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1. Introduction

Asusually defined, bubbles are deviations of asset prices from their fundamental
values, or the present values of their dividends. Thereis by now alarge body of literature on
rational asset price bubbles, including the general treatment by Santos and Woodford (1997),
who build on the work of Tirole (1985) and others. The central result of Santos and Woodford
IS the non-existence of bubbles on assets with positive supply in any equilibrium where the
aggregate endowment has afinite present value. Other results include the non-negativity of
bubbles and the non-existence of bubbles on finite maturity assets. A restrictive assumption
used by Santos and Woodford is the frictionless asset markets. This assumption is relaxed by
Y u (1998), who shows that, in the presence of bid-ask spreads and short-sale constraints, the
results of Santos and Woodford survive in some similar form.

Another restrictive Santos-Woodford assumption is virtually homogeneous
information. While differing probabilities that agents attach to events will not render their
arguments invalid, more substantial information diversity will. Specialized studies of bubbles
under diverse information include Allen and Gorton (1993), who show that bubbles on a
short-sale constrained asset can occur as aresult of the information asymmetry between a
principal and an agent, and Allen, Morris and Postlewaite (1993), who show that a short-sale
constrained asset known to be worthless by al agents individually may nonethel ess command
a positive equilibrium price if agents do not know of each other’s information. The noise
trader models, such as that of De Long et al. (1990) also address diverse information, as do the
learning models such as those of Wang (1993) and Zhou (1995), which is summarized in

Chow (1997).



This paper treats bubbles under diverse information at alevel of generality comparable
to Santos and Woodford (1997). We model diverse information by a set of post-extraction
information trees. In rational expectations models, it is standard to assume that agents are
capable of extracting information from all the variables they can observe. Since our focusis
on the theory, we abstract from the details of the extraction process and focus on the post-
extraction information structure. The use of post-extraction information trees requires that all
commonly observed variables (common observables) be adapted to each agent’s information
tree. We assume that prices and payoffs, which figure prominently in any discussion of
bubbles, are among the common observables. This most natural assumption implies that a
good deal of information is necessarily revealed by the market, and our basic conclusion is
that any remaining information diversity matters little as far as the existence of bubbles is
concerned, and the Santos-Woodford results need hardly any modification.

Here is a brief summary of the paper. Section 2 describes the information structure and
introduces a system of notation that can be used to relate nodes on different trees. It introduces
N, the join tree or the tree of total information, arltj the meet tree or the tree of common
knowledge. The information tree of an agent can be regarded as a particular coarsening of N
and a particular refinement of NBy the no extraction condition, prices, dividends and all
other common observables must be adapted'to N

Section 3 discusses agent specific state price processes and explains the need to use
them. It uses an example to show that there may not exist a “state price process” on N even if
no agent can arbitrage. It shows, through Proposition 1, that, a “state price proceSs” on N

generated by a state price process of some agent can usually produce only an average of the



agent’s present values. In addition, some “state price processe§"may\hot have clear
economic meaning.

Section 4 establishes two nonexistence theorems. Theorem 1 shows that, under any
state price process for any agent, bubbles are nonnegative and that no finite maturity asset can
have a bubble. Theorem 2 shows that, if agents are impatient and the aggregate endowment
has a finite present value under some state price process of some agent, then there is no bubble
under this state price process for any asset with positive supply. This seemingly strong result
rests on the facts that the market necessarily reveals a good deal of information, and that any
state price process of any agent must be consistent with the commonly observed prices and
dividends and therefore has some economy-wide significance. In order to value one agent’s
variables by another agent’s state price process, we introduce a system of artificial weights
defined on N. Because the aggregate variables are assumed to be adapted to every agent’s

information tree, the artificial weights drop out as a result of aggregation. Section 5 concludes.

2. Information Structure

Consider a discrete-time, infinite-horizon economy inhabited by a finite number of
rational, price taking, infinitely lived agents whose information structure is described by a set
of information trees defined on a common state space. (The finiteness in the number of agents
Is not needed; all the results of this paper are valid as long as the number tfpmgeént
finite.) In general, information about the state of nature is revealed to different agents
differently, and each agent may have a distinct information tree. Agents are capable of
extracting information from all the variables they can observe now and in the future. These

include not only variables observable to all agents (common observables), but also variables



observable to individual or subgroups of agents. The information trees we use are the end
result of the extraction processes. Modeling extraction processes can shed light on many
Issues but is often a difficult undertaking. Since our goal of characterizing price bubbles has
little to do with the details of the extraction process, we choose to keep things ssimple (and
general) and make post-extraction information trees our starting point.

Post-extraction information trees are not primitives like preferences, technology,
endowments and pre-extraction information trees. Rather, they are equilibrium specific and
are similar in thisregard to the plans and expectations described by Radner (1972). At least in
special cases, one can show that, generically, prices are fully revealing (Radner, 1979).

Following the example of Allen, Morris and Postlewaite (1993), we do not address the generic
existence of equilibrium with genuinely diverse post-extraction information. Instead, we focus
on identifying conditions that any diverse information equilibrium must satisfy.

Nodes of ainformation tree on a given date form a partition of the states of nature. The
join of the individual partitions on a date, which has the “boundaries” of all individual
partitions as its boundaries, is the total information revealed to agents up to that date.
Connecting the joins on different dates, we get N, the join tree or the tree of total information.
Themeet of the individual partitions on a date, which has the common boundaries of
individual partitions as its boundaries, represents agemtshon knowledge, a concept
defined by Aumann (1976) and clarified by Milgrom (1981). Connecting the meets on
different dates, we getN'the meet tree or the tree of common knowledge. The information
tree of each agent represents a particular “bundling” of N and a particular “splitting” of N

When dealing with post-extraction information trees, care must be taken that an agent

cannot extract any more information from any of the variables it can observe. As a necessary



condition for no extraction, all common observables must be adapted to the meet tree. (For

further details, see Fudenberg and Tirole, 1991 or Geanakoplos, 1994.) We choose to be
noncommittal on whether agents can observe each other's endowments, trades and
consumption. While observability of these variables tends to make diverse information
disappear, observability of some aggregates of these variables can be consistent with diverse
information. Our model is valid under a variety of observability assumptions.

Let S be a typical node on the join tree N on date t. EBlshssa unique immediate
predecessor s 1 and a finite number of immediate successors, a typical one of which is
denoted by'8'|s. The exceptions are the N nodes at t = 0, which have no predecessors. We
use §s to indicate that'$elongs to the subtree of N starting'afbat is, §$ means either's
= ¢ or $ is a (not necessarily immediate) successor. of s

Similarly, a' is a typical node on ageats information tree K and mis a typical
node on N. The notation for N applies to"Mnd N" as well. By definition, each™Node is
composed of one or more N nodes, and each N node is in exactly ondeN Similarly, each
N™ node is composed of one or morenddes, and each’Mode is in exactly one™node.
We use %a' to represent an N nodedhand use' = S to indicate that'ss the only N node
in o'. Letp' be a node on agefs information tree R We usex' = ' to indicate that' and
B' are the same (i.e., contain the same N nodes). The expre¥Biamd those involving m

and N" have obvious meanings. To take care of the possibility that agents start with different
information, we allow multiple t = 0 nodes for N and for individual information trees. We will

assume, however, that"Nhas only one t = 0 node.



The number of goods and assets, good and asset prices and asset payoffsin dividends
and assets are all common observables. No extraction requires that they be adapted to N™.
There are n(m") freely disposable goods at m', with a 1xn(m") nonnegative price vector p(m").
At each m', at least one good has positive price, and this good may be used as the numeraire
for m' so that all other good and asset prices at m' are in reference to the quantity of this
numeraire good. Theideathat p is adapted to N™ on date t may be so expressed: for any s' and
any s/m', p(s/m") = p(m"). The expression p(s) is meaningful and is equal to the value of p on
the N™ node that contains s.. These observations apply to all variables adapted to N™ or any
individual information tree.

There are k(m") freely disposable assets at m' with price g(m"), a 1xk(m') vector. At
each m', the dividends on assets are specified by an n(m")xk(m' - 1) nonnegative matrix d(m"),
and the payoffs of assetsin the form of assets are specified by a k(m')xk(m' - 1) nonnegative
matrix b(m"). The nonnegativity of d(m") and b(m') may be understood as a consequence of
free disposal. A portfolio Z held at the end of trading at node s' - 1 is paid d(s)Z in dividends
and b(s)Z in assets at S'. For m' and m'|m’, the k(m")xk(m') asset transformation matrix
e(m'|m") is defined recursively by:

e(m'm’) =1, iy ? e(m'Im") = b(m"e(m" - 1jm") for all m'm’, r > t (1)
Asset | hasfinite maturity if there exists a date R such that e.,-(mr|mt) =0fordli,alr>=R.The
n(m")xk(m") dividend matrix x(m'|m") for m" and any m'|m', r > s, is defined by:

x(m'jm’) = d(m)e(m’ - 1jm’) )

3. The Need for Agent Specificity



With the necessary apparatus in place, we begin to discuss the meaning of bubbles. In
the case of homogeneous information, absence of arbitrage (of any finite horizon) by one
agent implies absence of arbitrage by al agents, and this universal absence of arbitrageis
equivalent to the existence of a state price process {a(s)} defined on the common information

tree N (Ross, 1976; Yu, 1998). At each S, {a(S)} satisfies the basic state price relation:

As)q(s) = 3 as™)[p(s™)d(s™) +a(s™)b(s™)] 3

In addition, any resource process { x(S)} is necessarily adapted to N, and its present

value a S is defined in terms of {a(s)}:

> a($)p(s)X(S) @

1 =
v (s,a) -—§ ; 2
The fundamental value of asset j at ' under {a(s)}, fi(S, a), is defined as the present value of

its dividends. A price bubble is said to exist on asset j at s under {a(s)} if f,-(st, a) isdifferent

from g;(s), asset j's price at § When markets are incomplete, the state price process is not
unique, and the fundamental value of an asset need not be unique. It is then possible for an
asset to exhibit a bubble under one state price process but not under another.

With diverse information, agents have different ideas on whatdtes are, andtate

price process and related concepts become agent specific. In place of (3) and (4), we have:

a(a)q(@) = Za (@"Hp(a™Hda™) +a(a™)b(a™)] 5)
ot
A FEP IR CULCORCD 6)
r=t+1 q |(1

Here {d(a")} is a state price process defined of) Whose existence is equivalent to the

absence ofi-arbitrage (i.e., arbitrage by agent and {x@")} is a resource process adapted to



N’ of which any dividend processis an example. The issues to be addressed are whether
agent specificity isreally needed in the study of bubbles and whether results comparable to
those for the homogeneous information case can be derived.
We begin by explaining the need for agent specificity. As the following example
shows, even if no agent can arbitrage, a “state price process” on N need not exist. Consider an
economy with two agentsi(andf) and four states of nature( w,, ws andwy) to be fully
revealed on t = 2. Att = 0 neither agent has information. At t = 1, agemformation is the
partition {(c1, W), (ws, W4)}, while agent’s information is the partition {01, wa), (s, Wa)}.
The information trees are shown below.

(V] (V] (V] (03]

__— __—
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N N N"

W

\

We have labeled the nodes;( ) and (vs, ws) o N' aswy, (Up) andwy (down), the nodes
(w1, we) and vy, wg) on N asw, (0dd) andwe (even), and the t = 1 node off Bsw..

The economy has two assets. The price of either assetis 1ont=0and t=1 and zero

ont = 2. Neither asset pays dividend on t = 1. Asset 1 pays a dividend of 1 on t = 2, and asset

3 1 2 :
2's state specific dividends ont = 2 aﬁe:di, &= Px G = 3 and d = 2. Itis easy to see

that neither agent can arbitrage. However, an agent with information tree N would be able to

arbitrage, and so there does not exist a process on N satisfying state price relation (3).



We show that, even though the two agents recognize the same nodes on t = 2, which
areadso the N™ nodes on t = 2, one agent may find the state prices assigned to these nodes by
the other agent unacceptable. The implication is that, in calculating present values, one must

in general take into account each agent’s state prices. Set any state price assigned tot =0 to 1.

(o}

It is easy to verify that, for ang, satisfying0 <a’ <1,{d}={a}, a =1-&,

o

al = ag =
l (o] (o 3 (o] (o] 1 (o : H H H
> a,, a = Z(l -a,), a, = Z(l - @, )} is a valid set of state prices for agentand this

o

expression yieldall the valid {&}'s as a® covers the open interval (0, 1). Similarly, wi

covering the open interval (0, 1) fa& { &, & =1-a, & = % a,a = %(1 -al), & =

g a,a = %(1 - @)} yields all the valid {d}'s. One such {& (with & = %) is & = é

S

1 3 1
=3 ,a = 0 andal = 5 which agentr, who always has{ = a3, finds unacceptable.

In this example, the hypothetical agent with information tree N is better informed than
either agentt or agen. It is therefore not surprising that it can arbitrage when ageaisl
B cannot; this is the “advantage of better information” discussed more generally by Duffie and
Huang (1986). By the same reasoning, a hypothetical agent with information"tveiét Aot
be able to arbitrage and a process Orthhit satisfies the state price relation must exist as long
assome agent cannot arbitrage. One may then wonder whether it is enough to use only the
“state price processes” onl"NMind not those for individual agents. The following proposition

gives a generally negative answer. L€} {ae a state price process for agenand let

{x(m")} be a resource process adapted tb We show that {§ can generate a “state price



process” on N, and the present values of {X{inunder {&} and under {d} are related. But
the relation is not strong enough to allow us to drop all referencé}to {a

Proposition 1: Let {a’(a")} be an arbitrary state price process for agent

A) {@™(m"} = { Za" (a")} is a process satisfying, at each m

a'/m

d"(mq(m) = > a(m")[p(m")d(m™*) +g(m"*)b(m"")] (7)

m- T |mt

(B) Let {x(m")} be an arbitrary resource process adaptedtoRdr each fpwe have:

z a® (a')v, (a',a") = d"(m)v,(m', d"). (8)

at/m!

Proof: For any mand anya'/m', we have, by (5),

dma@) = > a (@ lpa")da") +o(a)b(a)] ©)

u“1|(a /mt)

Summing (9) ovea'/m' and noting that p, d, q and b are all adaptedtowé get:

(Y @aem= Y

at/m at/m' a

2

mTmt o

> [ > a@p(m)d(m™) +g(m")b(m) (10

mTmt o™ /m

Z au (at+l)[p(at+l)d(at+l) +q(at+l)b(at+l)]

o

+Zt+1au (at+l)[p(at+l)d(at+l) + q(at+l) b(at+1)]

The equivalence betweei Z and Z Z follows from the observation

at/mt oo mmt o mt
that each double summation sums over alhdtes at t + 1 whose date t predecessors are in
m'. (10) is the same as (7).

(B) For any rh

10
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at/mt mt r=t+1 o' o

© ©

= a’(a")p(a")x(a") = a’(a m")x(m
Zl m;n! ; (a")p(a’)x(a’) 2, m% [u% (a")Ip(m")x(m")
=> Z a"(m")p(m)x(m") = a"(mvx(m', a") (11)
r=t+l m |mt
Theequivalencebetween 5 5 Z Z follows from the
at/mt r=t+l o' r=t+l m'm' o' /m’

observation that each triple summation sums over all N* nodes fromt + 1 on whose date t
predecessors arein m". Q.E.D.

By Proposition 1, if a'/m' = m', we have &' (a/m") = 8"(m") and vy(a', &) = v,(m', a").
In general, however, we know only that v,(m', &") is an a"(a'/m")-weighted average of the
v (a'/m', &)’s. As a result, even if we know that the “fundamental value” of an asset under
{a™ is equal to its price at [pwe cannot be sure that agerperceives no bubble under
a'(a") at everyo'/m'

There is another problem with using th€fa in studying bubbles. Any {&
generated by some Yahas clear economic meaning. It is possible, however, for sofje {a

satisfying (7) not to be generated by a state price process of some agent. In the example above,

3 1 2 .
(7)becomesai_‘,":1,§a;“+§azm +§a3m +2a; =landa" + & +a; +a; =1.1ltis
easy to verify thaf" = Lol ot anday’ i satisfy these conditions

y B3 ® T % T 16 '

However, this {d} cannot be generated by anyfawhich necessarily assigns the same state

price forw; andwy, or any {&}, which necessarily assigns state pricesifpandws at two-

11



to-three ratio. The implication is that (7) may giveriseto {a"}'s that do not have clear
economic meaning, and to identify thé'Ja that do, we still need to make use of agent

specific state price processes.

4. Two Nonexistence Theorems

Having explained the need to use agent specific state price processes and related

concepts, we now turn to the derivation of results. PHed) fundamental value vectol(é’,
a") for agentr ata' under {4} is defined as:

o> Y e @)pla)x( o) 12

f*(a',a%) =
aa (at) r=t+la’ja

The study of bubbles boils down to comparihgith asset price q. The theorem
below, which is essentially the same as the results in Santos and Woodford (1997), shows that
negative and finite bubbles cannot exist.

Theorem 1: For any agent, at any node' and for any {&},

(A) q(a) = f'(a’, &) (13)

(B) For any asset j with finite maturity,

g(a’) = f (a', &) (14)

(€) d(@)la(a) - F(o, &) = > a" (@™ la(a™") ~f*(a"",a")]ba"") (15)

o o

Proof: For any T > t, we have, from (5),

#(a)g@) =y Yy & (@)p@)x@ ) + Y & (@ gl e(aa") (16)

r=t+la'ja [BlT]

12



As T approaches infinity, the first term on the right approaches a*(a")f‘(a’, &"). Since the

second term on the right is nonnegative, we get Theorem 1A. For an asset with finite maturity,
the second term on the right becomes constantly zero after T is sufficiently large, and (16)

implies Theorem 1B. From the definition of fundamental value, we have:

aa(ut) fa((]t, acx) — Ztau (at+l) p(at+l)d(at+l) + Z taer (at+l)f a (at+l’au )b(at+l) (17)

o o o o

Theorem 1C follows from subtracting (17) from (5). Q.E.D.

Theorem 1A says that asset price is never lower than the fundamental value under any
state price process of any agent, or there can be no negative bubbles. Thisimpliesthat the
fundamental value hasto be finite. Theorem 1B says that no finite maturity asset can have a
bubble. Thisimplies that the fundamental value of afinite maturity asset is the under any state
price process same for any agent. Theorem 1C says that a bubble must be self-perpetuating in
the sense that it satisfies a generalized martingale relation.

Theorem 1B does not contradict either Allen, Morris and Postlewaite (1993) or Allen
and Gorton (1993), because these studies make use of short-sale constraints. In the presence of
short-sale constraints, one can still define bubble, as the studies cited above do, asthe
difference between price and fundamental value. However, under this definition a bubble
could be a one-period phenomenon representing the excess of price over one-period return, an
excess not possible when short sales are allowed. In contrast, Y u (1998) defines bubble as the
difference between the price net all such excesses and the fundamental value. Under this more
strict definition, bubbles are necessarily self-perpetuating, and the difference between the

prices and the fundamental valuesin the studies cited above do not qualify as bubbles.
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Unlike negative and finite bubbles, positive bubbles cannot be ruled out by arbitrage
arguments alone. In the homogeneous information case, general equilibrium arguments have
been used to rule out positive bubbles since at |east the work of Brock (1979). The basic
conclusion of this approach isthat, because of their self-perpetuating property, the existence
of bubbles may make market clearing impossible on remote future dates. Santos and
Woodford (1997) use this approach in a genera setting and show that bubbles can be ruled
out on any asset with positive supply if the economy’s aggregate endowment has a finite
present value. In what follows, we show that similar ideas can be applied to a diverse
information setting. Specifically, if agents are impatient and the present value of the aggregate

endowment is finite under some agei state price process“{athen agenti does not
perceive a bubble under®§eon any asset with positive supply.

We will let a be the agent whose state price proce§sifaised to calculate values
and use as the index for agents. While diverse information makes it possible for agents to

have “private” state price processes, any state price process of any agent must be consistent

with the commonly observed prices and returns. As a result, egdafestill help measure

the values pertaining to all agents or the whole economy. To avoid certain complications, we
will maintain the assumption that aggregate endowment is adapted to every individual
information tree, and aggregate initial asset endowment is adapted to every individual

partition at t = 0.

Agentp is endowed withZ? (B°) of assets at nods¥, which may have both positive

and negative elements. We obviously have, for 48,s7° (%) = Z* (B%). Aggregate asset

14



endowment at °, which is the asset supply at <°, is Z(s") = Z 7" (") . We assumethat Z (<)

IS nonnegative and adapted to every individual partition at t = 0. There is no asset endowment
at any node with t # 0. While we do not require that q is strictly positive, we assume that
agents never dispose of assets outside the market. With this assumption, asset supply at
arbitrary node s isgiven by Z (s)) = &(s|s%) Z (s°). Because (s[s) is nonnegative and adapted
toeachN®, Z (s), like Z (s”), is nonnegative and adapted to each N°.

Agent B has a nonnegative good endowment process { w'}. Aggregate good

endowment at an arbitrary node s is given by w(s) = ; w? (3). We assume that { w} is

adapted to each N°. The supply of goods at § (t # 0) is given by & (s) = w)(s) + x(s]s%) Z ()
and is nonnegative and adapted to each N°. For each <, we have ®(s”) = w(sY).

We assume that the preferences of any household are increasing in the following
sense: more of any good at any node is always weakly preferred, and at each node there is at
least one good more of which is strictly preferred.

Let ¢ be atypical nonnegative consumption process for agent . For any B'ON®, we
canwrite ¢® = (c® (BY), &(BY), c? (BY)), where c? (B") denotes the coordinates of ¢” indicating
consumption at nodes other than those on the subtree starting at B, ¢*(B') denotes the
coordinates of ¢” indicating consumption at B', and c? (B") denotes the coordinates of ¢*
indicating consumption at nodes on the subtree starting at B other than B' itself. According to
this notation, ¢*(B') represents present consumption, ¢ (B') represents future consumption,

both with reference to B', while c? (B') represents the past consumption with reference to p' as

15



well as the present and future consumption not on the subtree starting at B'. The trade-off
between ¢*(B") and c? (B') therefore indicates the degree of impatience (with referenceto f') in
agent B’'s preferences.

Let -* represent ageffiis strict preference relation. To make a precise definition of
impatience, we use the aggregate good su@dfy) to describe the alternative consumption
atp', and a discount factor to describe the alternative future consumption with referghce to
For given {®(B")}, we say agenp is impatient if there exists9y’ < 1 such that for any
B'ON’,

(c2(B), C(B) + ®(B), ycl (B)) »* ¢ (18)
for all consumption processes satisfyifige @ and ally > V. This definition depends on
{ @ (BY)}, which is determined by good and asset endowments, and so impatience is a joint

assumption of preferences and endowments. This impatience assumption, which is also used
by Magill and Quinzii (1994) and Levine and Zame (1996), is satisfied by all preferences that
are represented by continuous, stationary, recursive utility functions; for more details, see

Santos and Woodford (1994).

For any impatient ageifif any optimal portfolio-consumption plan must satisfy, at any
B'ON’,

1 -Y)a@)Z'(B) < p@) @ (B) (19)
This is because if (19) were not true at s@né would be feasible to realize the
consumption process{ (BY), ¢(B) + d(BY, ¥ c® (BY) by liquidating the fraction 1y of the

portfolio held af3', using the proceeds to purchasé3') for consumption, and trading and

16



holding the fraction y* of the original amounts of assets and consuming the fraction y* of the
original consumption at all the successor nodes of B'. By the impatience assumption, (c® (B,
@Y + @ (P, V' c? (BY) isstrictly preferred to ¢, and so ¢ could not be optimal.

Agent B chooses, for each node B'ONP, portfolio Z°(B') and nonnegative consumption
c(BY). For any B'ONP, the constraints it faces are;

PB)C(B) + aB)IZ°(B) = p(B)(B) + [P(B)(B) + a(B)b(B)IZ’(B' - 1) (20a)

a(B)Z’(B) = - BY(B) (20b)
The left side of (20a) represents expenditure, while the right side represents income. We have
written (20a) as an equality on account of increasing preferences. For any p°, the last term on
the right of (20a) takes the special form of q(B°) Z (B°). B*(B") in (20b) is the nonnegative
borrowing limit for agent 8 at node B'. We assume that households treat the borrowing limits

as given data. In order for the agent optimization problem to be well-defined, borrowing limits
have to at |east rule out the Ponzi scheme. For our purposes, a specific description of
borrowing limits is not needed.

Consider the processes { p(m"), g(m’), ¢(B"), Z*(B")} . If they represent an Arrow-Radner
equilibrium, they must satisfy the following necessary conditions:

(i) For each B, {*(B"), Z°(B")} are optimal under (20).

(i) For each S,
p(s)20,q(s)=0 (21)
ZCB (s) < D(S) (229)
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pEs)I ZC" (5)- @¥(s) =0 (22b)
Zzﬂ () = Z(S) (23)

(224a) is the economy-wide resource constraint. (22b), which asserts that any good not
fully used up must have zero price, follows from the fact that all goods are fully owned by
households, and so given the increasing preferences, no household will give up any good that
can be sold at a positive price.

Without loss of generality, we focus on the possibility of bubbles at date 0. The
following theorem resembles Theorem 3.3 of Santos and Woodford (1997).

Theorem 2: Suppose all households are impatient. Then in any Arrow-Radner
equilibriumin which vm(ao, a") < + o for any a® under some state price process {a’} for
agent a, *(a®, &) = ¢;(a°) for any a® and any asset j at o with positive supply.

Proof: For any a', assign a number g’(s) to each s/a' such that

> ()= (@) 24

s/a
Wewill use{g’} to “value” variables defined on N. For our purposes} fan be

regarded as a purely mechanical device.

Let y be the largest of’s. By (19), for any and any S we have:

(1-V)a(s)Z(s) < p(e9) @(s) (25)

Summing (25) over'sising §(s)’s as weights, we get:

1 ~(d
Y ST <5 Y FORDHIE)

S

18



=3 Y dEEE)

1_ o s/a

<<l

= 1% 2 [ g'(S)lp(a') @ (a') (becausep and & are adapted to N°)

<<l

1

=2 > dEp@)BE) (by (24) (26)

<<l

Let € > 0 be an arbitrary positive number, and L be the total number of agents. Because vw(cxo,

a") < + oo for any a°, v (a°, &) < + oo for any a°. Thismeansthere exists T such that, for any

T>T,

S d@ped@) -] (27

a

Combining (26) and (27), we have, forany Bandany T> T,

S FEaAHZE s | (29
Define R(BY) = p(BYd(B") + q(BY)b(BY). By (18), for any B and any S, we have:
pS)C(S) +g(s)Z°(s) = p(S)wf(s) + R(S)Z*(s - 1) (29)

For t = 0, the last term of (29) takes the special form of g(s”) Z* (s%). Summing (29)

across s using g'(s)’s as weights and summing the resulting equations from t = 0 to seme T

T, we get (noting the special form (29) takes for t = 0):

Y GOUNZE) =3 5 FEOREIE) - pASEN+ Y AN

S

£y Y FOAEZE) - ROZE - 1)

t=1 S
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T

= Z > FENRS)C(S) - ps)(s)]

+Z > [FEANZE) - Y FEIREIZE + Y gSasHZE)  (30)

S s
The left side of (30) can be written as:

> I ()= a@@)a)Z (@) (3D)

S a

When summed over 3, by market clearing condition (23), the right side of (31) becomes

S (@) Z(e)

[of

Define f™“(a°, &) as the present value vector of the dividend processes truncated at T.

We will sum each of the three terms on the right of (30) over B. For thefirst term, we have:

T T

Z Z > g'(S)IP(s)C’(S) - p(S)ul(s)] = Z > 9“(St)p(st)[g c(s) - w(s)]

t= S t= 5

= i Z F(S)PES)X(SIY) Z(sY)  (by (22b) and the definition of @)

=1 S s'ls

—

ZD g pSHx(ES®) Z(@®  (becausex and Z are adapted to N°)

1
M -
"M

g'S)p)x(@jo®) Z(@°)  (because ZD and

a'la s/a s’la S|s

1
M -
"M

Z} sum over the same s”s and x is adapted to“N

ZD d(a)p)x(@ja) Z(a’) (by (24))

a'la

1
M -
"M
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= Z & (@’ &) Z(a% (by the definition of ') (32)

[of

Summing the second term on the right of (30) for aparticular t over 3, we get:

Z Z [9°(s)a(s)Z7(s) - ;Z| g'(8™R(S)Z(s)]

=2 [g@E)as)- 3 g HRED]Z(S) (by (23))

5

[g'S)a) - > g(SHRE@H] Z(a)
/ s

= [F@a@)- Y @@ IRE@IZ(@)=0 (33)

a
The last step uses the fact that {a'} is a state price process.

Summing the last term on the right of (30) over 3 and using (28), we have:

> 3 FEaNHZE)s Lo = (34)

Combining (30)-(34), we get:

> d@)a@’)- (@’ @) Z(@)<e (35)

Because a'(a") is strictly positive and q(a®) = f(a®, &) = f"“(a®, &), each term on the left of
(35) is nonnegative. If g(a®) > *(a®, &) for an asset j with positive supply, then the |eft side

has a positive lower bound, and for sufficiently small € (35) cannot hold at any T. Q.E.D.

5. Conclusion

This paper develops an approach and a framework within which diverse information

issues can be analyzed in ageneral way. The basic conclusion of the paper can be easily

21



stated: within our framework, as far as the existence of bubblesis concerned, the market
necessarily reveals enough information so that any remaining information diversity does not

matter.
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