equity and debt to be perfect substitutes, so that such an equilibrium

will coincide with an equilibrium of the stock market economy. The Appendix proves

) oL e . N R ce (24(8;)2)(Bi) wio—2(B;) w0 _
thatr a.fl equllvlbnum in which pe(si) = pe(s;) exists only if 2 B, (ot o) 1) W0 —
(14-8:)B,w;1 —Biwia .

(wir+w;1)

The stock-bond economy is designed to conform to the Cox, Ross, and Rubin-

stein [1979] discrete-time interpretation of the Black-Scholes option pricing formula.

13



Under the conditions of Claim 4 there is a unique equilibrium with two states of
nature and the price of equity differs across these two states.

We now consider what will occur if in addition agents are allowed to trade a
one-period European call option. We term this the “stock-bond-option economy.”

Claim 5 follows immediately from Cox, Ross, and Rubinstein {1979).

Claim 5 Any Pareto optimal equilibrium allocation of the stock-bond economy is

also an equilibrium allocation of the stock-bond-option economy.

Equilibria of the stock-bond economy were such that debt and equity contracts
were already sufficient to allow for full movement of income across all fundamen-
tal states; therefore, there is an equilibrium in which any option contract will be
redundant and neither prices nor the allocation will be changed by its introduction.

Although it would be difficult to construct a discrete-time general equilibrium

example in which this logic is better guaranteed to hold, we have the following,

Claim 6 With or without the conditions of Claim 4, sunspot equilibria exist in the

stock-bond-option economy.

Proof: See the Appendix

Table 3 provides an example in which the conditions of Claim 4 hold. The top
panel presents the unique equilibrium of the stock-bond economy. There are two
states in this equilibrium at time 1, s; and s;, each corresponding to a realization
preferences. The bottom panel of Table 3 presents a sunspot equilibrium of the
stock-bond-option economy. In this equilibrium there are four states, s;, 5, s; and

§;, where ¢ desires consumption in states s; and §;, and j desires consumption in

states s; and §;. The probability of each state is 1.
Clearly the sunspot equilibrium is Pareto inferior to the stock-bond equilibrium.
As was the case in the first example, the price of the option would substantially

differ in the two equilibria. If it were offered in the equilibrium of the top panel

14



t,8:  Pe(st) po(st) Po(st) ci(se) c;(s¢) doy

stock-bond, Pareto optimal equilibrium

0,0 053 0.1 071 0.76 -0.53
l,s;, 18 2 0
1,s; 1.6 0 2

stock-bond-option equilibrium with sunspots
0,sp 040 042 003 0.77 0.83 -0.40

1,s; 1.8 2 0
1,5 0.56 062 1.38
l,s;" 1.6 0 2
1,5, 0.51 1.37  0.63

of Table 3, the option would be redundant and, defining ¢

price would be

Parameters: 8; > 0 in states s; and 5i; #; > 0 in states s;
and §;. (Bi, wio,wi1) = (’19_071’1)x (85, wio, ws) = (%,1,1);
A=1k= %

Table 3: Two equilibria.

— _Pe(50)=Ps(s0)pe(s;)

= 2a(50)Fe(o)-pe(s,) 118

[g(pe(si) — k) + (1 — q)(pe(5;) — k)] po(s0)
~ 0.06

Po(s0)

4 Conclusion

The results of

this paper provide robust counterexamples to the two most preva-

lent views of options markets in finance. While Ross has demonstrated that the

addition of option markets can help complete markets, our examples demonstrate

that the addition of option markets can instead increase the number of events which

agents need to

insure against. While models such as Black-Scholes treat options as

reclundant, our second example demonstrates that there may be equilibria in which

the addition of an option market is not redundant even when markets are initially

complete.

There appears to be nothing particularly special about the model we have pre-
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sented. The examples are robust to small perturbations of the parameters of the
model, and while the assumption that agents do not desire consumption in certain
states is clearly special, our examples are robust to perturbations of this assump-
tion as well. More generally, we have also constructed similar numerical exaraples
where the uncertainty is with regard to endowments at times 1 and 2, rather than
preferences. While there are conditions under which one can guarantee that the
introduction of an option market cannot introduce sunspot equilibria (for instance
this would be the case in a representative agent economy), it appears that ;;hese
conditions are rather strict.

While we have focused exclusively on option markets in the paper, the nature of
the examples make clear that the possibility of similar results exist whenever agents
trade any type of nonlinear, price contingent asset. The results may also carry over
to other types of contractual relations which mimic an option market, for instance
debt contracts are similar to an option contract when the possibility of bankruptcy
exists.

The results may indicate the need for a precise definition of what it means
for an asset to be “redundant.” For example, while agents would view an added
option contract as unnecessary in the stock-bond economy, they may view an added
bond as quite useful in the stock-option economy, and one would not want to assert
that an option market would be redundant in the second example without some
further assumption ruling out sunspot equilibria. Accordingly, there is a hierarchy of
increasingly stronger definitions of redundancy: an asset may be redundant at some
strict subset of the equilibria of the economy which exist before its introduction, at
all the equilibria of the economy which exist before its introduction, at all equilibria
of the economy which exist before and after its introduction, and/or at all points
along excess demand. The examples make it clear that even under the best of

circumstances option markets may satisfy only the first or second definitions.
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Appendix

Claim 3, part (#41) of Claim 4, and Claim 6 are proved by construction.

The proof of Claim 1 establishes that all uncertainty is resolved at time 1. Given
yin(so), at time 1 agent’s demands are given by (7). The equilibrium price of one

share of stock must therefore satisfy

Tf‘b.-s(ﬂsf) [war + yi(s0) - 2(s1)] if Bi >0

B o+ (o] 1, >0

Since there is no further demand for financial assets at time 2, in equilibrium

Pe(s1) = (A1)

Pn(s2) = 0 for all » and s; € 53, and therefore the equilibrium price of a call
option at time 1 must be p,(s1) = 0. If the risk-free bond is offered, then arbitrage
implies that at time 1 we must have py(s;) = Md:—ll.

Define A;(s1) = wpy + yn(so) - z(s1), Sp = {s1 € S | Br(s1) > 0}, and Sp =

S) — Sp. Using (7) we can rewrite the consumer’s problem as:

maxn (cx(s0)) + D “(31)(5h+5h2) In(Ar(s1))+ Y Mn(s1)(4n(s1)) (A2)

$1€S, 81€5)
subject to

ch(s0) = wro + ya(s-1) - z(s0) — yr(so) - p(s0) (A3)

and, for all s; € Sy:

Ah(S])Ah(Sl) = 0 (A4)
An(s1) > O (A3)
Ap(s1) > 0. (A6)

The first order conditions associated with this problem are, in addition to the

constraints (A3) — (A6):

pr(s0) _ S (1) (B + 64?) z:(:) + 37 M(s1)za(s1) (AT)

Ch(sO) $1E€S, A ( ) 51€8),
forn=1...N.

17



Proof of Claim 4, part (i::):

Claim 1 established that there are no sunspot equilibria of the stock market
economy, therefore we assume that there are two states at time 1, s; and 8, where
Bi > 0 in state s; and §; > 0 in state Sj. If pe(si) = pe(s;) then Ai(s;) = Aj(s;) =0
at an equilibrium of the stock market economy. Since we wish to find conditions
under which equilibria of the stock market economy with Pe(8i) = pe(s;) exist, we
characterize the set of equilibria in which X;(s;) = A;(s;) = 0.

Agent k’s demands are determined by (7), (A3), and:

Pe(50) 24n(sh)
Pe(s1) By + 57
This and (4),(5) yield the unique price vector:

ch(so) =

2(wio + wjo)

2+ 57+ 5;
Biwiy

1+ 8; - B:6

ijjl

14+ [3]-0’

Pe(s0)
pe(si)

Pe(sj) =

(2+82)B2wio—28% w0
ﬁ?ﬁjz (wio+w;0)

where 6 = . Constraint (A6) will be satisfied if and only if

Wi Wi
—— << 1 —L
Bi(wi + wjy) Bi(win + wj1)’
which is necessary and sufficient for the above equations to represent an equilibrium.

. . . . 148:)8;wj1—Biw; .
The price equations imply that p.(s;) = pe(s;) only if 6 = ( ﬂ?ﬂ}%u?iwi‘)u L. which

proves part (zi7) of Claim 4. m

Proof of Claim 3:

We wish to construct a three-state sunspot equilibrium of the stock-option econ-
omy. Without loss of generality, assume that 8; > 0 in states s; and §;, and ﬂ_j >0
in state s;. We construct an equilibrium in which Pe(si) > k, pe(3;) < k, and
Pe(s;) < k.
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Agent j’s demands must satisfy:

Po(s0)
L k)A; Si )y
Per) = (pe(s0) = DA (s)
which implies that A;(s;) = [;{%ﬁ—"L] = > 0. Therefore A;(s;) = 0. Combining

this with the equilibrium condition (4) determines that A;(s;) = (1 + 8;)(wi, + wjy)
ard pe(s;) = Bi(wi + wj1). If A;(3;) is also strictly positive then the same logic
implies that pe(3;) = pe(si). We therefore construct an equilibrium in which ;(3;) =
Ai(s;) = 0. Construction of an equilibrium in which X;(s;) > 0 follows along similar
lines.

Assuming that A;(5;) = Ai(s;) = 0, agent ¢’s demands are determined by (7),
(A3), and:

(s _ Po(so) A,‘(S,‘)

w0 = [7032] (5B + D)

ei(s0) = [pe(SO)_pe(Si) Po(50) ] Ai(3)
' Pe(3i)  pe(3i) pe(si) — ki 7(3:)(B: + BE)

Agent j’s demands are determined by (7), (A3), and:

Aj(si) = 0

¢i(s0) = [Pe(so)_l’c(s;) Po(S0) ] AjSSj)_ |
g pe(si)  pe(si) pe(s:) — k| (s7)(B; + B2)

These equations and (4),(5) yield the unique price vector:

(50) wWi0 + Wjo
1+ 2 + 4
' p]

27 (si)(pe(si) — k)

Po(s0) = 2.(5) Pe(S0)
Pe(si) = Bi_(wil + wj;)
- Biwil
pe(8:) = 1156
N E'w'l
Plos) = ﬁm

(s
where § = 21r(s. pe(so + W%S.; Js.
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To determine that this is an equilibrium we must verify that (A6) is satisfied

and that p.(si) > k, pe(3:) < k, and pe(s;j) < k. (A6) will be satisfied if and only if:

Wi Wi
S | N ' IS [ . S—
Bi(wir + wj1) Bi(wir + wj1)
If
471'(5,‘) < wjg n Wy 27 (3:)(2 + Bj + 5_32)
32 Pe(s0)  Bi(wi + wj1) B? ’

then pe(s;) > min [pe(3;), pe(s;)] and one can choose a k satisfying p.(s;) > k,
Pe(3:) < k, and p.(s;) < k.
Table 2 of the text demonstrates that parameters which (strictly) meet these

inequality constraints exist. m

Proof of Claim 6:

We wish to construct a four-state sunspot equilibrium of the stock-bond-option
economy. Assume that §; > 0 in states s; and 8;, and Bj > 0 in states s; and 5;. We
construct an equilibrium in which pe(s;) > k, pe(3;) < k, pe(s;) > k, and p.(5;) < k.
The logic of the proof of Claim 3 also indicates that we must have Ai(s5)Ai(35) =0
and A;(s;)A;(3;) = 0 at any sunspot equilibrium. We have arbitrarily chosen to
construct an equilibrium in which A;(3;) = A;(5;) = 0 and A\(s;) and A (s;) are
positive.

Define v, = m. Assuming that A;(3;) = A;(5;) = 0 and Ai(s;) and Ai(s;)

are positive, agent ¢’s demands are determined by (7), (A3), and:

A,'(Sj) = 0
ci(so) = vi|wio + ps(so)wi]
Ci(so) - Pe(so)(Pe(Sj) - k) - pe(sj )Po(so) Ai(si)-

A Bi+0?
F(pe(s;) = B)Ai(s:) = 7(s) 25 (pels:) = Kpe(s;)
Agent j’s demands are determined by (7), (A3), and:

A_.,'(s,') =0
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¢i(s0) = 7;[wjo + pe(so)w;1]
Cj(So) — _ pe(SO)(pe(si) - k) __pegfi)po(so) Aj(sj)-
F(pe(5i) = k) Ai(55) — 7(55) 252 (pe(s;) - k)pe(si)

These equations and (4),(5) yield the unique price vector:

(wio + wjo)(_OljBi‘Y.'“)ﬂ —_aiﬂ—j')’jwjl) + 775 (0 Bi + 0B N wiow;n — wiowsy )

(s A Jads
Pe(s0) a;Biviwi — aiBjv;wi — aiesk(B; — B;)(viwia + vw;1)
pb(s(]) - (1 - ‘7.‘)11),‘0 + (1 - 7j)wj0 - Pe(so)
YiWio + Yjwjo0
_ i(pe(s5) = k)pe(s0) — vi(wio + po(s0)wir)
PO[SD) =

) a;pe(s;)
Pe(si) = Bi(win + wjr)
i %’f—‘l(ﬁj(wn +wjpr) — k) + 6k
Pel&i) = 68 — B; — 1
Pesi) = Bi(wi + wj)
B (Bi(wir + win) - k) + Ok — k

Pe(35) = 1+05j
where
o _ B o(50) = (pe(s;) = E)pa(0)] = 22 o + py so)w)
B Ps(S0)k + Po(0) ~ pe(s0) ’
2
5 BB (wir + wi) — k] = 2x(0)B:; (Bilwar + wyn) k)’

and

2
a;

" B Biwa + wjn) — K] — 2n(5,)B:; [B;(war + wyn) — K]

Since we wish to satisfy the condition 3; # B;, we will assume that §; > B;. The
assumption that pe(s;) > k and p(s;) > k will be satisfied if ﬁ-,'(wﬂ + wj1) > k.
Prices will be strictly positive, (A6) will hold, and the assumptions that p.(s;) < &
and p.(3;) < k will be satisfied if £ > 0 and 6 < EIIJL_—‘G;;—J — El%ﬂ‘kﬁ) By construction
Ai(3;) = A;(3;) = 0. The assumption that X;(s;) and Aj(si) are positive will be
satisfied if c4(so) < 21%;"—"1 for A = i,j. A solution which meets these inequalities
constitutes an equilibrium.

Table 3 of the text demonstrates that parameters which meet these constraints

and satisfy the conditions of Claim 4 exist.m
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