Board of Governors of the Federal Reserve System
International Finance Discussion Papers
Number 516

July 1995

BLOCK DISTRIBUTED METHODS FOR SOLVING MULTI-COUNTRY
ECONOMETRIC MODELS

Jon Faust and Ralph Tryon

NOTE: International Finance Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment. References to Inter-
national Finance Discussion Papers (other than an acknowledgment that the

writer has had access to unpublished material) should be cleared with the
author or authors.

Abstract

This paper examines variations on a baseline Fair-Taylor algorithm used to
solve multi-country, rational expectations models. One notable feature of
these variations is the ability to exploit small-scale distributed processing
using a network of workstations or PCs. Using four processors to solve MX-4
(152 endogenous variables), the largest speedup factor relative to Fair-Taylor

i5 59; for RE-7 (978 endogenous variables) the maximum speedup factor is

12.

Block Distributed Methods for Solving Multi-country
Econometric Models

Jon Faust and Ralph Tryon!

1 Introduction

Despite advances in computer speed, solving large macroeconometric models with
rational expectations can be very time consuming. Using the Fair-Taylor algorithm
(Fair and Taylor, 1983), solving a model of 500 or more equations can take over an
hour on a fast workstation. This paper demonstrates the potential efficiency gains
from two variations on a basic Fair-Taylor algorithm in solving multi-country, ratio-
nal expectations macroeconometric models. Both variations come from considering
how better to exploit the block structure of the models.

The first variation breaks the models into their constituent country blocks and
solves the full model by repeatedly solving the country blocks in an iterative scheme.
This approach represents a return to the methodology used to solve the Project
LINK models in the 1970s (Klein, 1983). One advantage of this approach is that
it allowed the country models to be solved on separate computers, and it is the
possibility of distributed processing that leads us back to this method. The second
variation alters Fair-Taylor’s period-by-period blocking by using Newton’s method
to solve multiple time periods simultaneously in a single block. This variation is
motivated by recent theoretical and simulation work by Armstrong et al. (1994),
Boucekkine (1994), Juillard (1994), Laffargue (1990).

This paper describes how these two variations can be combined to provide a
family of solution algorithms and documents the benefits that may come from using

such methods. For example, using four processors, the maximum observed speedup

! The authors are, respectively, a stafl economist and a section chief at the International Finance
Division of the Board of Governors of the Federal Reserve System. The authors thank Ray Board,
Ned Ericsson, and Jaime Marquez for helpful comments. The views in this paper are solely the
responsibility of the authors and should not be interpreted as reflecting the views of the Board of
Governors of the Federal Reserve System or of any other person associated with the Federal Reserve
System.

factor relative to Fair-Taylor is 59. Section 2 describes the solution of rational
expectations models and lays out a general classification of mixed first-order iterative
and Newton algorithms. Section 3 discusses how we implement distributed versions

of the algorithms. Section 4 provides simulation results, and section 5 concludes.

2 Solving Rational Expectations Models

Rational expectations macroeconometric models involve equations of the general

form
0= gj(Eyt+f|t7 e aEyt+1|tvyt7 s »?/t—l'z) + &, (1)

J=1,...,M, where y; is (M X 1), z is a vector of exogenous variables, and EYoipe
stands for the expectation of y4; given the information available at ¢, as defined
below.

The desired solution is a y;, t = 1,...,T, that satisfies (1) with &, set to zero
fort=1,...,T, for fixed z and fixed initial and terminal values, Y- 7 =1....,1,
and yr4j;, j = 1,...,f. Also, at the solution the expectations variables are model
consistent in the sense that Eyiysit = Y4y for all t and f. (Clearly, E does not

stand for the mathematical expectation).? Thus, the goal is to solve the system

0=gi(Yasr-- - Ye41:Yts-- -, Y11l Z), (2)

J=1,...,M,t=1,...,T, where Z includes z and the initial and terminal values.

The two models for which we report results are MX-4 (Gagnon, 1989) and RE-
7 developed and maintained in the International Finance Division of the Federal
Reserve Board.®> These models are similar in structure to multi-country models
such as MULTIMOD (Masson et al., 1990) and Taylor’s (1993) model. MX-4 is

made up of four roughly symmetric country models. We take each country block as

2 Issues of existence and uniqueness of a solution are often difficult to explore in these rmodels.
After linearizing the model around some Y*, one can check whether the model satisfies Blanchard
and Kahn’s (1980) conditions for existence and local uniqueness of a solution.

® Ralph Tryon and Joseph Gagnon developed RE-7, which is a rational expectations version
of the Multi-Country Model developed at the Board. See Edison et al. (1987) and Stevens et al.
(1984) .

a separate model, and make each endogenous variable in the full model endogenous
in one country model.* There are 39 endogenous variables in each country block and
9 forward looking variables; the maximum lead and lag (! and f in (2)) are each 3.
Nine endogenous variables in each country block link it to the world by occurring (as
exogenous variables) in some other country block. RE-7 has 7 country blocks, with
the U.S. model slightly larger than the others. On average, the country blocks have
140 endogenous variables, 8 forward looking variables, and 6 endogenous variables
occurring as exogenous variables in other country blocks. The maximum lead and

lag in a typical country block are 3 and 11, respectively.

2.1 Solution Methods

This section describes a family of mixed first-order iterative and Newton algorithms.
The discussion draws on Varga (1962) and Ortega and Rheinboldt (1970); for theo-
retical properties of these algorithms, see those sources. Fisher and Hughes Hallett
(1988), Fisher (1992), and Armstrong et al. (1994) discuss these methods in the
context of macroeconometric models.

Consider the equation system G(Y) = 0 formed by combining the @ = M - T
equations (2), j = 1,...,M, t = 1,...,T, with the Z variables suppressed for
expositional clarity. The algorithms we consider involve reordering the elements of
Y and G and partitioning them into blocks. To do so, fix a one-to-one mapping
between endogenous variables y¥; and equations g;, or more simply, suppose that we
have normalized each equation on a different yj- Whenever we re-order the elements
of Y, the equations are similarly re-ordered.

Having fixed an order for the elements of Y, partition G and Y into n blocks so

that the system can be written
0=G;MN,....Y,) j=1,...,n,

where for each j, G; and Y; have the same number of elements.

* It is generally clear in which country block each equation belongs. Where to put the exchange
rate equations, however, is not so clear. In our models, the exchange rate equations all determine
bilateral rates versus the U.S., and each is placed in the non-U.S. country block.

3

The simplest block first-order iterative scheme is block Jacobi. This method

involves selecting a Y and repeatedly solving
0= Gj(Y;‘,...,Y;’_I,YJ!“,Y;“,...,Y,;') i=1,...,n, (3)

for in+1, where ¢ is the iteration count. Under Jacobi, Y;fll is available, but unused,
in calculating in+1. The familiar Gauss-Seidel algorithm uses any updated values

as soon as they become available, leading to iterations of the form
0=G;M™*, .Y Y YL LY =1, (4)

While we limit our exposition to the Jacobi and Gauss-Seidel first-order iterative
schemes, there are several simple variations—Jacobi overrelaxation, and successive
overrelaxation, for example—that often add significantly to computational effiziency
(Fisher, 1992). Such schemes could be substituted for Jacobi and Gauss-Seidel in
what follows.

Since each block Gj is in general nonlinear, evaluating G; on each iteratior itself
requires some iterative method. Thus, the general form of the block Gauss-Seidel

and block Jacobi algorithms in which the blocks are solved by an algorithm X is:

Block Gauss-Seidel/X and Block Jacobi/X Algorithms

1. SetY% seti=0

2. Loop:

3. Forj=1,...,n

4. Solve [(3) or (4)] for Y}H'l using algorithm X
5 End for

6 Increment &

7. Continue loop while d(Y?,Y*~1) > ¢

Using equation (3) in step 4 gives block Jacobi; equation (4) gives block Gauss-
Seidel. In step 7, d is some metric on the closeness of the successive values. The
loop in steps 2-7 is called the outer loop, and the algorithm X iterations implicit in

step 4 comprise the inner loop.

The Fair-Taylor algorithm can be interpreted as block Gauss-Seidel with the X
algorithm simple Gauss-Seidel. To see this, arrange Y as Y = (yi,...,¥}) and

treat each time period as a block; thus, ¥; = y;. On each execution of the outer

loop the value of y§+l, t =1,...,T is solved by Gauss-Seidel, conditional on the
value of yi*!, s = 1,...,t — 1 and conditional on the previous iteration value of Y,
s=t+1,...,T.

The remainder of this section lays out our variations on the Fair-Taylor algo-
rithm. While we consider algorithms like Fair-Taylor that have only an inner and
outer loop, we also consider block Jacobi/X and block Gauss-Seidel/X algorithms
in which the X algorithm is itself block Jacobi or block Gauss-Seidel, requiring a
further loop. This nesting of loops could continue, of course, but the algorithms
we consider are nested at most two deep, and will be denoted outer/middle/inner,
where buter and middle and inner give the type of iteration in the relevant loop.

Independent of the level of nesting, in all the algorithms considered, the in-

5

ner most loop is Newton iterations.> Thus, for example, our baseline Fair-Taylor

algorithm is a Gauss-Seidel/Newton algorithm .6

2.2 Variation One: Country blocks

Our first variation is motivated by the desire to exploit small-scale distributed pro-
cessing on widely available hardware such as a network of workstations or PCs. Dis-
tributed processing is most simply applied to an algorithm with sub-problems that
have independent computational blocks. When the algorithm comes to these sub-
problems, the independent computational blocks can be sent to different processors,
solved, and the answers collected and passed to the next sub-problem. Obviously,

distributed processing will save time only so long as the gains from simultaneous

® As applied to equation block j, Newton’s method involves iterations of the form,)’_7""’l =

Y; - HJ—I(YJ')G(YJ‘) where H;(Y') = B—GGL;IQ, and the arguments of G, other than Y, are fixed

and suppressed.

¢ Don and Gallo (1987) have emphasized that the efficiency of Newton algorithms can be greatly
increased by taking account of the structure of the Jacobian. How best to do this is a topic of ongoing
research. See, e.g., Hughes Hallett and Fisher, 1990; Gilli, 1992; Gilli et al., 1992. Our algorithms
do not exploit this research.

evaluation of blocks outweigh the overhead involved in managing the multiple pro-
cessors, communicating the problems to the processors, and collecting the answers.

Block Jacobi algorithms offer an obvious opportunity for distribution: in steps
3-5, the n equation blocks are independent and can be solved simultaneously. In
contrast, the blocks in Gauss-Seidel must be solved sequentially. For distribution to
be efficient, we want solution of the n blocks to be computationally intensive relative
to the amount of information that must be communicated among the blocks between
iterations—that is we want to structure the problem so that it is coarse grained, with
a good computation-to-communication ratio.”

An obvious choice in the case of multi-country models is to order and block ¥
by country.® The country-oriented block Jacobi and Gauss-Seidel algorithms will be
called Jacobi(C)/X and Gauss(C)/X, where C indicates that the model is blocked
by country, and X is the algorithm used to solve the country blocks.

Intuitively, the Jacobi form of the algorithm involves solving each country model
separately, conditional on the values of variables for its trading partners. This solu-
tion results in new values for each country’s trading partners, which form the basis
of a new iteration. The procedure is continued until convergence. This procedure is
likely to deliver the high computation-to-communication ratio needed efficiently to
exploit of a small number of processors. The country blocks are large enough to be
computationally intensive to solve, and the number of variables linking the models
is small, limiting the amount of information that must be communicated among the
blocks between outer-loop iterations.

Although our main motivation for considering country blocking is the opportu-
nity it affords for distributed processing, country blocking may be computationally
efficient on a single processor.® The underlying reason for this is that the dimension

of each country model is small relative to the full model, and the channels of interac-

" Wilson (1993) provides a useful introduction to the jargon of distributed computing.

® Each equation j of (2) is assigned to one country block and that equation for all time periods
is included in the block.

® This point has been illustrated, for example, in the context of solving multi-country models
from general equilibrium theory (Mansur and Whalley, 1982; van der Laan, 1985).

tion between countries are few and are generally weak relative to interactions within
countries. More precisely, when blocked by country, the Jacobian of the model is
nearly block diagonal and the non-zero off-block-diagonal terms are small relative

to those within the blocks.1?

2.3 Variation Two: Time blocks

In the Jacobi(C)/X and Gauss(C)/X algorithms, the inner loop uses algorithm X
to repeatedly solve the country models. While a natural starting point would be
tc use Fair-Taylor for the X algorithm, the country models in MX-4 and RE-7 are
relatively small, leading us to consider other approaches. The approach we use is
motivated by work of Armstrong et al. (1994), Boucekkine (1994), Juillard (1994),
ard Laffargue (1990), which provides theoretical and simulation evidence that when
the number of equations times the number of time periods in a block is not too
large, the entire equation block can efficiently be solved as one simultaneous system
using Newton’s method.

We consider an array of options between Fair-Taylor and Newton’s method as
applied to the entire block. As noted above, in our baseline Fair-Taylor algorithm,
the outer loop involves block Gauss-Seidel iterations treating each time period as a
separate block and solving the time blocks using Newton’s method. It is a straight-
forward extension to alter the algorithm’s time blocking by partitioning Y into b
blocks of T'/b periods each—the first block includes the equations for (y1,..., y’T/b)’,

and so on.!

Of course, taking b = T gives the baseline Fair-Taylor algorithm,
and setting b = 1 eliminates the need for outer loop iterations entirely by using
Newton’s method to solve all time periods simultaneously. The idea of considering

intermediate cases between b = 1 and b = T is due to Peter Hollinger.1?

1% Faust and Tryon (1994) give a more complete discussion of this point.

' This assumes that T/b is an integer, a convenient assumption in both notation and algorithm
implementation, which is maintained throughout.

'? Intex Solutions, Inc., Needham, Massachusetts. Hollinger and Leonid Spivakovsky wrote
Portable TROLL, the software used in our simulations, drawing on the mainframe TROLL program
developed at the Massachusetts Institute of Technology and the National Bureau of Economic
Research.

In general, this algorithm will be denoted Gauss(T)/X, where T signifies that
the equations are blocked by time, and X is the algorithm used to solve the time

blocks.13

2.4 Combining Country and Time Blocking

We can now state four basic algorithms we consider:

1 Gauss(T)/Newton. This algorithm ignores the country block structure. The
baseline Fair-Taylor algorithm is a special case with the number of time blocks
set equal to the number of time periods in the solution.

2 Gauss(C)/Gauss(T)/Newton. Use Gauss-Seidel iterations over country blocks
and solve the country blocks using method 1.

3 Jacobi(C)/Gauss(T)/Newton. Use Jacobi’s method in place of Gauss-Seidel
in the iterations over country blocks.

4 Distributed Jacobi(C)/Gauss(T)/Newton. Solve the country blocks in method
3 simultaneously on different processors.

Each of the four types involves Gauss(T) iterations, which may involve different
numbers of time blocks. In our simulations, we use 5 different time blockings for

each of the four basic algorithms, giving 20 different methods in all.!4

3 Implementation of the Distributed Algorithm

This section provides a stylized description of our implementation of the distributed
Jacobi algorithm (for details, see Faust and Tryon, 1994). We choose a low-tech
approach that can be implemented easily without special hardware or software.
The only hardware requirement for the algorithm is to have multiple processors
(perhaps separate computers) that share access to some file storage device.

The algorithm is programmed in a simple master-worker setup. There is one
worker process per country block, solving the country block using the specified

variant of Fair-Taylor. The master coordinates actions of the worker programs,

'* For simplicity, we do not consider Jacobi iterations over time blocks.
" There are, of course, many further alternatives we could have considered; see Gilli and Pauletto
(1994)

and both the master and worker programs are implemented in Portable TROLL’s
programming language. All communication between master and worker is done
through disk files on the shared file server. This method of communication is simple,
but extremely portable, allowing us to run the algorithm essentially unaltered on a
network of DOS-based PCs as well as a multi-processor UNIX workstation.

The master controls the operation of the workers with a simple program:

Master program

Initialize all workers
Loop:
Start each worker
Wait until all workers stop
Read status of each worker
Continue loop until all workers report convergence
Stop all workers

NN

The worker program implements the core of the algorithm. The variable WJ‘
in the worker program refers to those elements of Yj‘ that enter some equation in
any block other than the j** block. These are the only variables that must be
communicated by worker j to some other worker.!® The convergence metric we use
is

_ |ve — wy]
d(vaw) - kg}f'.).(,n 'wkl + v (5)

for any (n x 1) vectors v and w, and in the simulations v = 10.

'* Worker k only needs to read in those elements of W;, 3 # k, that are used in block k. The
workers in our implementation exploit this efficiency.

Program for worker j

1 Outer loop:

2 Wait until master says start

3 Read W2,k # j, from common space

4. Set YJ-0 = in from previous loop or initialize

5. Store W7

6 i=0

7 Middle loop:

8 Solve for Y;H using inner loop algorithm
9. Increment 2

10 Continue loop while d(Yj",Yj"‘l) >eand 1<
11. Write W} to common space

12. If d(Y},Y;™') < € and d(W},W?) < ¢, report convergence;

otherwise report nonconvergence
13. Continue loop until master says stop

As implemented in step 11, the inner loop iterations stop in two cases: if the
convergence criterion for the problem is met, and if a maximum iteration count, z,
is reached. The workers stop after 7 iterations even if they have not converged in
order to allow the workers to share whatever progress they have made. If 7 is too
high, time may be wasted on early outer loop iterations needlessly refining solutions
for the blocks. With 7 too low, too much time may be spent sharing resulis that

have not changed much from the previous outer loop iteration.

4 Application to Multi-Country Models

4.1 The Experiments

Simulation results are reported for two models, MX-4 and RE-7, as described above.
The experiments each take as an initial condition a baseline solution and involve
solving the model for the change from baseline caused by a shock to an exogenous

variable. We report results for one shock, a permanent 2 percent change in tha basic

10

money stock of one country.® In these models, money is essentially neutral in the
long-run, but not in the short-run, and the shock immediately affects all countries
through its effects on nominal exchange rates. The solution horizon in all cases is

120 periods (40 years in quarterly data).

4.2 Hardware and Software Implementation

The models and algorithms are implemented in Portable TROLL running under
the SunOS (UNIX) operating system. Because we rely on TROLL’s Newton and
time blocking algorithms, it is important that this software provide an efficient
environment for benchmarking the déorithms. Brillet (1994) presents some evi-
dence that TROLL’s Fair-Taylor algorithm is very efficient relative to other avail-
able packages.!” The efficiency of solving multiple time periods simultaneously using
Newton’s method depends on the sparse matrix routines for handling the associated
Jacobian. The results below suggest that TROLL’s Harwell MA28 sparse matrix
routines become inefficient when the matrix size is very large.

The hardware platform is a Solbourne model 704/6E UNIX server with four
processors. When we have more than four country blocks, they share the four pro-
cessors. We have also tested the algorithm on 80486-based PCs running under DOS
and communicating across a token ring. The results, some of which are reported in

Faust and Tryon (1994), are similar to those reported below.

4.3 The Results

The upper panel of Table 1 presents results for MX-4 with the convergence criterion
set to ¢ = 0.0001. The first row gives the results for the algorithms that do not

exploit the country block structure. The baseline Fair-Taylor algorithm solved the

13 The permanent money shock proportionally changes the long-run steady-state values for certain
norninal variables. In our simulations, the terminal conditions for the forward looking nominal
variables are appropriately adjusted. The 120 period horizon used is long enough for the model to
return to the steady state.

" On limited range of experiments with a 501 equation model, TROLL’s Fair-Taylor algorithm
was five times faster in simulating than the nearest of the three other packages tested.

11

Table 1: Solution times and outer loop iterations for MX-4.

Outer loop Time blocks in middle loop
Type-CPUs 120 60 12 4 1
€ = 0.0001
[none)-1 1295 (152) 1525 (151) 1745 (63) . .
Gauss(C)-1 1069 (94) 741 (62) 463 (26) 460 (21) 180 (8)
Jacobi(C)-1 789 (61) 709 (53) 701 (32) . 299 (14)
Jacobi(C)-4 250 (61) 228 (53) 206 (32) . 99 (14)
e = 0.00001
[none]-1 11057 (1246) 11027 (926) 3681 (114) .
Gauss(C)-1 6930 (553) 5715 (398) 1038 (53) 710 (28) 289 (12)
Jacobi(C)-1 6790 (512) 5273 (354) 1054 (52) . 564 (22)
Jacobi(C)-4 2001 (512) 1787 (354) 337 (52) . 187 (22)
Time in seconds; outer loop iterations in parentheses; “.” means did not

converge; CPUs means number of processors used. The middle loop is
Gauss-Seidel over the specified number of time blocks with 2 = 2. The
inner loop is Newton.

model in 1295 seconds with 152 outer loop iterations. Reducing the number of time
blocks from 120 to 12 reduces the outer loop iterations, but raises the solution time
by a factor of 1.3. For less than 12 time blocks the algorithm did not converge.!®
This result appears to reflect numerical problems with handling the large Jacobian
rather than instabilities in the model.

The second and third rows of the top panel show impressive efficiency gairs for
the single-processor algorithms that exploit the country block structure.’® With 120
time blocks, the speedup factors relative to Fair-Taylor for Gauss-Seidel and Jacobi
are 1.2 and 1.6, respectively. The fact that Gauss-Seidel is less efficient than Jacobi
in this case is an anomaly. Reducing the number of time blocks provides much
more favorable results when the time blocking is applied to the country blocks, as

opposed to the full model. For Gauss-Seidel, using one time block instead of 120

8 The expression did not converge covers several events: a maximum iteration count may have
been reached, the algorithm may have diverged, or the algorithm may simply have stopped clue to
problems handling the Jacobian.

® Steven Symansky at the International Monetary Fund has reported similar results to the
authors using MULTIMOD.

12

blocks requires less than one-tenth as many iterations and gives a speedup factor of
5.9.

The final row of the first panel gives the results for distributing the Jacobi(C)
iterations over four processors. On a single processor Gauss-Seidel will generally
be more efficient than Jacobi for resolving interactions among the country blocks.
Thus, the gain from moving to four processors can be seen as the net effect of any
loss from going from Gauss-Seidel to Jacobi on a single processor and any gain
from distributing the Jacobi algorithm. For 120 time blocks, single processor Jacobi
takes 1.7 times as long as Gauss-Seidel; but distributing the Jacobi algorithm gives
a speedup of 3.0, for an net speedup factor of 1.8.

For a fixed number of time blocks, the maximum theoretical speedup factor
from distributing the Jacobi(C) algorithm over four processors is four. Three factors
account for the actual speedup, typically between 3 and 3.5, shown in Tables 1 and 2.
First, there are certain overhead costs associated with running the worker processes.
Second, the distributed algorithm requires inter-processor communication overhead.
Third, the distributed algorithm has a synchronization barrier: at the end of each
outer loop iteration, each worker must wait until all others have finished (worker
algorithm, step 2). Thus, if the load on the workers is not balanced, some processors
may lay idle for a time. Rough calculations indicate that over 80 percent of the
shortfall relative to a speedup factor of 4 is due to the synchronization barrier.

Finally, comparing the results for the two values of ¢ suggests that the efficiency
gain from reducing the number of time blocks grows as the convergence criterion is
tightened. With ¢ = 0.00001, the distributed Jacobi algorithm is 10.7 times faster
with 1 time block than with 120, as compared with the speedup factor of 2.5 for
€ = 0.0001. This fact is consistent with the single-time-block algorithm having a
hizher asymptotic rate of convergence than the algorithms with more time blocks.
With ¢ = 0.00001 the distributed Jacobi algorithm with one time block is 59 times
faster than the baseline Fair-Taylor algorithm.

The results for the larger model, RE-7, are shown in Table 2. Without country

13

,Table 2: Solution times and outer loop iterations for RE-7.

Outer loop Time blocks in middle loop

Type-CPUs 120 60 12 4 1
€ = 0.0001

[none]-1 6080 (97) 3939 (52) 10085 (22)

Gauss(C)-1 2541 (43) 1501 (27) 1085 (11) 1811 (6)
Jacobi(C)-1 2635 (44) 1728 (28) 2068 (21) 3446 (10)
Jacobi(C)-4 795 (44) 516 (28) 618 (21) 1073 (10)

¢ = 0.00001
[none]-1 11677 (189) 10504 (110) 21581 (44) .
Gauss(C)-1 5859 (93) 3897 (55) 2593 (22) 3458 (10)
Jacobi(C)-1 5780 (90) 5366 (71) 3875 (32) 5015 (14)
Jacobi(C)-4 1653 (90) 1569 (71) 1162 (32) 1843 (14)

See the notes to Table 1. There are 7 country blocks.

blocking, reducing the number of time blocks from 120 to 12 monotonically reduces
the number of outer loop iterations, but the effect on solution time is not monotonic
in this case. Country blocking on a single processor with 120 time blocks results in
more than a two times speedup over the baseline algorithm.

In the country block algorithms, there are substantial gains from reducing the
number of time blocks, but these gains are not monotonic, and the algorithm would
not solve at all with 1 time block. These results appear to be caused by difficulty
handling the large Jacobians—the typical country block in RE-7 is almost as large
as all of MX-4, and the U.S. model is larger than MX-4. While the benefits from
reducing the number of time blocks are not as impressive with the bigger model, the
speedup factor for the distributed Jacobi algorithm over the baseline Fair-Taylor

algorithm are slightly more impressive: 7.6 versus 5.2 (120 time blocks, ¢ = 0.0001).

5 Conclusions

The most widely used approach to solving macroeconometric models is the Fair-

Taylor algorithm, which treats each time period as a separate block and includes

14

each equation for that time period in the block. This paper explores the potential of
algorithms that exploit the block structure of macroeconometric models in different
ways. Our first variation, blocking the models by country and then distributing
the country blocks to multiple processors, reduces solution times fairly consistently.
The second variation, solving multiple time periods simultaneously within a country
block, gives mixed results. On MX-4, with country blocks of 39 endogenous vari-
ables, solving all time periods in a single block reduces solution times by a factor of
10 in some cases. On RE-7, with country blocks of between 130 and 190 endogenous
variables, solving multiple times periods simultaneously yields smaller reductions in
solution times and leads to convergencé problems when the number of time periods

solved simultaneously is large.

15

References

Armstrong, J., Black, R., Laxton, D., and Rose, D. (1994) A Fast and Robust
Method for Solving Rational Expectations Models, Bank of Canada Technical
Report, forthcoming.

Blanchard, O.J., and Kahn, C.M. (1980) The Solution of Linear Difference Models
under Rational Expectations, Econometrica, Vol. 48, pp. 1305-1311.

Boucekkine, R. (1994) An Alternative Methodology for Solving Nonlinear Forward-
Looking Models, Journal of Economic Dynamics and Control, forthcoming.

Brillet, J. (1994) Solving Large Models on Micro-Computers: a Review of Available
Packages, manuscript, INSEE.

Don, F., and Gallo, G. (1987) Solving Large Sparse Systems of Equations in Econo-
metric Models, Journal of Forecasting, Vol. 6, pp. 167-180.

Edison, H., Marquez, J., and Tryon, R. (1987) The Structure and Properties of
the Federal Reserve Board Multicountry Model, Economic Modelling, Vol. 4,
pp. 115-315.

Fair, R. and Taylor, J. (1983) Solution and Maximum Likelihood Estimation of
Dynamic Nonlinear Rational Expectations Models, Fconometrica, Vol. 51,
pp. 1169-1186.

Faust, J., and Tryon, R. (1994) A Distributed Block Approach to Solving Near-
Block-Diagonal Systems with an Application to a Large Macroeconometric
Model, IFDP No. 488, Federal Reserve Board.

Fisher, P. (1992) Rational Ezpectations in Macroeconometric Models, Kluwer Aca-
demic Publishers, Boston.

Fisher, P. and Hughes Hallett, A. (1988) Efficient solution Techniques for Linear
and Non-Linear Rational Expectations Models, Journal of Economic Dynam-
ics and Control, Vol. 12, pp. 635-657.

Gagnon, J. (1989) A Forward-Looking Multicountry Model: MX-3, IFDP No. 359,
Federal Reserve Board.

Gilli, M. (1992) Causal Ordering and Beyond, International Economic Review,
Vol. 33, pp. 957-971.

Gilli, M., and Pauletto, G. (1994) Parallel Algorithms for Solving Rational Expec-
tations Models, manuscript, University of Geneva.

Gilli, M., Pauletto, G., and Garbeley, M., (1992) Equation Reodering for Iterative
Processses—A Comment, Computer Science in Economics and Management,
Vol. 5, pp. 147-153.

16

Juillard, M. (1994) DYNARE, a Program for the Resolution of Non-linear Models
with Forward-looking Variables. Release 1.1, manuscript, CEPREMAP.

l.affargue, J. (1990) Résolution d’un Modél Macroéconomique & Anticipations Ra-
tionnelles, Annales d’Economie et de Statistique, Vol. 17.

Klein, L. (1983) Lectures in Econometrics, Elsevier, Amsterdam.

Mansur, A. and Whalley, J. (1982) A Decomposition Algorithm for General Equi-
librium Computation with Application to International Trade Models, Econo-
metrica, Vol. 50, pp. 1547-2557.

Masson, P., Symansky, S., and Meredith, G. (1990) MULTIMOD Mark II: A Re-
vised and Extended Model, Occasional Paper No. 71, International Monetary
Fund.

Ortega, J. and Rheinboldt, W. (1970) Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York.

Stevens, G., Berner, R., Clark, J., Hernandez-Cata, E., Howe, H., and Kwack, S.
(1984) The U.S. Economy in an Interdependent World: A multicountry Model,
Federal Reserve Board.

Taylor, J. (1993) Macroeconomic Policy in an International Contezt: From Econo-
metric Design to Practical Operation, W.W.Norton, New York.

van der Laan, G. (1985) The Computation of General Equilibrium in Economies
with a Block Diagonal Pattern, Econometrica, Vol. 53, pp. 659-665.

Varga, R. (1962) Matriz Iterative Analysis. Prentice-Hall, Englewood Cliffs, New
Jersey.

Wilson, G. (1993) A Glossary of Parallel Computing Terminology, IEEE Parallel
and Distributed Technology, Vol. 1, pp. 52-67.

17

International Finance Discussion Papers

IFDP
Number Titles Author(s)
1995
516 Block Distributed Methods for Solving Jon Faust
Multi-country Econometric Models Ralph Tryon
515 Supply-side sources of inflation: evidence Prakash Loungani
from OECD countries Phillip Swagel
514 Capital Flight from the Countries in Transition: Nathan Sheets
Some Theory and Empirical Evidence
513 Bank Lending and Economic Activity in Japan: Allan D. Brunner
Did "Financial Factors" Contribute to the Recent Steven B. Kamin
Downturn?
512 Evidence on Nominal Wage Rigidity From a Panel Vivek Ghosal
of U.S. Manufacturing Industries Prakash Loungani
511 Do Taxes Matter for Long-Run Growth?: Harberger's Enrique G. Mendoza
Superneutrality Conjecture Gian Maria Milesi-Ferretti
Patrick Asea
510 Options, Sunspots, and the Creation of Uncertainty David Bowman
Jon Faust
509 Hysteresis in a Simple Model of Currency Substitution Martin Uribe
508 Import Prices and the Competing Goods Effect Phillip Swagel
507 Supply-side Economics in a Global Economy Enrique G. Mendoza
Linda L. Tesar
506 The Lucas Critique In Practice: Theory Without Neil R. Ericsson
Measurement John S. Irons
505 Real Exchange Rate Targeting and Macroeconomic Martin Uribe
Instability
504 Inferences from Parametric and Non-Parametric Wouter J. Den Haan
Covariance Matrix Estimation Procedures Andrew T. Levin
503 Exchange-Rate Based Inflation Stabilization: The Martin Uribe

Initial Real Effects of Credible Plans

Please address requests for copies to International Finance Discussion Papers, Division of
International Finance, Stop 24, Board of Governors of the Federal Reserve System,
Washington, DC 20551.

18

IFDP

502

501

500

499

498

497

496

495

494

493

492

491

International Finance Discussion Papers

Titles

1995
Strategic Returns to International
Diversification: An Application to the Equity
Markets of Europe, Japan, and North America

Real Exchange Rate Movements in High Inflation
Countries

Political Competition, Casual Relations Between
Taxes and Spending, and Their Influence on
Government Size: Evidence From State-Level Data
International Stock Price Spillovers and Market
Liberalization: Evidence From Korea, Japan,

and the United States

How Wide is the Border?
Constrained Suboptimality in Economies with Limited
Communication

Saving-Investment Associations and Capital Mobility On
the Evidence from Japanese Regional Data

Convertibility Risk, Default Risk, and the Mexdollar
Anomaly

Government Budget Deficits and Trade Deficits Are
Present-Value Constraints Satisfied in Long-Term Data?

Real Shocks and Real Exchange Rates in Really Long-Term
Data

1994

Loss Aversion in a Consumption/Savings Model

Terms-of-Trade Uncertainty and Economic Growth:
Are Risk Indicators Significant in Growth Regressions

19

Author(s)

John Ammer
Jianping Mei

John H. Rogers
Ping Wang

Diane Lim Rogers
John H. Rogers

Sang W. Kim
John H. Rogers

Charles Engle
John H. Rogers

David Bowman

Robert Dekle

John H. Rogers
Shaghil Ahmed
John H. Rogers

John H. Rogers

David Bowman
Deborah Minehart
Matthew Rabin

Enrique G. Mendoza

