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In an economy without distortions, Solow’s (1957) productivity residual indexes aggregate

technology change.1  But what if productivity and technology differ because of  distortions such as

imperfect competition?  Recent macroeconomic literature often seems to assume that we measure

productivity in order to measure technology; any differences reflect “mismeasurement.”2

Some authors suggest ways to fix this perceived measurement problem.  For example, Hall (1988,

1990) shows how to estimate technology change for imperfectly competitive firms, a method that

extends to an aggregate level if there is a representative firm. 3  If no representative firm exists, however,

it remains unclear how to measure aggregate productivity and aggregate technology.

In this paper, we undertake three tasks.  First, we clarify the meaning and measurement of aggregate

productivity.  Productivity has clear welfare implications, even in a world with distortions.  A modified

Solow residual — which reduces to Solow’s measure if there are no economic profits — approximates to

first order the welfare change of a representative consumer.  Intuitively, growth in aggregate output

measures the growth in society’s ability to consume.  To measure welfare change, we must then subtract

the opportunity cost of the inputs used to produce this output growth.  Input prices measure that cost,

regardless of whether they also reflect marginal products.  Hence, if productivity and technology differ,

then it is productivity that most closely indexes welfare.4

Second, we relate aggregate productivity to aggregate technology.  We provide a general

accounting framework that shows how imperfections and frictions in output and factor markets matter.

                                                     

1 Solow assumed there was an aggregate production function; Hulten (1978) shows that Solow’s result also holds if
one computes technology change from disaggregated data and then aggregates appropriately.
2  The growth-accounting literature does not always take this view.   For example, Denison (1979) views productivity
as measuring the ability of society to increase standards of living.
3 Note, however, that even if all firms have identical technology and behavior, a representative firm may not exist
(even to a log-linear approximation).  Additional strong assumptions are needed: e.g. perfect factor mobility, and a
zero elasticity of substitution in production between primary and intermediate inputs.  We discuss this issue in
Section III, below; see also Basu (1995) and Rotemberg and Woodford (1995).
4 Throughout the paper, we assume that inputs and outputs are correctly measured.  We thus abstract from cyclical
mismeasurement (such as variations in work effort or capital utilization), which in practice probably contribute to
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For example, if firms have different markups of price over marginal cost, or pay different wages, then

society may value resources differently in different uses.  Reallocating resources towards highly valued

uses raises aggregate productivity, without necessarily reflecting changes in technology.  Because

aggregate data include these non-technological reallocations, measuring technology requires

disaggregated data; by contrast, the modified Solow productivity residual requires only aggregate data.

Third, we explore empirically the differences between aggregate productivity growth and aggregate

technology growth.  We use data from 34 roughly two-digit industries that together constitute the U.S.

private business economy, and estimate the non-technological terms from our accounting identity. 5  We

find that compared with productivity growth, our measured technology shocks are significantly less

correlated with output.  More importantly, the technology shocks are essentially uncorrelated with inputs.

Recent empirical evidence suggests that the average degree of sectoral market power is small.6  It

may thus seem surprising that we find nevertheless that imperfect competition has an important influence

on aggregate productivity.  For example, Hall (1988, 1990) emphasizes that with imperfect competition,

productivity rises when primary inputs of capital and labor increase.  This channel depends on the

existence of a substantial gap between price and marginal cost at a representative firm.

However, imperfect competition affects productivity through two channels in addition to Hall’s

“average” effect.  First, a factor’s marginal product may differ across firms: firms may have different

degrees of market power in output markets, or pay different prices for the same input.  For example,

suppose durable-goods firms have larger markups than non-durable-goods firms.  Since durable-

industries are more cyclical, they employ a larger share of the marginal inputs in a boom.  This marginal

                                                                                                                                                                          

differences between productivity and welfare.  We do so to keep the issues conceptually clean: the distortions on
which we focus reflect true, not spurious, differences between correct measures of productivity and technology.
5 Ideally, our decomposition requires firm-level data.  However, no firm-level datasets exist that cover the entire
economy.  Since we focus on aggregate productivity and technology, we use industry data; we discuss this choice in
Section IV.  Our work complements firm-level studies of narrowly-defined industries (e.g., Bertin et al. (1995)).
6   For example, Burnside (1996) and Basu and Fernald (1997).  These authors reports estimates of returns to scale,
but given that rates of pure profit appear small, their results also provide evidence on the size of markups.
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reallocation makes productivity cyclical even if technology does not change, and even if the average

sector has only small markups.  Second, with imperfect competition, intermediate-input use in general

affects aggregate value added.  Value added takes gross output and subtracts intermediate inputs valued

at their purchase price, not their marginal product.  Imperfect competition drives a wedge between the

price and the marginal product of these intermediates, a wedge that represents real goods and services.

These two channels — which depend on the allocation of resources across uses — turn out to contribute

to aggregate productivity.  Thus, we identify several new gaps between productivity and technology.

Our algebra incorporates and clarifies the role of existing stories for why productivity and

technology differ.  For example, in the sectoral shifts literature (e.g. Phelan and Trejos (1996)), demand

shocks cause differences in the marginal product of immobile factors across firms.  Also, empirical

microeconomists note that within narrowly defined industries, productivity change often reflects

reallocations of resources among firms with different levels of productivity (e.g. Baily et al. (1992)).

A central conclusion of our paper is that aggregate productivity and aggregate technology are

meaningful but distinct concepts.  When productivity and technology differ, the differences are not

“biases”: they directly affect welfare, since they reflect real goods to consume or invest.

This conclusion matters for distinguishing the impulses driving business cycles from the

mechanisms propagating those impulses.  Real business cycle (RBC) models use Solow’s productivity

residual — interpreted as technology shocks — as the dominant impulse driving the cycle (e.g. Cooley

and Prescott (1995)).  Other impulses may affect output in these models, but technology shocks must

dominate to match the key stylized fact of business cycles: the positive comovement of output and labor

input.7

                                                     

7   Barro and King (1984) provide an early discussion of this issue. Dynamic general equilibrium models without
technology shocks can match this stylized fact with countercyclical markups of price over marginal cost, arising
from sticky prices (as in Kimball (1995)) or from game-theoretic firm interactions (as in Rotemberg and Woodford
(1992)).  Models with an extreme form of increasing returns — increasing marginal product of labor — can also
produce a positive comovement between output and labor input; see, e.g., Farmer and Guo (1994).
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If firms are not all perfectly competitive, then using the Solow residual as a measure of technology

shocks mixes impulses and propagation mechanisms.  Technology change is the impulse; sectoral

reallocations induced by technology or other shocks are propagation mechanisms.  We need to measure

the two separately. In principle, reallocations can either increase or reduce productivity.  Even if the

apparent size of technology shocks falls, these shocks may nevertheless remain important for explaining

business cycles, since reallocations are a new propagation mechanism.  In theory, the reallocations

induced by technology shocks could increase the fraction of output volatility that they explain.

However, modeling this propagation mechanism formally requires a multi-sector dynamic general

equilibrium model.  Thus, our empirical results serve two purposes.  First, they provide a better

technology change series than those currently extant, and thus better measure the impulses coming from

technology change.  Second, they suggest that one-sector business-cycle models miss important

propagation mechanisms, and thus may guide the construction of new models.

The paper comprises six sections.  Section I presents basic definitions.  Section II proves the

welfare properties of our new definition of productivity.  Section III shows the difference between

aggregate productivity growth and aggregate technology change, and suggests how we might estimate

the latter.  Section IV discusses our data and empirical method.  Section V presents our empirical results,

and Section VI summarizes our conclusions and indicates directions for future research.

I.  Definitions

In the next section, we examine the welfare of a representative consumer, who provides inputs of

capital and labor to firms in the economy and then uses his or her income to purchase final goods to

consume or invest.   We define aggregate variables to be consistent with this focus.

There are N goods in the economy.  Firms, indexed by i, produce goods by hiring labor, /L , and

renting capital, .L , from the representative consumer.  We defer discussion of firm-level technology and
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behavior until Section III, since they do not affect our results on welfare and productivity.  We assume,

however, that only one firm produces each good.8  When there is no ambiguity, we omit time subscripts.

Since the representative household provides the labor and capital, we define aggregate inputs as

simple sums of the firm-level quantities:

. ≡ . LL=�
1∑ �

/ ≡ /LL=�
1∑ �

For simplicity, we assume that there is one type of capital and one type of labor.  With heterogeneous

capital and labor, we would sum over each input separately; nothing fundamental would change.

In principle, different firms may pay different prices for a homogeneous input.  For any input J, let

3
-L

 be the price it pays to rent or hire the input for one period.  We define the aggregate (rental) prices of

capital and labor as the factor payments divided by aggregate quantities:

PK ≡
PKi Kii =1

N∑
K

,

PL ≡
PLiLii =1

N∑
L

.

We use the standard Divisia definition of aggregate output, which weights goods by market prices

and hence avoids substitution bias in the aggregate output and price indices.  Divisia aggregates are

defined most naturally in growth rates, and we denote the growth in aggregate output (equivalently,

aggregate value added) by dv.  The national accounting identity tells us that we can define aggregate

output by looking at either production (aggregating value added over firms) or final expenditure

(aggregating sales for consumption, investment, government purchases, or export).  We will use both

approaches; welfare (in Section II) relates to the expenditure side, while production (in Section III)

relates to the value-added side.

                                                     

8  This is not a restrictive assumption, since we can index goods by the firms that produce them. Consumers may
regard two goods as perfect substitutes, implying that they have identical prices.  More restrictive is our implicit
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We assume for simplicity that the economy is closed.  The consumer buys the final goods to

consume or invest; we take government purchases as a form of consumption by the representative

household.  We also assume that only the Nth good is used as capital (though our results easily

generalize to having many capital goods).  3L  is the price of good i, and &L  is its quantity, where

L 1= −� ����� � �   PI  is the price of the Nth (investment) good and I is its quantity.  The growth rate of the

Divisia index of aggregate output is a weighted average of the growth rates of each component of

expenditure.  We write this as:

(1)
GY

3 &

3 9

3&

3 &

G&

&

3 ,

3 9

G,

,

&

9

L L

&

L

L

L

1

,

9
≡









 +=

−∑
�

�

where 3 & 3&&

L L

1= =
−∑

� �

�

 is nominal expenditure on consumption goods, PI I  is nominal expenditure on

the investment good (good N), and 3 9 3 & 3 ,9 & ,= +  is total nominal output.  This definition of dv is

the continuous-time version of the chain-linked measure of national output produced in the National

Income and Product Accounts.   The national accounts identity ensures that national output calculated

from the expenditure side (as we have done here) equals the Divisia aggregate of firm-level value added.

Investment determines the accumulation of capital:

(2) . . ,
W W W

= − +−� ��
�

δ .

Finally, we define aggregate inputs and aggregate productivity in the ways we use them throughout

the paper.  We define the share of each input J in aggregate value added as V-
9 = 3- - 399 .  Aggregate

inputs, G[9 , are then a share-weighted sum of primary inputs of capital and labor:

(3) G[ V GN V GO9

.

9

/

9= + .

The shares are the aggregate cost of each input divided by total nominal revenue; note that in contrast to

Solow, we do not take capital’s share as a residual.  Thus, V
.

9  and V
/

9  sum to less than one if firms make

                                                                                                                                                                          

assumption that there is a fixed number of firms.
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economic profits. We define aggregate productivity growth as output growth minus aggregate input

growth:

(4) GS GY G[9= − .

If there are economic profits, then our measure of productivity differs from Solow’s because input

weights do not sum to one.  If economic profits are zero, then our weights and hence our productivity

measure match Solow’s.  Given that pure profits appear small (Basu and Fernald (1997); Rotemberg and

Woodford (1995)), in practice our measure is very close to Solow’s.

II.  Productivity and Welfare

Why is aggregate productivity growth interesting?  The usual justification is Solow’ s (1957) proof

that with constant returns to scale, perfect competition, and no frictions, it measures aggregate

technology change.  But in a world with distortions, is the Solow residual merely mismeasured

technology?

In this section we show that productivity growth computed from aggregate data has a natural

welfare interpretation, regardless of whether it also measures technology change.  In particular, the

modified Solow residual defined in Section I — which reduces to Solow’s residual if there are no

economic profits — turns out to measure welfare change for a representative consumer.  This result

holds even with imperfect competition in output markets and non-constant returns to scale in production.

This conclusion is appealing for two reasons.  First, it shows that productivity rather than, say,

GDP, is the right measure of economic welfare under fairly general conditions.  Second, it shows that

even with distortions, policymakers can compute interesting quantities from aggregate data —we do not

always need to calculate firm-level or aggregate technology change.  As we discuss in the next section, in

the short to medium run productivity can change for reasons unrelated to technology change.

Suppose a large number of identical households solve the following intertemporal problem:
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(5)

( )
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As before, K is capital, L is labor, PI  is the price of investment goods, 3
.W

 is the rental price of capital,

and 3/W  is the real wage. For now, we assume that all producers pay homogenous inputs the same factor

price: that is, for any input J and firm i, 3 3
-LW -W

=  (we discuss this assumption further below and in

Section III.E).  /� is each consumer’s per-period endowment of labor.  In the budget constraint,

household assets, A, are the sum of private consumption bonds, B (whose price we normalize to 1), and

capital, which depreciates at rate δ.  The rate of return on bonds is r.  Any pure profits, Π, are rebated

lump-sum to consumers.  In equilibrium, %W = �  for all t and ( ) ( ) ( )� � �
�

+ = + − − +U 3 U 3 3
W .W W W

,

W

,δ .9

Let λ W  be the shadow value of assets at time t.  The consumer’s first-order conditions are:

(6)
X Z

X 3 L 1

/ W W

& W L W

W

L W

=

= = −

λ

λ

�

� � �
�

�

� �K

along with the Euler equation:

(7) λ W = β �+ UW( )λW +��

Suppose a temporary (one-period) shock at time t potentially changes output, consumption, and

labor supply.  This shock may represent a change in technology, market structure (markups of price over

marginal cost), or government expenditure (which we have not formally modeled).  We require,

however, that the change last only one period; the shock affects outcomes beyond period t only by

changing the capital stock.10  To a first approximation, this perturbation changes lifetime utility by:

                                                     

9  Our timing conventions differ from those of Hall and Jorgenson (1967), who assume that capital is paid in the
period after it is rented.  By contrast, we assume that capital is paid in the same period that it is rented, matching the
convention used in the empirical literature on cyclical productivity (e.g. Hall (1990)).
10  Our result extends easily to multi-period perturbations: essentially, one then adds up the discounted values of
productivity change over as many periods as the shock lasts (which can be infinite).  We are implementing this
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(8)

[ ]
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From the national income identity (equation (1)) we can express the change in the value of consumption

in terms of changes in aggregate output and investment:

(9) 3 G& 3 &
3 &

3 &

G&

&

3 9
G9

9
3 G,

L W L WL
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Since the capital stock at time t-1 is predetermined when the shock occurs at time t, the change in

investment at time t is also the change in the time-t capital stock: G, W = G.W .

Using the previous result and the Euler equation (7), and noting that the only asset in this economy

is capital, we can rewrite equation (8) as:

(10)

( )

G8 3 9
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�

We can simplify this expression by pulling nominal output, 399 , outside the brackets and

rearranging to put the equation in logarithmic form:

(11)
G8 3 9 GY

3 .

3 9
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3 /

3 9
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W W
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









=

� �

� � �

λ

λ

Equation (11) says that the change in utility is proportional to the change in the modified Solow residual

GS
W
.  Thus, the welfare change of any one-period shock at time t is equivalent to having an exogenous

                                                                                                                                                                          

extension in current work.
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increase in national income of dp percent at time t, which is then added to the consumer’s assets.11  Note,

however, that the welfare benefit is proportional to productivity growth, not to output growth, since the

consumer subtracts the welfare cost of supplying any extra capital and labor.

Since economic profits appear small, the modified residual dp is very close to the standard Solow

residual.  Thus, even with distortions such as imperfect competition, when the aggregate Solow residual

does not in general index technology change, it remains an excellent index of welfare change.  Hence, it

remains an appropriate target for policy, as well as a convenient indicator.

In the next section, we show that aggregate technology change needs to be measured using

disaggregated — ideally, firm-level — data.  So why do aggregate data yield a meaningful measure of

welfare change?   The welfare properties of the Solow residual follow from the equality of relative

market prices to the consumer’s marginal rates of substitution (MRS) between goods; this includes the

equality of the real wage to the MRS between goods and leisure.  These equalities hold even when

market prices do not reflect the economy’s marginal rate of transformation (MRT) between those goods.

Equivalently, we need only to investigate the expenditure side of the National Income Accounts identity;

we do not need to know the production technology of firms or the competitive structure of industries.

There are two qualifications to our argument.  First, the ratio of factor prices may not equal the

consumer’s marginal rate of substitution: taxes, for example, tend to create a wedge between the two,

since the wage perceived by firms then differs from the wage received by households.  The welfare

interpretation of the residual requires factor prices as perceived by the household, but this modification is

straightforward: all prices should be those perceived by the household.  Second and more seriously, the

representative-consumer assumption may fail.  Consumers may have different marginal utilities of

wealth or, as in standard efficiency-wage models or bargaining models, they may face different prices.

In this case, one cannot compute aggregate welfare change from aggregate statistics alone.  However, we

                                                     

11  Since we can normalize the price of value added to 1 without loss of generality, one should think of the welfare



11

do not claim that our proposed productivity measure is a completely general measure of welfare change,

merely that it is one under much more general conditions than the usual Solow residual.  It seems a

particularly apt measure in the context of recent macroeconomic models with a representative consumer

but with imperfect competition in product markets (e.g., Rotemberg and Woodford (1992, 1995)), or

with multiple sectors and costly factor reallocation (e.g., Ramey and Shapiro (1997)).

Figure 1 shows the economic intuition underlying our argument.  Suppose the economy produces

two goods, both of which are consumed (and possibly also used as intermediate inputs).  To keep the

graph simple, assume that the supplies of capital and labor are fixed.  The production possibilities

frontier (PPF) depicts all feasible ( )& &
� �
�  pairs.  An economy without distortions attains the social

optimum at point A, supported by relative prices 3 3
� �

.  Now suppose there are distortions.  Then the

economy might be at an allocatively inefficient point on the PPF, like point B, or even within the PPF,

like point C.  As shown in Figure 1, these outcomes can be supported by price ratios different from the

MRT between &� and &� .

Note that in all cases the consumer’s budget line shows the economy’s iso-output line, which

aggregates heterogeneous output using market prices (regardless of whether these prices reflect

technological tradeoffs.).12  Thus, in this example welfare increases only if output increases.  (This is a

special case of our general result that welfare increases only if productivity increases, since in this

example dk = dl = 0.)  Hulten (1978) shows that under Solow’s conditions — perfect competition and

constant returns — aggregate productivity growth represents both technology improvement and welfare

increase.  In terms of Figure 1, Hulten’s result applies to an economy at point A: Output (productivity)

can increase only if the PPF shifts out at point A, i.e. if there is (local) technological improvement.

                                                                                                                                                                          

change as proportional to a real change in national income.
12  For a proof, differentiate the consumer’s budget constraint holding income and prices fixed.
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However, the same is not true at points B and C: Output (productivity) can increase without any

change in technology, as long as distortions lessen.  But these productivity improvements raise welfare,

since output and inputs are weighted using prices that reflect the consumer’s MRS between goods.  Thus,

our finding generalizes Hulten’s (1978) result to the case of imperfect competition and non-constant

returns, and clarifies the essence of his argument linking productivity and welfare. 13

III.  Productivity and Technology

What determines aggregate productivity?  In addition to aggregate technology, we identify three

non-technological influences, reflecting imperfections and frictions in output and factor markets.  First,

as Hall (1988, 1990) notes, with imperfect competition, productivity rises when primary inputs of capital

and labor rise.  This channel requires a substantial gap between price and marginal cost at the

representative firm.  Second, factors may have different marginal products in different uses: firms may

have different degrees of market power in output markets, or face different prices for the same input.

Third, changes in intermediate-input use can affect aggregate output growth.  Value added subtracts

intermediate inputs valued at their purchase price rather than their marginal product.  With imperfect

competition, the marginal product exceeds the purchase price, creating a wedge representing real goods

and services.

We begin with firm-level production functions for gross output, and then derive the value- added

analogues.  At a disaggregated level, the natural measure of firm output is gross output.  Real value

added is an artificial construct — bread without flour; books without paper or ink; shoes lacking leather.

We focus on firm-level value added, however, because of our ultimate interest in aggregates.

Aggregate final expenditure — private and public consumption, investment, and net exports — measures

                                                     

13 While our result is related to Hulten’s, our method is more closely related to Weitzman’s (1976) argument that Net
National Product is a better national income accounting concept than Gross National Product.  Indeed, Weitzman’s
model is a special case of ours: It assumes that period utility is linear in consumption, that future utility is discounted
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what society consumes today or saves for tomorrow.  The national accounts identity shows that

aggregate final expenditure equals the aggregate of firm-level value added — intermediate-input use

cancels out.  Thus, aggregating firm-level value added leads to economically sensible aggregates.

We abstract from issues of mismeasurement, such as variable capital utilization or labor hoarding.

Mismeasurement is probably important in the data, but is conceptually distinct from the issues we

discuss.  Properly measured, aggregate productivity growth increases welfare regardless of its source.

However, if productivity growth reflects input-mismeasurement alone, it does not increase welfare.  That

is, in a world without frictions, consumers are indifferent at the margin between supplying extra inputs

— observed or unobserved — and consuming the extra output that these inputs produce.

Subsection A analyzes the determinants of firm-level value added and productivity.  Subsection B

uses those microfoundations to analyze aggregate output and productivity.  The final three subsections

explore different economic perspectives on our results.

A.  The Firm Level

We assume each firm has a production function for gross output:

(12) <L = )L .L � /L �0L �7L( ),

where ��<L  is gross output, ����. L� �/L � �DQG�0 L  are inputs of capital, labor, and materials, and ��7L  indexes

technology.  The firm's production function ��) L may be homogeneous of arbitrary degree ��γ i  in

����. L� �/L � �DQG�0 L .  ��γ i  is not constrained to be one, so ��) L may have non-constant returns to scale.

Note that increasing returns may take different forms.  For example, firms may have fixed costs of

production along with constant or increasing marginal cost, as in Rotemberg and Woodford (1995);

alternatively, firms may have no fixed costs but declining marginal cost, as in Farmer and Guo (1994).

Rotemberg and Woodford (1995) emphasize that the source of increasing returns matters for how shocks

                                                                                                                                                                          

at the interest rate, and that consumers do not value leisure.
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affect macroeconomic models, and argue that fixed costs are the most plausible explanation of increasing

returns at a firm level.  However, the source of increasing returns does not affect the derivations below,

where we present an accounting identity for output change at each moment in time.

We assume that firms are price takers in factor markets, but may  have market power in output

markets.  For any input J, let )
-

L  be the marginal product.  Firm i’ s first-order conditions then imply that

the value of the marginal product is proportional to the price it pays for the input, 3-L :14

(13) 3 ) 3
L -

L

L -L
= µ .

Firms may charge a markup, µ
L
 , over marginal cost: µL = 3L 0&L , where MCi is marginal cost.

By definition, returns to scale γ
L
 equals the sum of the output elasticities with respect to all inputs.

Combining this with the first-order conditions, it is straightforward to find the relationship among µL , γ L ,

and the ratio of economic profit to total revenue, Vπ
L :

(14) γ L = µ L��− Vπ
L ��

Below, we emphasize markups rather than returns to scale, since the markup determines how the social

and private valuations (i.e., the marginal product and the input price) of a factor differ.  However, the

equation above shows the close relationship between returns to scale and imperfect competition: firms

with increasing returns must charge markups to cover their costs.  If economic profits are small, µL  and

γ L  must be approximately the same.  If returns to scale differ across firms for technological reasons

(such as differences in fixed costs), then markups are likely to differ. 15

                                                     

14 As in Berndt and Fuss (1986), the appropriate input “price” is the factor’s shadow rental cost.
15 An earlier version of this paper derived the algebra in terms of returns to scale rather than markups.  The two
approaches emphasize different aspects of the same issues.  The markup-approach helps focus on technology versus
productivity; the returns-to-scale approach clarifies how aggregation affects estimates of returns to scale.
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Following Hall (1990), cost minimization16 implies that output growth, G\
L
, equals the markup

multiplied by revenue-share-weighted input growth, G[
L
, plus gross-output-augmenting technology

change,
) 7

)
GW7

L

L

L L
.  So for any input J and firm i, where V

-L
 is the input’s share in nominal gross output and

dJ is the input’s growth rate,

(15)

[ ]G\ V GO V GN V GP
) 7

)
GW

G[
) 7

)
GW

L L /L L .L L 0L L

7

L

L

L L

L L

7

L

L

L L

= + + +

≡ +

µ

µ �

As in Sections I and II, the revenue shares need not sum to one if there are economic profits or losses.

However, if there are no economic profits, then our revenue shares coincide with Solow’s shares.

Since our ultimate interest is in value added, we now derive the value-added analogues to (15).

From the production side, we use the standard Divisia definition of firm-level value-added, GY
L
:

(16) GY
G\ V GP

V
G\

V

V
GP G\

L

L 0L L

0L

L

0L

0L

L L
=

−
−

= −
−









 −

� �
� � .

With some algebraic manipulation (shown in Appendix A), we can write GY
L
as:

(17)
( ) ( )GY

V

V
G[

V

V

V

V
GP G\

) 7

)

GW

VL

L 0L

L 0L

L

9 L 0L

L 0L

0L

0L

L L

L

L

L

L

L 0L

7=
−

−













 +

−
−

−













− +
−

µ

µ

µ

µ µ

�

� � � � ,

where primary-input growth, G[
L

9 , is defined analogously to aggregate primary input growth:

(18) G[
V

V
GN

V

V
GO V GN V GO

L

9 .L

0L

L

/L

0L

L .L

9

L /L

9

L
=

−
+

−
≡ +

� �
.

                                                     

16  Contrary to some of the statements in the literature, the derivation does not require profit-maximization.  Hence
the relationship we derive below is robust to any form of price-setting behavior; for example, it allows for sticky
output prices and for complex dynamic pricing strategies derived from supergames (e.g. Rotemberg and Saloner
[1986]).  See Basu and Fernald (1995, Appendix).  In particular, note that markups need not depend just on the
elasticity of demand.
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Equation (17) looks complicated, but some further assumptions on the production function allow us

to simplify it.  Suppose that the production function in (1) takes the following separable form:

(19) ( ) ( ) ( )( )< ) . / 0 7 * 9 . / 7 + 0
L

L

L L L L

L 3L

L L L

L

L
= =� � � � � � ,

The firm combines primary inputs to produce “productive value added”, 9 3L , which it then combines

with intermediate inputs to produce gross output.  We can break the cost-minimization problem into two

stages: first, minimize the cost of using primary inputs to produce any level of 9 3L ; second, minimize the

cost of using productive value added and intermediate inputs to produce any level of gross output.

In the first stage, the logic from equation (15) implies that the “productive” value-added growth,

dv P , depends on the revenue-weighted growth in primary inputs G[ 9 , plus technology shocks (without

loss of generality we normalize to one the elasticity of productive value added 9 99 with respect to

technology):

(20) GY L

3 = µ L

9 G[L
9 + GWL .

The value-added markup µ
L

9 equals the ratio of the price of productive value added to the marginal

cost of producing it.  Appendix A shows that under standard conditions:

(A5) µ µ
µL

9

L

0L

L 0L

V

V
=

−

−

�

�
.

Returning to equation (17), we can now rewrite it as follows:

(21) ( ) ( )GY G[
V

V
GP G\ GW

L L

9

L

9

L

9 0L

0L

L L L
= + −

−













− +µ µ �
�

�

Real value-added growth depends on primary input growth, changes in the materials-to-output ratio, and

technology.  The first term shows that primary inputs are multiplied by the value-added markup.  The

second term reflects the extent to which the standard measure of value added differs from “productive”

value added 9 3L , and hence does not properly measure the productive contribution of intermediate

inputs.  Intuitively, the standard measure of value added subtracts off intermediate input growth using
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revenue shares, whereas with imperfect competition the productive contribution of these inputs exceeds

the revenue share by the markup.  The third term is the value-added-augmenting technology shock.

The firm’s revenue-weighted value-added productivity residual, GS
L
, equals GY G[

L L

9− . Hence,

(22) GSL = µ L

9 − �( )G[ L9 + µL

9 −�( ) V
0L

�− V
0L

 

 
 
 

 

 
 
 GPL − G\L( )+ GWL �

Firm-level productivity growth measured in terms of value added depends in part on markups, as

emphasized by Hall.  In the presence of imperfect competition, however, productivity growth also

depends positively on changes in the relative intensity of intermediate-input use.

B.  Aggregating over Firms

We now aggregate over firms to the economy-wide level.  Technology shocks clearly affect

measured aggregate productivity.  In addition, aggregate productivity depends on changes in aggregate

primary inputs, changes in the distribution of inputs across firms (when inputs have different marginal

products in different uses), and changes in the intensity of intermediate input use.

Aggregate productivity growth is the difference between the growth rates of aggregate output, dv,

and aggregate inputs, G[9 .  From the production side of the national accounts identity, aggregate output

is a Divisia index of firm-level value-added . In growth rates:

(23) dv ≡ widvii =1

N∑ ,

where wi  is the firm’s share of nominal value added:

Z
3 9

3 9L

L

9

L

9
≡ .

With some algebraic manipulation, we can write aggregate primary-input growth G[9 in terms of

the weighted average of firm-level input growth, and reallocations of capital and labor:

(24)
G[ Z G[ 5 59

L L

9

.L

1

/
= − −=∑

�
�
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where

5 Z V
3 3

3
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5 Z V
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3
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Combining equations (23) and (24), above, and noting the definition of firm-level productivity

(equation (22)), we can write aggregate productivity as:

(25) GS GS 5 5
LL

1

. /
= + +=∑

�
.

As we have defined the input prices, they represent differences in shadow values across uses (which may

or may not be reflected in factor-price differences).  Thus, aggregate productivity is the weighted average

of firm-level productivity shocks, plus reallocations of capital and labor among uses with different

shadow values.  If resources shift towards more highly valued uses, then aggregate productivity can rise

even with no change in firm-level productivity. Apart from input-reallocations, this equation shows that

any deviations between aggregate productivity and aggregate technology must be coming from

differences between firm-level productivity and firm-level technology.

By substituting from equation (22) for dpi and manipulating, we can write aggregate productivity in

terms of technology, aggregate inputs, and reallocations of resources:

(26) GS G[ 5 5 5 5 GW9 9

0

9

.

9

/
= − + + + + +� �µ µ µµ�

where,
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We define the sum of the reallocation terms as R, where
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(27) 5 5 5 5 5
0

9 9= + + +µ µ µ .

Equation (26) shows the distinction between aggregate productivity and aggregate technology.  If

every firm is perfectly competitive and pays the same price for factors (perhaps because factors are

completely mobile), then all terms other than dt disappear: productivity equals technology.  However,

with imperfect competition or frictions in product or factor markets, productivity and technology are not

equivalent.17

C.  The Definition of Technology Change

Conceptually, aggregate technology change should measure the change in aggregate output in

response to firm-level technology shocks, when primary inputs remain fixed.  Under what conditions

does this correspond to our measure dt?

Suppose all markets are perfectly competitive.  Domar (1961) and Hulten (1978) discuss this case,

and find that our definition properly measures the outward shift in society’s PPF in response to firm-

level technology shocks.  In Figure 1 again, this case corresponds to a point like A, the optimal

production point, where society’s resources are optimally allocated.

However, consider points B and C in Figure 1.  Aggregate technology is not defined

unambiguously at these points, since different changes in aggregate output are consistent with the same

firm-level technology shocks.  In particular, technology shocks may affect the distribution of inputs

across firms.  For example, if technology shocks cause a reallocation of inputs from low- to high-markup

firms, aggregate output rises more than if there were no reallocations.  Even with a fixed distribution of

                                                     

17 Jorgenson, Gollop and Fraumeni (1987) derive an equation for the case of case of  constant returns to scale and
perfect competition, so that ��GSL = dt i .  Thus, they omit the terms other than ��5.  and ��5/ .  They also allow for
heterogeneity in capital and labor, which we have ignored for simplicity.  With heterogeneity, our results generalize
easily: For example, if ��5.N  is the factor-price reallocation term for capital of type k, then

��
5. = RKkk∑ .
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primary inputs, technology shocks might affect the intensity of intermediate-input use, thereby changing

output growth.

Given this ambiguity, we define aggregate technology so that it correctly measures the increase in

aggregate output under standard conditions where an aggregate production function exists.  18  Suppose

all firms have the same separable gross-output production function as in equation (19), and always use

materials in fixed proportions to gross output (so that dm = dy always).  Suppose also that there are no

factor-market frictions (so that ��5.  and ��5/  are identically zero) and that all firms charge the same

markup in output markets.  Under these assumptions, which are implicit or explicit in most dynamic

general-equilibrium models with imperfect competition, there is a representative producer and an

aggregate value-added production function.  In this case, aggregate technology change corresponds to

our definition dt.

D.  Productivity Interpretation

The markup-reallocation term, ��5µ , represents shifts of resources toward uses with higher social

valuations.  The markup represents the wedge between the social valuation of a good and its marginal

cost.  Reallocating resources from low- to high-markup firms thus shifts resources towards uses where

consumers value them more highly.  Aggregate output combines goods using consumers’ valuations of

them, so aggregate output and productivity rise.

If the variability of firms’ inputs are correlated with their market power, then imperfect

competition affects aggregate productivity even if the average markup is small.  For example, Basu and

Fernald (1997) estimate that durable-goods industries have larger returns to scale and markups than non-

durable-goods industries.  Durable-industries are more cyclical, and employ a larger share of the

                                                     

18 The discussion in this paragraph follows Rotemberg and Woodford (1995).
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marginal inputs in a boom.  This marginal reallocation thus contributes to the procyclicality of aggregate

productivity.

The input-reallocation terms ��5/  and ��5/  also reflect reallocations of resources among uses with

different social valuations.  Consider labor.  Shifting labor from firms where it has a low shadow value to

firms where it has a high shadow value increases aggregate output.  Why might shadow values (or

wages) differ across firms?  First, labor may not be instantaneously mobile across sectors; sectoral shifts

may lead workers in, say, defense industries to have lower marginal products than they would in health-

care.19  Second, efficiency wage considerations may be more important in some industries than others, as

emphasized by Katz and Summers (1989). Third, unions with monopoly power might choose to charge

different wages to different firms.  Whatever the reason, shifting labor to more productive uses increases

aggregate output, even if total input does not change.

Note that the first reason, costly factor mobility, is completely consistent with constant returns and

perfect competition.  Differences in marginal products that reflect factor immobility should be

temporary.  Although we did not model adjustment costs explicitly, the literature on these costs shows

that the appropriate “factor prices” are the shadow values of the factors to the firm.20  With costly factor

adjustment, these shadow values may differ substantially; hence reallocation effects on output and

productivity may be significant, even in a world with perfect competition and constant returns.21

The materials-reallocation term, ��50 , reflects the extent to which measured real value added

depends on the intensity of intermediate-input use.  Firm-level value added is useful for national

                                                     

19 Whether differences in labor’s marginal product lead to differences in wages depends on whether the adjustment
costs are paid by workers or firms.
20  See Berndt and Fuss (1986).
21   The “sectoral shifts” literature takes this approach; see, e.g. Phelan and Trejos (1996).  Horvath (1995) also
incorporates adjustment costs into a dynamic general equilibrium model, generating effects on aggregate productivity
from input reallocations.  Microeconomic productivity literature (e.g. Baily et al. (1992)) finds that there are
systematic productivity differences across firms within narrowly defined industries; these productivity differences
show up either as higher profits from a higher markup, and hence are reflected in 

��
5µ , or higher factor payments, and

hence are reflected in��5.  and ��5/ .
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accounting, regardless of technology or market structure.  However, it does not in general correspond to

“productive” value added 9 3L , defined in equation (19).  In particular, with imperfect competition, the

construction of value added does not subtract off the full marginal product of intermediate inputs, since

the marginal product of these goods exceeds their cost; there is a wedge between each firm’s measured

real value added and productive value added. ��50 , which equals the sum of these wedges, represents real

goods and services, and hence affects aggregate output and productivity.

Note that ��50  depends on the size of markups in firms using materials.  Consider an economy

where some firms produce intermediate goods using capital and labor, and other firms assemble

intermediate goods into final goods (e.g. Beaudry and Devereux (1994)): the importance of ��50  depends

on the size (and heterogeneity) of markups in the final-goods industry.  This is important because firms

may be able to negotiate multi-part prices with long-term suppliers of their inputs, and thus partially

offset the inefficiencies resulting from imperfect competition in intermediate-goods industries.22  The

inefficiency that we identify in ��50  is, however, a function of the markups of the firms using

intermediate goods, not those selling such goods; multi-part pricing for intermediate goods does not

eliminate this inefficiency.  (However, the inefficiency is larger in symmetric models where all output is

also used as materials input: we discuss this “double marginalization” effect in the next subsection.)

E.  Welfare Interpretation

In Section II we argued that productivity measures welfare.  We now provide intuition for why

each term in equation (26) represent a welfare improvement.

The welfare effect of an average markup greater than one reflects the fact that markups distort the

labor-leisure choice. Consumers would prefer to provide more capital and labor and consume the extra

                                                     

22  We thank Robert Hall for this observation.
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market goods they could produce, since the utility value of these goods exceeds the disutility of

producing them (through providing capital and labor).  Hence welfare rises when inputs, dx V , rise.

This intuition also encompasses ��5µ .  Suppose a firm has a higher-than-average markup.  Then

relative to the social optimum, that firm produces even less output than does the average firm.  Thus, if

inputs rise in that firms, welfare increases even more than if input use had risen in the average firm.

The intuition for the materials term ��50  comes in two parts.  First, there is the standard effect that

markups reduce input use, as discussed in our analysis of the average-markup term and ��5µ .  This effect

depends, of course, on the size of the markup in the firm using materials.  If the production function

requires that firms use materials in fixed proportions to gross output, then the suboptimally low usage of

primary inputs (capital and labor) is a sufficient statistic for the suboptimally low usage of materials.  In

this case, dm identically equals dy, and the materials term (which depends on dm − dy ) drops out.

Second, if firms can substitute away from materials in producing gross output — and the best

evidence argues that they can23 — then there is an independent distortion from using too few materials.

Markups on materials reduce productive efficiency, leading the economy to produce within its

production possibilities frontier rather than simply at an inefficient point on the frontier.24  Basu (1995)

presents a model where materials need not be used in fixed proportions with output, and finds that with

markup pricing firms generally use too few materials relative to the quantity of primary inputs they

purchase: thus, materials intensity is too low.  In his model, dm − dy  is procyclical because

countercyclical markups increase materials intensity in booms.  Increasing materials intensity increases

welfare by moving the economy closer to the boundary of the PPF.  Rotemberg and Woodford (1996)

find that including this effect in an imperfectly-competitive dynamic general equilibrium model

                                                     

23   See Bruno (1984) and Rotemberg and Woodford (1996, Appendix).
24   This point is similar to that of Diamond and Mirrlees (1971), who show that taxes on intermediate goods
generally distort relative factor proportions and move the economy within its PPF.  From the point of view of the
materials-using firm, markups are equivalent to a tax on intermediate goods.  See also Judd (1995).
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significantly improves the model’s ability to match the dynamics of output and the real wage following

an exogenous increase in oil prices.

The welfare interpretation of ��5  and ��5  depends on their source.  Our proof in Section II does not

apply directly to these terms, since we assumed that capital and labor had unique factor prices.  The key

to our proof is that the wage equal the marginal disutility of labor.   The analysis in Section II easily

extends to the case where wages, say, differ across firms because of costly labor mobility; productivity

change still corresponds to welfare change.  On the other hand, suppose workers are rationed in the

amount of labor they can supply to certain firms (perhaps because of efficiency wages in some firms but

not others).  In the firms where labor is rationed, the wage does not equal the marginal disutility of labor,

so the proof in Section II does not apply.  (With rationing, aggregate labor input must be weighted by the

marginal wage — the wage in the firm(s) where labor input is not rationed — rather than the average

wage.)  We plan to explore these issues in future work, but we do not pursue them further in this paper.

Finally, technology improvements ceteris paribus obviously raise welfare, since consumers get

more output from given inputs.  However, in general equilibrium with distortions, welfare could actually

fall.  For example, technology improvements could lead sectors with smaller-than-average markups to

increase input use more than average, making the ��5µ  term negative.25

IV.  Data and Method

A.  Data

Having discussed the theory of aggregation, we now explore its empirical significance.  We

construct a measure of “true” aggregate technology change, dt, and compare it to aggregate productivity

                                                     

25   Bai et al. (1997) make essentially this argument for state enterprises in China.  They argue that state firms set
prices below marginal cost in order to maximize sales; technology improvements in that sector then lead it to
increase input use and thus reduce national welfare.
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growth, dp.  We estimate technology change at a disaggregated level, and then aggregate.  Our aggregate

is the private U.S. economy, and our “firms” are 34 industries at roughly the two-digit SIC level.

The average two-digit manufacturing industry has about 18,000 enterprises, so it may seem odd to

take industries as firms.  Unfortunately, there are no firm-level data sets that span the economy.  In

principle, we could focus on a subset of the economy, using the Longitudinal Research Database, say;

however, narrowing the focus requires sacrificing a macroeconomic perspective — necessary for the

welfare analysis in Section II — as well as panel length and data quality.  By focusing on aggregates, our

work complements existing work that examines small subsets of the economy.  Nevertheless, the

aggregation effects we identified in Section III are probably important even within the disaggregated

sectors that we use.  This raises several concerns that we discuss in the next subsection and in Appendix

B.

We use data compiled by Dale Jorgenson and Barbara Fraumeni on industry-level inputs and

outputs.  These data consist of a panel of 34 private industries (including 21 manufacturing industries)

that constitute the entire U.S. private business economy for the years 1959-1989.26  These sectoral

accounts seek to provide accounts that are, to the extent possible, consistent with the economic theory of

production.  Output is measured as gross output, and inputs are separated into capital, labor, energy, and

materials.  For our purposes, an essential aspect of the data is their inclusion of intermediate inputs.27

We compute capital’s share V.  for each industry by constructing a series for required payments to

capital.  We follow Hall and Jorgenson (1967), Hall (1990), and Caballero and Lyons (1992), and

estimate the user cost of capital r.  For any type of capital, the required payment is then U3.. , where

3..  is the current-dollar value of the stock of this type of capital.  In each sector, we use data on the

                                                     

26  We restrict our sample to the period 1959-1989 because for those years the output data in the Jorgenson dataset
come from a consistent source, the Bureau of Labor Statistics.
27 For a complete description of the dataset, see Jorgenson et al. (1987).
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current value of the 51 types of capital, plus land and inventories, distinguished by the BEA in

constructing the national product accounts.  Hence, for each of these 53 assets, the user cost of capital is

rs = ρ +δ s( ) 1 − ITCs −τds( )
1 − τ( )  , s = 1 to 53.

 ρ  is the required rate of return on capital, and δ
V
 is the depreciation rate for assets of type s.  ,7&

V
 is the

asset-specific investment tax credit, τ  is the corporate tax rate, and G
V
 is the asset-specific present value

of depreciation allowances.  We follow Hall (1990) in assuming that the required return ρ equals the

dividend yield on the S&P 500.  Jorgenson and Yun (1991) provide data on ,7&
V
 and G

V
 for each type of

capital good.  Given required payments to capital, computing the cost shares is straightforward.

For our empirical work, we need instruments that are uncorrelated with technology change.  We use

versions of the Hall-Ramey instruments: the growth rate of the price of oil deflated by the GDP deflator,

the growth rate of real government defense spending, and the political party of the President.

B.  Estimating Technology Change

In order to estimate “firm-level” technology change, we treat equation (15) as an estimating

equation for the gross-output markup, µ.  The sum of the constant and the residual then measures

technology change in the gross-output production function.  Our derivations present an accounting

identity for output change at each moment in time; their discrete-time empirical counterparts (e.g.

equation (15), implemented as a regression) are best thought of as first-order approximations.

In order to avoid the “transmission problem” of correlation between technology shocks and input

use, we use the Hall-Ramey instruments noted above.  We use the current value and one lag of each

instrument.  (We experimented with subsets of the instrument list — e.g. using only contemporaneous

values of the instruments.  Our results were not too sensitive to the choice, so we report results only for

the largest set.)  For reasons discussed in Appendix B, we prefer the instrumented results.  However, we
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report OLS results for comparison, and because of questions about the small-sample properties of the

Hall-Ramey instruments (see, for example, Burnside (1996)).

Since we are ultimately interested in aggregate final expenditure, we transform the gross-output

technology shocks into value-added technology shocks.  The relationship between the two is given by

equation (A7).  We use our estimated markups to do the transformation.  We then aggregate these shocks

using value-added weights.  The difference between aggregate productivity and aggregate technology

gives us the sum of our reallocation terms, R, as defined in equation (26).  We are also interested in the

components of R.  We estimate dt from the sectoral regressions; with the estimates of µ from those

regressions we can also construct ��5µ  and ��50 .  Since we also know dp, equation (26) shows that we can

estimate of µ µ9

.

9

/
5 5+ , but we cannot construct each term separately.

Empirically, one concern is that some of the sectoral estimates of µ are less than one; it is a priori

implausible that these measure true firm-level markups.  These estimates presumably reflect aggregation

from the firm level to the industry level, where the unobserved within-industry reallocations are

negatively correlated with industry inputs.  In Appendix B, we discuss the implications of these

reallocations for our results.  We argue that our procedure of using industry-level data does not create

any necessary bias in our results, and may be preferable to using small firm-level data sets.

V.  Results

We now investigate the relationship between aggregate productivity growth and aggregate

technology growth.  We find that technology has about the same mean growth rate as productivity, but is

less volatile and less correlated with both input and output growth than is aggregate productivity growth.

As we discuss, these results are important for judging the plausibility of standard RBC models.

We define aggregate productivity growth as the welfare-relevant modified Solow residual defined

in equation (3).  This measure differs from the standard Solow residual since the weights do not
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necessarily sum to one; the difference reflects economic profits or losses.  However, since estimated

profits are small (about 3 percent on average), the results we report are essentially unchanged if we use

the standard Solow residual instead.  Aggregate technology change is the weighted sum of sectoral

value-added technology changes, as described in Section V.  We report results with two technology

measures, one using residuals from instrumented regressions and the other using residuals from

uninstrumented regressions.

Table 1 presents summary statistics for private output growth, dv; the weighted average of primary

input growth, dx V ; the modified Solow residual measuring productivity growth; and the two technology

series.  Table 2 is a correlation matrix for these variables.  All results are for the sample period 1959-89.

Table 1 shows that at the aggregate level our two technology series have significantly lower

variance than does productivity growth: about 60 percent of the variance of dp.  However, we estimate

that they have approximately the same average growth rate (and one cannot reject the hypothesis that the

means are equal).  This result confirms our intuition that the reallocation effects are indeed most relevant

at business-cycle frequencies, instead of being growth phenomena.  We return to this point below.

The correlations in Table 2 show striking differences between productivity growth and technology

change.  The three series are fairly highly correlated, with correlation coefficients of 0.88 and 0.81.  But

the correlation of productivity growth with output growth is 0.85, whereas the OLS measure of

technology change has an output correlation of 0.67, and the IV measure only 0.53.  And while

productivity growth has a positive correlation with aggregate inputs of 0.23, the OLS measure of

technology growth shows little correlation — 0.05 — and the IV measure has a negative correlation: -

0.13.  The correlations with hours worked give a similar picture: productivity growth has a correlation of

0.43, our OLS technology measure has a correlation of 0.13, and the IV technology measure has a

correlation of -0.12.

We present summary statistics for the components of the reallocation term in Table 3.  Examining

the components of the reallocation term, the ones that seem to be most important are ��5µ  and ��50 .  For
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the instrumented series, these terms have standard deviations of 0.72 and 0.51 respectively, out of a total

standard deviation of 1.11 for R.  The sum of ��5  and ��5  (we are unable to separate out the two), is much

less volatile.

One might ask whether the reallocation effects we have identified represent the important gap

between productivity and technology, or whether the difference between the two is still driven mostly by

the “average markup” effect identified by Hall (1988, 1990).  We compared our results to what we would

have found had we used only the “average” correction, i.e. that coming from the presence of the

( )µ 9 9G[− �  term.  Using the correlations with dx V  as a benchmark, we find that the reallocation effects

are the more important.  For the OLS results, productivity corrected for the average effect would have

yielded a correlation with input growth of 0.18, as opposed to 0.23 for the uncorrected series and 0.05 for

our estimated technology series.  For the IV results, the correlation would have been 0.12, as opposed to

-0.13 for the estimated series.  Thus, our reallocation effects are responsible for at least two-thirds of the

correction.  This result should not be surprising since, as we noted, the recent literature finds small

average markups.  Our results echo this finding; for the OLS case, we find µ 9 = ���� , and for the IV case

µ 9 = ���� .  The surprising result is that even such small average markups are consistent with important

differences between aggregate productivity and aggregate technology coming from reallocations across

sectors.

Altogether, these findings indicate that standard technology-driven RBC models are even further

from fitting the data than one normally thinks.  These models in any case tend to generate a correlation

between output and technology that is much higher than the correlation in the data between output and

the Solow residual; since our estimates reduce the measured correlation between output and technology

by 30 percent or so, then standard RBC models are that much further from the truth.  More importantly,

business-cycle models must display the standard characteristic of business cycles: a comovement
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between output and inputs.  If inputs and output move independently in response to technology shocks,

then technology shocks cannot be the dominant impulse driving business cycles. 28

However, it is possible that technology shocks contribute in a different way to business cycles,

since composition effects themselves may serve as a major propagation mechanism for technology

shocks.29  For example, suppose a technology improvement (contemporaneous or lagged) boosts output

by more in durable- than in non-durable-goods sectors.  Since Basu and Fernald (1997) find that durable-

goods industries have larger markups, such a reallocation increases output and productivity.  Hence,

though we find that output is less correlated with contemporaneous technology shocks after composition

corrections, it is possible that lagged technology shocks themselves drive composition changes.  It is thus

possible for our results to support technology-driven models by reducing the size of the necessary

technology shocks without reducing their ability to explain output fluctuations.

To investigate this possibility, we regress the reallocation component of productivity growth, R, on

lags of our derived series of technology shocks.  Table 4 shows these results, for both the OLS and IV

estimates.  Composition changes do appear to help propagate lagged technology shocks — the results are

both statistically and economically significant.  However, the sign of the effect is negative: lagged

technology improvements tend to worsen the allocation of inputs in the economy.  This conclusion is not

prima facie absurd.  For example, technology improvements may stimulate demand that cannot be

satisfied by the output of efficient firms.  As these firms hit capacity constraints, inefficient firms may

produce a larger share of output.  Then the reallocation effect would be negative, exactly as we find.

Thus, the reallocation effects we identify do not serve to amplify the effects of lagged technology

                                                     

28  As we noted, some of the sectoral regressions have estimated values of “µ” that are smaller than one.  In
Appendix B, we argue that this is not likely to be a problem for the main results. Nevertheless, we do try restricting
the values to be equal to or greater than one, by setting all point estimates that are less than one to be equal to one.
This has a relatively small effect on the correlations: for the instrumented estimates, the correlation of dti

V  with
aggregate output becomes 0.59, while the correlation with aggregate inputs remains -0.13.
29  We thank Martin Eichenbaum and Michael Horvath for suggesting this possibility.
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improvements —the reverse is true.  (We do find that lagged technology improvements significantly

increase aggregate output and inputs, which is what one would expect.)

Finally, we note that our results do not shed light on the celebrated puzzle of the productivity

slowdown in the early 1970s.  Of course, reallocations cannot be a source of long-term productivity

growth (since their maximum size is confined to a limited range).  However, over any finite sample

period composition effects can account for a significant mismeasurement in the average technology

growth rate.  Our results do not support this view, however.  In Table 5, we report the summary statistics

of Table 1 for productivity growth and our two technology series, for the time periods 1959-73 and 1974-

89.  All three series show essentially the same reduction in the mean growth rate.  (Interestingly, all three

series also show significantly higher volatility after 1973).

Figure 2 plots productivity and the IV technology series.  Both are normalized to equal 1 in 1959,

with the changes cumulated thereafter.  Both grow rapidly until the oil price shock of 1974, with much

more modest growth thereafter.  However, productivity falls much more in 1974 and in the 1979-82

period, thus accounting for the higher correlation with the business cycle.

Our results indicate that the productivity slowdown was indeed a slowdown in the rate of technical

progress, not a series of shocks that worsened the economy’s distribution of inputs.  This conclusion

matters for policy: appropriate policies, if any, are those that spur innovation — e.g. funding for basic

and applied research — not various types of industrial policy designed to protect “good” (i.e., high-rent)

jobs.

VI.  Conclusion

In this paper, we explore the meaning of aggregate productivity in a world with frictions and

distortions.  In such a world, productivity growth does not in general estimate aggregate technology

change.  Nevertheless, a modified Solow residual does measure welfare change.  Thus, though much of
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the recent productivity literature emphasizes the use of micro data, welfare measurement requires only

readily-available national income accounts data.30

Of course, technology shocks are an important source of productivity change.  We provide a

general accounting framework that relates growth in aggregate productivity and aggregate technology.

We identify various non-technological terms that reflect changes in the allocation of factors across uses

with different marginal products.  Marginal products, in turn, can differ because of frictions or

distortions in the economy.   These reallocations affect aggregate output and productivity, without

necessarily reflecting technology.  Hence, computing aggregate technology change requires micro data.

Several existing studies provide models of fluctuations in economies that deviate in a variety of

ways from the standard one-sector model of production. In those models, the non-technological sources

of productivity fluctuations are not always clear, nor is the relationship to other models.  Our general

framework can aid in understanding and interpreting the fluctuations arising, for example, from sector-

specific technology shocks, vintage capital effects, or imperfect competition with heterogeneity (see,

respectively, Phelan and Trejos (1996), Gilchrist and Williams (1996), and Basu et al. (1996)).

Our derivation also suggests a new technique for measuring an economy’s allocative efficiency.

Suppose we compute technology change from disaggregated data and productivity growth from

aggregate data.  The difference between the two represents changes in allocative efficiency.  In principle,

this technique could be used to calculate the effects of a policy change that improves the distribution of

existing resources; e.g., the post-socialist transition in Eastern Europe.

Finally, we apply our decomposition to the data.  Composition changes appear to explain much of

the cyclicality of aggregate productivity.  We estimate aggregate technology shocks by aggregating

industry-level shocks.  Compared with the productivity residual, technology shocks are less volatile,

                                                     

30 Of course, we have assumed that national income comprises all of an economy’s output.  In practice, there are
formidable difficulties in measuring some of these outputs: e.g. household production, investment in human capital,
and changes in environmental quality.
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have a significantly smaller contemporaneous correlation with output, and have basically zero

contemporaneous correlation with inputs.  These differences are important for judging the plausibility of

technology-driven RBC models, with or without imperfect competition.

Composition changes also appear to serve as a significant propagation mechanisms for lagged

technology shocks.  Surprisingly, lagged technology shocks appear to have a negative effect on the

subsequent allocation of inputs.  Taken as a whole, our results do not support the standard technology-

driven RBC model, where technology must be correlated with inputs.

Lagged technology shocks account for only about 20 percent of the variation in the composition

effects, which in turn contribute significantly to the variability of output and productivity. Thus,

composition effects are an important economic mechanisms in their own right, and may contribute to the

amplification and (positive) propagation of impulses other than technology shocks.  Basu et al. (1996)

show that induced reallocations significantly propagate government spending shocks in a multi-sector

dynamic general-equilibrium model with imperfect competition.  This avenue of research may help

address the notorious weakness of the propagation mechanisms in the one-sector RBC model (see, e.g.,

Cogley and Nason (1995)).

Future research should refine our estimates of aggregate technology change (and hence of the

cyclicality of composition effects).  Because of our interest in economy-wide aggregates, our

“disaggregated” data is at the level of two-digit industries.  In principle, our exercise could be repeated

for the manufacturing sector with a large firm-level data set, such as the Census’s Longitudinal Research

Database.  In addition, we abstracted from cyclical measurement error, which also causes measured

productivity growth to differ from technology growth.  Cyclical mismeasurement is conceptually very

different from the issues addressed in this paper, since it does not lead to the same welfare conclusions

for aggregate productivity.  However, such measurement error, most likely coming from unobserved
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variations in capital and labor utilization, may be quite significant. 31  Thus, ideally one would adjust

firm-level productivity for variations in utilization to get a true firm-level technology series, and then

aggregate technology change across firms using our methods.  These and similar projects are likely to

shed new light on the impulses and propagation mechanisms driving business cycles.

                                                     

31 See, for example, Burnside et al. (1995), Basu (1996) and Shapiro (1996).  Griliches (1987) discusses many of the
measurement issues involved in calculating productivity.
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Appendix A: Derivations in Section III

This appendix derives the equations in Section III in greater detail.  From the production function

(11), we can write output growth dy in terms of input growth and output elasticities:
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From the first-order conditions (13), the output elasticities are related to factor shares and markups.  That

is, for any input J:
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From the two equations above, equation (15) in the text for gross output growth follows:
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Our goal is to express the growth rate of value added, dv, in terms of primary inputs and the

intensity of intermediate-input use.  To facilitate this derivation, note first that we can write the above

equation as
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This expression relates gross output growth to growth in primary inputs, G[
L

9 , intermediate inputs, GP
L
,

and technology shocks.  Primary input growth is defined as a weighted average of capital and labor

growth, using shares in value added.
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Second, subtract µ
L 0L L
V G\  from both sides, and divide through by 1 − µ isMi( ).  Output growth can

then be written as:

dyi =
µi 1 − sMi( )
1 − µ i sMi
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Given the Divisia definition of value-added growth dv (equation (16) in the text), equation (17) in the

text follows immediately:
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It is obvious from this equation that value-added growth is not, in general, simply a functi on of

primary inputs G[
L

9 .  A long literature in the 1970s explored whether a “value added function” exists, and

argued that the answer depended on separability properties of the production function.  The equation

above shows that with imperfect competition, taking value-added to be a function only of primary inputs

is generally misspecified — regardless of whether the production function is separable between value

added and intermediate inputs.

Nevertheless, it will be useful to make that further assumption of separability in order to provide a

simple interpretation of value-added growth.  In particular, suppose the production function is separable,

as in equation (19):

Yi = Fi Ki ,Li ,Mi ,Ti( )= Gi V Pi Ki, Li ,Ti( ),Hi Mi( )( ),

The producer combines primary inputs to produce “productive value added”, 9 3L , then combines

productive value added with intermediate inputs to produce gross output.  We can break the cost-

minimization problem into two stages: first, minimize the cost of using primary inputs to produce any

level of 9 3L ; second, minimize the cost of using productive value added and intermediate inputs to

produce any level of gross output (taking the marginal cost of producing 9 3L , from the first stage, as the

transfer price of productive value added in the second stage).
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In the first stage, the logic used to derive equation (15) implies that the growth rate of “productive”

value added, dv P , can be written in terms of the revenue-weighted growth in primary inputs G[ 9 , plus

technology shocks (without loss of generality we normalize to one the elasticity of productive value

added V P  with respect to technology):

GY L

3 = µ L

9 G[L
9 + GWL .

In the second stage, the first-order condition for value-added implies that:
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0L
.  However, without

knowing more about the shape of the production function (and hence, the slopes of marginal cost of

producing V P and Y), we cannot make any general statements about the magnitude of the value-added

markup µ
L

9 .

To do so, we make the further substantive assumption that all returns to scale are in V P , arising

perhaps from overhead capital or labor.  This requires that G be homogeneous of degree one in V P  and

H, and that H be homogeneous of degree one in M.  Under these assumptions, he left-hand-side of

equation (A4) equals 1 − µ isMi( ).  We can thus rearrange the first-order for productive value added to

show:
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Note also that
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Returning to equation (17), we can now rewrite it as in the text:
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Equation (22) for firm-level value-added productivity follows immediately.

We now aggregate over firms to get aggregate productivity growth, which is the difference between

the growth rates of aggregate output and aggregate primary inputs.  We defined aggregate primary input

growth as G[ V GN V GO9

.

9

/

9= + .  Using the definitions of V
.L

9  and V
/L

9 , and differentiating the definitions of

aggregate K and L, we can write this as:
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Noting the definitions of wi, V L

9  , and V
/L

9 , we can write this as:
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By substituting this equation and the definition of aggregate output growth (equation (23)) into the

definition of aggregate productivity, we find:
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We now substitute in equation (21) for firm-level value-added growth:
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One of our goals is to ask when aggregate productivity can be expressed as a simple function of

aggregate inputs.  To do so, we find it useful to rearrange the first term by pulling out the “average”

markup and substituting in from equation (24) for primary input growth:
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Using this rearrangement, equation (26) from the text follows immediately:
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Appendix B: Using Industry-Level Data

By hypothesis, equation (15) holds at the level of firms, i, in an industry j.  For notational

convenience, define gross-output-augmenting technology change for firm i by ��G]L .  Equation (A6) shows

that G] V GW
L L 0L L

= −� �� µ .  We want a measure of (gross-output-augmenting) technology change for the

industry: G] Z G]
M L L

L

= ∑ �  However, we estimate equation (15) using industry-level data, so that:

(B1) G\ G[ 5 G]
M M M M M

= + +µ ,

where 5M  is the sum of the (gross-output) reallocation terms we for industry j: the analogue of equation

(26) for gross output.  Suppose that 5M  is related in (relatively) structural fashion to inputs in industry j

and to other influences:

(B2) 5M = α M G[ M + ηM ,

where ηM  is uncorrelated (by construction) with G[ M , but may be correlated with aggregate variables such

as dx V .  Then an instrumental variables estimation of (B2) would yield (in plim) $µ µ α
M M M

= + , and

taking the constant and error terms from that regression we would construct G] G]
M M M
$ = + η .  Thus one

likely explanation of our finding values of µ smaller than one in various industries is that α j  is negative

in those industries.32  Note, however, that by itself this issue does not present a problem for estimating

technology change.  The only divergence between estimated technology change and its true value comes

from the presence of ηM .

                                                     

32  This hypothesis is consistent with a reasonable story.  Suppose that industries consist of a number of firms of
varying efficiency.  At times of low output, the most efficient firms produce almost all of the output.  When demand
increases, inputs increase systematically at the less-efficient firms.  This story implies that intra-industry
reallocations (as distinct from inter-industry reallocations) should be negatively correlated with input use.
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Of course, we are interested in the properties of our estimated series of aggregate  technology

shocks, not technology change in a single industry.  However, we discuss the single-industry case to keep

the argument clear, since it extends to the aggregate case in fairly straightforward fashion.

We are most interested in the correlation of ����G
Ö�]�M  with various measures of aggregate input and

output growth.  For concreteness, suppose we are interested in the correlation between G Ö�W�M  and dx V .

How does the presence of ηM  affect this correlation?  We find:
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The size of the numerator is affected by the sign of the covariance between η  and G[ Y .  One generally

expects this covariance to be positive; indeed we find that result using our industry data.

Of course the size of the correlation also depends on the estimated standard deviation of technology

shocks.  If η  is (weakly) positively correlated with ��G] M , then the estimated standard deviation is biased

up, and the estimated correlation is biased down.  Since the covariance would have to be strongly

negative to offset the extra noise coming from the standard deviation, it seems likely that we will

estimate a standard deviation of GW M  that is too large.

Thus, the upshot is that the correlations we stress are ambiguously affected by our use of industry-

level data rather than firm-level data, but our procedure does not introduce any clear bias.  It would

certainly be preferable to use firm-level data for every firm in the economy over our sample period, but

these data do not exist.  However, even setting aside our interest in aggregates, it is not at all clear that

we would be better off doing this exercise with a small firm-level data set.  The reason is that firm-level

data are generally contaminated with a great deal of measurement error.  If the measurement error is

classical, it will wash out in industry-level data or in a large firm-level data set.  But in a small firm-level

data set, classical measurement error will bias up the estimated standard deviation of technology shocks,
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and bias down the correlation (since classical measurement error is equivalent to the case where η  is

uncorrelated with both G[ Y  and GW M ).

Note that there is a clear case for instrumenting the right-hand-side variable, input growth, even

when one uses industry rather than firm data.  IV estimation at least produces a consistent estimate of

µ M +α M , minimizing the measurement error in G Ö�W�M .  OLS estimation would generally introduce another

error by producing inconsistent estimates of µ M +α M ; the issue, of course, is the famous “transmission

problem” of technology change inducing variations in input use.  (As argued by Basu and Fernald

(1997), the instrumented regressions do not estimate µ alone, because reallocation effects may be

correlated with the instruments.  In this case, we want to capture that correlation.)

We have discussed errors in estimating gross-output technology change, but the quantity we wish

to examine is value-added technology change:

GW Z
G]

VM L

9 L

L 0LL

=
−

∑
� µ

.

Using industry data, we approximate ��GWM by GW
G]

V
M

M

M 0

A

A

A=
−� µ

.

Even if we correctly estimate ˆ µ j = µ j , using the average markup µ  and the average materials share s Mi

implies (by Jensen’s inequality) that the variance of ����G
Ö�W�M  is less than the true variance of dtj

V
.  In some

industries, the estimated variance is further reduced by the fact that our estimated ˆ µ j  is probably smaller

than µ j , since α j  sometimes appears to be negative.  On the other hand, as we noted above, the variance

of G Ö�W�M   is likely to be biased up because of noise coming from ηM .  Thus, there is no clear bias to the

estimated variance of dtj
V

.

However, these issues that complicate our estimation of the variance of dtj
V

 should not matter for

the correlations that are the major focus of the results.  With intra-industry reallocations that take the
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form of equation (B2), the estimated value-added series typically has the same correlation properties as

the estimated gross-output series that we discuss, under the reasonable condition that the distributions of

firm-level markups and materials shares are independent of the distributions generating firm-level

technology change.  (For example, this condition rules out the case where technology change is

systematically more cyclical in firms with above-average markups.)

Of course, we examine technology change for the private economy as a whole, not in any one

industry j.  A similar independence condition says that we do not expect our estimates of the correlations

between aggregate technology change and other variables to be biased by using estimated industry-level

markups instead of firm-level markups to construct value-added technology change.
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Figure 2
Levels of Productivity and Technology
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Note: Levels of the series are calculated by normalizing the levels to 1.0 in 1959 and cumulating
estimated growth rates. Growth rate calculations are described in text.
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Table 1
Descriptive Statistics

1959-89

Output Growth
dv

Primary Input
Growth G[9

Aggregate
Productivity

Corrected
Technology

Residual (OLS
Estimates)

Corrected
Technology
Residual (IV
Estimates)

Mean 3.60 2.35 1.25 1.21 1.11

Standard
Deviation

2.84 1.52 2.08 1.62 1.65

Minimum -2.32 -1.14 -4.05 -2.77 -3.02

Maximum 7.53 5.10 4.28 3.57 3.33

Note:  Entries are percentage points per year.  Aggregate productivity is the revenue-weighted residual
for the private business economy.  Instruments are the growth rates in the world price of oil (deflated by
the GDP deflator) and government defense spending, and the political party of the president, along with
one lag of each.
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Table 2

Correlations of Series in Table 1

Output Growth
dv

Input Growth
G[9

Standard
Productivity

Corrected
Technology

Residual
(OLS

Estimates)

Corrected
Technology

Residual
(IV

Estimates)

Output Growth
dv

1

Input Growth
G[9

0.70 1

Standard
Productivity

0.85 0.23 1

Corrected
Technology

Residual
(OLS

Estimates)

0.67 0.05 0.88 1

Corrected
Technology

Residual
(IV Estimates)

0.53 -0.13 0.81 0.96 1
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Table 3
Reallocation by Component, 1959-89

A.  OLS Estimates

��5 ��5µ ��50 ��µ V RK + µ V RL

Mean -0.082 -0.042 0.11 -0.15

Standard
Deviation

0.99 0.63 0.46 0.23

Minimum -2.65 -1.78 -0.86 -0.62

Maximum 1.79 0.96 1.05 0.60

B.  IV Estimates

��5 ��5µ ��50 ��µ V RK + µ V RL

Mean -0.16 -0.11 0.12 -0.17

Standard
Deviation

1.11 0.72 0.51 0.23

Minimum -3.28 -2.13 -0.99 -0.67

Maximum 1.37 0.94 0.93 0.50

Note:  Entries are percentage points per year.
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Table 4

Effects of  Lagged Technology Improvements on Reallocation

1961-89

OLS
Technology

Measure

IV
 Technology

Measure

d ˆ t V −1( ) -1.06
(0.35)

-0.81
(0.35)

d ˆ t V −2( ) 0.11
(0.35)

-0.13
(0.34)

R2 0.26 0.20

Note:  Dependent variable is reallocation, as defined in the text.  Regressions include a constant.
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Table 5
Descriptive Statistics by Subperiod

A: 1959-73

Aggregate
Productivity

Corrected
Technology

Residual (OLS
Estimates)

Corrected
Technology
Residual (IV
Estimates)

Mean 2.25 2.26 2.13

Standard
Deviation

1.39 0.95 0.93

Minimum 0.08 0.65 0.31

Maximum 4.28 3.57 3.33

B: 1974-89

Aggregate
Productivity

Corrected
Technology

Residual (OLS
Estimates)

Corrected
Technology
Residual (IV
Estimates)

Mean 0.32 0.22 0.14

Standard
Deviation

2.22 1.49 1.60

Minimum -4.05 -2.77 -3.02

Maximum 4.26 2.90 2.86

See note to Table 1.


