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1 Introduction

A forecast of the correlation between two financial asset prices is required to price or hedge an

option whose payoff depends on both asset prices or to measure the risk of a portfolio whose return

depends on both asset prices. However, a number of factors make it difficult to evaluate forecasts of

correlation. First, correlation, like volatility, is unobservable. Second, even if true correlation could

be observed, the appropriate loss function is subject to uncertainty. Forecasts which minimize standard

statistical loss functions may not minimize economic loss functions. Third, most models that forecast

correlation also forecast volatility. A test of such a model is a joint test, not a test of the ability to

forecast correlation. To circumvent these difficulties, we propose a methodology to evaluate forecasts

of correlation based on option pricing. Each correlation forecast is used to generate an option trading

strategy. The most accurate correlation forecast will produce the most profitable trading strategy. 

Considerable attention has been given in the literature to forecasting volatility.1,2 The most

common evaluation technique is to regress squared asset returns on volatility forecasts (e.g. Lamoureux

and Lastrapes (1993) and Jorion (1995)). Another technique compares the mean square error of

forecasts, with forecast error measured as the difference between squared returns and the volatility

forecast (e.g. West and Cho (1994) and Figlewski (1997)). Although both techniques use squared

returns as the forecast benchmark and the quadratic loss function to evaluate forecast accuracy, they do

not always agree on which forecast of volatility is best. Squared returns are a sensible benchmark

since they are an unbiased and consistent estimate of true volatility. However, true volatility is never

observed. Further, there is no natural metric to measure the dollar value of volatility forecast errors. 

                                                                   

     1We use the term ’volatility’ in this paper both to refer to the general variability of a time series and as a synonym for
standard deviation.

     2See Mayhew (1995) and Figlewski (1997) for surveys.



To overcome these difficulties, Engle et al (1993) introduced a new technique to evaluate volatility

forecasts based on the models’ ability to accurately price options.3

In this paper, we extend the methodology of Engle et al (1993) to the multivariate case for the

purpose of evaluating forecasts of the entire variance-covariance matrix. One strength of our

methodology is that it evaluates forecasts with an economically meaningful loss function: option

pricing errors. Another strength of our methodology is its ability to emphasize the accuracy of any

combination of volatility and correlation forecasts, e.g. the methodology can be tailored to identify

good forecasters of correlation, good forecasters of volatility, or good forecasters of correlation and

volatility. 

Little attention has been given in the literature to evaluating forecasts of correlation. A small

but growing literature compares the forecast accuracy of implied correlation from cross-currency

options with correlation forecasts based on historical pairs of returns.4 However, these papers evaluate

forecast accuracy using a statistical loss function, such as mean square error, not an economic loss

function such as option pricing errors. 

In the next section of the paper, we set out our methodology. We describe the steps that must

be followed each day: each forecasting model makes a forecast, each forecast is used to price and

trade options, and profits are realized based on the next day’s actual asset price movements. We

describe how our methodology can be tailored to focus on any desired combination of volatility and

correlation forecasts by trading a package of options. In section 3, we explore our methodology’s

performance on simulated data. In section 4, we describe the five forecasting models we choose to

implement in our empirical application: two GARCH models, a two-state Markov switching model,

                                                                   

     3See also Noh, Engle and Kane (1994) and Engle, Kane and Noh (1997).

     4Campa and Chang (1997) and Walter and Lopez (1997) are two recent examples.

2



and two moving averages. In section 5, we implement our methodology using data on the S&P 500

and NASDAQ composite equity indices. Section 6 concludes.

2 Evaluating forecasts by their ability to accurately price options

To evaluate forecasts of correlation, we extend the methodology of Engle et al (1993), who

based their evaluation of univariate volatility forecasting models on the models’ ability to accurately

price options. We specify a group of forecasting "agents," each with her own forecasting model for

the variance-covariance matrix of joint returns on two assets.5 The forecasting agents price and trade

an option whose payoff depends on the two asset prices (a "rainbow option"). Each forecasting agent

is assumed to be risk-neutral. 

For each day t in our sample, the following sequence is followed:

1. Each agent forecasts the variance-covariance matrix of joint returns between t-1 and t, using

past returns through day t-1.6

2. Each agent uses her forecasts of volatility and correlation to price a 1-day European rainbow

option whose payoff depends on the date t returns on the two assets.

3. Agents trade options among themselves. For each pair of agents, the agent whose forecast

leads to a higher option price buys one option from the agent whose forecast leads to a lower

option price. With n forecasting agents, each agent will make n-1 trades each day. We

restrict the trade amount to a single option.7 Each trade takes place at the mean of the two

                                                                   

     5The five forecasting models we use in our empirical tests are described in Section 4 below. In the simulations presented
in Section 3, the agents use static forecasts that do not require any estimation.

     6For an analysis of correlation forecasting that uses more information than just past returns, see Karolyi and Stulz (1996).

     7This restriction is necessary to limit the amount of trading, since two risk-neutral agents who put different values on an
option would want to trade an infinite quantity of the option. A more involved alternative would be to specify each agent’s
risk preferences, have each agent compute the risk of each trade (incorporating the forecast uncertainty), and have agents
bargain over an amount and a price for each day’s trade. We have chosen the simpler alternative.
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agents’ prices. The "bank account" of the option-selling agent is credited with the amount of

the option premium, and the "bank account" of the option-buying agent is debited the same

amount.

4. Each agent hedges her exposure to both of the underlying asset prices by selling short a

number of shares of each asset equal to the agent’s estimate of the "delta" of her option

position with respect to that asset.8 Hedging is done by buying or selling at date t-1 prices. 

Each agent’s "bank account" is credited with the amount of the short sales (or debited if the

hedge is a long position in the underlying asset).

5. The "bank account" balances earn one day’s interest at the risk-free rate. Negative balances

are charged interest at the risk-free rate.

6. Using actual date t returns, the rainbow option’s payoff is calculated. The "bank account" of

each agent who bought options is credited with the payoff amount (which is zero if the option

expires out of the money). The hedge positions are sold at date t prices.

7. Each agent’s final "bank account" balance represents her profit from the day’s trading.

Forecasting agents with more accurate forecasts should, on average, earn higher profits.

2.1 Choosing an option pricing model

Our methodology requires each agent to price a 1-day rainbow option. In principle, each

agent should use an option pricing model specific to the data generating process assumed by that

agent. For example, an agent who forecasts assuming a stationary lognormal distribution for returns

would use an extension of the Black-Scholes model to price rainbow options, an agent who forecasts

assuming returns follow a GARCH process should use a GARCH option pricing model, and so on.

While it would be possible to price a European rainbow option under any assumed data

generating process, either by solving a partial differential equation or using Monte Carlo techniques,

                                                                   

     8The instantaneous delta is used for hedging, and the hedge is not rebalanced before the option expires. 
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doing so for all of the data generating processes assumed by the various forecasting agents would

increase the computational burden of our methodology. For some data generating processes (i.e. those

with stochastic volatility), no-arbitrage pricing methods could be inappropriate and an equilibrium

model, involving additional assumptions on preferences, could be required. To reduce the

computational burden of our methodology, we follow Engle et al (1993) and require all forecasting

agents to use a common option pricing model--an extension of the Black-Scholes model to rainbow

options, assuming stationary lognormal returns. Under the Black-Scholes assumptions, analytic

solutions are available for several rainbow options and simple numerical techniques can provide

solutions for other rainbow options. 

Although it simplifies computation, forcing all forecasting agents to price options under the

Black-Scholes assumptions will introduce some error. We believe the error will be small because all

the options we consider in this paper expire in one day and are either at the money or close to the

money. In addition, imposing a common option pricing model on all agents removes one of the two

ways a forecasting agent could outperform her competitors: by a superior forecast of correlation and/or

volatility, or by a superior option pricing model. Consequently, our results will be biased against

finding any differences among forecasting agents.

2.2 The relative importance of correlation and volatility

The price of a rainbow option depends on both correlation and volatility. Time series models

that produce different correlation forecasts will likely produce different volatility forecasts. This poses

a problem for our methodology, if we are interested in isolating the ability to forecast correlation

independently of the ability to forecast volatility. 

The relative importance of volatility and correlation forecasts will depend on the use to which

those forecasts will be put. Each user of a forecast will have his or her own loss function over the
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deviation of forecast volatilities from true volatilities and the deviation of forecast correlation from true

correlation. Algebraically, these loss functions could be written in a general way as

where a superscript "f" indicates a forecast, the wi are the weights attached to the volatility and

(1)

correlation terms, and the gi(.) are functions that are minimized at zero (e.g., absolute value or

quadratic). The best forecasting model for a particular application will minimize L, given a set of

weights. The choice of weights could influence which forecasting model is identified as the "best." 

For example, {w1 = w2 = w3 = 1} would favor a "generalist" forecasting model that does a good job of

forecasting both volatility and correlation, while {w1 = w2 = 0, w3 = 1} would favor a "specialist"

forecasting model that does a good job forecasting correlation.

One way to tailor the relative importance of volatility and correlation in our methodology

would be to vary the choice of rainbow option to be traded by the forecasting agents. Some rainbow

options are relatively more sensitive to volatility, some to correlation. If the application of interest is

pricing a particular rainbow option, choosing that rainbow option to be traded by the forecasting

agents will naturally produce the correct "weights" on volatility and correlation (and would correctly

specify the individual loss functions gi).

We develop a more general way to tailor the relative importance of volatility and correlation,

because we expect that the uses of correlation forecasts may be wider than simply pricing various

rainbow options. In particular, a situation where volatility risk can be hedged but correlation risk

cannot implies a low cost of making an incorrect volatility forecast but a higher cost of making an

incorrect correlation forecast. (In (1), this would be the case of {w1 = w2 = 0, w3 = 1}.) In what

follows, and in our empirical work, we focus on this case, because we think it is of particular interest. 
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However, we stress that our methodology could be extended to handle arbitrary weights on the

components of the loss function L.

To tailor the relative importance of volatility and correlation, we replace the single rainbow

option with a "package" of seven options: a single 1-day rainbow option and six 1-day European call

options (three on each asset). The call options are defined to have strike prices at 100%, 101% and

102% of the asset’s current price.9 We will vary the amounts of the call options contained in the

package to tailor the sensitivity of the package’s price to the two volatilities. Buying call options will

increase the sensitivity of the package price to volatility without affecting its sensitivity to correlation,

increasing the relative importance of volatility. Conversely, selling call options will reduce the

sensitivity to volatility, reducing the relative importance of volatility. Forecasting agents will price

and trade the package of options in place of the single rainbow option. The rest of the methodology

as described above remains unchanged.

2.3 Tailoring the methodology to focus on correlation

For our "option package" methodology, we want to find a package of options whose price is

sensitive to correlation but insensitive to volatility. Let V(σ1, σ2, ρ; x) represent the price of the

package of options, which is written so as to explicitly note its dependence on the volatility of the two

assets (σ1, σ2), their correlation (ρ), and the amounts of the six call options included in the package

(the 6x1 vector x).10 We adopt the convention that the first three elements of the vector x specify the

amounts of the call options on asset 1 with strike prices at 100%, 101%, 102% of the current price,

and the last three elements refer to calls on asset 2. We will refer to the call option on asset 1 with

                                                                   

     9Adding more than three call options on an asset does not improve the ability to tailor the sensitivity of the option
package’s price to volatility, because the price-volatility profiles of the additional options will be linear combinations (to the
accuracy of a computer) of the price-volatility profiles of the first three options. See footnote 13 for a discussion of how the
strike prices were chosen. 

     10Of course, the package price will also depend on other variables including the risk-free interest rate, the dividend rates
on the two assets, the time to maturity, current asset prices, and the strike prices of the individual options. These variables
will not differ across forecasting agents.
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strike price equal to the current price as C1, the call on asset 1 with strike price at 101% of the current

price as C2, and so on. Using this notation, the function V can be written as

where R(σ1, σ2, ρ) is the price of the rainbow option and Cj(σ) is the price of the jth call option.

(2)

Our objective to find a package of options that is insensitive to volatility but sensitive to

correlation can be expressed as choosing x so that

where a superscript identifies which agent’s forecast of that variable is being used. In words, if

(3)

forecasting agent k prices the package using her own correlation forecast (ρ(k)) and any of the n

forecasts of σ1 and σ2, she will come up with a constant price Vk. This condition should hold for all n

forecasting agents, which implies a system of n 3 equations. Using (3) and the definition of V in (2),

we can write the system of equations in matrix form as

where

(4)
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No exact solution to (4) will exist. The economic logic is as follows. We want to remove the

sensitivity of the option package’s price to volatility by adding the appropriate amounts of six call

options. However, each forecasting agent perceives a different price-volatility profile for the rainbow

option, because the price-volatility profile depends on the level of correlation (in other words,

∂2V/∂ρ∂σ is not zero for the rainbow options we consider). We could choose a package of call

options whose value would be perceived by one forecasting agent to be insensitive to volatility. 

However, the other agents would still perceive some sensitivity to volatility, and the results would still

be sensitive to volatility.

Since no exact solution will exist, we look for the least-squares solution to (4). The least

squares solution will choose call options whose price-volatility profile comes closest to offsetting the

individual price-volatility profiles of the n forecasting agents. In algebraic terms, the least squares

solution solves

For large n and sufficiently heterogeneous forecasts, the matrix A will be of full rank and the least

(6)

squares solution to (4) will be

9



In other cases, the least squares solution will not be uniquely determined (the matrix A will not be of

full rank). In this situation, we choose the solution with the shortest length, calculated as y = A+b,

where A+ denotes the pseudoinverse (Moore-Penrose inverse).11 

In the context of our particular application, the criterion of "shortest length" is a useful way

for us to choose one of the many least squares solutions. Relative to the "shortest length" solution,

other solutions will include larger long and short positions in call options on the two assets. These

other solutions involve more buying and selling of call options to get to the same place (in terms of

smoothing out the price-volatility profile), magnifying the small option pricing errors made by pricing

the options under Black-Scholes assumptions. These other solutions would also make our

methodology less numerically stable.

We will focus in our empirical example on the case where we care only about the accuracy of

the correlation forecast. The preceding discussion has made it clear that we can never remove all

sensitivity of the option package’s price to volatility. Some residual sensitivity to volatility will

remain, although we expect it will be small relative to the sensitivity to correlation. Rather than

simply hope we have done a good job of removing the sensitivity of the option package’s price to

volatility, we can check this by examining the relationship between the agents’ correlation forecasts

and their option package prices. The relationship will be monotonic if we have done a good job of

                                                                   

     11See Strang (1980, section 3.4) for a discussion of the properties of the pseudoinverse.
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removing the sensitivity to volatility.12 We can check this by comparing the Spearman rank

correlation between the correlation forecast and the option package price on each day with +1 or -1.13

3 Using simulations to evaluate the methodology

We have described a methodology for evaluating forecasts of correlation that is based on the

intuitive notion that a correct forecast will produce a more accurate rainbow option price than an

incorrect forecast. Although it is based on a simple idea, our methodology is too complex to admit a

formal proof of consistency. In place of a proof, this section of the paper demonstrates how our

methodology performs on simulated data with simple static forecasts. We also use simulations to

examine how the methodology performs with four different rainbow options and choose one to use in

the empirical application that follows.

3.1 The setup of the simulations

The simulations will use a data generating process for the two daily asset returns consisting of

a bivariate normal distribution with means equal to zero, standard deviations of 14.1 percent

(annualized) for both asset returns, and a correlation of 0.6. Unlike our empirical application, the

simulations do not distinguish between calendar time and trading time; no weekends or holidays are

present in the simulations.14 Each simulation will be repeated for 100 trials and will include five

forecasting agents, each of whom will make a static (constant) forecast throughout each trial. One of

                                                                   

     12Whether it will be monotonically increasing or decreasing depends on whether the price of the particular rainbow option
used is increasing or decreasing in correlation.

     13We chose the strike prices of the call options in the option package by doing a grid search over possible combinations
of out-of-the-money, at-the-money, and in-the-money strike prices. The strike prices of 100%, 101%, and 102% of the spot
price did the best job of isolating the effect of correlation on the option package price, as measured by the fraction of days
for which the rank correlation between the option package prices and the correlation forecasts was ±1 (using the real data
from Section 5, not the simulated data from Section 3).

     14To compensate for the absence of weekends and holidays in the simulations, daily variances are multiplied by 250 (not
365) when annualized.
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the five agents will make a correct forecast, one will make a correct correlation forecast but an

incorrect volatility forecast, one will make a correct volatility forecast (for both assets) but an incorrect

correlation forecast, and two will make incorrect forecasts of both volatility and correlation. We will

vary several elements throughout the simulations: the sample size, the particular rainbow option used

in the option trading methodology, and whether the incorrect forecasts are "close" or "far" from the

truth.15 In this way we will get an idea (although not a proof) of how our methodology performs

along these various dimensions.

When an agent makes an incorrect forecast, it is chosen at random from a predetermined set of

incorrect forecasts. We use two sets of incorrect forecast, one "close" to the truth and one "far" from

the truth (see Table 1). The incorrect volatility forecasts are not assumed to be independent of one

another, since in reality a biased volatility forecasting methodology is likely to be biased in the same

direction for both volatilities. To create this sort of dependence in our simulations, we force the bias

of the two incorrect volatility forecasts to have the same sign by choosing the volatility of asset 1 at

random, then choosing the volatility of asset 2 at random from the subset of incorrect volatility

forecasts that have the same direction of bias. Correlation forecast errors are assumed to be

independent of volatility forecast errors.

One task of our simulations will be to compare how our methodology performs with various

rainbow options. We will examine four rainbow options: a call spread, an outperformance option, a

call worst, and a basket. Table 2 shows the payoff function for each. In addition to choosing a

particular rainbow option, we must choose a strike price. We choose all strike prices to be "at the

money." Strike prices that are not at the money make the price-volatility profile more non-monotonic,

which makes it harder for our "option package" technique to remove the sensitivity to volatility.

                                                                   

     15To remove an undesired source of variation across simulations, we do not vary the sequence of pseudo-random numbers
used to generate the simulated return data.
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3.2 Comparing the basic methodology and the option package methodology

Table 3 shows the results of a simulation of the basic methodology, with agents trading a

single call spread option. Table 4 shows results of a simulation of the option package methodology,

with a single call spread option and six call options, designed to remove the sensitivity to volatility but

preserve the sensitivity to correlation. Comparing these two will show the effect of tailoring the loss

function to focus on the accuracy of correlation forecasts. Each table (and each of the remaining

tables in this section) has two panels, corresponding to the cases where the incorrect forecasts are

"close" or "far" from the truth. Each panel has a table with five columns, corresponding to the five

forecasting agents. Each panel’s table has three rows, each corresponding to a different sample size

(250 days, 1000 days, and 5000 days). Each cell of the table has three pieces of information: the

number of trials (out of 100) in which that forecasting agent had the highest profits, the mean across

the 100 trials of mean daily profit, and the mean across the 100 trials of standard deviation of daily

profit.

Table 3 shows that the basic methodology can identify good forecasts and that its ability to do

so is enhanced by a longer sample and when forecasts are more heterogeneous. In Panel A, the agent

with completely correct forecasts has the highest profits per day in 40 trials with N=250, 58 trials

when N=1000, and 78 trials when N=5000. In Panel B, with more heterogeneous forecasts, the

methodology does better, with the correct forecasts winning in 59, 80, and 85 trials. Notice that the

basic methodology, with a single call spread option, rewards the ability to forecast both volatility and

correlation accurately. In particular, agent 1 does much better than agent 2, even though both have

identical, correct forecasts of correlation.

Table 4 shows that the option package methodology, trading a call spread option plus six call

options, does a good job of reducing the sensitivity of the trading profits to volatility, enhancing the

ability to identify good correlation forecasts. If the package methodology were able to remove all
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sensitivity to volatility, agents 1 and 2 should have exactly equal performance, since they have

identical correlation forecasts. But, as we discussed above, it is impossible to remove all sensitivity to

volatility. As a result, agent 1 still outperforms agent 2, but by a small margin. In Panel B, agent 1

has the highest profits in 52 trials with N=250, compared with 33 for agent 2. At N=5000, the

package methodology correctly identifies one of the two agents with the correct correlation forecast in

98 of 100 trials. This compares with 87 out of 100 in Table 3 when trading the single call spread

option.

3.3 Comparing four rainbow options

The simulations reported in Table 3 and Table 4 used a call spread option as the rainbow

option that was priced and traded by the forecasting agents. Different rainbow options have different

relative sensitivities to correlation and volatility, creating some variation in how well the option

package methodology can remove the sensitivity to volatility. To choose a particular rainbow option

to use in our empirical application, we repeat our simulations of the option package methodology with

the three remaining rainbow options from Table 2 and compare the results.

Table 5 presents results using an outperformance option. Table 6 presents results using a call

worst option. Table 7 presents results using a basket option (with weights equal to one-half). We

compare the results in these three tables with those in Table 4 for the call spread option. The statistic

we choose to compare across tables is the number of times one of the two agents with a correct

correlation forecast had the highest profits, which will be the sum of the numbers on the first line of

the leftmost two columns. We look at the results for a sample size of 5,000 because the dataset we

use in our empirical application is of that size. For the Panel A results, where incorrect forecasts are

close to the truth, our comparison statistic is 86, 57, 79, 76 for the four rainbow options. For Panel B

results, it is 98, 96, 98, 100. When the incorrect forecasts are far from the truth, any of the four
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rainbow options can distinguish a true correlation forecast from a false one. When the incorrect

forecasts are close to the truth, the call spread option does a better job.

3.4 Summing up the simulations

We take the following conclusions away from the simulations. First, our methodology can

distinguish accurate correlation forecasts from inaccurate ones. Second, among the four rainbow

options we consider, the call spread option allows our option package methodology to remove the

most sensitivity to volatility. Third, both the sample size and the degree of heterogeneity among

forecasts affect how the methodology performs. With twenty years of data (N=5,000) and very

heterogeneous forecasts, the methodology appears to work well. With one year of data (N=250) and

not-too-heterogeneous forecasts, the methodology cannot do much. 

4 Five Forecasting Models

4.1 Model-based forecasts and option-implied forecasts of volatility and correlation

Two approaches to forecasting volatility exist. One involves the statistical analysis of

historical returns to develop out-of-sample forecasting models. The other is based on extracting

volatilities implied by some option pricing formula. Comparisons of volatility forecasting techniques

are numerous; see Figlewski (1997) for a survey. In general, these studies find that both implied

volatility from options prices and volatility forecasts based on historical returns contain (non-

overlapping) information about future volatility.

These same two approaches can be used to obtain correlation forecasts. We choose to focus

on correlation forecasts based on the analysis of historical returns, not on implied correlation extracted

from rainbow option prices. By not using implied correlation forecasts, we do not limit the empirical

application of our methodology to the small number of financial time series, primarily exchange rates,
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for which price data on rainbow options is available. Using our methodology to evaluate implied

correlation forecasts would be an interesting topic for future research.

4.2 Summary of the five models

We investigate the forecasting ability of five models, three of which allow both conditional

volatilities and conditional covariances to vary independently over time: a diagonal bivariate

GARCH(1,1), a bivariate two-state Markov regime-switching model, and an exponentially weighted

moving average model. These three allow for time-varying conditional correlations.16 To compare the

performance of a model of correlation stability, we investigate a bivariate GARCH(1,1) with constant

conditional correlations. Finally, we also look at the forecasting ability of the naive historical

correlation. We allow all five models to use N days of historical data to make a forecast.17 To make

forecasts for day 1, pre-sample data from days -(N-1) to 0 will be used.

All five forecasting models can be considered a special case of the following general model

for a vector of continuously compounded returns rt: 

where εt is a serially uncorrelated random vector with zero means, and ψt-1 represents past returns

(8)

through time t - 1. The algorithms differ in the distribution they assume for εt.

4.3 Naive Historical Forecasts (NAIVE)

Naive historical forecasts implicitly assume conditional and unconditional moments are equal,

i.e., 

                                                                   

     16Bera and Kim (1996) and Longin and Solnik (1995) find time-varying correlation to be important empirically.

     17In the empirical tests below, we set N = 1,000.
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The naive forecast of E(rt) is the sample mean. Variance and covariance forecasts are obtained by

(9)

calculating moving averages over an N-day window,

Note that the bivariate normal distribution is a special case for which (9) holds. If the error terms are

(10)

truly bivariate normal, the forecasts in (10) will be unbiased, efficient estimates of the unconditional

variance and covariance. Otherwise, they need not be efficient. 

4.4 Exponentially Weighted Moving Average Forecasts (EWMA)

One approach to model time varying variances and covariances is to express each element of

the variance-covariance matrix as an exponentially weighted moving average of past squared errors or

cross product of errors. Exponentially weighted moving average forecasts are given by

where the sums are truncated after N days. The most recent errors carry the highest weight in the

(11)

weighted average, thus allowing forecasts to quickly reflect market shocks. Note that both the NAIVE

and EWMA forecasts average past squared residuals and cross products of residuals but with different

weights. Equation (11) gives no indication of how to identify proper values for λ. Following the
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RiskMetrics™ Technical Document (1996), we examine EWMA forecasts made with λ = 0.94 and

assume the unconditional mean is zero.

4.5 GARCH Forecasts

    The ARCH model of time-varying variance was originally proposed by Engle (1982) and later

generalized under the acronym GARCH by Bollerslev (1986). Due to the well-known dynamic nature

of conditional volatilities, the univariate ARCH family of forecasting models has won widespread use

in forecasting volatility (e.g., Figlewski (1997), Noh et al. (1994), Engle et al. (1993), Baillie and

Bollerslev (1992), Jorion (1995), and West and Cho (1994)). 

A general bivariate GARCH model, which encompasses the two models investigated in this

paper, is the vec representation, 

where A and B are 3×3 matrices of parameters. Engle and Kroner (1995) develop a parameterized

(12)

version of the vec GARCH model that restricts Σt to be positive definite while maintaining the

generality of the vec model. As a result, estimation of the most interesting special cases of (12) is

made practical. We choose to work with two special cases of (12).

In developing the GARCH models used in this paper, we follow Noh et al. (1994) on two

accounts. First, we assume an AR(1) model for continuously compounded returns, 
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Second, since traders can forecast weekends and holidays with perfect accuracy, we extend the

(13)

GARCH models to distinguish between calendar time and trading time. We allow non-trading days to

induce only a fraction of the volatility of trading days, as documented in French and Roll (1986).18 

Extending the approach of Noh et al (1994) to the bivariate case, we introduce a parameter δ1 to

measure the average intensity of variance over non-trading days and a parameter δ2 (in the D-GARCH

model) to measure the average intensity of covariance over non-trading days. As the δ parameters

increase from zero to one, the intensity of variance and covariance over non-trading days increases

from none to a level equal to that over trading days. 

4.5.1 Diagonal GARCH (D-GARCH)

A natural restriction of the vec GARCH model is to allow each element of Σt to depend on

only past values of itself and past values of εi,t εj,t (the (i,j) th element of εt εt
 ),

This restriction is referred to as the diagonal representation (D-GARCH), originally proposed by

(14)

Bollerslev, Engle, and Wooldridge (1988). The D-GARCH model allows both conditional variances

and conditional covariances to vary independently, thus allowing conditional correlations to vary over

time. 

                                                                   

     18The subscript t continues to index trading time, and we separately keep track of the number of calendar days between
trading days t-1 and t.
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4.5.2 Constant conditional correlation GARCH (C-GARCH)

Another parameterization of the vec model, suggested by Bollerslev (1990), restricts the

conditional correlation to be temporally constant (C-GARCH). The diagonal elements of the variance-

covariance matrix are modeled as univariate GARCH processes, and the off-diagonal elements are

given by multiplying the constant conditional correlation coefficient, ρ, by the appropriate root cross

product of diagonal elements, 

(15)

4.5.3 GARCH models with the weekend effect

After incorporating the "weekend effect," the specification of the D-GARCH model used in

this paper is

 and the C-GARCH model takes the form:

(16)
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where nt is a positive integer equal to the number of calendar days between observations t-1 and t.19 

(17)

In both instances, the estimation assumes the conditional distribution of εi,t is normal with zero mean.

4.6 Markov Forecasts (MARKOV)

Finally, we investigate the forecasting ability of a bivariate two-state Markov switching

model.20 Sola and Timmermann (1994) show that a univariate Markov switching model, like

univariate ARCH and GARCH models, can successfully mimic important features of financial time

series such as time-varying volatility, persistence in volatility, and excess unconditional kurtosis ("fat

tails"). The Markov model assumes returns follow an AR(1) as in (13), with the error term distributed

as

The unobserved variable st defines the regime the model is in at time t and is assumed to follow a

(18)

two-state Markov process:

We also extend the Markov model to incorporate the weekend effect. Each day’s variances

(19)

and covariances in a particular regime are assumed to be the product of two terms: a term reflecting

the variances and covariances associated with the regime and a term reflecting the number of calendar

                                                                   

     19In our notation, σ2
11,t represents the variance of asset 1 between trading days t-1 and t.

     20See Hamilton (1994) for a description of a univariate two-state Markov switching model.
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days since the previous trading day. Specifically, the variance-covariance matrix of returns from t-1 to

t in regime j is modeled as

This parameterization of the weekend effect obtains the desired result of forecasting higher volatilities

(20)

and covariances on days when  nt > 1. We will avoid the mistake of concluding the data generating

process is in the high variance regime on days when volatilities and covariances are high only because

of the weekend effect. Forecasts based on the Markov model are expressed as

(21)

5 Empirical application

5.1 Data and estimation strategy

To apply our methodology, we require data on two correlated financial time series. In order to

accurately measure the correlation, we must have data that are recorded at the same time each day.21 

For this reason we choose to apply our methodology to daily, continuously compounded returns for

the S&P 500 and the NASDAQ composite index. The data set begins on December 14, 1972, and

ends on May 14, 1997. Data though the end of 1993 were obtained from the CRSP tape. All other

data was obtained from the US FAME database maintained at the Board of Governors of the Federal

                                                                   

     21See RiskMetrics™ Technical Document (1996), p. 184, for a discussion of the problem of nonsynchronous data
collection and correlation estimation.
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Reserve System.22 The set of observations for which there was a missing value for either series was

removed before log differencing, and the set of observations which occurred around the time of the

October 1987 crash (October 10 - October 30), was removed after log differencing.23 Table 8 shows

summary statistics of the data.

Model estimation is required to generate the D-GARCH, C-GARCH, and MARKOV forecasts. 

Influenced by the results of Engle et al. (1993), who compared the performance of volatility forecasts

using GARCH models estimated over various sample sizes, we choose to estimate the parameters of

each model using the most recent 1,000 observations.24 The first 1,000 days in the data set are used to

estimate the models and make volatility and correlation forecasts for December 7, 1976, the day we

begin to apply our option trading methodology. Each model is estimated using maximum likelihood

for each day in the sample.25

5.2 Summary of the five forecasting models and their forecasts

The means and standard deviations of the five forecasts of daily volatility and correlation over

the 5,154 days in our sample are shown in Table 9. For those forecasts that take account of weekends

and holidays, Table 9 incorporates those effects. In general, the NAIVE forecast has the least

variability over time, EWMA has the most, and the three model-based forecasts have an intermediate

amount of variability. 

Table 10 shows the means of the estimated parameters for the D-GARCH, C-GARCH, and

MARKOV models over the 5,154 days in our sample. Little in Table 10 will surprise readers who are

                                                                   

     22A data series for the risk-free interest rate (3-month T-bill) was also taken from the Fed’s database. Dividends were set
to zero.

     23Again, we follow Noh et al (1994) in excluding days around the October 1987 stock market crash.

     24The two moving average forecasts (NAIVE and EWMA) were also computed using the most recent 1,000 observations.

     25All estimation was done using GAUSS’ MAXLIK module. We estimated 5,154 C-GARCH models, 5,154 D-GARCH
models, and 5,154 MARKOV models. Using the previous day’s parameter estimates as starting values for the maximum
likelihood procedure expedited the estimation.
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familiar with the literature on GARCH and Markov-switching models. One point of interest is the

magnitude of the weekend effect. The delta parameters are all around 0.2, implying that variances and

covariance from Friday’s close to Monday’s close are around 25 percent higher than over a weekday. 

Noh et al (1994) found a similar magnitude of the weekend effect for variances; our results show the

same magnitude holds on average for a covariance. 

5.3 Evaluating only correlation forecasts

We first evaluate the five forecasting models using our option package methodology, tailored

to focus on correlation forecasts by minimizing the sensitivity to volatility. Table 11 shows the mean

daily profits of the five forecasting models. MARKOV shows the highest profits per day, followed

closely by D-GARCH. These two models model the time variation in correlation, and they also allow

for the "weekend effect" to have different effects on variances and on covariances. C-GARCH does

worse than D-GARCH, perhaps not unexpectedly, since it imposes an assumption of constant

conditional correlation. C-GARCH also forces the "weekend effect" to be the same for variances and

covariances, since conditional covariances are not forecast separately from conditional variances. The

two "simple" forecasts, NAIVE and EWMA, have the lowest profits. 

We assess statistical significance of these differences by computing asymptotic

heteroscedasticity and autocorrelation-robust standard errors for the mean daily profits, shown in the

second column of the table.26 The third column of the table shows t-statistics for the null hypothesis

that the mean of daily profits equals zero. The null hypothesis can be rejected for MARKOV, whose

mean daily profit is statistically significantly greater than zero, and for NAIVE, whose mean daily

profit is statistically significantly less than zero. The fourth column of the Table shows t-statistics for

the null hypothesis that the mean of each agent’s daily profits equals the mean of MARKOV’s daily

                                                                   

     26The only assumption necessary to permit us to use a standard robust covariance estimator is covariance stationarity of
the underlying stock index returns. Because the daily profits are a bounded transformation of a moving 1000-day window of
the stock index returns, they retain the covariance stationarity of the underlying data.
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profits. The null can be rejected for NAIVE and EWMA, but not for the two GARCH forecasting

agents. These results suggest that the three more sophisticated forecasting models (MARKOV,

C-GARCH, D-GARCH) outperform simpler forecasting models (NAIVE and EWMA) but do not give

us a basis to conclude that one of the three sophisticated forecasting models is superior to the other

two.27

Figure 1 displays a graph of the daily profit series for the five forecasting agents. The figure

shows that the difference between MARKOV and D-GARCH is not very large, compared to the gaps

between the other three forecasting models. Different subsamples of the data could show a different

ranking between MARKOV and D-GARCH. The figure confirms the extreme variability of the daily

profits, and the importance of data outliers that lead to large spikes in the profit series. The figure

also shows that most of the profits were made or lost in the first half of the sample period.

To investigate further the stability of the rankings over subsamples of our 20 years of data,

Table 12 summarizes the relative position of the five forecasting agents when results are tabulated by

calendar year. MARKOV still comes out on top, finishing first in 8 years and second in 5 years. A

surprising finding in this table is the performance of NAIVE, finishing first in 6 years (although last in

6 years also). 

5.4 Excluding days where we cannot isolate the effect of correlation

At the end of section 2, we discussed how our option package methodology could never

completely remove the influence of different volatility forecasts on the results. If the package

methodology is working, on each day the relationship between each agent’s correlation forecast and her

                                                                   

     27Our results using the call spread option should not be strongly affected by the fact that stock markets were on average
rising during our sample period, because the results depend on the spread between NASDAQ and S&P 500 returns but not on
their level. Although the spread was on average positive, it was much smaller than the level of returns. 

It is possible that the high stock market returns during our sample period combined with our use of standard call
options in the “option package” methodology could affect the results. To check whether this was important, we replaced the
call options in the hedging portfolio with puts and found that the mean daily profits reported in Table 11 were virtually
unchanged. 
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option package price should be monotonic. In this subsection we remove from the sample those days

where the option package methodology cannot remove enough of the sensitivity to volatility. 

Specifically, on each day we add an extra step to the methodology following the determination of the

contents of the option package: the Spearman rank correlation between the agents’ correlation

forecasts and their option package prices is calculated. If the rank correlation is greater than -.5, no

trading for that day takes place and we skip forward to the following day. If the rank correlation is

less than or equal to -.5, the remaining steps for that day are carried out.28 

Excluding certain days creates the potential for selection bias. We do not believe that the

selection mechanism favors one agent’s forecasts over another’s. The selection mechanism is triggered

when volatility and correlation forecasts are too dissimilar for the option package methodology to

remove the sensitivity of the call spread option’s price to volatility. Selection bias would be a problem

only if one forecasting model consistently produces better forecasts on days with heterogeneous

variance-covariance forecasts compared to days with homogeneous variance-covariance forecasts.

Table 13 shows the mean daily profits under this alternative, along with robust standard errors

and t-statistics. The ranking of forecasts is unchanged, and the range of profits is a little smaller than

it was in Table 11. Figure 2 shows a graph of the five daily profit series. It too looks little changed

from the previous results. Evidently the unwanted sensitivity of our methodology to volatility

forecasts did not have a large effect on the ranking of the five forecasting models. 

5.5 Forecasting volatility and correlation: four economic loss functions

Our methodology can also be used to evaluate forecasts of the entire variance-covariance

matrix, not just correlation. Of course, the relative importance of volatility and correlation in

                                                                   

     28The price of a call spread option is negatively related to correlation. A rank correlation of -1 means the relationship
between correlation forecast and option package price is monotonic.
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determining which forecast is "best" will depend on which rainbow option is traded by the forecasting

agents. In this subsection, we present results for the four rainbow options defined in Table 2. 

Table 14 shows the mean daily profit of the five forecasting agents when they trade and price

the four different rainbow options alone, along with robust standard errors. The rankings of the five

forecasting models are consistent across all four rainbow options: D-GARCH, C-GARCH, EWMA,

MARKOV, NAIVE. There is one, important difference between these results and the results using the

"option package" presented above. While the MARKOV model had the best performance when only

correlation mattered, it does much more poorly when both volatility and correlation forecasts matter. 

There are two reasons behind this difference. First, the MARKOV model appears to do a much better

job forecasting correlation than it does forecasting volatility. Second, while the rainbow options are

sensitive to both volatility and correlation, the differences among agents’ volatility forecasts are greater

than the differences among their correlation forecasts, so the ability to forecast volatility well provides

an opportunity for greater trading profits.

To confirm this point, we replicated the test of Engle et al (1993), who evaluated univariate

volatility forecasting models by their ability to price and trade options. In place of a rainbow option,

the forecasting agents are required to price and trade the combination of an at-the-money put option

and an at-the-money call option (termed a straddle). The rankings of mean daily profit for trading a

straddle are D-GARCH, EWMA, C-GARCH, MARKOV, NAIVE on the S&P data and C-GARCH,

D-GARCH, EWMA, MARKOV, NAIVE on the NASDAQ data. These results confirm that

MARKOV does a poor job forecasting volatility according to our option trading methodology.

5.6 Results for "statistical" loss functions

We have motivated our methodology by a desire to evaluate forecasts of joint returns based on

their ability to forecast a tailored combination of correlation and volatility. An alternative way to

evaluate volatility and correlation forecasts would be to use a statistical loss function, such as mean
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squared error, where the "error" is measured as the deviation from the forecast variance (or covariance)

of the realized squared return (or cross-product of returns). Because the squared return (and the

cross-product of returns) is a consistent estimator of the unobservable variance (or covariance), this

method should be able to distinguish accurate from inaccurate variance-covariance matrix forecasts. 

A loss function using mean squared forecasting error as the criterion for defining a good

correlation forecast would be

where T is the number of days in our data sample, ρt
f is the correlation forecast and ρt=sign(ε1tε2t)×1

(22)

reflects whether the correlation on day t was positive or negative. The top panel of Table 15 shows

the mean squared error of our five forecasting models computed using (22). The ranking of

forecasting models is NAIVE, EWMA, D-GARCH, MARKOV, C-GARCH. The differences between

NAIVE and the three sophisticated forecasting models are statistically significant. The ranking is quite

different from what we found in Table 11 using an option-pricing-based loss function. 

A loss function using mean squared forecasting error as the criterion for defining a good

variance-covariance matrix forecast would be

where Ht = εtεt', H
f
t is the forecast variance-covariance matrix, and ι is a 4x1 vector of ones. (If

(23)

more generality were desired, the vector of ones could be replaced by an arbitrary weighting vector.) 

The bottom panel of Table 15 shows the mean squared error of our five forecasting models computed

using (23). The ranking of forecasting models is D-GARCH, NAIVE, C-GARCH, MARKOV,

EWMA. Compared with the results in Table 14, the ordering of forecasting models is again quite
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different, particularly the strong performance of NAIVE. The choice of loss function again appears to

make a large difference to the results.29

6 Conclusions

We have described a methodology to evaluate volatility and correlation forecasts based on the

forecasts’ ability to accurately price options. The methodology can be tailored to emphasize accurate

correlation forecasts or accurate volatility forecasts, or a weighted combination of the two. The

methodology should be of interest to those who price and hedge options whose payoff depends on

more than one financial time series. We chose to focus, in our empirical application, on the accuracy

of correlation forecasts for equity returns. From the point of view of a seller of rainbow options, if

volatility risk can be hedged but correlation risk cannot, an accurate correlation forecast is much more

valuable than an accurate volatility forecast.

One advantage of our methodology over other ways to evaluate the accuracy of correlation

forecasts is its use of an economic loss function, based on option pricing errors, rather than a statistical

loss function. Engle et al (1993) found that different volatility forecast models were preferred under

different statistical loss functions (for example, mean square error versus variance of forecast error). 

We find a similar result for the correlation forecasts we evaluate. One issue for future research is

whether statistical loss functions are a poor choice for evaluating forecasts of variables that are

unobservable (such as volatility and correlation).

In our empirical application, we compared five forecasting models for the variance-covariance

matrix of two equity returns. The models ranged from simple averages of past squared returns to quite

sophisticated GARCH and Markov switching models that take into account the difference in volatility

                                                                   

     29Engle et al (1993) also found that mean squared forecasting error did not provide a good guide to which forecasting
model did a better job of pricing options.
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over trading and non-trading days. We found that the more sophisticated and more general models,

the Markov switching model and the diagonal GARCH model, produced statistically significantly

better forecasts of correlation. This result suggests that market participants should consider switching

from forecasting correlation using weighted averages of past returns to using a GARCH model or a

Markov switching model. When evaluating forecasting models on their ability to jointly forecast

volatility and correlation, the Markov switching model performed poorly, while the GARCH models

had the best performance. 

Of course, these results depend on the particular forecasting models we chose. Other models

to forecast correlation and volatility may exist that are superior to the ones we chose to implement. In

particular, given the strong performance of the GARCH models in our empirical applications, it would

be useful to evaluate more sophisticated GARCH models, such as a multivariate version of the

exponential ARCH model of Nelson (1991) or a fully general bivariate GARCH model as formulated

by Engle and Kroner (1995), to see if yet another level of additional complexity pays off in better

correlation forecasts. For the small but growing number of financial time series for which "rainbow"

options are actively traded, it would be interesting to evaluate forecasts based on implied correlation

using our methodology. Also, it would be interesting to see if our results for equity markets carry

over to other markets (fixed income, currencies, commodities).30

Several extensions of our methodology are possible avenues for future research. It would be

interesting to see if the same results obtain when evaluating forecasts longer than one day. (The

implied correlation literature typically evaluates forecasts of one-month or three-month duration.) For

risk measurement, the entire variance-covariance matrix is important, but the relative importance of the

various elements will depend on the particular portfolio whose risk is being measured. For risk

                                                                   

     30Figlewski (1997) found that GARCH models did a better job forecasting volatility in equity markets than in other
markets.
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measurement applications, it would be interesting to use our methodology to evaluate variance-

covariance matrix forecasts on their ability to price a portfolio of options rather than a single rainbow

option. 
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Table 1. Forecasts used in the simulations

True  parameters

Volatility = 14.1
Correlation = .6

Incorrect  forecasts  that  are  "close"  to  the  truth

Volatility = {13.2, 13.6, 14.0, 14.3, 14.7, 15.0}
Correlation = {.5, .54, .58, .62, .66, .7}

Incorrect  forecasts  that  are  "far"  from  the  truth

Volatility = {11.1, 12.2, 13.2, 15.0, 15.8, 16.6}
Correlation = {.3, .4, .5, .7, .8, .9}

Notes:
1. Volatility is expressed in percent per year.
2. The same set of incorrect volatility forecasts are used for both assets.
3. The volatility forecasts are evenly spaced when expressed as variances but look skewed when
expressed as standard deviations.
4. The daily variance forecasts are annualized by multiplying by 250.

Table 2. Four rainbow options.

Name Payoff  function

Call spread max(0,X2-X1-K)

Outperformance option max(X1-K1,X2-K2)

Call worst max(0,min(X1,X2)-K)

Basket call max(0,w1X1+w2X2-K)

Notes:
1. As described in the text, we focus on at-the-money options (K=0).
2. Analytic solutions for the prices of the call spread and the outperformance option for the case
of K=0 were given by Margrabe (1978) and for the call worst by Stulz (1982). No analytic
solution exists for the basket call (for any K) or for the call spread and the outperformance
option when K≠0. In those cases, we use the recombining binomial pyramid method of
Rubinstein (1995) to price the option.
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Table 3. Simulations using a call spread option and the basic methodology

Panel A: Incorrect forecasts are "close" to the truth

Agent: 1 2 3 4 5

40 16 14 17 13
N=250 .047 .017 -.031 -.020 -.013

.036 .053 .077 .073 .067

58 20 4 12 6
N=1,000 .042 .023 -.030 -.023 -.013

.020 .033 .050 .059 .048

78 7 2 5 8
N=5,000 .043 .022 -.017 -.028 -.020

.012 .021 .046 .051 .052
_________________________________________________________________________

Panel B: Incorrect forecasts are "far" from the truth

Agent: 1 2 3 4 5

59 11 2 13 15
N=250 .15 .077 -.089 -.081 -.052

.060 .090 .16 .18 .17

80 7 1 7 5
N=1,000 .15 .082 -.090 -.081 -.058

.048 .085 .14 .17 .16

85 2 0 6 7
N=5,000 .14 .078 -.066 -.090 -.067

.038 .064 .14 .17 .18
_________________________________________________________________________

Line 1 of each cell = number of trials out of 100 in which the agent had the highest profits
Line 2 of each cell = average across 100 trials of the mean profit per day.
Line 3 of each cell = average across 100 trials of the standard deviation of profit per day.

Agent 1 = correct correlation and volatilities
Agent 2 = correct correlation, incorrect volatilities
Agent 3 = correct volatilities, incorrect correlation
Agents 4 and 5 = incorrect correlation and volatilities
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Table 4. Simulations using a call spread option and the option package methodology

Panel A: Incorrect forecasts are "close" to the truth

Agent: 1 2 3 4 5

30 23 16 13 18
N=250 .041 .030 -.033 -.030 -.010

.047 .053 .087 .090 .086

37 34 7 10 12
N=1,000 .036 .036 -.034 -.023 -.015

.024 .021 .059 .054 .050

48 38 4 2 8
N=5,000 .035 .033 -.018 -.029 -.021

.013 .014 .045 .044 .044
_________________________________________________________________________

Panel B: Incorrect forecasts are "far" from the truth

Agent: 1 2 3 4 5

52 33 3 6 6
N=250 .13 .12 -.11 -.087 -.054

.068 .070 .16 .17 .16

55 43 1 1 0
N=1,000 .13 .13 -.11 -.082 -.065

.039 .037 .15 .15 .13

68 30 1 0 1
N=5,000 .13 .12 -.067 -.10 -.079

.035 .035 .14 .15 .14
_________________________________________________________________________

Line 1 of each cell = number of trials out of 100 in which the agent had the highest profits
Line 2 of each cell = mean across 100 trials of the agent’s mean profit per day.
Line 3 of each cell = standard deviation across 100 trials of the agent’s mean profit per day.

Agent 1 = correct correlation and volatilities
Agent 2 = correct correlation, incorrect volatilities
Agent 3 = correct volatilities, incorrect correlation
Agents 4 and 5 = incorrect correlation and volatilities
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Table 5. Simulations using an outperformance option and the option package methodology

Panel A: Incorrect forecasts are "close" to the truth

Agent: 1 2 3 4 5

9 17 24 23 27
N=250 .0068 .0093 -.0026 -.029 .014

.17 .17 .26 .33 .30

23 25 14 20 18
N=1,000 .015 .0078 -.018 .0061 -.0068

.10 .075 .16 .14 .12

28 29 21 12 10
N=5,000 .019 .018 -.013 -.0019 -.020

.029 .045 .076 .068 .067
_________________________________________________________________________

Panel B: Incorrect forecasts are "far" from the truth

Agent: 1 2 3 4 5

54 28 5 7 6
N=250 .068 .059 -.052 -.046 -.025

.034 .039 .083 .090 .084

62 30 2 2 4
N=1,000 .067 .063 -.049 -.038 -.034

.025 .024 .077 .078 .070

63 33 1 0 3
N=5,000 .065 .061 -.031 -.046 -.040

.022 .022 .073 .079 .076
_________________________________________________________________________

Line 1 of each cell = number of trials out of 100 in which the agent had the highest profits
Line 2 of each cell = mean across 100 trials of the agent’s mean profit per day.
Line 3 of each cell = standard deviation across 100 trials of the agent’s mean profit per day.

Agent 1 = correct correlation and volatilities
Agent 2 = correct correlation, incorrect volatilities
Agent 3 = correct volatilities, incorrect correlation
Agents 4 and 5 = incorrect correlation and volatilities
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Table 6. Simulations using a call worst option and the option package methodology

Panel A: Incorrect forecasts are "close" to the truth

Agent: 1 2 3 4 5

25 28 17 12 18
N=250 .021 .015 -.014 -.017 -.0037

.023 .029 .049 .048 .046

37 34 11 7 11
N=1,000 .018 .019 -.015 -.011 -.0079

.016 .012 .032 .031 .027

48 31 7 5 9
N=5,000 .018 .017 -.0091 -.013 -.0097

.0078 .0079 .023 .022 .023
_________________________________________________________________________

Panel B: Incorrect forecasts are "far" from the truth

Agent: 1 2 3 4 5

55 27 2 10 6
N=250 .067 .059 -.051 -.045 -.026

.034 .037 .082 .087 .082

51 43 2 2 2
N=1,000 .065 .064 -.050 -.039 -.032

.023 .020 .074 .075 .066

69 29 1 0 1
N=5,000 .064 .061 -.032 -.046 -.038

.018 .018 .070 .074 .071
_________________________________________________________________________

Line 1 of each cell = number of trials out of 100 in which the agent had the highest profits
Line 2 of each cell = mean across 100 trials of the agent’s mean profit per day.
Line 3 of each cell = standard deviation across 100 trials of the agent’s mean profit per day.

Agent 1 = correct correlation and volatilities
Agent 2 = correct correlation, incorrect volatilities
Agent 3 = correct volatilities, incorrect correlation
Agents 4 and 5 = incorrect correlation and volatilities
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Table 7. Simulations using a basket call option and the option package methodology

Panel A: Incorrect forecasts are "close" to the truth

Agent: 1 2 3 4 5

20 25 17 19 19
N=250 .0097 .0099 -.0094 -.0089 -.0011

.019 .018 .031 .034 .029

33 11 26 14 16
N=1,000 .0079 .0097 -.0079 -.0062 -.0035

.012 .0095 .020 .021 .018

43 33 7 8 9
N=5,000 .0086 .0082 -.0047 -.0077 -.0044

.0051 .0056 .013 .013 .012
_________________________________________________________________________

Panel B: Incorrect forecasts are "far" from the truth

Agent: 1 2 3 4 5

45 41 3 4 7
N=250 .030 .029 -.027 -.018 -.015

.015 .015 .038 .036 .036

42 57 1 0 0
N=1,000 .031 .035 -.028 -.020 -.015

.0096 .0082 .032 .033 .032

65 35 0 0 0
N=5,000 .030 .029 -.019 -.024 -.017

.0077 .0075 .032 .031 .030
_________________________________________________________________________

Line 1 of each cell = number of trials out of 100 in which the agent had the highest profits
Line 2 of each cell = mean across 100 trials of the agent’s mean profit per day.
Line 3 of each cell = standard deviation across 100 trials of the agent’s mean profit per day.

Agent 1 = correct correlation and volatilities
Agent 2 = correct correlation, incorrect volatilities
Agent 3 = correct volatilities, incorrect correlation
Agents 4 and 5 = incorrect correlation and volatilities
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Table 8. Summary statistics on S&P 500 and NASDAQ composite continuously compounded returns

S&P 500 NASDAQ
Daily returns

Mean .035 % .042 %
SD .878 % .794 %

Daily returns expressed at an annual rate

Mean 8.7 % 10.5 %
SD 13.9 % 12.5 %

Correlation of daily returns = 0.79

Table 9. Summary statistics of the five forecasts

S&P volatility Nasdaq volatility Correlation

Forecasting model Mean SD Mean SD Mean SD

NAIVE 14.9 3.7 13.1 2.9 .79 .036
EWMA 13.9 5.3 12.6 5.2 .79 .080
D-GARCH 14.0 4.0 11.8 4.1 .80 .062
C-GARCH 14.4 4.2 12.2 4.5 .83 .033
MARKOV 14.4 4.6 12.2 4.4 .81 .037

Notes:
1. Volatility forecasts are expressed at an annual rate.
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Table 10. Mean parameters of the three forecasting models

D-GARCH C-GARCH MARKOV

AR(1)  parameters
S&P 500 a0 .062 a0 .065 a0 .060

a1 .0050 a1 .0015 a1 .00081
Nasdaq a0 .067 a0 .070 a0 .073

a1 .25 a1 .25 a1 .24
S&P  Variance

ω .043 ω .075 st=1 .45
α .053 α .070 st=2 1.6
β .87 β .81

Nasdaq  variance
ω .049 ω .056 st=1 .26
α .094 α .13 st=2 1.5
β .81 β .76

Covariance/correlation
ω .041 ρ .83 st=1 .27
α .060 st=2 1.2
β .84

Weekend  effect
δ1 .20 δ .18 δ1 .23
δ2 .21 δ2 .24

Unconditional  Markov  state  probabilities
Pr(st=1) .77
Pr(st=2) .23
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Table 11. Results using a call spread option and the option package methodology

Mean robust
daily standard t-statistic t-statistic

Forecasting model profit error (equal to zero) (equal to MARKOV)

NAIVE -.034 .017 -2.0 3.1
EWMA -.024 .015 -1.5 2.4
D-GARCH .025 .017 1.5 0.4
C-GARCH .008 .012 0.6 1.5
MARKOV .035 .014 2.4 n/a

Note: the standard errors and t-statistics are robust to heteroscedasticity and autocorrelation and
were computed using the technique of Andrews and Monahan (1992).

Table 12. Ranking of profits by year

Forecasting model First Second Third Fourth Fifth

NAIVE 6 4 2 2 6
EWMA 0 3 7 5 5
D-GARCH 5 0 7 5 3
C-GARCH 1 8 3 4 4
MARKOV 8 5 1 4 2

Each cell in the table shows the number of calendar years in which the forecasting model in the
row finished in the rank given by the column.
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Table 13. Results using a call spread option and the option package methodology, excluding days
when the Spearman rank correlation between correlation forecast and option package price is greater
than -.5

Mean robust
daily standard t-statistic t-statistic

Forecasting model profit error (equal to zero) (equal to MARKOV)

NAIVE -.020 .015 -1.4 2.4
EWMA -.018 .015 -1.3 2.0
D-GARCH .014 .015 0.9 0.6
C-GARCH .008 .011 0.7 1.2
MARKOV .029 .014 2.0 n/a

Notes:
1. 382 days were excluded because the Spearman rank correlation between correlation forecast
and option package price was greater than -.5.
2. The standard errors are robust to heteroscedasticity and autocorrelation and were computed
following the technique of Andrews and Monahan (1992).
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Table 14. Results for the basic methodology (depend on both volatility and correlation forecasts)

Panel A: Call spread option Panel B: Outperformance option

Mean robust Mean robust
daily standard daily standard
profit error profit error

NAIVE -.049 .010 NAIVE -.15 .020
EWMA .005 .009 EWMA .042 .015
D-GARCH .034 .006 D-GARCH .079 .008
C-GARCH .022 .007 C-GARCH .048 .009
MARKOV -.012 .007 MARKOV -.023 .013

Panel C: Call worst option Panel D: Basket call option

Mean robust Mean robust
daily standard daily standard
profit error profit error

NAIVE -.10 .015 NAIVE -.12 .017
EWMA .011 .011 EWMA .023 .013
D-GARCH .043 .008 D-GARCH .063 .007
C-GARCH .042 .008 C-GARCH .041 .008
MARKOV .006 .011 MARKOV -.005 .011

Note: the standard errors are robust to heteroscedasticity and autocorrelation and were computed
following the technique of Andrews and Monahan (1992).
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Table 15. Mean squared error of "statistical" loss functions

Panel A: Correlation-specific loss function

Mean p-value
squared (MSE equal

error to NAIVE)

NAIVE .711 n/a
EWMA .713 .14
D-GARCH .715 <.01
MARKOV .718 <.01
C-GARCH .724 <.01

Panel B: Equal weights on variances and covariances

Mean p-value
squared (MSE equal

error to D-GARCH)

D-GARCH 3.47 n/a
NAIVE 3.51 .32
C-GARCH 3.64 <.01
MARKOV 3.71 <.01
EWMA 3.73 .06

Note: p-values on the difference in mean squared error are based on the asymptotic test of
Diebold and Mariano (1995). The asymptotic heteroscedasticity and autocorrelation robust
standard errors of the difference in mean squared errors are computed following the technique of
Andrews and Monahan (1992). The p-values shown are for a two-tailed test.
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Figure 1. Profits using the call spread option and the option package methodology

Figure 2. Profits using the call spread option and the option package methodology,
excluding days when the Spearman rank correlation between correlation forecast and
option package price is greater than -.5.

47


