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ABSTRACT

We develop a general method to infer martingale equivalent probability density functions
(PDFs) for asset prices using American options prices. The early exercise feature of American options
precludes expressing the option price in terms of the PDF of the price of the underlying asset. We
derive tight bounds for the option price in terms of the PDF and demonstrate how these bounds,
together with observed option prices, can be used to estimate the parameters of the PDF. We infer the
distribution for the price of crude oil during the Persian Gulf crisis and find the distribution differs

significantly from that recovered using standard techniques.
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L _Introduction

Option prices contain information about market participants' perceptions of the distribution of
the price of the underlying asset. To recover this information, analysts typically assume a stochastic
process for the price of the underlying asset, such as Brownian motion; use observed option prices to
recover the parameters of the assumed process; and then integrate the process to recover the

distribution of the price of the underlying asset. However, in certain instances, it is more natural to

distribution.! This paper develops a method to directly estimate such a distribution from American
options and applies it to the crude oil market during the Persian Gulf crisis. We also compare our
estimated distributions to those recovered by more standard methods.

We find that the estimated distributions are consistent with the market commentary at the time,
in that they imply a significant probability of a major disruption in the oil markets. We also find that

if policy makers or analysts had used the standard Black-Scholes model, they would have generally

* Correspondence should be directed to C. Thomas, Mail Stop #42, Federal Reserve Board, Washington DC 20551; Tel: (202) 452-3698,;
Email: thomasc@frb.gov. The authors are staff economists in the Division of International Finance, Board of Governors of the Federal Reserve
System. This paper represents the views of the authors and should not be interpreted as reflecting the views of the Board of Governors of the
Federal Reserve System or other members of its staff. We would like to especiaily thank David Bates, Jon Faust, Greg Duffee, Christian Gilles,
and Ed Green for their extensive comments. We also thank Allan Brunner, Neil Ericsson, Jeff Fuhrer, Ludger Hentschel, and George Moore,
as well as seminar participants at Vanderbilt's Owen School of Management, Ohio State University, the American Finance Association winter
1995 meetings, the Bank for International Settlements, the University of Neuchatel, the Deutsche Bundesbank, the European Monetary Institute,

and the Federal Reserve Board Internationai Finance Division. Elizabeih Vrankovich and Dara Akbarian provwcu valuable research assistance.

I Other studies which focus on the asset's terminal pdf include Breeden and Litzenberger (1978), Jarrow and Rudd (1982), Shimko (1991),
and Malz (1996).



Recovering information from option prices is complicated by two factors. First, option prices
incorporate preferences towards risk as well as beliefs about outcomes. Short of modeling these
preferences or assuming that oil prices are unrelated to other determinants of investor wealth, and thus
that oil-price risk is unpriced, the estimated parameters of the stochastic processes or the implicit
distributions can only represent the risk-neutral (martingale equivalent) parameters rather than the true
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(actuarial) parameters.” Second, the early exercise feature of American options makes it difficult to
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This structure is similar in spirit to the assumption of a particular stochastic process made in other
studies (for example, the jump-diffusion assumption of Bates (1990)).” Given the wide range of
possible outcomes during the Persian Gulif crisis, we assume that market participants expected oil
prices to be drawn from a mixture of three lognormal distributions. This assumption is discussed
more fully in section [V.

" Placing structure on the terminal distribu.tib‘n. rather than the stochastic process has both costs
and benefits. With regard to costs, the recovered distribution is silent about the evolution of the asset
price prior to expiration. This means that the technique will provide no guidance for constructing

dynamic hedges or replication strategies for the option. In addition, the technique does not allow the
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martingale process. Available evidence (see Dominguez (1989), Kumar (1992) and Deavcs and Krinsky (1992)) indicates that the oil futures
price does in fact martingale. This evidence at least allows for the possibility that our recovered parameters are quite close to the actuarial
parameters.

' To our knowledge, the only attempt to estimate these distributions non-parametrically is that of Ait-Sahalia and Lo (1995) which uses intra-

day quotes for European Options.
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time series properties of the underiying asset to be used in ex-post evaluation of the modei.*
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The benefits of the technique arise from its flexibility, generality, and direciness. A
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be quite difficult. More importan
general approach since a given terminal distribution encompasses many stochastic process, where a
given process is consistent with only one terminal distribution.” Finally, as shown by our bounds, for
a given terminal distribution over the relevant horizons, the prices of American options are determined
almost entirely by the terminal distribution regardless of the stochastic process generating that terminal
distribution. Thus, most of the information in the American option prices pertains to the terminal

distribution rather than the particuiar process. A feature of our technique is that it aliows the options

The rest of the paper is organized as follows: Section II presents bounds for the price of an
American option on a futures contract conditional on the distribution of the futures price at the option's
expiration. Section III illustrates how the bounds can be used with option prices to recover‘the
distribution for futures prices. Section IV discusses the particulars of an application to the oil market,
while Section V presents the results of that application. A summary and concluding remarks are found

in Section VI.

* However, the method as a whole, rather than a particular estimate, can be evaluated ex-post using EDF tests. See Fackler and King (1990)
and Silva and Kahl (1993) for examples.

* For example, Rubinstein (1994) begins with an estimate of the risk neutral distribution at expi
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before constructing, with binomial trees, one process consistent with that distribution.
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With European style options the relationship between the distribution of futures prices and the
option price is very direct. For calls (puts), the value of the option is simply the vaiue of the portion
of the distribution above (below) the strike discounted back to the present using an appropriate interest
rate.® For American style options the relationship between the distribution and the option price is less
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um. In general, the option's value will d
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stocnastic process for rutures prices, ot just tne aisirivution 1or futures prices at tne option's
expiration. To deal with this early exercise premium we develop bounds for the maximum and

t the option's expiration, there are bounds for the option’s value which can be expressed in terms of
that distribution alone.” In the estimation routine these bounds are weighted to arrive at a predicted
value for the option.

The lower bounds are well known and stated below without proof. The upper bounds,
however, are new. Some intuition behind them is given in the text and a proof is given in Appendix .
To fix notation, let f, denote the (random) price of the underlying asset at the expiration of the option
and let X denote the option's strike price. We 'ihdéx time by periods prior to the op;(ion's expiration

and denote a period's length by §,. The total time to expiration is T. The risk-free interest rate, r,

assumed constant and the one-period discount factor in period t is e ™, while the discount factor to

the option's expiration is ¢ TT. E[] denotes expectations taken t periods prior to expiration. The

¢ See Cox and Ross (1976) for a discussion of the risk-neutral valuation technique.

" There are many bounds in the option literature, but to our knowledge this is the first set of bounds on the price of American options in terms
of the risk-neutral terminal distribution. Perrakis and Ryan (1984) and Levy (1985) derive bounds for European options in discrete time in terms
of the true distribution. Grundy (1991) derives bounds for the true distribution from the moments of the risk-neutral distribution. Lo (1987)
derives bounds on European options in terms of the first two moments of the risk-neutral distribution.
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[]. The upper and lower bounds for American calls and puts are given as

C.' = madB[f]-X, e “Efmax[0.f, -X][} §)
C.' =maxE[f,] X, e *“E[max[0,f, -X]]} @
P = max{X -E[f,], e *E[max[0.X -,]]} &)
R S @

The intuition behind these bounds is straight forward and similar for calls and puts. First,
recall that we are constructing bounds on the options prices conditional on a given distribution for f
moreover, we have assumed that the futures price martingales with respect to the probability measure

used in the expectations operator. By the martingale assumption, today's futures price, f, , equals
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today's expectation of the futures price at the expiration of the option, E[f;]. Since f, - X is the
revenue one could receive today by exercising the call option today, the call option cannot be worth

second item in the max list for the lower bound is simply the value of the Eﬁropean version of the
option.

The upper bound differs from the lower bound only by the discount factor used in the second
item in the max list. Instead of discounting the expected value of the option at expiration by the full

time to expiration, we discount it by the length of one period. To understand why this is an upper
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bound, consider the following thought experiment: Take an arbitrary martingale process consistent
with a given terminal distribution. The option has some value under this process. Compare this to a

second process which is identical to the first except that any uncertainty which was resolved in the last
period (instant) under the first process is now resolved in the next-to-last period under the second
process. Since the underlying asset does not move during the last period, there is no reason to delay
exercising the option after the uncertainty of next-to-last period is resolved--to delay would only
postpone the receipt of a certain revenue. Thus the value of the option under the second process is
higher than under the first, since it differs only by being discounted by one period less. The
experiment can be repeated by starting with the second process and resolving the remaining

uncertainty one period sooner and discounting the value by one period less. With each step we have
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constructed a martingaie p s whereby all of the uncertainty is revealed next period. Under this
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prULCb LIIC UpllUIl > vaituc 1> BIVC 1 ad Il uic uppcx vuUuliJ.

As shown in the appendix, with continuous trading the upper bound is simply the

III. Recovering the Distribution

Equations (1) - (4) give bounds for American option prices t periods before expiration in terms
of the interest rates, strike prices, and the period t distribution for futures prices in period 0. To
recover this distribution from actual option prices we need to construct a point estimate for the option's
value from the bounds, impose some structure on the distribution, and clarify exactly what information

the option prices contain.

¥ On June 24, 1993, NYMEX began trading on its Access System which allows trading between 5pm and 8am EST. These extended hours
may justify using the continuous-trading upper bound for data after June 1993. As a practical matter, however, for interest rates less than 20

percent, the upper bounds for continuous trading and overnight holdings will differ by less than 0.05 percent.
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Let g(f, ; 8) be a parametric distribution for the period 0 futures price which traders use in

D>

conditional on the estimated distribution. To generate such an estimate we weight the upper and lower
bounds computed above. A natural way to interpret where the actual option price falls between the
bounds is in terms of how quickly the market expects uncertainty about the future value of the
underlying asset to be resolved. If the market expects the uncertainty to be resolved relatively quickly.

then the option’s value will be close to the upper bound; if traders expect the uncertainty to be
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this expected speed of resolution. Given the nature of the uncertainty about oil prices during the
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crisis, we designed the weighting scheme so it could capture different speeds of resolution for the

upper and lower tails of the distribution, In particular, we chose to estimate two weights. The first
weight, w,, captures the speed of resolution in the lower tail and is used for all call options that are in

the money and for all put options that are out of the money, i.e. (f, > X). The second weight, w,,
captures the speed of resolution in the upper tail and is used for the calls that are out of the money
and the puts that are in the money, i.e. (f < X).

The actual option prices can be written in terms of estimated parameters of the

assumed distribution and an error term as foliows:
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where i = 1 if ﬁ [f,] > X and i = 2 otherwise.
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The error, € , will be the result of any error in estimating the weights or the parameters of the
distribution plus any noise in the system, two examples of which are immediately obvious. First, as
the same weights are applied across all options for a given contract/day, there will be a pricing error
induced by weighting the two bounds. Second, actual option prices are rounded to the nearest penny,
also creating errors in the equation.

111.2 Functional Form of Distribution

In choosing a functional form for the estimated distribution we tried to balance flexibility,

parsimony, and ease of interpretation. For reasons explained in Section IV, we specify that the futures

price at the option's expiration is drawn from a mixture of three lognormal distributions (hereafter
MLN).> More formally, the distribution function for futures prices, g[], is given by
glf,) =m,g,[f;] +m,g,[f] +m,8;[f;] ™
where
I'4 R \ [{ 1o/ €Y oy \2 1 fON
Hig1,) i,
gl — exp[ i J/2} N
y2n o f, 9;

Using equations {5) and {6), a pricing equation can be written for any option in terms of
. O
eleven parameters ((T;, p;, O;, W;, W) i =1,2,3) and three observables (X,e e

The parameters of the model, exemplified by equations (5) and (6), are estimated by
minimizing the sum of squared errors for all options on a given contract/day, imposing the following

constraints:

° This mixture assumption was also used by Ritchey (1990) who derives European options prices when the pdf is a mixture of lognormals.
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Ym=1; 0<w <1,
ﬁ;’l i :

The restriction on the sum of the ns reduces the number of parameters from eleven to ten. An

i =1, 2. ®

additional restriction could be imposed by noting that under the martingale assumption E[f;] = f,.

However, as discussed in Section V below, price limits on the futures were binding for about eighty

contract/days during the period. On these days, the futures settie price did not refiect its expectation
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anda mis parameter resuiclion wouid not oe valia. i 4adiioin, vy not Hnposing uis 1esuiction, we
were able to use the futures price as a measure of the goodness-of-fit for the estimated distribution.

In the previous section, we claimed that for reasonable discount factors, the bounds are quite

close, so a weighted average of them is a good approximation to the option's value. Chart One gives a

feel for how close together the bounds are using the estimated distribution for a typical day. The two

p

O

anels plot the distance between the bounds both in absolute terms and as a percent of the actual
ption price.

For the day plotted, the options had 38 days to expiration and the reievant T-bill rate was

about 7 percent. Thus the discount factors in the formuiae for the bounds differed by about 0.8

the difference between the bounds was about 0.8 percent of the option price. For the puts, none was

sufficiently in the money for the lower bound to be determined by the value of exercising today and

the bounds differ from each other by about 0.8 percent. For the very low priced puts (with strikes

b

elow $20), the estimated upper bound was below the actual option price, thus the width of the

bounds falls to less than 0.8 percent of the actual option price.
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pricing literature is that the underlying commodity price follows a geometric Brownian process, which
implies that the futures price at expiration will be drawn from a single lognormal distribution. This is
the assumption behind Black's (1976) model for pricing European options on futures. Several
approximations have been developed to price American options under this "standard" assumption, with
the quadratic approximation of Barone-Adesi and Whaley (1987) (hereafter BAW) being the most
easily calculated and most commonly used.”” We constructed a "standard" model by assuming that
prices will be drawn from a single lognormal distribution and used the BAW approximation to
generate option pricing equations. We recovered the 2 parameters (p, and o) of the single lognormal
(hereafter SLN) distribution by minimizing the sum of squared deviations of predicted from actual

f 1 L § ¥ 2. USSR PE U |

drawn from a single lognormal distribution, while MLN assumes that the futures price at expiration
will be drawn from a mixture of lognormal distributions. SLN is almost nested within MLN, except
that SLN uses a different technique to account for the early exercise premium. This non-nesting will

become important when the two models are statistically compared.

), when studying a more tranquil period in the oil market, aiso recovered the parameters of a single

s
s the narameters from the standard Rlack-Scholes ontion pricing model
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functional form for the distribution interact. The part of the bounds formulae that shed light on the
higher moments of the distribution are the terms of the form E[max[ 0, f,- X]] and

E[max[ 0, X - f;]]. These two terms can be written as (E[f, | f, > X] - X) - Prob, [f, = X] and

(X - E[f, | f, < X]) - Prob, [f, < X]. It is clear that even if there were no errors in the pricing
relations, the fact that strikes are at discrete intervals and, more importantly, that they do not span the
entire support of futures prices places an important limitation on what the option prices can reveal

about the distribution. The recorded option prices only contain information about the conditionai

avmantatine oA el oLt ot L LMt o Cal ik, 1Y 4bhn cacesaia 4 lanlacs, ¢ho
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lowest strike, 2) the segments between each strike, and 3) the segment above the highest strike. In
particular, if X; and X,; are the lowest and highest strikes, then all the information revealed by the
options will be in terms of the following:
. (10)
E [f|f,<X] - Prob[f <X ] (10)
E[f)|X,<f,<X] - Prob[X,<f,<X] X <X <X <X, (11)
. (12)
E[f|f,>X,] - Prob[f>X ] 12)

Any number of distributions could generate the same results for the conditional expectations
and probabilities in (10)-(12). For example, for any given distribution we can construct a second

distribution out of a series of non-overiapping uniform densities which wiii be observationaily

Q1 an any agti a 1t 1an raanireg carafiill intarnratation egnacially in tha
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regions below the lowest strike and above the highest strike. For crude oil, strikes are almost always
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$1.00 apart (in a few instances $5.00), allowing a fine demarkation of the distribution within the range
of strikes. In the tails beyond the strikes, however, we have information only on the conditional
expectations and the probabilities. Thus the shape of the distribution in the tails will depend
importantly on the functional form assumed for the distribution. Chart Two illustrates this point with
three observationally equivalent distributions. The solid line is a mixture of three lognormals, whiie

the dashed lines replace the upper tail with uniform densities that yieid the same results for (12).

value of the option in equations (5) and (6). The settle price is determined at the end of each day by a
settlement committee made up of roughly 20 options market participants. The committee frequently
relies on the average of bid and ask prices during the last minutes of trading as starting points for the
settlement prices. Heavily traded options are priced first, with put-call parity used to price low volume
options at the same strike when the futures market has settled. In the event of a limit move on the
futures market'', the settlement committee relies on options on the unconstrained spot or nearby
contract and spread trading.'”” Using settle prices avoids the problems associated with asynchronous
quotes inherent in transaction data.

During July 1990 through March of 1991, trading was concentrated in seven contracts. For

each contract/day, all option prices that were recorded with no open interest, no volume, and no

'" There were no price limits in the options market. Over the entire sample there were limits on crude oil futures price changes for all
contracts except for the one closest to expiration. In December of 1990 the limits on crude oil futures price movements were widened
substantially.

"2 We are grateful to NYMEX Board of Directors member Jim Zamora of ZAHR Trading an
S

their descriptions of the settlement prices.
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each of the contracts after the exclusions.

Table 1

Number of Range of Range of

Contract Estimation Total | Total Options per Strikes per | Futures Prices per
Range Days | Options Day Contract ($) Contract (9$)

Min | Max | Min | Max Min Max
Oct 90 7/2/90 - 8/29/90 41 1254 17 42 14 37 17.74 31.93
Nov 90 7/2/9G - 10/4/90 66 2335 15 57 15 45 18.11 40.42
Dec 90 7/2/90 - 11/1/90 84 3150 13 55 15 44 18.38 38.80
Jan 91 7/2/90 - 11/29/96 104 3889 13 48 16 42 18.55 37.30
Feb 91 8/2/90 - 1/3/91 104 3866 11 43 5 51 23.27 35.95
Mar 91 9/16/90 - 1/31/91 99 3588 12 51 10 50 18.99 34.53
Apr 91 8/1/90 - 2/28/91 144 4827 11 44 10 45 17.91 33.21

Daily prices for the seven Treasury bills that matured as close as possible after the options
contracts expired were used to calculate the discount factors. For each contract/day there are N (# of

options) equations iike (5) and (6) that form a constrained, noniinear minimization probiem. Among

TV

> One day's worth of data for the December contract was aiso exciuded due to an obvious error in data entry on the part of NYMEX.



V.2 Estimation

Throughout the Persian Gulf crisis, market commentary focused on three distinct
outcomes: 1) a return to pre-Crisis conditions (e.g. Iraq would peacefully withdraw from Kuwait), 2)
a severe disruption to Persian Gulf oil supplies (e.g. damage to Saudi Arabian facilities during a war),
and 3) a continuation of unsettled conditions over the relevant horizon (e.g. a prolonged stalemate in
which outcome 1 or 2 might eventually occur). Given these three possibilities, we chose a mixture of
three lognormals as the form of the distribution to be estimated. If in fact market participants felt that
prices were likely to be drawn from a tri-modal distribution, this could be easily captured by the
mixture. Moreover, the mixture could also easily accommodate a single lognormal distribution if that
would best fit the data (e.g. m, = m, = 0). Ex-ante, we expected that as news hit the market, the
relative weighting of the three lognormals might change, as well as the parameters of each of the three
lognormals. For example, news of an Iraqi rocket attack on a Saudi Arabian oil field might increase
the weighting on the lognormal distribution with the highest mode, as well as increase the relevant
range encompassed by this lognormal distribution. Section V presents estimated distributions for
selected events during the Persian Gulf crisis.

Estimation of MLN and SLN was performed with the Numerical Algorithms Group (NAG)
FORTRAN algorithm EO4UPF on an IBM RS-6000. Bounds for the parameters weré set so that
0 < ﬁi <o, 0.0001 < cAsi < ." Analytic derivatives were provided for both estimations. The
derivatives were calculated using Mathematica and they were numerically verified within the EO4UPF
algorithm prior to estimation. (Details of the estimated equations are relegated to appendix II.)

The estimation procedures are illustrated in Chart Three. The top panel plots the estimated
density function using both the MLN and SLN models. Given the density from the single lognormal,

the BAW formulae give predicted values for the option prices. The triangles in the lower panels plot

' In addition, each (u, o) pair was restricted such that the probability of the futures price reaching $150 per barrel was less than 5 percent,
under each of the lognormal distributions. These bounds prevented the algorithm from taking unreasonable first steps.



weighted average of these bounds, where (as noted above) the weights are determined in the
minimization routine. The boxes plot the difference between the option prices predicted from the
MLN distribution and the actual prices. We note that this same MLN distribution was used to draw

the plots in Chart One."

V. Resulis
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estimate of the mean of the distribution.) The percentage mean absolute difference (PMAD) between
the mean from MLN and the mean from SLN was 0.1 percent. The PMAD between the mean from
MLN and the actual futures price across all contract/days amounted to 0.45 percent, while the PMAD
between the mean from SLN and the actual futures price amounted to 0.51 percent. Even though they

are small, these latter measures significantly overstate the difference between the estimated mean and

the true mean, because they inciude days for which the futures price was subject to price iimits. This

~ | T, Y4\ WSV 5 G RTR . M PO S Y o oSN IS el NAY WT 2t a1 i IS I R _
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price against the daily movement in the futures price. Note that the contract/days for which there was

15 The bounds and errors plotted in Charts One
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technical reason: The minimization routine behaves si gmﬁcant]y better if the objective function is differentiable and if analytic derivatives
are supplied. The derived formulae for the bounds are not differentiable since they include the max operator. In estimation, we used a logit
weighting scheme to construct a differentiabie approximation to the max operator where the weights on the two items in the max move to
zero and one as the items more farther apart. The data nlnmad in the charts were constructed |mno the actual formulae for the bounds, rather

than the differentiable approximation, togethcr with the estlmated distribution and weights.
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a substantial discrepancy between MLN's mean and the futures price (points off the horizontal line

a o

through zero) were the contract/days for which actual futures prices moved exactiy $1.00, $1.50,

$2.00, $3.00, or $4.00, that is, contract/days for which there was a iimit move on the futures contract.

As discussed above, there were no limits in the options market, hence the mean from MLN on these

the bottom panel uses estimates
Prior to the outbreak of the crisis there is little qualitative difference in the two estimates, while d-uring
the crisis the estimates from SLN cannot as easily accommodate the significant probability mass above
$50 per barrel without over-weighting the distribution between $40 and $50 per barrel.

Chart Six attempts to shed some light on the differences between the right hand tails of the
two estimates, using the April contract as an example. The top panel plots 1.25-f, along with
E[f,|f, > 1.25-f, ] from MLN and SLN. The bottom panel plots Prob, [f, >1.25-f, ] from the two
models. As can be seen from the chart, the conditional expectation from MLN is generally above that
of SLN, while the probability that the futures price will rise by 25 percent is generally lower in MLN
than in SLN. The reason for this result is visually apparent in the bottom panel of Chart Five.
large o, estimated via SLN forces relatively more of the probability mass to the right but, since the

S Anl laawvac +L
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the rignt-nana mass nearer tne uncon

Th 1+
mean. These results hold across all the contracts. For 574 out of the 642 contract/days the conditional
expectation from MLN is above that of SLN. For 476 out of the 642 contract/days the probability of

analyst were using the SLN estimates when the MLN were closer to the truth, she would tend to

Q
=
)

overestimate the market's assessment of the probability of a major disruption while underestimating the
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impact on prices of such a disruption.
These differences in the right-hand tails of the distributions are aiso apparent when

P | AR ]

he right-hand tail of the distribution will

indicating that SLN did not allocate enough probability mass to the right-hand tail. As might be
expected, SLN tended to overpredict the prices for in-the-money calls (mean error of -$0.0430) and
out-of-the-money puts (mean error of - $0.0388), an overallocation of probability mass to the left-hand

tail of the distribution.

Table 2
Mean Pricing Errors
(Actual - Predicted, $)
In the Money Out of the Money

Calls Puts Calls Puts

(X<h) o) (X>1) (X<f)
SLN -0.0430 0.0445 0.0865 -0.0388
MLN -0.000!1 -0.0004 0.0005 0.0013

rom ML

N and those from SLN are apparent,
it may be the case that these differences are not significant in a statistical sense. This issue is

complicated since the SLN model cannot be nested within MLN.'  Since the models are not nested,

'* The nesting issue is as follows: We have two competing non-linear models that explain a vector of option prices (y) on any given day.
Denote them by MLN: y = gin,, &, ®, 4y, Ky Wav Gy, Oy, O3, W,W, | Z] and SLN: y = hip, o [Z], where 7 is a data matrix containing
strikes and interest rates, g[] involves the weighted bounds and h{] involves the BAW approximation. If ¢[} and h|] did not represent

different functional forms, SLN could be nested within MLN with the restrictions (nr, =%, =0,0rpn, = u, = p, and o, = G, = G,).



18

the asymptotic, chi-square assumption cannot be used when forming a likelihood ratio test (or its F-test

analog). The standard tests for formally comparing such non-linear, non-nested models are the J and P

vy ; 1 o)

(or JA and PA) tests.'” We use the P test, which compares the two models with the following

regression
2 23 A oae fA _A N 1 racidial (13)
°l; - ul,j P T \pl,j -Pl,j} TIO>IUuuali, N7
AL .. L . N .
where ¢€,; is the pricing error for option "j" from modei 1; d,; are the derivatives of model 1 with

respect to the parameters of model 1 for option "j" evaluated at the estimates for the Model 1
N N R = R ) _ . o . .. - . ~
parameters; p,; and p,; are the fitted values for option "j" from the two models; B 1s a vector ot
coefficients with length equal to the number of parameters in model 1; and a is a single coefficient.
The P test is simply the t-statistic for a.. Intuitively, the difference in the fitted values from the two
models should not help explain the errors of model 1. Hence, model 1 is rejected in the event of a

= 2T =T T :

significant t-statistic for a. Obviously, SLN and MLN can both serve as either model 1 or modei 2.

Table Three presents the t-statistics for a, after equation (13) has been pooled across options and
trading days for each contract. The first two columns of the table treat SLN as model 1 (with degrees
of freedom denoted by DF), while the last two columns treat MLN as model 1.

Every t-statistic in the first column is significant at the 5 percent level, while no t-statistic in
the fourth column is significant at the 5 percent level. Clearly, the difference in the fitted values from

available evidence (the data and MLN) can reject SLN, but MLN cannot be rejected.

'7 See MacKinnon (1992) for a discussion of these tests.
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Table 3
P Test t-statistics
SLN as Model 1 MLN as Model 1
Contract t-stat DF P-value t-stat DF P-value
October 133.98 590 0.00 -0.29 581 0.61
November 172.98 1329 0.00 0.27 1320 0.39
December 130.71 1958 0.00 0.83 1949 0.20
January 122.75 2504 0.00 -0.12 2495 0.55
February 164.54 2504 0.00 -1.28 2495 0.90
March 219.26 2242 0.00 -1.08 2233 0.86
Aprii 260.51 3020 0.00 -0.44 3011 0.67
MacKinnon (1992) notes that the P test can have poor finite sample properties, especially when
Mode! 2 has a large number of parameters. For example, in the limiting situation where a completely
over parameterized Model 2 exactly matches the observed option prices, the regression in (13)
r J r r > & \ J

collapses with an infinite t-statistic for a. Given that MLN has 11 parameters and that the average
trading day has roughly 35 option prices, there may be reason to question the results of the P test. To

ensure that this is not the case, we ran the following Gauss Newton Regression (GNR) described in

MacKinnon (1992) where d,; are the derivatives of model 2 with respect to the parameters of model 2

A 3 =1 .
=d B +d, .y + 14)
€,,=d,; B d,;y +residual (
1 nn ndantly, ~ a data ion A aotitmata madal 1 Th Acn
for option "j" evaluated at a point chosen independently of the data used to estimate model 1. These
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help explain the errors from Model 1. Table 4 presents the F-tests for y = 0.

Table 4
GNR F-Tests
SLN as Model 1 MLN as Model |
C ontract F-test DF P-value F-test DF P-value
(n,d) (n,d)
October 94.77 11, 1031 0.00 0.02 2, 1031 0.98
November 197.32 11, 2045 0.00 0.01 2, 2045 0.99
December 275.64 11, 2872 0.00 0.54 2, 2872 0.58
January 264.02 11, 3638 0.00 0.86 2, 3638 0.42
February 297.17 11, 3638 0.00 0.06 2, 3638 0.94
March 428.72 11, 3321 0.00 2.50 2, 3321 0.08
April 462.05 11, 4594 0.00 0.89 2, 4594 0.41

The conclusion is the same as that of the P-test, SLN is rejected while MLN is not."

V.2 Selected Events

Throughout the Persian Gulf crisis, the oil market often experienced large price movements as
"news" hit the market and participants revised their expectations concerning likely outcomes to the
crisis. Comparing the estimated PDFs from the two models immediately before and after the receipt
of "news" allows us to infer how the market interpreted the news and further highlights the differences

between the MLN and SLN models.

' When SLN is treated as Model | in equation (14), the derivatives of MLN were evaluated at 6, = 6, = 0; = 2, W, =W, = 5,
w=Inf)-o12. p, =95-pn,, py =105-p,, m =n,=.1,and =,=.8. Given that the futures price for a given trading day was
not used in the estimation of the parameters for either MLN or SLN, these derivatives, given SLN is correct, will not be correlated with the
errors from SLN. When MLN is treated as Model 1 in equation (14), the derivatives of SLN were evaluated at the estimated values of p and
o from SLN. This is a conservative approach that increases the likelihood of a significant F-statistic.



On Thursday October 25,
attached explosives to 300 of Kuwait's 1000 oil wells, quoting a senior Kuwaiti engineer who had left
Kuwait one week earlier. This revelation pushed oil prices up sharply, with the futures contract
nearest to expiration (December) rising $3.17 per barrel. Chart Seven plots the PDFs from MLN and
SLN for October 22 (top panel) and October 25 (bottom panel) using the January contract. On October
22, market expectations for futures prices were centered quite tightly around $24 per barrel. The news
of the mining widened each model's distribution significantly, with MLN allowing for a sizeable

] L 4 B 1 4 - N 1 0N 1. ~1
prooabiiity mass petween »oU and »/VU per barrel.

settle price for the March contract fell $9.66 while the settle price for the April contract fell $7.82.
The six panels of Chart Eight trace the evolution of expected PDFs on the days surrounding January
17. Prior to the first air strike (as can be seen in the first two panels), the market was still expecting a
fairly significant chance of a major oil market disruption (perhaps Iraqi damage of Saudi Arabian oil
facilities) that could push prices to the $40-$60 per barrel range. On January 17th these PDFs

LN moved closer and closer to

tlint Lmeas QT AT De; Ynwmerame: V2 thanewn wxines littla AifCncnmnn hatresrane tha 32 DML aa +ha snnnl A6
tidt 11Ol SLIAN DY Jaliualy <o, uici wdad HLULLIC UHLICICIILT DCLWCCE LT LWU TS, dad LUIC IHlalket
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VI Conclusion

This paper develops a method for using option prices to infer the market's probability
distribution for commodity prices. The method is quite general, allowing the standard lognormal
distribution to be replaced by any from within a wide class of distributions. The particular assumption

of a mixture of three lognormal distributions used here was driven by conditions in the oil market



sulf crisis. As the focus is only on the probability distribution of the commodity
minimal structure is placed on the stochastic process governing movements in the commodity
price over time. This lack of structure is appealing since we generally have little a priori information
about the stochastic process that market participants have assumed. Our methodology should be useful
to researchers who wish to impose a minimum of structure and are 1) examining other markets during
unsettled times, or 2) investigating asset price distributions that are not adequately described by the
lognormal distribution (e.g. leptokurtotic distributions). For example, in the foreign exchange market
it can be used to shed light on the "Peso problem." Or, in the money market, it can be used to infer
the market's assessment of possible changes in monetary policy."

In the application to the oil market we find that the options prices were consistent with the
market commentary at the time, in that they reflected a significant probabiiity of a major disruption in

oil prices. We find that the estimated price of oil conditional on a major disruption was often in the

ctandard lagmarmal acanmntinn did a nanrar inh of charantarizing tha data than did Aanr madal and tha
Staiiadiu 10ENUNTAL adSSullipiivii Ulu a puuvltl JUu Ul LilalavivliZilig Ui Udta uidil diad vul ivuvt atid uiv
twa madele have different imnlicationg In narticular comnared to onr maodel the loonormal model
LYYU (1IVUVID HIAY W uUlllvwiwviiL llll})llv“tl\.}lls) AkK tlull-lv\-llul, \t\llllyul\'\‘ LUV TV MWEy v VsV eV

implies an overestimate of the market's assessment of the probability of a major disru

underestimate of the impact on prices of such a disruption.
Finally, examination of particular days confirmed the large shift in market expectations that

occurred when significant crisis-related news reached the oil market.

" Deutsche Bundesbank (1995) provides examples using related technigues.
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Theorem One: If the asset, f , underlying an American op

tion is a martingale, then in discreet time

an upper bound for the call option's value, in terms of the terminal distribution for the underlying

r . 1
asset, is given as follows: C," = maxILE,[f,J -X, e™.E ,Jtmax[ 0, £, =X]||, where f, is the asset price at
v v pii}

expiration of the option; X is the option's strike price; r is the (constant) risk free rate of interest; 3, is
the minimal time interval between trades/exercise at period t; and E, denotes expectations taken t

periods prior to expiry. If trade is taking place continuously at time t, then the upper bound is.

= Ei[max{ 0, f, —X]] which is the undiscounted European value. Similarly, an upper bound for

[ r 1]
the American put option is as follows: P = maxILX -E[f], e e E!Imax[ 0, X —f0]|

Proof: Discrete time: Let J = {1, 1,, ...T,...} be a countable set of points in the interval [0, T}]

'

\%

representing the remaining life of the option, with t,= 0, and (i > j) = (7, 2 7). Eache

represents a point at which the option can be traded/exercised. Define 8 = 1-1,and note 5, >0

vVt 1.
[ o oI - g
The proof is by induction. Let C xlE‘[fo] -X,e - E t[maxlO R XJU Step One
shows C, =C," , implying C,". Step Two shows that (Ct < Cl“) :>(CM < C‘:) Thus by

induction C, < C," Vt > 1.

I-——l
><
o
[¢]
=
=
o
3

—~

<

N

I

= max[0,y]. Since m() is convex, by Jensen's

Step One: The value of an American call option at expiry is
C, =max0, f, -X] =m(y,) - (AL1)

Its value one period prior to expiry is
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| (A1)
J 1 \nl."
maxE,[f,] -X. e - E[max(0, f, -X]]] =C’
which completes Step One.
Step Two: We want to show that (C, < C,") = ( C, < C,). The value of an American
option can be written recursively as follows
= 8., ] - {Al1.3)
C,, =maxly,, e ™ E,[C]| vVt 20 and C, =m(y,)
By assumption, C < C.°, thus
C,, < maxly,,, e ™ E[C"] @9
Substituting for C *,
1=} ~p o3
T A il (ALS5)
C,, < maxy,,, e ®E,maxy,, ¢ E[m(y)]]]| .
Since m(y) > y, replacing y, with m(y, ) can only raise the RHS, thus
r ‘ 1 ALG
C < navl., e [mw[mr.,\ e L Elm(v \1]” (A1.6)
o = At_y“{, < p!"lluaz\[ux\.y‘}, < h'llll\_yO}]JJJ .
o [N DU PRSP RO ol R I
dince y martingaies, we Can repiacc y, witilt Gy yo]-
B U TOP T | (AL7)
C., < maxlyM, e " -Emlmax[m(E‘[yO]), e Et[m(yo)J”J
Since E[m(y,)] = m(E[y,] replacing m(E[y,]) with E[m(y,)] can only raise the RHS, thus
{' 1
~ _ _‘,..J - LI o) [__-_.[r.‘ 7o \1 ®, nro.s \1ﬂ| (AI.S)
Ciq S Maxyy,,, E,,|maxE [m{y,)], e = - Eim{yp)ij]] -
Since e ™ <1,e™ E [m(y,)] < E[m(y,)] and e .. E[m(y,)] can be removed the interior max



C < mav[‘, e 3, R
td = BATE

] _ (AL9)

By iterated expectations we have

N

-~ ) " 48 . - r . '1]
C. S maxyy,, e Bi, E..jm(yo)|| =

e (A1.10)
max[Em[fc] -X, ™ E:%[ma)([ 0, f, _X]Ll =Ca
This completes Step Two and thus the proof.
v r SR RIS N R
Continuous Trading: Note that
E[f,] -X < E[max[0, f, -X]] . (AL.11)

First take the case in which the period t distribution for f, has some mass below X, so that the

5

inequality in (A1.11) is strict. There is a 8' s.t. V8, < 5, , € *sl-E'lrmax[() , £ -X]

> E[f] -X> and

J

the upper bound can be written as

C'=e™. Ei[maX[O , 1y —X]] for all 6, < g_, (Al1.12)

Taking the limit as the interval between trades/exercise goes to zero yields:

5 -0 G =E[max[0, f -X]] (AL.13)
which is the undiscounted European value of the option
If (A1.11) holds with equality, then
=3 . o< <
E[f,] -X = EJmax[0, f, -X]] > e ™ E[max[ 0, f, -X]] (AL.14)

which again leaves the upper bound equal to the undiscounted European value.

The proof for puts is identical to the above with y = X -f replacing y = f - X.
Y . TeP g Y, t
h

chind the result. Melick
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given in Section II of the text.



Estimation Details

MLN Modei

Equations (5) and (6) in the text give the pricing equations for puts and calls in terms of the

bounds derived in Appendix I. They are repeated here for the reader's convenience
C[X]=W.-C [X:81+(1 -w.) C'[X;8]1+£ [X] (A2.1)
[{She¥ | it [ St 'S BN it/ (S it RS | ctL” —J
- ury. 5 .1 +8 A2.2)
P[X]=W, P[X;6]+(1-W,)- P [X;0]+£ [X] ( )
Substituting for the bounds using eguations (1)-(4) and noting that
UiV o f=) e | \N*/7 \"J o
E[.mau.[ 0,z }] =E[z !zz 0]-Pr{z>0] yields pricing equations written in terms of the terminal
distribution.
CIX] =W, - max E[6]1X , e (B, 2X] %0 Br{f,2X] | +
i 0 4 0'70 —
t it t t (A2,3)
s AN f Sre1 v «T e lewwvr vy Bore v ] a rvi
(1-w,) - max E[f)]-X , e (E[f; [ 2X]X)-Pr{f2X] | +£&.[X]
0o e e ]
T
P[X] =w,-max X -E[f], e (X -E[f, If,<X])-Prlf,<X] | + o
| : (A2.9)
(1 o ) ..‘,.‘,[ v Bl o1ty _Bre le vl Bere <1 ' + 2 X1
U -W,) - maxy A-p iy, € \A B, BSAJFETUHESAL | T E A
It is assumed that the distribution for futures prices (f;) is a mixture of lognormals i.e.
g[fo] =7t1g|[fo] +n2g2[fo] ‘*Tt3g3[f0] (A2.5)
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Using the properties of the lognormal distribution, the terms involving the expectations

operator in equations (A2.3) and (A2.4) may be substituted for as follows:

\T R N

[ N
3 2
Vs r l X N
Prif,>X] =Y =, {1 @{ InDX] H (A2.7)
i N OTI
3 | InfX14, |
Prf<X] =3 m - @ —— | (A2.8)
= L o |
[, 1r 1 ;1 )
M...I G; +2l»li H,“| ln[X] _“i—ﬁi 1 l
3 CAp) ) ! l '*’I |__ I (A2.9)
| L) L 4 Gi 2
E[f, If=X] =), - TESX —
S Pr[f >X]
E[f, lf,<X] = E[f)] - EIf lf>X] (A2.10)

where @ represents the cumulative normal distribution function.” The pricing equations are now

A final difficulty is presented by the non-

- ®The mean of the lognormal distribution is exp[u+c?/2}. Calculation of (A2.9) and (A2.10) used integral 3.322 from Gradshteyn and Ryzhik
(1980).
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differentiability of the max operator in equations (A2.3) and (A2.4). Constrained, nonlinear

nrovided Therefore. we renlaced the
yt vatiy providea. I'herefore, we replaced the

=}
(¢,3]
=S
B
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e
«
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>
[ ]
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P
N’

(A2.12)

The SLN Model uses the approximation of Barone-Adesi and Whaley (1987) (BAW) to

normal (u; and ;). In our notation,

(r‘rl‘1\q1[0h] PR P,
R B
CIX] = dE[f,0,X] + A[f 10, X]|—==|  when EJf]<f* (A2.13)
L 3 L tv s b J 2 b Jk f‘ J ™ u
C[X] =E[f] -X when E[f]>f* (A2.14)
[{hd | tL20d tL=0d

where

c[E[f,).0,,X] = E![fo]-e‘T-(D[d![E'_[fO],cb,X]] -

X.e T. q)[dz[E‘[fo],cb,X]]

[ . \
Aff0,X] = —2{l-e T Old,[f0,X])



o] 1o
o] = \JI oy (1-exp{+T])
2L D 2
[E[f1] s T
ln| tL 0J|+ b
| X 2

[ 2|

, + 2|

Elf]l =exnlu +———

tL=0d rlrb 2 J

The term f* is the "critical commodity price," and is solved for implicitly according to
1 aldfo X+
£ =X =c[f*6,X] +- [SL0p 2l (A2.15)
SHCA

Seameme oo 4l o

ve for . To improve the estimation of y, and o, , derivatives were provided
to the NAG minimization algorithm EO4UPF. Given the option pricing formula (equations (A2.13)
and (A2.14)) is not differ
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(A2.16)
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