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Abstract

Textbook approaches to forming asymptotically justi�ed con�dence intervals for the

spectrum under very general assumptions were developed by the mid-1970s. This

paper shows that under the textbook assumptions, the true con�dence level for these

intervals does not converge to the asymptotic level, and instead is �xed at zero in

all sample sizes. The paper explores necessary conditions for solving this problem,

most notably showing that under weak conditions, forming valid con�dence intervals

requires that one limit consideration to a �nite-dimensional time series model.



Theoretical con�dence level problems with con�dence intervals

for the spectrum of a time series

1Jon Faust

Often we wish to make inferences about the spectrum of a time series and have

little a priori basis for restricting the class of possible processes. It is well known

that the formation of con�dence intervals for points on the spectrum requires var-

ious assumptions beyond, say, those implied by stationarity. By the early 1970s,

however, there were textbook approaches to forming asymptotically justi�ed con�-

dence intervals under very weak restrictions [Hannan, 1970; Anderson, 1971], and

these approaches remain standard [Priestley, 1981; and Brockwell and Davis, 1991].

The con�dence intervals are based on asymptotically normal point estimates of the

spectrum.

This paper shows that under the standard assumptions the textbook con�dence

intervals|and any other con�dence intervals|have con�dence level zero in all sam-

ple sizes. The formal explanation for the textbook case is that the convergence to

normality of the point estimates is not uniform. There are two natural solutions

to the con�dence level problems: (i) impose further restrictions, or (ii) change the

parameter of interest to be, for example, the average of the spectrum over some

interval. The paper characterizes necessary conditions for valid con�dence intervals

to exist under each of these approaches.

The most notable result is that under some weak and appealing conditions,

meaningful con�dence intervals for points on the spectrum exist only if the main-

tained model is restricted to a �nite-dimensional space of Wold (moving average)

representations. This rules out valid con�dence statements when using in�nite-
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dimensional models common in both parametric and nonparametric work. The

results are shown using the topological approach of Sims [1971,1972]

Often in econometrics we base asymptotic inference statements on pointwise con-

vergence of estimates, rather than uniform convergence (see, e.g., Hanson [1996] for

a recent example and discussion). In some cases, this may be justi�ed by the knowl-

edge that, say, convergence is uniform on compact subsets of the stated parameter

space. Sweeting [1980] states a useful result of this sort. In such cases, there may

be many di�erent sets of assumptions that are su�cient for compactness, but no

known additional necessary restrictions. In contrast, this paper shows that under

weak conditions, there are additional simply interpretable necessary conditions for

forming con�dence intervals on the spectrum. The practical importance of these

results is discussed in the �nal section.

1 Standard approaches to spectral inference

Begin with a sketch of the textbook approach to forming con�dence intervals for the

spectrum [e.g., Anderson, 1971; Brockwell and Davis, 1991; Hannan, 1970; Priestley,

21981]. The standard approach is to specify a smoothed-periodogram point estimate,

establish its asymptotic normality, and form con�dence intervals around the point

estimate based on the asymptotic standard error. The proof of asymptotic normality

3of the smoothed periodogram estimates is based on assumptions like the following:

Take the set of univariate, real, time series processes, fy g satisfying,t

P
1A 1 y = a " .t j t�jj=0

A 2 i) The " are independent and identically distributed and parameterized by  2t
2 4	, ii) E[" ] = 0, iii) E[" ] = 1, iv) E[" ] < 1, iv) The probability measure for "t tt t

4is absolutely continuous with respect to the Lebesgue measure.

2 What follows is not the weakest set of assumptions that have been asserted to support asymp-
totically valid con�dence intervals. The paper shows that these assumptions|and, hence, any

weaker assumptions|are too weak for the existence of valid con�dence intervals.
3 The approaches in the textbooks di�er in some details, e.g., Hannan treats A4 di�erently, and

Brockwell and Davis give a di�erent form for the con�dence intervals based on the asymptotically

normal point estimates in (1). None of these di�erences matter for the issues discussed here.
4 Since a is not normalized, setting the variance of " to one imposes no loss of generality.0 t
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P
1A 3 ja j <1.jj=0

Given the parameterization for f" g, A1 suggests a natural parameterization fort

fy g processes in terms of � = (A; ), where A = fa ; a ; : : :g. Throughout thet 0 1

paper, 	 is �xed, and the discussion focuses on restrictions on the A parameter

space, which is called A. There are no restrictions across the  and A parameter

spaces: � 2 � = A�	.

1Under A3, the A parameter space is a subset of ` , the space of summable

sequences. If the bias of the smoothed periodogram estimator is to vanish A must

satisfy some further assumption like,

P
1 pA 4 There is a p > 0 such that for each A 2 A, jjj j�(j)j < 1 where �(j)j=�1

this the j autocovariance under A.

The �nal assumption is speci�ed in terms of the spectrum of fy g at frequency !,t

which is de�ned as,

2s(!; A) = jf(!; A)j ;

where jxj means the modulus of x, ! 2 [��; �], and f(!;A) is the Fourier transform
of the A parameter,

1X
�1=2 �i!jf(!;A) = (2�) a e ;j

j=0

p
with i = �1. When f and s are treated as functions of A for �xed !, I will write

f (A) and s (A). The �nal assumption is required only because the distribution! !

theory is di�erent when s (A) = 0:!

A 5 s (A) >s > 0 for all A 2 A.! !

Under these assumptions, smoothed periodogram estimates of the spectrum at

T T!, s (y ), will be asymptotically normal and centered on the true value:!

q � � � �
T T 2 2T=K s (y )� s (A) ) N 0; (1 + � )s (A) v ; (1)! 0 !T !

Twhere y = fy ; : : : ; y g is a random sample of size T under the chosen process,1 T

) means converges in distribution to, v depends on the particular window chosen
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for smoothing the periodogram, K is the width of the window and rises to in�nityT

more slowly than T , and � is 1 if ! = 0, 0 otherwise.0

Based on (1), the textbooks suggest that con�dence intervals of the form

� �q �1

T Ts (y ) 1� c(�)v (1 + � )K =T (2)0 T!

will asymptotically have con�dence level 100(1 � �) percent when c(�) is the two-

sided 100� percent point of the standard normal distribution. The next two sections

demonstrate that these con�dence intervals will not be of the asserted size under the

assumptions and give conditions on A for meaningful con�dence intervals to exist.

2 Con�dence intervals and con�dence levels

In general, given a sample of size T , a con�dence interval on the real, scalar param-

T 1eter s (A) is a mapping, W , from R to intervals of R . The con�dence interval! T

attains the 1� � level if and only if,

� �
Tpr s (A) 2W (y ) � 1� � for all � 2 �; (3)! T�

where pr (x) means the probability of event x under the process parameterized by�

� [e.g., Lehmann, 1986]. A sequence of such con�dence intervals, fW g, asymptot-T

ically attains the con�dence level (1� �) if (3) holds in the limit as T increases.

The intuition for why the textbook con�dence intervals for s do not have the!

proper size is simple: if there are two processes that have arbitrarily similar empirical

properties, but arbitrarily di�erent s , then observation will not help pin down!

the value of s , and no �nite-length con�dence intervals exist. Three propositions!

apply this reasoning in the current context. Prop. 1: if the A parameters for two

2 5processes are su�ciently close in the ` norm, then the processes will be nearly

2indistinguishable empirically. Prop. 2: if s (A) is discontinuous under the ` -norm!

topology onA, then processes with arbitrarily similarA can have arbitrarily di�erent

s (A) and con�dence intervals will not exist. Prop. 3: s is discontinuous under! !

standard assumptions.
P

15 p 0 0 0 p 1=pThe ` distance between A and A is denoted kA� A k and equals ( ja � a j ) .p j jj=0
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Henceforth, we consider the existence of meaningful con�dence intervals: con-

�dence intervals that are of �nite-length with probability one and for which the

con�dence level is greater than zero and known, at least asymptotically. Con�dence

intervals with unknown level, level zero, or that cover the entire parameter space

exist trivially, but are uninteresting.

For Proposition 1, take a model satisfying A1{A3, with parameter space � =

TA � 	 and �x any T and � = (A; ) 2 �. De�ne y as a random variable

Twith parameter �, and take any sequence of random variables fy g where y haskk

parameter � = (A ; ) for some A 2 A.k k k

T TProposition 1 If k A � A k ! 0, then y converges in distribution to y .2k k

This proposition is a straightforward generalization of Bernstein's Lemma [e.g., Han-

nan, 1970] and is stated without proof; remaining proofs are in the Appendix.

The second proposition uses the notion of unbounded discontinuity. A function,

g, from the normed vector space A to the normed vector space B has an unbounded

discontinuity at A if kg(A)k is �nite and if for every � > 0, every open neighborhood

0 0A contains an A such that kg(A )k > �.

For Proposition 2, take any con�dence intervals, fW g, for s that are of �niteT !

length with probability one. Take any �nite T , and any maintained model satisfying

A1{A3.

2Proposition 2 If s has unbounded discontinuities in the ` -norm topology on A,!

the con�dence intervals have con�dence level zero.

2This result mirrors the central point of Sims [1971, 1972]: inference about ` -

discontinuous functions of A is beset with problems.

For concreteness, it is now useful explicitly to specify an A parameter space

satisfying A3{A5. Begin with the parameter space for the �nite-order, moving-

average processes,

1F = fA 2 l ja = 0 for all but a �nite number of j.g;j
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6and exclude the As that don't satisfy A5. In particular, for any � <1, de�ne

F = fA 2 Fjs (A) > � for all ! 2 [��; �]g:� !

We can now state,

Proposition 3 If A � F , then for every ! 2 [��; �], s has unbounded disconti-!�
2nuities on A in the ` -norm topology.

Of course, the standard assumptions guarantee that for �xed A, s(!;A) is

bounded and continuous, but since s (A) is discontinuous in A, the textbook con�-!

dence intervals have con�dence level zero under standard assumptions. Further, no

meaningful con�dence intervals exist. This does not contradict the asymptotic nor-

mality of the point estimates: the result arises because the convergence to normality

in (1) is not uniform in A.

3 Necessary and su�cient conditions for solving the problem

Prop. 3 gives a necessary condition for existence of meaningful con�dence intervals

on estimates of the spectrum at !: s must be continuous in A. Under one fur-!

ther assumption we can give a necessary and su�cient condition for continuity of

s ; under a second further assumption, continuity of s requires that A be �nite! !

dimensional.

1A 6 The A parameter space is A where A is a linear subspace of ` .�

Many familiar As are linear, such as F . When we work with in�nite-dimensional

spaces, we usually hope to cover a broader range of cases than possible when con-

sidering just �nite-order moving averages (F); thus, most spaces used in practice

1contain a linear subspace of ` . While the results require more cumbersome lan-

guage to state, a version of the results obviously holds when the parameter space is

1 7A , where A contains a linear subspace of ` .�

6 Each A 2 F clearly satis�es A3 and A4, since A and the associated autocorrelation function

have a �nite number of nonzero elements.
7 For example, if the con�dence level is zero on the linear subspace, it must also be zero for any

parameter space containing the linear subspace.
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2When A is a linear space, then under the ` -norm topology we have a normed

linear space. Since f is a linear function on this space, a necessary and su�cient!

condition for f to be continuous is that it have �nite norm [e.g., Berberian, 1976]:!

F (!) = sup jf (A)j=kAk <1: (4)! 2

A2A

Given the linearity of A, when f is not bounded in this way, f and, hence, s have! ! !

unbounded discontinuities; when f is continuous, so is s . Of course, the value of! !

2 8
F (!) is the maximum height of the (normalized) spectral density at ! under the

maintained model. Thus, under A1{A6, a necessary and su�cient condition for

s to be continuous is that the normalized spectral density have a bound that is!

uniform in A 2 A. This result is not too surprising. Without such a bound, there

can be processes for which the normalized density has an arbitrarily high peak at !

with arbitrarily little mass under it. Contributing arbitrarily little to the variance

of the process, such a peak is hard to detect. What is more surprising is that under

a reasonable assumption on the nature of the uniform bound, meaningful con�dence

intervals exist only under �nite-dimensional A.
Whenever we are willing to accept that the normalized spectrum is bounded at

all !, so that con�dence intervals can be formed at arbitrary !, the assumed bound

probably is similar across nearby frequencies. A weak restriction of this type is given

by

A 7 A is such that F (!) is upper semi-continuous for ! 2 [��; �].�

While there is nothing incoherent about models that violate A7, models that violate

the assumption have the property that the maximum normalized spectral density at

some frequency is discontinuously lower than the bound for neighboring frequencies.

Such a model would certainly call for some justi�cation.

Proposition 4 If the parameter space A satis�es A6 then �nite-dimensionality�

of A is su�cient for s to be continuous for all !. If A also satis�es A7 then! �

�nite-dimensionality of A is also necessary for s to be continuous.!

8 2The normalized spectral density of the fy g process is s divided by the variance of y , kAk .t ! t 2
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Thus, if we wish to form con�dence intervals for the spectrum at arbitrary !, we

must give up one of three things: 1) A parameter space that contains a linear sub-

1space of ` , 2) smoothness of the bound on the spectrum, or 3) in�nite-dimensionality

of the linear subspace.

Up to now we have considered what new restrictions we need in order to form

con�dence intervals on s . An alternative approach is to change the parameter!

for which we seek con�dence intervals. The most natural approach is to consider

some average of the spectrum's value over an interval, rather than at a single point.

Consider the parameter,

Z �

S (A) = h(!)s(!;A)d!: (5)h
��

Of course, the variance of the process is an example of such a parameter, with h

constant. An interesting class of hs is that comprised by the h that are positive,!;�

integrate to one and have support ! � �, so that s (A) is a weighted averageh!;�

of s(w;A) in the neighborhood of !. Con�dence intervals on S require only oneh

restriction on h:

1Proposition 5 For A � ` , if h(!) is bounded, then S is continuous in A underh
2the ` -norm topology.

4 Discussion

One can avoid the problems demonstrated here by limiting the A parameter space

pto, e.g., R for some �nite, large p. Alternatively, one can change the parameter of

interest to be a weighted average of the spectrum in some interval, !��. Given these
solutions, it might be argued that the problems have few substantive implications:

surely there is some p large enough or � small enough that the added restriction is

not too onerous.

This view is not very satisfactory. While any choice of p or � solves the asymp-

totic con�dence level problem, in any given sample size, it matters just what choice

is made. It is straightforward to show that one can drive the con�dence level ar-

bitrarily close to zero by choosing p too large or by choosing � too small. Little
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applied work explicitly states the required restriction, and it seems clear that in

many contexts a proper choice of p or � is not known. For example, in the context

of unit root inference|which is analogous to inference about the spectrum at fre-

quency zero|the correct choices are clearly in question [on this, see Faust, 1996].

It is hoped that the results of this paper provide motivation for and guidance in

exploring the restrictions required for approximately valid con�dence statements.
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Appendix

Proof of proposition 2: Fix a � = fA; g such that s has an unbounded!

discontinuity at A and a  such that the probability measure for " is absolutelyt

continuous with respect to the Lebesgue measure. Since the con�dence intervals are

of �nite length, the intervals must have a �nite upper bound with probability one.

�Thus, for each probability p > 0, there must be a W < 1 (depending on � and p)

T�such that pr (W 2 W (y )) < p. Since s has an unbounded discontinuity at A,T !�

�there is a sequence fA g such that kA �Ak ! 0 and s (A ) > W for all k. Thus,2 !k k k

taking � = fA ; g, and using the fact that under the assumptions convergence ink k

distribution implies convergence in probability measure,

T T� �lim pr (W 2W (y )) = pr (W 2W (y )) < pT T� �kk!1

T�Since s (A ) > W , there must be a K such that, pr (s (A ) 2 W (y )) < 2p.! !k K T�K

Since p was arbitrary, the con�dence intervals are of con�dence level zero. Q.E.D.

Proof of proposition 3: First, show the result for A = F , then trivially

2extend to A � F . Under the ` -norm topology, A is normed linear space, and�

f is discontinuous if its norm, (4), is in�nite. We construct a sequence fA g! k

such that jf (A )j is bounded away from zero, but kA k ! 0. Fix � > 0 and! k k 2

de�ne A 2 A such that A has only k non-zero coe�cients: set a = �=k ifk k kj

cos(!j) > 1=2 and if there are fewer than k elements a satisfying a > 0 forkh kh

�1=2
h < j. Set a = 0 otherwise. Note that jf (A )j > (2�) (1=2)� for all k,kj ! k

p
and that kA k = �= k. Thus, jf (A )j=kA k ! 1. Since � was arbitrary,k 2 ! k k 2

the discontinuities are unbounded. Since A is linear, f and s have unbounded! !

discontinuities at each A 2 F , and, hence, at each A 2 F . Q.E.D.�

Proof proposition 4: Su�ciency: when A is �nite-dimensional and linear,

all linear functions, including f are continuous [Berberian, 1976, p.96]. Necessity.!

Take A where A is any parameter space satisfying the stated assumptions. We�

2must show that A is �nite dimensional. Since A is a linear subspace of ` , it is a

separable pre-Hilbert space. The map taking A into the function g (!) = f(!; A)A
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2is an isometric isomorphism between A and a linear subspace, call it B, of L [��; �]
(the space of square integrable functions). The spaces A and B are of the same

dimension. The proof shows that B is of �nite dimension.

The space B contains a set of n linearly independent elements for any n less

than or equal to its dimension. Take n < 1 linearly independent elements of B.
Orthonormalize the set to form a set fu g, j = 1; : : : ; n, of orthonormal functionsj

[Berberian, 1976, p.47]. Since F (!) is an upper semi-continuous mapping on the

�compact set [��; �] it has a �nite least upper bound, call it F , which uniformly

bounds ju (!)j for all j and !.j

From here, the proof of �nite dimensionality is is a standard analysis prob-

lem [e.g., Royden, 1968, p. 214] and is completed in two steps. Step one: Show
P Pn n2 2�that ju (!)j < 2F for all !. Fix !. De�ne g = � u , where � =j j j jj=1 j=1qPn 2

r = r and r is the real part of u (!); m is the imaginary part. Notej k k kk=1 k

2kgk = 1, and
2 X X X

2 2 2 2jg(!)j = ( r ) + ( r m ) = r ;j jj j

P P
2 2 2 2 2 2 2� �implying jg(!)j � r . Since jg(!)j =kgk < F , we have r (!) < F for each

2j j

!. De�ne ~g by replacing r with m in de�ning �, and follow the same steps to show
P P P

2 2 2 2 2� �m < F . Thus, r + m < 2F , which veri�es the step one claim.j j j P
2 2�Step 2: Show n < 4�F . Since the us are orthonormal, n = k u k =j 2Pn 2ku k ; thus,jj=1 2

Z Z Zn nX X
2 2 2 2� �n = ju (!)j d! = ju (!)j d! � 2F d! = 4�Fj j

j=1 j=1

where the inequality comes from the step one result. Thus, the set fu g, of orthonor-t

2�mal elements has cardinality less than or equal to 4�F . Since the set of n elements

was arbitrary, each such set, and, hence, the dimension of A has the same bound.

Q.E.D.

Proof proposition 5 Note that s(:; A) is absolutely integrable and that kA �kR
Ak ! 0 implies js(!;A ) � s(!;A)jd! ! 0. It follows directly that for any

2 k

bounded function, h, kA �Ak ! 0 implies jS (A )� S (A)j ! 0. Q.E.D.k 2 h k h
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