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1 Introduction

Despite the voluminous literature on the theory and practice of economic forecast-
ing, little effort has been devoted to organizing systematically the various aspects of
generating and interpreting such forecasts. Even so, the different aspects involved
are intimately related, and exploiting such interrelationships elucidates previously
neglected properties of forecasts. Accordingly, this paper advances a tripartite frame-
work of design, evaluation, and post-evaluation analysis. These concepts are not
new in themselves, and they have been previously discussed in a narrower context
for Monte Carlo analysis. The current paper generalizes these concepts and applies
them to forecasting, re-interpreting the various aspects of forecasting as parts of a
whole instead of as a collection of loosely related tasks. In so doing, this paper draws
together theoretical, computational, empirical, and policy aspects of forecasting in a
unified approach.

Four examples highlight the value of the proposed framework: the possible non-
monotonicity of mean square forecast errors in the forecast horizon, the possible
nonexistence of mean square forecast errors for certain estimation sample sizes and
forecast horizons, the uncertainty arising from Monte Carlo simulation of mean square
forecast errors when exact analytical results are unavailable, and a parallel uncertainty
in estimating the bias from using deterministic forecasts from nonlinear models. Each
case is of substantive economic and methodological interest, and each shows how the
proposed framework clarifies and improves upon existing results and techniques.

This paper is organized as follows. Section 2 develops the general framework,
which partitions forecast activities into design, evaluation, and post-evaluation ana-
lysis. Design includes specification of the model for forecasting and selection of the
forecast’s characteristics of interest. Thus, design includes choice of the variables be-
ing forecast, the forecast horizon, the model’s specification, and estimation method.
Evaluation specifies how the forecasts are actually generated, and includes the choice
of analytical or numerical techniques and the type of approximation used. Post-
evaluation analysis includes presentation and summarization of the forecasts.

Sections 3 and 4 illustrate the principles of design, evaluation, and post-evaluation
analysis for some time-series models that have been studied previously. That choice
emphasizes how existing results can be beneficially re-interpreted in the proposed
framework. Section 3 presents analytical properties of the mean square forecast er-
ror (MSFE) for one-step and multi-step ahead forecasts from vector autoregressions,
relying on approximations due to Schmidt (1974) and Baillie (1979b). While the
general formula for the MSFE is useful for empirical applications within this class of
models, many of its properties can be most easily understood for a special case, the
univariate first-order autoregressive [AR(1)] process. As detailed below, Section 4 dis-
cusses three potential properties of the MSFE for the AR(1) model: nonmonotonicity,
nonexistence, and uncertainty in its estimation by Monte Carlo simulation.



First, Section 4.1 re-interprets Hoque, Magnus, and Pesaran’s (1988) exact nu-
merical results on the MSFE for an AR(1) model without an intercept. Mean square
forecast errors are commonly viewed as being monotonic in the forecast horizon.
However, they need not be so, and whether they are depends on dynamics and on
the uncertainty in estimating the forecast model’s coefficients. Nonmonotonicity has
immediate consequences for policy, as the MSFE may achieve a maximum at fore-
cast horizons typically of interest, e.g., one to two years out. Nonmonotonicity in
the MSFE can be difficult to interpret on its own, as noted by Hoque, Magnus,
and Pesaran (1988). That said, nonmonotonicity is easily understood through post-
simulation analysis in conjunction with the (approximate) analytical formula for the
MSFE from Section 3.

Second, Section 4.2 analyzes the MSFE of the AR(1) model using maximum like-
lihood estimation. As Hoque, Magnus, and Pesaran (1988) show, the MSFE does not
exist beyond a certain horizon when the AR(1) model is estimated by least squares.
This problem disappears for truncated estimators, such as maximum likelihood. Ex-
act numerical solutions for the MSFE are not known for these truncated estimators,
so forecast evaluation is by Monte Carlo. The approximate analytical solution for
the MSFE from Section 3 aids interpreting the Monte Carlo results, paralleling its
comparison in Section 4.1 to the exact numerical results from Hoque, Magnus, and
Pesaran (1988). The framework in Section 2 identifies the need for accurate Monte
Carlo outcomes, so control variates are employed for variance reduction.

Third, Section 4.3 re-examines Orcutt and Winokur’s (1969) Monte Carlo study
of the AR(1) model with an intercept. When exact analytical results are lacking,
theoretical properties of forecasts are often ascertained through Monte Carlo simula-
tion. That simulation, qua simulation, introduces uncertainty into the results. This
calculation (or evaluation) may either clarify or obscure the forecasts’ underlying
properties, depending upon the particular simulation procedures employed. As in
Section 4.2, the analytical properties from Section 3 help interpret the Monte Carlo
results. In all three subsections of Section 4, the asymptotic MSFE captures much
of the variation across experiments, and the approximate MSFE does even better in
doing so. Their degree of inaccuracy relative to the exact MSFE appears related to
how close conditions for the existence of the exact MSFE are to being violated when
estimating by least squares.

Section 5 considers six models of U.S. imports and exports, some of which have
been used in practical forecasting exercises at the Federal Reserve Board. These mod-
els’ forecasts differ from those of the earlier sections in three respects: the models are
nonlinear rather than linear; the data are empirical rather than simulated; and the
object of analysis is the nonlinearity bias arising from deterministic forecasts, rather
than the MSFE. Even asymptotic analytical solutions are not usually available for
nonlinear models, so the analysis in Section 5 is entirely by Monte Carlo. While non-
linearity biases are well-known, existing analyses typically use inefficient techniques



in quantifying them. As in Section 4.2, more efficient techniques are readily apparent,
once evaluation is viewed in a general framework for interpreting the properties of
economic forecasts. Contrasting with Section 4.2, the variance-reduction technique
is antithetic variates rather than control variates, in part because the asymptotic
solution for the nonlinearity bias is not known. Efficiency gains from the antithetic
variates range from 4-fold to over 2000-fold, illustrating how important good numer-
ical techniques can be, even when the underlying problem is inherently analytical.
Section 6 concludes.

2 Forecast Methodology

Forecasting is often viewed by economists as a simple extension of model estimation,
in which fitted values are constructed from the estimated model over a sample not
used in estimation. However, in order to understand better the properties of forecasts
and forecast errors, it is helpful to divide the mechanics of forecasting into three parts:

1. design, in which the characteristics of the forecasts and the relationship of
interest are specified;

2. evaluation, wherein the forecasts are generated; and

3. post-evaluation analysis, in which the forecasts are presented.

Here, “evaluation” takes its common meaning “working out the numerical value of”,
rather than (e.g.) “judging the value of”. Table 1 lists details for each of these three
categories. While this framework is applied to forecasting here, it could be used to
interpret any properties of economic models.

This three-fold partition generalizes discussion in Hendry (1984) and Ericsson
(1986) on experimental design, simulation, and post-simulation analysis for Monte
Carlo studies. While forecasts may involve Monte Carlo simulation as an evaluation
technique, they may also (or instead) rely on analytical calculations or numerical inte-
gration. In any case, this framework helps identify and clarify properties of forecasts
that are otherwise missed or that generate puzzles. Sections 2.1, 2.2, and 2.3 discuss
the three aspects of forecasting at a general level, using Table 1 as a guide. Table 2
(below) gives particulars for the models and forecasts examined in the remaining sec-
tions and indicates how this framework aids in the construction and interpretation of
the associated results.

2.1 Design

Forecast design specifies the relationship of interest for generating the forecasts and
the characteristics of the forecasts being examined. This subsection considers these
two aspects of design.



Table 1. A Framework for Generating and Interpreting Forecasts

Design
Relationship Characteristics Evaluation Post-evaluation
of Interest of the Forecasts Analysis

Dimension Dimension Technique Presentation

single equation scalar analytical algebraic

multiple equations vector numerical graphical

Monte Carlo tabular

Completeness naive response surface

full system antithetic variates

subsystem control variates

Temporal form
static
dynamic

1(0)

integrated

Functional form
linear
nonlinear

Distributions
error
coeflicient estimates
initial conditions

Estimation
OLS
ML
other

Forecast horizon
one-step ahead
multi-step ahead

Transformations
linear
nonlinear

Distributional property
mean (and bias)
variance (and MSFE)
existence of moments
other

bootstrap
Nature Summarization
[deterministic] none
asymptotic response surfaces
approximate test statistics
O(n™ 1)
higher order
exact




To accommodate a wide range of possibilities, the specification of the estimated
model (the relationship of interest) is general at the outset:

f(ytJyt—17Zt797ut) - 07 t:1,...,n+5. (1)

The function f(-) is an m x 1 vector of equations included in the model, y; is an m x 1
vector of endogenous variables at period t, z is a ¢ X 1 vector of (assumedly) weakly
exogenous variables, 6 is a ¢ x 1 vector of parameters, and wu; is an m x 1 vector of
disturbances, whose assumed distribution is specified as part of the relationship of
interest (Table 1). The first n observations are used in estimation, and the remaining
S are forecast. In describing forecast procedures, it is convenient to solve (1) explicitly
for y, and change the time subscript ¢ to n + s, so that forecasts are calculated for
positive s. This transformed representation is written as:

Ynts = g(ynJrS*lﬂszrSaeaunJrS) ) s=1- n,.. '7_1a07 17' o asv (2)

where ¢(-) is a suitable redefinition of f(-) above. In practice, (2) may be a single
equation or multiple equations, with or without exogenous variables and/or dynamics,
and either linear or nonlinear. For multi-step ahead forecasts (s > 1), z, is assumed
strongly as well as weakly exogenous, or a model for z; is used in the forecasting
process, in effect embedding z in y; see Engle, Hendry, and Richard (1983).

Sections 3-5 consider numerous (but not exhaustive) combinations of these possi-
bilities. Here and below, analytical expositions are typically for s-step ahead forecasts
only. However, the formal structure developed applies to both s-step and one-step
ahead forecasts, and both types of forecasts are examined in Sections 3-5.

Throughout, (2) is assumed to be the data generation process as well as the
econometric model. The framework in Table 1 could allow for a distinction between
the data generation process and the model. Doing so would result in an additional
column under “design” in Table 1 with entries paralleling those under “relationship
of interest”. While this distinction would serve no immediate purpose, it is crucial for
forecasting in general. See Clements and Hendry (1996, 1998a, 1998b) and Hendry
(1997) on the generic effects of model mis-specification on forecasting, and Gallo
(1991, 1996) on the specific effects of data mis-measurement through provisional data.

The characteristics of the forecasts include the forecast horizon, transformations
of y,,+s to obtain the actual forecasts (and hence the dimension of the forecasts), and
the distributional property of interest. By assumption, (2) is the process generating
Ynts, SO (2) naturally serves for generating ¥, (the forecast of y,. ), given some
choice of assumptions about ¥, 151, Znts, 0, and u,s. The particular choice adopted
determines the type of forecast. If the actual value of y,, s 1 is used in g(-), then the
S forecasts {Uns; s =1,...,S5} are one-step ahead, i.e., forecasts of the endogenous
variables are conditional on the observed endogenous variables lagged one period.
Alternatively, the previous forecast 4,11 could replace y,,.s_1, but with observed y,



starting the forecast process. This sequential solution for 7, in (2) generates a set
of s-step ahead forecasts (s =1,...,5).

The variable z,, s may be weakly or strongly exogenous in fact, and the modeler
may (correctly or incorrectly) assume some exogeneity status for z. Even if z is
strongly exogenous, either actual or forecast values of z might appear in g(-), where
the forecast values would contribute additional uncertainty, both because z would be
forecast rather than known and because the forecasting model for z would likely be
estimated.

For a given forecast horizon s and a given treatment of y,, . s 1 and z,,, the choice
of 6 and u,, s in g(-) fully specifies the forecast procedure. Numerous choices of 6 and
Ups €xist, the most common being “deterministic simulation” (u,. s and 6 fixed, e.g.,
at Uy s =0 and 0 = 5) and “stochastic simulation” (either u, s random and 6 = 5,
Or Uy s and 6 both random). Sections 3 and 4 focus on just deterministic simulations,
whereas Section 5 compares the numerical solutions for both types of simulations.

While the econometric model generates the forecast 7,5, economic interest may
be in some transformation of ¥,,s, and in some property of that transformation.
Specifically, consider a linear transformation P of 3,4, and a general property h(-).
(The assumption of linearity is without loss of generality, noting that g(-) is arbitrarily
nonlinear.) In this context, the object of the forecast analysis is the expectation y,,

s = ERP T = [[ 0P Turs) - 0(0,0) - du-d, (3)

where £(-) is the expectations operator, v(-,-) is the joint density of u [defined as
(Upi1y- -5 Unys)] and @, Unts_1 1s implicitly a function of 0 and u, and the selection
of P and h(-) may affect whether or not the expectation p,, exists. The sections
below focus on aspects of the first two moments of the forecasts: the mean square
forecast error, and the bias of deterministic forecasts. In Sections 4.1 and 4.2, y is a
single variable, P =1, and h(P'Jy+s) is 2. ,, making p,, the MSFE of the variable
in the model. Section 4.3 also examines the MSFE, but for one of two variables in
a bivariate vector y by having P = (1 0). In Section 5, h(P'Ypss) = P'Unss, and
P selects one variable from a multivariate vector of forecasts ¥4, S0 p,,, is the
unbiased forecast of the variable selected. Equation (3) generalizes to allow linear
combinations of forecasts from different forecast horizons, as in Campos (1992), who
considers inter alia quarterly forecasts from monthly models. Below, for notational
simplicity, P is assumed to be the identity matrix unless explicitly required otherwise.

2.2 Evaluation

Exact analytical solutions to (3) are known for only very simple models. Alternatives
to such solutions include numerical integration (Section 4.1), analytical approxima-
tions (Section 3), Monte Carlo simulation (Sections 4-5), and bootstrapping (see



Efron (1982), Peters and Freedman (1985), and Hall (1994) inter alia). Each ap-
proach has its own strengths and weaknesses. Using multiple approaches for a given
problem, as is done below, extracts each approach’s advantages while ameliorating
the associated shortcomings. Additionally, algorithms may be available for improving
the computational efficiency with which (3) is solved. For Monte Carlo simulation
in particular, Sections 4.2 and 5 employ two generic variance-reduction techniques,
control variates and antithetic variates.

For each alternative technique, an application might ignore or account for the
uncertainty arising from u and/or 6. These two sources of uncertainty are denoted
“inherent” and “coefficient”. A technique ignoring both sources of uncertainty is “de-
terministic”. A technique accounting for inherent uncertainty alone is “asymptotic”,
so-called because the uncertainty from u affects the distribution of the forecast error
Unis — Ynis, €ven when the estimation sample size n is large. If a technique incorpo-
rates at least the limiting distribution of 6 as well as inherent uncertainty, then the
technique is “approximate”.

Even at this stage, the framework in Table 1 provides direct insight into the nature
of stochastic simulation of forecasts. That stochastic simulation is aimed at solving
a nonstochastic problem, namely (3), which itself may be analytically intractable.
In that light, it is highly desirable to adopt computationally efficient algorithms for
stochastic simulation, e.g., antithetic variates and control variates. Such variance-
reduction techniques aim to reduce the Monte Carlo sampling variability introduced
by changing the nonstochastic problem (3) to its stochastic analogue. See Hammersley
and Handscomb (1964) and Hendry (1984) for further discussion, and Hendry and
Trivedi (1972) and Hendry and Harrison (1974) for early examples using antithetic
variates and control variates in the econometrics literature.

2.3 Post-evaluation Analysis

Once the forecasts or their characteristics have been calculated, some form of presen-
tation is adopted, with tables and graphs being common modes. Other possibilities
exist and, even for graphs and tables, both “good” and “bad” presentations are fea-
sible. Tufte (1983, 1990, 1997) shows how small multiples of tables and graphs can
improve presentation; cf. the figures below. Sometimes, properties of forecasts are
summarized, as in Chow (1960) statistics and forecast-encompassing statistics; see
Chong and Hendry (1986), Fair and Shiller (1989), Lu and Mizon (1991), Ericsson
(1992), and Ericsson and Marquez (1993) on the latter.!

In-sample encompassing statistics are also feasible, as in Fisher and Wallis (1990), being of the
form suggested by Davidson and MacKinnon (1981) and Mizon and Richard (1986), noting Pagan
(1989).



3 MSFEs for Vector Autoregressive Models

Mean square forecast errors have had a longstanding presence in the economics pro-
fession, both for calculating forecast confidence intervals and predictive failure tests
through corresponding forecast variances, and for directly comparing models’ forecast
performance. Clements and Hendry (1993) identify important limitations for the lat-
ter use of MSFEs. Still, MSFEs occupy a central role in forecasting, particularly
in light of their now-established role in forecast encompassing; cf. Ericsson (1992).
Vector autoregressions (VARs) are a common and general class of models for fore-
casting, as they include univariate autoregressive models, reduced form econometric
models, and simultaneous equations models. This section thus sketches some ana-
lytical properties of MSFEs for VARs, setting the backdrop for Section 4 on AR(1)
models.

Schmidt (1974) and Baillie (1979b) build on Goldberger, Nagar, and Odeh (1961)
to derive the approximate MSFE for two variants of the general vector autoregressive
model. Schmidt considers the linear dynamic simultaneous equations model where the
non-endogenous variables are known for the forecast period. That is, Schmidt’s model
is a subsystem conditional VAR with known, strongly exogenous variables. Baillie
considers a complete VAR. His framework allows for the strongly exogenous variables
in Schmidt’s model but, if they are present, requires that they be forecast as well
(i.e., true ex ante forecasting). Baillie (1979a, 1981) derives the approximate MSFE
in Schmidt’s framework with autoregressive errors. West (1996) provides further gen-
eralizations. To help understand the properties of the exact MSFE in Section 4, the
current section sketches the derivation of the Schmidt-Baillie approximation and dis-
cusses its analytical properties. Equally, the Schmidt-Baillie approximation permits
comparison of different evaluation techniques across different orders of approximation
and estimators (Section 4).

The first horizontal block in Table 2 characterizes the framework for this section.
Section 3.1 designs the forecasting structure, describing the relationship of interest
(the VAR) and the characteristics of the forecasts (MSFEs for linear combinations of
vector one-step and s-step ahead forecasts). Section 3.2 analytically derives the ap-
proximate MSFE for forecasts from that model (evaluation), and Section 3.3 considers
properties of the approximate MSFE (post-evaluation analysis). The exposition in
Sections 3.1-3.2 follows Chong and Hendry (1986) because of the latter’s accessibility.

3.1 Design

Let 1, be a vector of variables generated by the first-order autoregressive process:
Y = Ayt_l—i—ut U ~~ [N(O,Q) t:2,...,n+5, (4)
where A is an m X m matrix of feedback coefficients, u, is distributed independently

8



Table 2. A Guide to the Forecasts Examined

Design
Section Model Relationship Characteristics Evaluation  Post-evaluation
of Interest of the Forecasts Analysis
3 VAR multiple equations vector analytical, algebraic
full system 1- and s-step approximate
dynamic, 1(0) linear
linear MSFE
OLS
4.1 AR(1) single equation scalar analytical, algebraic
without an full system 1- and s-step including Figures 1-3
intercept dynamic linear exact
linear MSFE
OLS
42  AR(1) same as above, same as above  analytical algebraic
without an  with estimation Monte Carlo  Figures 1, 4
intercept by ML naive, CV
4.3 AR(1) same as above, same as above  analytical algebraic
with an with estimaton Monte Carlo  Figure 5
intercept by OLS naive
) Trade multiple equations scalar Monte Carlo  Tables 3—4
models (M1-M5) 1- and s-step naive, AV various
M1-M6 single equation (M6) nonlinear statistics
subsystem (M1-M4)  (M1-Mb5)

full system (M5-MG6)

dynamic

nonlinear (M1-M5)

linear (M6)

various estimation

procedures

linear (M6)

mean and bias




and normally [IN(-,-)] with mean zero and covariance matrix 2, and y; is given.
Although (4) appears limited to first-order processes, it is not. If the underlying
process is of a higher order, it always can be stacked to give a first-order process.
Because of that stacking, or for other reasons, the variables of interest for forecasting
may be a subset (or some linear combination) of y,, s, with the selection matrix P
extracting the vector of interest as P'y,.,. Further, the matrix A may be restricted
(e.g., have zeros), so it is useful to recognize explicitly how A is a function of its
unconstrained elements 6:

a = A = RO+r, (5)

where (-)” denotes the column vectorizing operator, « is the vectorization of A, and
all the elements of R and r are known. For convenience, A is assumed to be such
that g, is integrated of order zero, although this condition is more restrictive than
necessary.

Next, assume that 6 is estimated by @, which is asymptotically distributed as:

Vi-(@-0) 2 N0, (6)

where 2 denotes convergence in distribution as n — oo, N(0,¥) denotes a nor-
mal distribution with mean zero and covariance matrix ¥, and ¥ is the asymptotic
covariance matrix for §. Combining (5) and (6), it follows that:

Vi-(@-a) S N0, (7)

where I' = RUR'. In finite samples, the approximate distribution of 0 is:

~ N, ©

app

)

¢

where ~ denotes “is approximately distributed as”. For instance, least-squares esti-
app

mation of the VAR obtains (6)—(8) for R = I. For the remainder of the derivation, (8)
is treated as if it were the exact distribution of 0, i.e., terms smaller than O,(n=1/2)
in the distribution of § are ignored.

Using the data [y; ... y,] to forecast y,,, s gives:

Zj/\nJrs = Asyna (9)
the ex ante s-step ahead forecast. By repeated substitution of (4) into itself at
successive lags, the actual outcome v, ; is:

s—1

Ynts = Asyn + ZAiunJrsfi ) (10)

=0

10



where A° = I if A =0. Thus, the discrepancy between actual and forecast y,,, is:

s—1
(Ynts = Unts) = (Z Aiun-&-s—i) + (A% =A%)y, - (11)
=0

Selecting the variable of interest gives the corresponding forecast error €, :

€n+s = Pl(ynJrs - gn+5)
s—1
= P (Z Aiun+s_,»> + P(A° — A%y, . (12)
=0

The mean square forecast error for €, is the distributional property of interest, i.e.,

5(€n+s€rlz+s|yn)-

3.2 Evaluation

The two terms on the right-hand side of (12) correspond directly to the two sources
of uncertainty being investigated. The first, P’ (Z:; Aiun+s_,»), is the cumulation
of the shocks to which y; is subject over the interval [n + 1,n + s|, where each shock
is weighted by the degree to which it influences P’y,, ., the variable being predicted.
The second, P'(A® — As)yn, reflects the uncertainty present from using an estimated
value of A rather than its true value in forecasting P'y,, .. For convenience, these two
terms are denoted a,, ; and b, ;. The approximate MSFE for ¢,,, can be calculated
by evaluating the variances of these two terms.
Straightforwardly, the variance of the first term is:

s—1
var(an s|y,) = P’ lz AiQ(Ai)'l P = AsyMSFE , (13)
i—0
which is the asymptotic (i.e., large n) MSFE. The approximate variance of the second
term is:
var(bnslyn) = nt- (I ®y,)[D(s)TD(s)|(I @ yn) (14)
where .
P A% = . .
D(S‘), _ a( a , ) — (P/ ®I) [ZA@ ® (As—z—l)/‘| : (15)
a =0

the symbol ® is the Kronecker product; and, in Mann and Wald’s (1943) order
notation, a term of O,(n~!) is ignored in b, when calculating var(b,s|y,). The
derivation of (14) is more complicated than that of (13) and appears in Ericsson
and Marquez (1989, Appendix A).? Because A® and {tnis—iyi = 0,...,s — 1} are
independent (by assumption), then a, , and b, , are as well, so the variance of a,,

2A higher-order approximation could be obtained by employing a higher-order Taylor-series ex-

pansion for the distribution of 8 in (6) and using distributional results in Shenton and Johnson
(1965); cf. (23).

11



and the approximate variance of b, ; can be added together to obtain the approximate
MSFE (AppMSFE):

AppMSFE(é, s|ly,) = P’ lSZlA’Q(AZ)’] P
+n @y )DETDEI@w) . (16)

Equation (16) is relatively easy to implement in a computer program because it in-
volves only sums of products of matrices. P and y, are known, and the unknown
elements of A, €2, and I' may be replaced by consistent estimates of them. Calzo-
lari (1981, 1987) provides additional computational simplifications for models with
restrictions on A.

3.3 Post-evaluation Analysis

The two terms on the right-hand side of (16) behave differently in terms of the forecast
horizon s: var(ay, s|y,) increases monotonically in s, whereas var(b,, s|y,,) may increase
before eventually decreasing to zero. Hence, as s increases, the approximate MSFE
may decrease as well as increase. Section 4.1 examines this nonmonotonicity in greater
detail. Because var (b, s|y,) is positive for finite n and s, the approximate (and so the
exact) MSFEs are always larger than the asymptotic MSFE.

4 MSFEs for AR(1) Models

The second, third, and fourth horizontal blocks in Table 2 characterize the frame-
work for Sections 4.1, 4.2, and 4.3, which analyze the possible nonmonotonicity of
MSFEs, the existence of MSFEs, and the simulation uncertainty from estimating MS-
FEs by Monte Carlo. While each facet of forecasting enters these three subsections,
Sections 4.1, 4.2, and 4.3 focus on post-evaluation analysis, design, and evaluation
respectively, with the ordering of the subsections reflecting the natural presentation
of the models and estimators examined.

4.1 Nonmonotonicity of MSFEs

This section summarizes the design, evaluation, and post-evaluation analysis of the
AR(1) model by Hoque, Magnus, and Pesaran (1988), using the asymptotic and ap-
proximate MSFEs derived in Section 3 to interpret their exact results. Post-evaluation
analysis is a particular issue here because of the observed and apparently puzzling
nonmonotonicity in the exact MSFE.

Design. One special case of (4) is the AR(1) model, which is:

Yo = Byt w u, ~ IN(0,0%) t=2,...,n+S9 (17)
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in Hoque, Magnus, and Pesaran’s notation, where 1; and u; are scalar variables, (3 is
the autoregressive coefficient, and o is the variance of u;. In the notation of Section 3,
A=a=0=03,0=0% R=1,and r = 0. For | 3 |< 1, the ordinary least squares
(OLS) estimator of 3 is asymptotically distributed as:

V- (B-p5) & N(O,[1-p5%), (18)

in which case various matrices in Section 3 simplify: ¥ =T' = (1 — §%), P = 1, and
D(s) = s3*~'. Thus, the forecast error (12) is:

[

s—
8

Burs = 3 () tnpani + (8 = 5") -y (19)

=0

~

For (3 estimated by OLS, the unbiasedness of the s-step ahead forecast ﬁsyn for ypas
follows immediately from (19), provided that the expectation of (19) actually exists;
see Fuller and Hasza (1980).

Taking advantage of the explicit relationship between the OLS estimator and the
disturbances {u;} in calculating é,,, Hoque, Magnus, and Pesaran (1988) derive an
analytical expression for the exact MSFE for the AR(1) model (17). To do so, they
must specify the distribution of the initial condition y;, which they posit is:

y1 ~ IN(0,8°0?), (20)

where ¢ is an arbitrary constant. Hoque, Magnus, and Pesaran examine two cases:
6% = (1 — #*)! (the “stationary case”) and 6> = 1 (the “non-stationary case”).
Additionally, the triplet ((3,n,s) must be specified, and they choose a full factorial
design of:

3 = (0.0,0.1,0.2,...,0.8,0.9,0.95,0.99),
n = (10,15,20,25), and
s = (1,2,3,4) [S =4

The error variance o2

can be set to unity without loss of generality, as it simply
scales y.

Evaluation. For each set of values of (3,n,s, ), Hoque, Magnus, and Pesaran
calculate the exact MSFE (ExMSFE) by numerical integration of an explicit form
for (3), as given in their Theorem 2. Details appear in Hoque, Magnus, and Pesaran
(1988, Appendices A-C).

The approximate MSFE also can be calculated, noting that (16) simplifies to:
1— (5"
I
Equation (21) identifies the separate contributions of the different sources of uncer-
tainty. The first term on the right-hand side is the asymptotic term, and the second

APPMSFE(saly) = 02( )+(n1-y2)-(8ﬂ5‘1)2-(1—ﬁ2)- (21)
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is the part arising from coefficient uncertainty. Although the original derivation of
(21) is difficult to ascertain, it appears as early as 1970 in Box and Jenkins (1970,
p. 269). For the one-step ahead forecast, (21) simplifies to the more familiar formula:

2
AppMSFE(e,11ly,) = o*+ 7‘%%(1 —5) = (1 + = U 5 ) ; (22)
n D=2 Yi1
cf. Chow (1960) and Hendry (1979).

Post-evaluation Analysis. Hoque, Magnus, and Pesaran (1988) tabulate their
calculations; and they also plot a subset of those exact MSFEs, both as pure MSFEs
(for s = 1 and for n = 15) and as MSFEs relative to the asymptotic MSFEs (for
n = 15). Hoque, Magnus, and Pesaran (1988, pp. 333, 335) note with some surprise
that the exact MSFE can decrease as the forecast horizon increases: the formula for
the approximate MSFE in (21) above provides an intuitive explanation of why that
occurs. The remainder of this subsection first uses the approximate MSFE to explain
that observed nonmonotonicity, and then examines more generally the relationship
between the asymptotic, approximate, and exact MSFEs.

The approximate MSFE (21) differs from the exact MSFE by ignoring a term of
Op(n™!) in €, s. The analytical properties of the approximate MSFE can explain the
nonmonotonicity in the exact MSFE. The properties of the first term on the right-
hand side of (21) are relatively simple and well-known. This term is the asymptotic
MSFE and starts at the conditional variance of y; (02) for s = 1. The asymptotic
MSFE increases monotonically in s, tending to the unconditional variance of y;, which
is 02 /(1 — 3%).

The structure and properties of the second term on the right-hand side of (21) can
be easily explained and interpreted via its derivation. The term BS in (19), viewed as
a function of /3, is approximated by a first-order Taylor-series expansion about 3 to
give:

B = B +sp T B-B)+0p(n7") (23)
Substitution into (8° — 3°) - yn gives s3° (8 — 3) - yn + Op(n™1), from which the
second term on the right-hand side of (21) follows immediately, using (18).> That
term is always non-negative (and generally positive) for finite n and s, and it vanishes
as either s or n becomes large. However, for a given sample size n, final observed
value y,, and nonzero 3, the MSFE can either decrease monotonically as the forecast
horizon s increases, or increase first and then decrease. Its path depends upon the
behavior of the sequence {(s3°7!); s =0,1,2,...}, and so upon the particular value of
(. The contribution of coefficient uncertainty to the approximate MSFE can be large
or small relative to the latter, so the functional relationship between the approximate

3The effect of s on the distribution of ﬁs also can be seen by analogy to moments of a standardized
normal variate z, for which £(x%)? = (2s)!/(2° - s!): e.g., E(z*)? = 1,3,15,105 for s = 1,2,3,4.
Clearly, taking a power of (3 can increase its variance dramatically.
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MSFE and the forecast horizon s itself depends upon  and y,,. Thus, the potentially
large and varying contribution of coefficient uncertainty to the approximate MSFE
can explain the noted nonmonotonicity in s of the exact MSFE; see also Chong
and Hendry (1986, p. 685) and Clements and Hendry (1998a, 1998b). The second
component of the approximate MSFE provides a simple analytical explanation of
this behavior, to the extent that the approximate MSFE offers a good approximation
to the exact MSFE. So, this subsection concludes by comparing the asymptotic,
approximate, and exact MSFEs for Hoque, Magnus, and Pesaran’s design.

The asymptotic, approximate, and exact MSFEs are functions of the parameters
(B,s,n).* In forecasting, it is of interest to know how and why those MSFEs vary
as their determinants vary. Additionally, the exact MSFE is not available in many
practical situations whereas asymptotic and approximate MSFEs are, so Hoque, Mag-
nus, and Pesaran’s results grant the unusual opportunity of assessing how close the
asymptotic and approximate MSFEs are to the exact MSFE.

Figure 1 plots the asymptotic, approximate, and exact MSFE (stationary case) as
a function of the forecast horizon s for selected values of # and n: 5 = (0.2,0.7,0.9)
and n = (10,20). (Figure 1 also includes estimated exact MSFEs for maximum
likelihood estimation of 3, examined in Section 4.2 below.) The values of 3 imply
y; ranging from being nearly white-noise to highly autoregressive. Both here and in
following section, the term 2 in (21) is chosen to be a representative value, o /(1—3%),
i.e., equal to its unconditional expectation.’

For all values of 3 and n, the asymptotic MSFE increases in the forecast horizon s,
with the curvature of the MSFE depending on . The discrepancy between the one-
step and infinite-step ahead asymptotic MSFEs increases with 3, and the asymptotic
MSFE levels out more gradually for larger 3. Both results follow directly from (21).

Figure 1 reveals three distinct patterns for the approximate MSFE: a decreasing
approximate MSFE, an increasing approximate MSFE, and an approximate MSFE
that increases and then decreases. Which pattern prevails depends upon both 3 and
n. For small 3, the approximate MSFE is declining almost uniformly as the horizon
increases, with the initial (one-step ahead) approximate MSFE being the largest.
That arises because the uncertainty from estimating (3 is large (from (18)), but that
uncertainty is unimportant in forecasting v, s except for s = 1. Mathematically,
s3*!in (21) is approximately zero except for s = 1, when it is approximately unity.
Because the asymptotic MSFE changes little as s increases, the approximate MSFE
is declining from the start (Figures la and 1b).

For larger values of 3, the variance from coefficient uncertainty increases first and

4Without loss of generality, 02 = 1 because o2

is a scale factor in (17), and hence in (21).
5Another justification for this choice is that the unconditional expectation £[(3° — ,@S)Qy?l] is

approximately E[(5° — BS)Z] - E[y?] because 3 and yn, are approximately independent. See Phillips

(1979) for an extensive discussion on the conditional and unconditional finite sample distributions

of the forecast error.
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Figure 1: The exact, pooled, approximate, and asymptotic mean square forecast
errors for autoregressive coefficient values of g = (0.2,0.7,0.9) and sample sizes of
n = (10,20) as a function of the forecast horizon s (s =1,...,30).
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then falls because the multiplicative coefficient s in s3°~' dominates for small s but
the exponential term (3°~') dominates for large s. As the sum of two components,
one monotonically increasing and the other increasing and then tending to zero, the
approximate MSFE can either increase first and then fall towards the unconditional
variance of y; (Figures 1c—1f) or increase monotonically, approaching that asymptotic
variance (also increasing in s) from above. The latter would be the case for all the
figures if the sample size n were large enough.

Although there are some notable discrepancies between the approximate and ex-
act MSFEs in the figures (primarily for n = 10 with s = 4), the approximate MSFE
does remarkably well in approximating the exact MSFE, so well that it is difficult to
distinguish them at n = 20. However, the dependence on (3, n, and s of discrepancies
between the approximate (or asymptotic) MSFE and the exact MSFE is more appar-
ent by plotting all of Hoque, Magnus, and Pesaran’s calculations. Figures 2 and 3 do
so, using small multiples of three-dimensional graphs.

Graphs in the first column of Figure 2 plot the percent discrepancies between the
asymptotic MSFE in (13) and the associated exact MSFE from Hoque, Magnus, and
Pesaran (1988, Tables 1 and 2) for the stationary case. Each graph in the column is
defined by an estimation sample size n and, for that sample size, plots the percent
discrepancies as a function of the autoregressive coefficient § and the forecast horizon
s. Graphs in the second column of Figures 2 likewise plot the discrepancies between
the approximate and exact MSFEs.® Figure 3 plots the corresponding results for the
nonstationary case (6% = 1).

The asymptotic formula captures the behavior of the exact MSFE well for small
to medium values of 5 and for large n, with deviations of the order of 5%—15%; but it
does poorly otherwise. The approximate MSFE fares better: typical departures are
2%—-3% or less. As with the asymptotic MSFE, more sizable discrepancies appear for
large s paired with small n and/or large 3. The effective sample size, as measured
here by (n — 1)/(1 — 3%), predicts the possibility of such departures under those
conditions; cf. Sims (1974) and Hendry (1984). The approximate MSFE is almost
invariably smaller than the exact MSFE, although this inequality need not hold in
general; cf. Peters and Freedman (1985, p. 258) and Bianchi (1990, p. 98).

The analytical formulae in (19) and (21) help identify the sources of discrepancies
between the three types of MSFEs. Discrepancies between the asymptotic and exact
MSFE arise because ﬁ is not identically (3. Discrepancies between the approximate
and exact MSFE arise for several reasons. First, the asymptotic and finite sample
variances of B differ, and hence so do the respective variances of @S in (19). Second,
f3 is biased in finite samples but not asymptotically (likewise for 35) Third, the

6Because only (n — 1) observations are actually used in estimating 3, the calculation of (21) for
the tables uses (n — 1) rather than n. Ericsson and Marquez (1989, Appendix B) list the values of
the asymptotic and approximate MSFEs for the experiments in Hoque, Magnus, and Pesaran (1988)
and for those in Orcutt and Winokur (1969) discussed in Section 4.2 below.
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Figure 2: Percent deviations of the asymptotic and approximate MSFEs from the
exact MSFE, as a function of sample size n, forecast horizon s, and autoregressive
coefficient 3 (stationary case).
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Figure 3: Percent deviations of the asymptotic and approximate MSFEs from the
exact MSFE, as a function of sample size n, forecast horizon s, and autoregressive
coefficient 3 (nonstationary case).
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first-order Taylor-series approximation of BS about 3° may ignore important terms.
The accuracy and the generality of the approximate MSFE do not in any way belittle
Hoque, Magnus, and Pesaran’s exact results. To the contrary, exact results are highly
desirable because they involve no approximation error, because they are so rare, and
because they are essential for assessing the accuracy of approximations such as (21).

4.2 The Existence of MSFEs

Hoque, Magnus, and Pesaran (1988) show that the exact MSFE exists for the AR(1)
model if and only if the forecast horizon s is not greater than (n—2)/2. Non-existence
of the exact MSFE for longer forecast horizons raises several issues. Specifically,
Hoque, Magnus, and Pesaran’s result was derived for the least-squares estimator of
0, and it does not generalize to other estimators of 5. This subsection shows that
the exact MSFEs for truncated estimators of (3 are finite at all forecast horizons
and considers additional properties of MSFEs for truncated estimators. The exact
maximum likelihood estimator is a truncated estimator of particular interest, so this
subsection analyzes its MSFE in detail. Forecast design is thus central here, both
through the choice of n and s (to ensure existence of the MSFE for OLS) and through
the choice of estimator. That said, evaluation of the MSFE also plays an important
role in this subsection.

A different perspective arises from current forecasting practice, which often treats
estimation as a mechanical procedure for replacing unknown coefficients with num-
bers. When this practice entails estimated dynamic models by OLS, the resulting
MSFE may fail to exist at certain forecast horizons. Maximum likelihood estimation
solves this problem. To understand why, it helps to view model estimation as an
integral part of the forecasting exercise (i.e., of forecast design) and not as technique
for merely quantifying unknowns.

The effects of estimator truncation on MSFE follow straightforwardly. Suppose
an estimator 3 is truncated such that |3| < ~ for some positive bound . The
corresponding forecast error is:

s—1
Cnys = ZﬁiunJrs—i + (8 — Bs) “Yn (24)
=0

paralleling (19). A bound can be placed on the exact MSFE for €, by application
of the triangle and Schwartz inequalities and by noting that £(y2) = o2/(1 — ?).

e _
ExMSFE(e,;s) = o % +E(B = 37) i)
2 :1_ 2 S: s n5\2 2
< ot || e - P £
L 1-5 | _
< o SO e+ 7 £
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2 [L=B" 4 (1 47)
1-p3°

If the bound is the unit circle (y = 1), then a slightly looser bound exists that is

< (25)

independent of s: i.e., 50%/(1 — §%), five times the unconditional variance of the
process. The existence of the exact MSFE does not require that the estimator be
consistent for any value whatsoever. Conversely, because neither bound makes use of
the asymptotic properties of 3, neither converges to the asymptotic MSFE as n — oo.
Even so, the existence of a bound (and so of the exact MSFE) indicates how sensitive
the existence results are to minor changes in the distributional assumptions of the
estimator being used.”

The condition for existence of the exact MSFE also bears on the accuracy of
approximation. For instance, for n = 10 in Figures 1-3, the exact MSFE exists for
s < 4 only. The worsening of the approximation error as s increases may be due to
the declining number of moments of the forecast error. The effects of the existence of
moments are also suggested by Figures 1-2, where the convergence of the exact and
approximate MSFE appears faster than O(n2) for large s.

Because the Schmidt-Baillie approximation relies on only the asymptotic distri-
bution of the estimator used, the formulae in Section 3 are valid for all estimators
asymptotically equivalent to OLS; see (7) and (18) above. One such estimator is
exact maximum likelihood (ML), which accounts for the distribution of y; through
(20) with 6* = 1/(1 — 8%).® Maximum likelihood estimation has several desirable
features in the present context. In particular, its exact MSFE exists at all forecast
horizons, independent of the size of the estimation period. That follows because the
ML estimator is bounded by the unit circle, i.e., v = 1. Furthermore, v = 1 implies a
bound on the exact MSFE for ML, independent of the forecast horizon. The first of
these results permits assessing the generality of the Schmidt-Baillie approximation at
forecast horizons longer than those feasible for OLS. However, because the analytical
formula for the exact MSFE with ML is unknown and because Hoque, Magnus, and
Pesaran’s numerical approach is specific to least squares, this subsection compares the
approximate MSFE with Monte Carlo estimates of the exact MSFE of ML. Again, the
approximate MSFE is remarkably close to the exact MSFE, even for short estimation
periods and long forecast horizons.

Design. In order to assess the closeness of the approximate MSFE to the exact
MSFE for ML without the advantage of exact analytical formulae, the exact MSFE
is estimated by Monte Carlo for a wide range of 3, n, and s, and compared with the

"For instance, suppose that the estimator is OLS truncated with v = 10319, entailing a range
often permitted by floating-point double-precision calculations on a computer. That value of
implies existence of the exact MSFE for all s, yet the truncated estimator will look like OLS for
virtually all practical purposes.

8Cf. Maekawa (1987), who shows an equivalence to O(n~!) between the complete distributions
of the forecast error for OLS and approximate ML.
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corresponding asymptotic and approximate MSFEs. Specifically, the Monte Carlo
experiment is a full factorial design of:

3 = (0.0,0.1,0.2,...,0.8,0.9,0.95,0.99),
n = (10,15,20,25,40), and
s = (1,2,...,30) [S =30,

with 6% = 02/(1 — %) to ensure stationarity. Again, 0> = 1, and without loss of
generality. This design embeds the range of values evaluated by Hoque, Magnus
and Pesaran for OLS with a stationary AR(1) process. However, because the exact
MSFE for ML exists for all forecast horizons, its values can be compared with the
approximate MSFE at much longer forecast horizons than available to Hoque, Magnus
and Pesaran.

Evaluation. To obtain reasonably accurate Monte Carlo estimates, 10,000 repli-
cations per experiment are used. Recognizing that simulation is a tool for solving an
unknown analytical problem leads immediately to the construction and use of Monte
Carlo procedures that are more efficient than pure simulation. The simulations of the
MSFE in this subsection incorporate a control variate proposed and implemented by
Ericsson and Marquez (1989) and also applied by Clements and Hendry (1995, p. 136)
to forecasts in cointegrated systems. The remainder of this subsection describes the
control variate’s construction, its properties, and the simulation results obtained with
it.

The basic Monte Carlo simulation was conducted as follows. For each experiment,
which is characterized by a (3, n) pair, K replications of n+ S normal pseudo-random
numbers {(ux:, t=1,...,n+S), k=1,..., K} were generated from pairs of uniform
pseudo-random numbers using Box and Muller’s (1958) transformation.” For the
kth replication, a set (yx:, t = 1,...,n 4+ S) was created from (17) and (20) with
6% = (1—-p3*~', and the ML estimate was found by solving the cubic in 3 from setting
the score of the likelihood equal to zero; see Koopmans (1942), Anderson (1971,
p. 354), and Beach and MacKinnon (1978). Given the ML estimate, the forecast error
was calculated for each value of s (s = 1,...,5). Explicitly, let B = B(ﬂh, n;, k) denote
the ML estimate for the kth replication of the experiment with the hth value of 3 (3,)
and the jth estimation sample size n (n;). Further, let {€,,14(3,); s=1,...,5} be

9The uniform random number generators are the mixed-congruential generator RNDM from
Carrier, Atkins, and Taylor (1969) (but converted from COMPASS to FORTRAN) and the
multiplicative-congruential generator GO5CAF from the Numerical Algorithms Group (1984). Dif-
ferent random number generators were used for each number in the pair of uniform pseudo-random
numbers in order to avoid the potential difficulties with Box and Muller’s transformation described
in Neave (1973).
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the corresponding set of observed forecast errors, where:

gkvanFS (/gh) = yk,anrS - gk,anrs
s—1
= Z(ﬁﬁz) * Uknj+s—i + (ﬂ; - ﬁ ) “ Yk - (26)
=0

The usual Monte Carlo estimator of the MSFE (McMSFE) is:

McMSFE, .(8,) = iw

k=1

(27)

which, in Hendry’s (1984) terminology, is the “naive” Monte Carlo estimator. When
normalized by the exact MSFE, this Monte Carlo estimator is approximately dis-
tributed as N(1,[2/K]). In the current experimental design, K is 10*, so the stan-
dard deviation of McMSFE/ExMSFE is (2/10*)Y/2 or about 1.4%. Increasing K
tenfold would reduce the standard deviation to only about 0.5%, an indication of
the difficulties in obtaining precise estimates by such Monte Carlo techniques. For
comparison, see Ansley and Newbold (1980), who compute McMSFE for several esti-
mators (including ML) of various ARMA processes, but use 1000 or fewer replications
per experiment.

Control variates provide a powerful method for variance reduction of naive Monte
Carlo estimators, as discussed by Hammersley and Handscomb (1964) and Hendry
(1984) inter alia. To be useful, a control variate (CV) should be highly correlated with
the naive estimator and should have a known distribution. Because the purpose of the
Monte Carlo study is to estimate a moment which is unknown, those two properties
might appear to conflict. However, often it is possible to partition a statistic into
an asymptotic component and a finite sample one, with the former having an exact
distribution; cf. Hendry and Harrison (1974) and Hendry (1984) on doing so for
econometric estimators. The Monte Carlo estimator McMSFE has a natural control
variate because the first term on the right-hand side of the equality in (26) (and
more generally, of (12)) is exactly normal, and independent of the second term. The
implied control variate (denoted CvMSFE) is:

L= 2
CVMSFE = E Z [Z(ﬁ;) . Uk,nj+s—i‘| 9 (28)
k=1 Li=0

which is exactly distributed as AsyMSFE - xy?(K)/K and has a mean of AsyMSFE;
see also Section 4.3 below.

The CV is used to reduce the simulation uncertainty of the naive estimator by
subtracting the CV from the naive estimator (with which it is positively correlated)
and adding back the known mean of the CV. The resulting Monte Carlo estimator is
called a pooled estimator. Here, the pooled estimator (PoMSFE) is:

PoMSFE = McMSFE — CvMSFE + £(CvMSFE)

2

K -8
= ASyMSFE + - 3" [(5 — 5) -y | (29)
k=1
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By construction, the pooled estimator has the same expectation as the naive estima-
tor. Its variance is smaller than that of the naive estimator by the extent to which
the CV is correlated with the naive estimator. In the present case, the reduction in
variance is obvious because the CV has eliminated the term in the naive estimator
which simulates the asymptotic MSFE. That is, the naive estimator McMSFE simu-
lates a term of O, (1) whereas the pooled estimator POMSFE simulates a term of only
Op(n~1). The efficiency of the CV will vary across experiments, but from a cursory
comparison of the fluctuations in the naive and pooled estimates, they are consider-
able for the design chosen. Further, the CV requires little additional computational
expenditure because the asymptotic MSFE is trivial to calculate and is the same for
all n. An even more efficient CV is feasible by utilizing the asymptotic distribution of
sﬁs’l(ﬁ — f3) from (23), in which case the pooled estimator simulates a term of only
0p(n!) in the MSFE. However, this CV was not implemented, given the considerable
accuracy of the CV in (28).

Post-evaluation Analysis. Figure 1 plots values of the pooled MSFE for se-
lected 8 and n, in addition to the exact MSFE for OLS, the asymptotic MSFE, and
the approximate MSFE. For § = 0.2 with n = 10, the approximate MSFE is even
closer to the exact MSFE for ML than to the exact MSFE for OLS. At medium and
large values of 3 (0.7 and 0.9) with n = 10, the approximate MSFE still does well, but
it over-estimates the exact MSFE at short to medium horizons and under-estimates
it at very long horizons. Relatedly, the hump so evident in the approximate MSFE is
less pronounced (but still present) in the exact MSFE for ML. For n = 20, the devi-
ations between the exact and approximate MSFE are much smaller than for n = 10,
as expected.

The full simulation results appear in Figure 4 as deviations of the pooled MSFEs
from the asymptotic and approximate MSFEs, paralleling Figure 2. To condense
presentation, values for s > 10 appear for s at multiples of five. At long horizons,
the exact, asymptotic, and approximate MSFE all change slowly as a function of
s in any case. All values of the respective MSFEs are tabulated in Ericsson and
Marquez (1989, Appendix D). As with OLS, the asymptotic MSFE does reasonably
well for small to medium values of § and for large n, with the approximate MSFE
doing better, and over a wider range of § and n. As n increases, both deviations
generally decline, as would be expected because the exact MSFE is tending to the
asymptotic MSFE. Unlike with OLS, the approximate MSFE often over-estimates the
exact MSFE for 8 in the range of [0.80,0.95]. However, for (3 very close to the unit
circle (8 = 0.99), the approximate MSFE again under-estimates the exact MSFE.
The boundedness of the ML estimator is affecting the exact MSFE for large 3, but
little more can be said without considering terms smaller than O(n™!) in the MSFE.

Even so, the approximate MSFE offers a remarkably simple and accurate summary
of the behavior of the exact MSFE for ML.
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Figure 4: Percent deviations of the asymptotic and approximate MSFEs from the
(estimated pooled) exact MSFE for maximum likelihood, as a function of sample size
n, forecast horizon s, and autoregressive coefficient 3.
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4.3 Monte Carlo Simulation Uncertainty

Even while omitting an intercept, the AR(1) model in (17) has been useful for dis-
cussing generic properties of the MSFE from a VAR (Section 3), exact results from
Hoque, Magnus, and Pesaran (1988) (Section 4.1), and the simulation for ML (Sec-
tion 4.2). However, the role of an included unknown intercept is also important,
both because intercepts usually appear in empirical models and because Orcutt and
Winokur (1969), in a pivotal Monte Carlo study of the AR(1) model, include an inter-
cept. Thus, this subsection analyzes Orcutt and Winokur’s Monte Carlo simulations
of MFSEs for an AR(1) model with an intercept. Inclusion of an intercept is easily
incorporated into the Schmidt-Baillie approximation, albeit with a minor twist. De-
tails appear in Ericsson and Marquez (1989, Appendix B). Estimating the intercept
introduces additional uncertainty, so the resulting approximate MSFE is always larger
than that for equations with a known intercept, even if (as in Orcutt and Winokur’s
experiments) the intercept is zero. The framework in Table 2 identifies two critical
issues: imprecision, and the lack of existence of the MSFE for some of Orcutt and
Winokur’s experiments.

Design. Orcutt and Winokur’s Monte Carlo study evaluates numerous facets of
the AR(1) model estimated by OLS. As part of their study, they estimate by Monte
Carlo the exact MSFE for the AR(1) model with an intercept:

= T+ By +u u; ~ IN(0,0?) t=2,....,n+S, (30

where 7 is the intercept. Their design is a full factorial of:

T = 0,

3 = (0.0,0.3,0.6,0.9,1.0),
n = (10,20,40), and

s = (1,2,3,4) [S=4]

Equation (30) can be written as a two-equation version of (4), with the first
equation being the AR(1) process and the second equation defining the intercept 7:

v = ylt]
L Y2
= Ay +uy
[ B T U1t
= . _ ].
i 0 1 Yi—1 + 0 ’ (3 )

where yo; = 1, 0 = (7 8)’, and P = (1 0)’. The vectors and matrices necessary for
solving (16) follow directly, with the resulting forecast error being:

|
—

s—1 s s—1 ] Ai s i
én—‘,—s == Zﬁiun—&-s—i + (65 - ﬁ ) *Yn + 7 Z(ﬂz - ﬂ ) + (T - ?) ﬁ . (32)
i=0 =0

I
o

%
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The first two terms on the right-hand side of (32) are the same as in (19), the third
term arises from having a nonzero intercept 7, and the fourth term is the contribution
from estimating rather than knowing 7.

Evaluation. Orcutt and Winokur use 1000 replications per experiment and esti-
mate the MSFEs as in (27), that is, without any variance-reduction techniques. Given
the imprecision of naive Monte Carlo for even 10, 000 replications in Section 4.2, this
subsection derives an approximate lower bound on the uncertainty of Monte Carlo
estimates of the exact MSFE. This bound is valid for the AR(1) model both with and
without estimating an intercept, and it generalizes straightforwardly to the MSFE
from a general linear dynamic system by using a Wishart rather than a x? distribu-
tion.

In (12), and so in (19) and (32), the source of inherent uncertainty is independent
from that of coeflicient uncertainty. For instance, in a Monte Carlo analysis such as
Orcutt and Winokur’s, all the u; are simulated; thus, both the future errors w, s ;
and the ﬁ are simulated. The following derivation ignores the latter effect because
the first dominates, at least for large n. From independence, that results in a lower
bound on the associated variability from Monte Carlo simulation.

Ignoring coefficient uncertainty, the forecast errors €, are a linear combination
of the future shocks w45

s—1
é\n—i-s == (yk,n—i—s - gk,n—i—s) = Z(ﬁl) * Uk nt-s—i - (33)

=0

The ug 45— are jointly normal, so the linear combination of them on the right-hand

side is normal:
s—1

S (B) - ugpisi ~ N(0,AsyMSFE) . (34)

=0

The Monte Carlo estimator of the MSFE is the average of the squared forecast errors:

K ( o~ 2 2
Yk,n+s Yk n+s) X (K)
McMSFE = -2 : ~ AsyMSFE - , (35)
= K app K

where the approximation in distribution reflects the approximation in (33). Because
the first two moments of a x?(K) are K and 2K, and because K typically is quite
large, the following approximation is useful:

ExXMSFE ~ AsyMSFE @» K  amw

McMSFE McMSFE 2K 2
cMS ~  McMS X*(K) (1’[ D (36)
K
That is, the estimated MSFE is unbiased for the exact MSFE, with a percent standard
deviation approximately equal to 100 - (2/K)'/2. Unbiasedness is an exact result,
following directly from the estimated MSFE being a sample mean of the exact MSFE.

Monte Carlo simulation indicates that the approximation errors in (36) are small for
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the values of (3,n,s) in (e.g.) Hoque, Magnus, and Pesaran’s (1988) design and with
K >100. Orcutt and Winokur (1969) use K = 1000, so the 95% confidence interval
on a typical estimate in their study is approximately +9.0%. Purely numerical (non-
analytical) calculation of the Monte Carlo uncertainty is also feasible, as in Calzolari
and Sterbenz (1986).

As in Section 4.2, the approximate MSFE provides a useful benchmark for the
Monte Carlo estimates of the exact MSFE. Fuller and Hasza (1980) derive a formula
for the approximate MSFE directly from (32). However, in Orcutt and Winokur’s
experiments, 7 = 0 in fact, simplifying (32), ¥, and hence I' and D(s). In Orcutt
and Winokur’s case, the approximate MSFE is:

AppMSFE = o2 (ﬂ) + (n7t-o?)- |:(Sﬂ81)2 + (1 — ﬂs) ] , (37)

1— 3 1-3

where 3?2, is set to 0?/(1 — 3?), its unconditional expectation. The first term on the
right-hand side of (37) is the asymptotic MSFE and is the same as when the intercept
is known. The first term in the braces is the effect from estimating 3 (as in (21)); the
second term is from estimating 7 and is additional to what appears in (21). These
three terms arise from the first, second, and fourth terms on the right-hand side of
(32).

Equation (37) provides both the asymptotic and approximate MSFEs for their
Monte Carlo, with one exception. Equation (37) is not valid for § = 1, so § = 0.9999 is
used instead. That should (and does) offer a good approximation, given the difficulty
in finite samples of distinguishing between a unit root and a root close to (but less
than) unity.

Post-evaluation Analysis. Two issues are of concern: the accuracy of the
estimated exact MSFEs and the existence of the exact MSFEs themselves. The
graphs in Figure 5 plot the percent discrepancies of the asymptotic and approximate
MSFEs from Orcutt and Winokur’s estimated exact MSFEs. The overall pattern
parallels that in Figures 1-4: the approximate MSFE generally fares better than the
asymptotic MSFE, with the latter almost invariably underestimating the estimated
exact MSFE. Both the asymptotic and approximate MSFE fare better for larger
n and smaller 5. From (36), the standard error for their estimated exact MSFE is
about 4.5%, so the discrepancies between their estimates and the approximate MSFEs
appear to be due almost exclusively to simulation uncertainty. The accuracy of the
approximate MSFE here and for the AR(1) model in Sections 4.1-4.2 adds to Chong
and Hendry’s (1986) Monte Carlo evidence on the accuracy of the Baillie-Schmidt
approximation for a two-equation model.

Magnus and Pesaran (1989) show that the exact MSFE exists for the AR(1) model
with an estimated intercept if and only if the forecast horizon s is not greater than
(n — 3)/2. Interestingly, the exact MSFE does not exist for Orcutt and Winokur’s
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100[1-(AsyMSFE/EXMSFE)] 100[1-(AppMSFE/EXMSFE)]

n=10

n=20

n=40

Figure 5: Percent deviations of the asymptotic and approximate MSFEs from Monte
Carlo estimates of the exact MSFE in Orcutt and Winokur (1969).
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experiments with (n = 10, s = 4), yet the approximate MSFE still does quite well at
approximating their estimates. This surprising result can be interpreted as follows.
For values of s for which the exact MSFE does not exist, the approximate MSFE still
can be calculated, and it may provide accurate confidence intervals for the forecasts.
However, because there is a significant probability of B being greater than unity and
thus causing the forecast error to explode for large s, the tails of the exact density
of the forecast error are too thick for its variance to exist. Sargan (1982) examines
a similar situation in which an estimator is well-behaved asymptotically but has no
moments in finite samples. In light of his paper, the approximation in (16) may be
interpreted as analogous to the Nagar approximation for the moments of an estimator.
Conversely, the lack of existence of the exact MSFE (when that occurs) must be due
to terms smaller than O,(n~!) in the squared forecast error (i.e., o,(n~!) and probably
O,(n™3/2)) because the approximate MSFE accounts for all terms O,(n~!) and larger,
and the approximate MSFE exists for all s.

Remarks. Before turning to the empirical forecasts in Section 5, five issues
are worth brief mention: sample size, exogenous variables, model linearity, forecast
horizons, and the treatment of v,,.

First, the smallest sample size in the simulations above (n = 10) is very small
in the context of empirical work. However, it may be a reasonable number to use
for comparison with empirical work, given that only one or two coefficients are being
estimated. The sample size relative to the number of coefficients is a plausible measure
in this context; cf. Sargan (1975). Since much empirical work involves fewer than ten
observations per coefficient estimated, n = 10 may be large rather than small for
practical purposes.

Second, forecasts of endogenous variables often are based on forecasts (rather
than known values) of exogenous variables, adding another source of uncertainty.
The algebra of Section 3 readily addresses this because it analyzes a complete sys-
tem: exogenous variables can be included in the system in the same manner as
the endogenous variables, but the former are not simultaneously determined with
the endogenous variables nor are they Granger-caused by the endogenous variables.
However, for even relatively small systems, the approximate MSFE in (16) can be-
come awkward to compute because of the large matrices arising from vectorizing and
from Kronecker products. Calzolari (1987) provides an ingenious analytical technique
that can dramatically reduce the computational burden, making calculation of the
approximate MSFE feasible for medium- to large-scale models. One alternative is to
simulate stochastic exogenous variables in the calculation of forecasts properties, as
in Haitovsky and Wallace (1972) and Fair (1980).

Third, the system in Section 3 is linear. Analytic approximations to confidence in-
tervals could be constructed for nonlinear equations (or systems) as well, but Mariano
and Brown (1983) show that simulation may be preferable, not only for the MSFE
but for the forecast itself. In the context of (12), both the u, s ; and the A would
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be replicated a number of times by Monte Carlo simulation according to their esti-
mated distributions, and Monte Carlo estimates of the forecast mean and the MSFE
would be constructed from the resulting pseudo-forecasts. Following this approach,
Bianchi, Calzolari, and Brillet (1987) estimate MSFEs from a multi-sectoral model
of the French economy, and Section 5 (below) and Marquez and Ericsson (1993) es-
timate mean forecasts and MSFEs from various models of the U.S. trade balance.
Marquez (1991) applies this simulation approach to estimate confidence intervals for
the response of the U.S. trade balance to alternative exchange rate realizations. That
analysis examines the sensitivity of the confidence intervals to the two types of un-
certainty addressed here. His application also demonstrates that the uncertainty of
coefficient estimates can have implications for economic questions other than just
those dealing with forecasts, e.g., paths of dynamic multipliers.

Fourth, the maximum of the MSFE over all forecast horizons may occur at a
relatively short forecast horizon. Estimated autoregressive coefficients in dynamic
econometric models range from the very small (e.g., for equations in first differences)
to those close to unity (e.g., for equations in levels). Even for the corresponding (and
wide) range of values for 3, the maximum of the approximate MSFE is often between
one and twelve periods, precisely the range over which economists are often interested
in forecasting most accurately. That is also the range for which the asymptotic MSFE
appears the poorest approximation to the approximate and exact MSFE. In fact, the
asymptotic MSFE generally underestimates the approximate (and exact) MSFE for
finite horizons, and the former need not even be the main component of the latter.

Fifth, in actual forecasting, y, is given, in which case the conditional MSFE
seems more appropriate than the unconditional MSFE. At another level, y,, is often
subject to data revisions, so it may be invalid to treat its (latent) value as known; see
Trivellato and Rettore (1986), Gallo (1991, 1996), and Clements and Hendry (1998a).
Uncertainty from data revision goes beyond the current analysis, albeit while falling
within the framework of Section 2.

5 Biases in Forecasts from Nonlinear Models

This section analyzes the forecasts of the U.S. trade balance from four structural and
two time-series models, denoted Models M1-M6. All but one of these models is non-
linear, so the biases associated with deterministic forecasts from nonlinear models are
examined. All six models have statistically significant biases for most forecast periods,
but only three models have economically significant biases, which are primarily for
s-step ahead forecasts at longer horizons. Imprecision in the Monte Carlo simulation
of the biases is a concern, as it was in simulating the MSFE for ML in Section 4.2.
In both instances, variance-reduction techniques reduce that imprecision. Here, an-
tithetic variates are used because the asymptotic properties for constructing control
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variates are not readily available, although Sterbenz and Calzolari (1990) give one
potential approach. The lack of analytical results places an even greater premium on
efficient Monte Carlo analysis. The last horizontal block in Table 2 summarizes the
forecasts’ design, evaluation, and post-evaluation analysis. Throughout this section,
the forecast bias is assumed to exist, possibly requiring conditions on the estimation
sample size relative to the forecast horizon inter alia, as in the linear autoregressive
model; see Magnus and Pesaran (1991).

5.1 Design

This subsection describes the models to be analyzed and the corresponding forecasts
of interest. The first structural model is that developed in Helkie and Hooper (1988);
the remaining three structural models are treated as variations on it. The econo-
metric model of U.S. trade in Helkie and Hooper (1988) (Model M1) is a set of four
equations explaining the logarithms of import and export prices and volumes. The
Helkie-Hooper model makes a variety of assumptions in those equations regarding
exogeneity, dynamics, estimation technique, and level of trade disaggregation, and
these assumptions are modified in Models M2-M4. Model M2 allows for a non-
diagonal error covariance matrix and so uses Full Information Maximum Likelihood
(FIML) to estimate the coefficients. Model M3 modifies assumptions on rationing
and dynamics. Model M4, from Marquez (1989), disaggregates to bilateral trade
flows. Model M5 is a fourth-order, four-variable VAR for the logarithms of export
and import volumes and price indices; and Model M6 is an AR(1) model of the level
of the nominal trade balance. Details of the models appear in Marquez and Ericsson
(1993). Although the choice of models is not exhaustive, the Helkie-Hooper model is
widely used in the literature, and VARs and univariate time-series models are often
taken as non-structural alternatives.

For the current purposes, the nominal trade balance is the variable of interest. It
is calculated as the difference between nominal export and import values, implying
that models M1-M5 are nonlinear for the trade balance, both through the loglinear
specification of the behavioral equations and from multiplying prices and volumes to
obtain nominal trade flows.

5.2 Evaluation

This subsection describes deterministic forecasts, the nature of the bias from these
forecasts, naive Monte Carlo procedures for estimating that bias, and the variance-
reduction technique “antithetic variates” (AVs), which can reduce the imprecision of
the estimated bias.

Deterministic forecasts are a common method in forecasting and were (implicitly)
the forecasts analyzed in Sections 3 and 4. Formally, deterministic forecasts solve (2)

32



numerically, setting 6 equal to its in-sample estimated value 9 and Unts equal to its
expected value (usually zero). The associated one-step ahead forecasts 6,,., are:

6n+s = P/g(ynJrsflenJrsv/év 0) 9 §= 17 c 75 . (38)

The s-step ahead forecasts use the same formula, but with 6, ,, 1 replacing v, s 1
(s =2,...,95). Equation (38) is computationally simple to implement for both one-
step and s-step ahead forecasts, but, by ignoring 0 and Uy s as sources of randomness,
it generates biased forecasts for nonlinear ¢(-). Bias arises because the expectation
of a nonlinear function is not usually equal to the function of the expectations. That
is, the conditional expectation of Py, is:

o~

8(P,g(§/\n+871a Znt-s9 9, unJrSD N
6n+s = P/g(6n+s—lu Zn4-s5 5(0)7 g(un—i—s)) 9 s = 17 R S 9 (39)

Mn—i—s

RNl

where 4, = 6, = yn, £(+) is the expectations operator, and the expectations in (39)
are assumed to exist. For Models M1-M5, g(-) is the vector of equations for import
and export prices and volumes, and additionally ¢(-) includes the identity defining the
nominal trade balance. The selection matrix P extracts the nominal trade balance
from ¢(-). Even if the coefficients are known, bias exists because the disturbances
enter g(-) nonlinearly.!’ See Nagar (1969), Howrey and Kelejian (1969), and Calzolari
(1979) inter alia for early studies that recognize systematic biases in deterministic
forecasts arising from model nonlinearities. More recent studies include Mariano and
Brown (1983), Wallis (1984), Fair (1984, 1988), Fisher and Salmon (1986), and Brown
and Mariano (1989). Wallis (1995) provides a lucid overview of deterministic forecast
bias and other issues arising with large-scale macroeconometric models.

The bias of the deterministic forecast is p, , — 6p4s. Almost by assumption,
[ ys is not known analytically; and obtaining its value numerically is a complicated
process involving multiple integration, i.e., the integral (3), with ¢(-) in (2) being
the whole trade model. The difficulties in numerically evaluating (3) stem from both
the number of random variables and the absence of a closed-form solution.'! As
an alternative to numerical integration, u,, ., is estimated by Monte Carlo, using
the variance-reduction technique known as antithetic variates. To discuss antithetic
variates, a brief description of naive Monte Carlo simulation for the trade models is

helpful.

10T illustrate, suppose y is normally distributed N(¢,0?) and consider the bias in the deter-
ministic forecast of Y, where Y is the exponential of y [Y = exp(y)]. The deterministic forecast is
exp(E(y)) = exp(¢p), but the actual expectation of Y is E(Y) = E(exp(y)) = exp(¢ + %02). Thus,
the nonlinearity bias is exp(¢) - [exp(202) — 1] and depends on both ¢ and o.

UNote that 6 is independent of u, a feature that would simplify solving (3) directly by numerical
integration. Even so, this task remains a difficult one computationally, given the number of integrals
involved. For example, model M4 has 127 coefficients and 21 (times 12 forecast periods) disturbances
for a total of 379 random variables to be integrated out.
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Monte Carlo analysis solves a stochastic analogue to the unknown analytical for-
mula for p,,, in (3), simulating the effects of inherent and coefficient uncertainty,
which are analytically derivable for linear models. If the bias were derived analyti-
cally, assumptions would be made about the distributional properties of the future
disturbances {u, ;, i = 1,...,5} and of the coefficient estimates 6, as in (4) and (6).
Similar assumptions are made when solving for the distributional properties of fore-
casts by stochastic simulation. Values of {5, Upis, S=1,...,S} are randomly drawn
according to those distributional assumptions, with each set of values generating a
path of S forecasts. An estimate of the bias can then be constructed by subtracting
Onis from the average across simulations of the sth forecast.

A natural set of distributional assumptions for {@, Upis, S = 1,...,S} is that
0 takes its asymptotic distribution in finite samples and that the future distur-
bances {u,.s, s = 1,...,S} have the same distribution as their in-sample equiva-
lents {u;, t = 1,...,n}. Thus, for the kth of K total simulations, the drawing of 0
(denoted 0y) is generated as:

where W is the ¢ X ¢ asymptotic covariance matrix of 5, and W is the empirical estimate
of W. Likewise, the kth drawing of w,, (denoted wuy ) is generated as:

Upnis ~ IN(0,Q), s=1,...,5, (41)

where () is the m x m covariance matrix of u; and Q is its empirical estimate. That
is, sets of random numbers are drawn for {0y; uxnys, s = 1,...,S}, which satisfy
the properties in (40) and (41). In practice, mean-zero random numbers 6, — 0 are
generated from the distribution N (0, ¥), with 0 added to them afterwards to obtain
0y in (40). This nuance is important for the generation of antithetic variates below.

At the kth replication, S forecasts are solved sequentially via (2) by combining 6y,
from (40), {uknis, s =1,...,S} from (41), the initial condition yx, = y,, and the
paths of the exogenous variables:

NXk,n—i—s == Plg(yk,n—l—s—lu Zn+s, 0k7 uk,n—i—s) ’ s = 17 sy S 9 (42)

where NXy 15 is the (kth) simulated forecast of the actual trade balance NX,, ;.
The full stochastic simulation produces a random sample of K forecasts, from which

the mean forecast (u,,,,) and variance of the simulated forecasts (o7, ) are estimated
by:

K K
Z NXk,nJrS Z(NXk,nJrs - ﬁn+s)2
ys = HT: 5721+5 = =l , s=1,...,5. (43)

K

These Monte Carlo estimators are denoted by a tilde superscript ~ in order to distin-
guish them from empirical estimators such as 6. Paralleling analytical formulae for
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linear models, both approximate and asymptotic Monte Carlo calculations are pos-
sible. The matrix generalizations of fi, ., and 52 +s follow immediately; see Marquez
and Ericsson (1993). For the current simulations, K = 1000 and the forecast period
is 1985Q1 to 1987Q4 (S = 12).

By exploiting the symmetry of the distribution of ({ug s}, 0k), antithetic variates
can provide a much more precise estimate of p, . than that offered by the naive
Monte Carlo estimator fi,, .. To start, note that 0; = 0 + [0, — 6], and so the values
({ttpis}, 0x) and ({—tg pys }, 0— [0, —0]) are equally likely by symmetry of the normal
distribution. Because much of the computational expense for a given replication k
arises from generating the random numbers ({uy s}, 0x), calculating simulated trade
balances from both ({tnts},0k) and ({—ug s}, 0 — [0 — 0]) rather than from just
({wkn+s},0k) requires little additional expense. Obtaining the associated antithetic-
variate estimate of the bias involves three steps.

1. Generate a random sample of forecasts with drawings from (40)—(41), as in (42).

2. Generate a random sample of forecasts for the trade balance using the negative

of the (mean-zero) random numbers ({uy s}, 0k — 0) drawn for Step 1. These
forecasts for the kth replication are:

NXL,n—&—s = P/g(ylt,n—s—s—h Zn4ss /é - [0k - /9]7 _uk,TH-S) ) S = 17 cee 7S ) (44)

where the dagger ' indicates switching the signs of the random numbers.

3. Construct the pooled Monte Carlo estimates of the forecasts by averaging the
antithetic variates from Steps 1 and 2:

K

Z(NXk,n+5 + NXITc,nJrs) ,l] + /]T
fipps = = T = Pl =18, (45)

Thus, for K sets of random numbers, 2K simulated values of the trade balance
are generated and are then averaged to produce a forecast of the trade balance.

To illustrate how gains from antithetic variates arise, consider the relationship
between the variance of the antithetic-variate estimator fi,,, ; and the variance of the
standard Monte Carlo estimator /i, ,:

(1+ Pn+s) : O-%H-S < 0'12@+s

2K - K

Var(:anJrs) = = Var(/]nJrs)? (46)

where p, , , is the correlation coefficient between 1, and /]L +s- The inequality in (46)
is strict, provided that p,,, , is less than unity. This correlation is also the correlation
between NXj 45 and NX Ln ter
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In principle, even greater efficiency gains can be obtained by choosing unequal
(normalized) weights on NXy, 4+, and NX Ln +s When calculating f,,, ,, rather than the
equal weights imposed in (45). Davidson and MacKinnon (1992) suggest calculating
the weights by the following regression:

NXpnis = Ko+ mNX] o +C k=1 K, (47)

where the coefficient on NX L,n +s 18 K1, which should be approximately —1 from (45);
ko/2 is an estimate of y,,  ; and (; is the remaining simulation error. Davidson and
MacKinnon (1992) also propose a similar regression for estimating the optimal weight
on a control variate when constructing a pooled estimator.

Equation (47) has a disadvantage. It treats NXy ;s and NX ,Tm s asymmetrically,
normalizing on the first and conditioning on the second, even though nothing favors
normalizing on NXy 4, rather than NX ,Tm +s- Reversing the roles of NXy, ., and
NX Ln +s in (47) does not solve this anomaly. However, one regression does treat
NXjpnts and NX Ln +, symmetrically, namely:

NXk,TH-S + NXL,n—i—s

5 = X+ M(NXpprs — NXL, )+ &, k=1, K, (48
where \; represents the deviation between the implied weight on NX ,tn 4 in the
regression-based antithetic variate and the imposed weight of % in the standard an-
tithetic variate (45); Ao is an estimate of p,_,; and £, is the remaining simulation
error. In effect, (48) starts with the standard antithetic variate formula as its de-
pendent variable and then calculates the extent to which the equal weighting on
(NXk,n+stXL,n+s) might deviate from (3, 3), while imposing that the weights sum
to unity. By contrast, neither (47) nor the corresponding reverse regression ensure
that the sum of the weights on NX},.s and NX Ln 15 1s fixed.

To test whether or not the deterministic forecast is biased, compute the t-ratio

Y, for the hypothesis p,, ., = 6y,

Vs = Fings = Onts K2 - (fps = buss) (49)
NAC () . (NXMH + NXLW>
var ’

2

where the variance of the average (NXj ,qs+NX ,Tm +s)/2 is estimated as was the
variance of NXj,+s from 5., in (43), but with (NXk7n+S+NXL7n+S)/2 and [,
replacing NXy 4, and /i, in that formula. Selection of a large enough number
of replications K will make any nonzero bias statistically significant, so it is also of
interest to consider the numerical importance of the estimated bias, fi,,,, — 6ns.
For discussions of antithetic variates, see Hammersley and Handscomb (1964) and
Hendry (1984). For applications of antithetic variates to forecasts from econometric
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models, see Calzolari (1979), Fisher and Salmon (1986), Mariano and Brown (1989),
and Gallo and Don (1991), noting that they all treat the coefficient estimates as
though they were known with certainty, whereas this section relaxes that assumption.

5.3 Post-evaluation Analysis: Biases

Table 3 reports the estimated bias fi,,, — 0, and the estimated standard error of the
estimated bias [var(f,,.,)]"/? for both one-step and s-step ahead forecasts, all using
the approximate formula. Their ratios are the corresponding t-ratios. Estimated
biases, standard errors, and t-ratios using the asymptotic formula appear in Marquez
and Ericsson (1990) and are qualitatively the same, with a few minor exceptions noted
below.

Some deterministic forecasts from all models have statistically significant nonlin-
earity biases, summarized as follows. First, the estimated biases from all models are
usually highly statistically significant, although not as often or as much for M3 (one-
step ahead) or M1 (s-step ahead). Overall, 90% of the one-step ahead forecasts have
t-ratios for biases that are larger than 3 in absolute value (80% for s-step ahead fore-
casts), and half have t-ratios greater than 10 (one-third for s-step ahead forecasts).
Second, the size of the bias changes with the forecast period, even switching sign in
some cases. Third, for Helkie and Hooper’s model, the choice of estimation method
hardly affects either the magnitude or the profile of the bias.

Despite their statistical significance, the nonlinearity biases need not be economi-
cally significant. For models M1-M3, the deterministic and stochastic forecasts differ
by only $2 billion at most, although often statistically significantly so. By contrast,
models M4-M6 have much larger and economically potentially important biases, e.g.,
of approximately $10 billion at twelve periods ahead. The sometime difference be-
tween economically significant and statistically significant biases stems from the con-
siderable accuracy with which antithetic variates estimate the mean of the forecast for
the trade balance, making numerically slight departures from this mean statistically
significant.

The numerically large biases for s-step ahead forecasts from models M4, M5, and
M6 appear to arise for distinctly different reasons, e.g., dynamics and the value of
y, for M5 and M6, and disaggregation for M4. Model M6 has (analytically) zero
bias using the asymptotic formula (no uncertainty from estimation) but substantial
bias with the approximate formula. That bias arises from the nonlinear way in which
dynamics affects multi-step ahead forecasts, in combination with the forecasts being
conditional on NX . Specifically, the s-step ahead forecast error for model M6 is (19),
where y = NX and the intercept is ignored for expositional simplicity. The errors are
assumed normal, so the linear combination of them (the first term on the right-hand
side of (19)) is also normal. The asymptotic formula sets 3 = B, ignoring the uncer-
tainty from estimation (the second term on the right-hand side of (19)) and making
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Table 3. Nonlinearity Biases in Deterministic Forecasts of the U.S. Trade Balance
Approximate Formula (billion US$)

Forecast Period

Model 1985 1986 1987

QL Q2 Q3 Q4 QL Q2 Q3 Q4 QL Q2 Q3 W4

Historical Trade Balance
—-99.5 -119.8 —124.8 —144.5 —-141.7-135.4 -146.9 —-154.1 —159.5 —158.2 —158.7 —164.8

One-step Ahead Forecasts

Estimated Bias

M1 -02 02 -02 -03 -04 0.5 06 038 -1.0 -1.0 -12 -1.3
M2 -03 02 -03 04 -06 -05 -06 0.7 -08 -1.0 -11 -14
M3 -0.1 01 -00 0.1 -0.1 0.0 -0.0 -0.0 -0.1 0.1 0.1 -0.1
M4 33 -1.1 -11 49 -0.7 5.0 25 1.1 0.1 79 97 17
M5 -0.2 -02 -02 -02 -03 -02 -02 -04 04 04 04 04
M6 0 0 0 0 0 0 0 0 0 0 0 0

Estimated Standard Error of the Bias
M1 0.040 0.043 0.047 0.053  0.057 0.062 0.066 0.072 0.076 0.081 0.090 0.100
M2 0.036 0.039 0.044 0.049 0.053 0.053 0.054 0.060 0.067 0.075 0.088 0.101
M3 0.016 0.016 0.016 0.017 0.018 0.018 0.021 0.020 0.021 0.022 0.023 0.026
M4 0.039 0.045 0.047 0.050  0.057 0.062 0.062 0.061 0.069 0.078 0.082 0.094
M5 0.019 0.019 0.020 0.021 0.023 0.022 0.022 0.030 0.037 0.032 0.034 0.038
M6 0 0 0 0 0 0 0 0 0 0 0 0

s-step Ahead Forecasts

Estimated Bias

M1 -0.2 00 -01 -0.0 0.1 00 01 -0.1 -04 0.7 -0.8 -1.0
M2 -03 -02 -01 -03 -03 -03 01 -01 -01 -04 08 -1.3
M3 -01 -02 -02 -03 -04 06 -0.7 -0.8 -0 08 0.7 -0.7
M4 3.3 -1.2 -1.0 45 -0.0 44 23 038 07 72 98 717
M5 -02 07 06 08 -1.6 25 31 3.7 4.5 50 56 6.8
M6 0 01 04 -08 -1.3 21 31 43 -5.8 76 9.8 -124

Estimated Standard Error of the Bias
M1 0.040 0.064 0.084 0.099 0.104 0.111 0.118 0.123 0.129 0.137 0.148 0.150
M2 0.036 0.057 0.070 0.082 0.090 0.096 0.102 0.114 0.120 0.128 0.136 0.146
M3 0.016 0.041 0.058 0.076 0.089 0.096 0.106 0.118 0.135 0.149 0.164 0.178
M4 0.039 0.066 0.083 0.100 0.115 0.136 0.145 0.155 0.171 0.202 0.212 0.240
M5 0.019 0.120 0.235 0.341 0.446 0.546 0.670 0.812 0.952 1.078 1.218 1.349
M6 0 0.011 0.027 0.051 0.082 0.124 0.177 0.243 0.323 0.418 0.531 0.665

Notes: See Table 4.
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the corresponding forecast unbiased. In the approximate formula, ﬁ is assumed nor-
mally distributed, unbiased for 5. Under that assumption, ﬂ is generally biased for
(3% (s > 1). In Table 3, the nonzero nonlinearity biases for M6 reflect that nonlinearity
in 3, multiplied by a given y,,. Model M5 involves the same issues at a multivariate
level, and also includes the nonlinear transformations from logs to levels and from
levels to products of levels. Although dynamics may contribute to the nonlinearity
biases for M4, other explanations could be more important. Model M4 is much more
disaggregated (by country) than the other models and, if the relative fluctuations of
the disaggregated variables are larger than of the aggregate, nonlinearity biases could
well be more pronounced for the disaggregated model (M4).

Overall, the sensitivity of the nonlinearity bias to the forecast period, estimation
method, level of aggregation, and dynamic specification suggests that no simple cor-
rection exists for the bias, other than simulation. When a substantive nonlinearity
bias is present, deterministic forecasts will be at an inherent disadvantage in terms of
forecasting performance relative to (unbiased) stochastic forecasts. All of the mod-
els examined have statistically significant nonlinearity biases, of which three have
numerically substantive biases. More generally, since nonlinearity is a feature com-
mon to most macro-econometric models, deterministic forecasts from them should be
interpreted with caution, at least until the magnitude of the bias is assessed.

For the structural trade models M1-M4, extreme values for forecasts may arise be-
cause the simulated structural coefficients are assumed normally distributed whereas
the forecasts are obtained from the reduced form, which involves inverting a function
of those normally distributed coefficient simulations; cf. McCarthy (1972). While
important in principle, such extreme values do not appear to be a problem for the
models involved. Marquez and Ericsson (1993, Tables 14A—6 and 14A-7) calculate
skewness, excess kurtosis, and the Jarque-Bera statistic for all the model’s forecast
simulations and find little evidence of nonnormality, contradicting a basic implication
of the extreme values hypothesis. Histograms and estimated densities for all the mod-
els’ forecasts (available from the authors) provide further evidence that wild values
are not a particular problem for these forecasts.

5.4 Post-evaluation Analysis: Efficiency Gains

This subsection calculates the efficiency gain from the use of antithetic variates in
estimating the nonlinearity bias of the deterministic forecasts. The efficiency gain is
commonly measured as var(fi, ,)/var(fi,, ), the ratio of the estimated variances of
the naive and antithetic-variate estimates of the bias. As that ratio, the efficiency
gain measures the reduction in variance obtained by antithetic variates. Conversely,
the efficiency gain represents the x-fold number of replications that would be required
to obtain a naive mean forecast with the same variance as that of the mean forecast
using antithetic variates.
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Table 4 lists the estimated efficiency gains for one-step and s-step ahead forecasts
of all the models, both for the asymptotic formula and for the approximate formulae.
For models M1-M4, the efficiency gains range from around 20 to over 2000. In
those instances with very high efficiency gains, a single replication with antithetic
variates would have produced a mean forecast with a smaller variance than that of
the naive mean forecast obtained from the 1000 replications in the current simulation
study. Conversely, some of the mean forecasts obtained with antithetic variates have
a smaller variance than that of a naive mean forecast using two million replications.

The efficiency gains for the VAR (M5) typically are between 100 and 1000, but
drop to as low as 4 for s-step ahead forecasts with the approximate formula. For model
M6, the estimated gains for s-step ahead forecasts (s > 1) with the approximate
formula range from 17 to almost 2000. For this model, efficiency gains are infinite
for all s-step ahead forecasts with the asymptotic formula and for all one-step ahead
forecasts with either formula because these forecasts are linear in the terms simulated.
This has the following explanation.

In linear models, the one-step ahead forecast is linear in the parameters (and so
in 0 — @) and is not a function of the disturbances, so a single replication provides a
completely accurate estimate of the expected outcome, i.e., of the expectation p,,
in (3). Specifically, suppose that the model is y; = 20 + u; with a symmetrically
distributed estimator of @ denoted @ and that the one-step ahead forecast of 1
is 2], +1§. Then 6 + [0 — 0] and 0 — [0, — 6] are equally likely to occur. The two
resulting forecasts are z], +1(§ + [0, — 0]) and 2, +1(§ — [0 — 0]), whose average is
21, +1§' This is the average for any and all 6, — 0 drawn, so the expectation in (3)
is 2, +1§' Here, the gains from antithetic variates are infinite, since no replications
were actually necessary to find the exact forecast. See Hendry and Trivedi (1972,
p. 120, footnote 4), who consider a similar situation of the bias of OLS with fixed
regressors and who use antithetic variates for analyzing the standard deviation and
bias of one-step ahead forecasts.

With s-step ahead forecasts from possibly nonlinear dynamic models, antithetic
variates reduce or eliminate the Monte Carlo variation from the weighted sum of
future disturbances, and reduce the variation from coefficient uncertainty (which is
nonlinear in the estimated coefficients). Equation (1) partitions these two components
clearly. Because (1) arises from a linear model, antithetic variates would eliminate
the variation from the weighted sum of future shocks.

The incremental improvements from the regression-based antithetic variates in
(48) are marginal. Out of 251 regressions, the absolute value of the estimated A;
exceeds 0.01 in only 5 instances and never exceeds 0.02. Only 14 instances have
incremental efficiency gains of more than 1%, and none have incremental gains ex-
ceeding 3%. E.g., for a 1000-fold efficiency gain reported in Table 4, regression-based
antithetic variates would at best increase that to 1030-fold. These minor incremental
gains are consistent with Davidson and MacKinnon (1992, pp. 297-298).
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Table 4.
Efficiency Gains from Antithetic Variates
In Estimating the Nonlinearity Bias of Deterministic Forecasts

Model Forecast Period
Horizon: Formula 1985 1986 1987
QT Q2 Q3 Q4 QI Q2 Q3 Q4 QI Q2 Q3 Q4
M1
1-step: Asymptotic 1783 1821 2049 1890 1905 1886 1771 1875 1819 1827 1828 1716
Approximate 109 92 83 72 64 53 53 50 52 54 50 46
s-step: Asymptotic 1783 1526 1379 1268 1469 1286 1234 1392 1340 1235 1290 1319
Approximate 109 59 42 38 36 31 31 34 39 43 44 51
M2
1-step: Asymptotic 1833 1938 2002 1880 1627 1672 1561 1835 1801 1769 1791 1606
Approximate 127 112 86 81 74 64 64 58 55 b2 4T 46
s-step: Asymptotic 1833 1538 1225 1076 1078 914 770 790 759 818 842 772
Approximate 127 70 51 49 45 36 36 33 39 42 48 53
M3
1-step: Asymptotic 1546 1564 1603 1547 1417 1398 1298 1447 1508 1477 1549 1353
Approximate 724 689 697 660 589 565 490 545 551 527 544 465
s-step: Asymptotic 1546 1238 930 815 807 722 640 702 677 686 676 658
Approximate 724 169 103 75 58 47 42 37 37 32 31 29
M4
1-step: Asymptotic 651 515 555 574 501 485 531 473 577 580 505 555
Approximate 217 183 179 196 166 125 133 129 145 125 124 108
s-step: Asymptotic 651 484 444 391 402 360 350 361 403 382 356 331
Approximate 217 91 66 58 49 37 34 30 32 27 26 23
M5
1-step: Asymptotic 880 715 870 802 889 939 774 906 889 860 893 830
Approximate 631 592 557 513 549 519 539 413 332 414 395 347
s-step: Asymptotic 880 341 251 208 138 115 95 78 67 58 51 48
Approximate 631 39 15 10 8 8 8 7 6 5 ) 4
M6
1-step: Asymptotic 0O 00 00 00 0O 00 00 00 0O 00 00 0
Approximate 0O 00 00 X 0O 00 00 X0 00 00 00 00
s-step: Asymptotic 0O 00 00 00 0O 00 00 00 0O 00 00 0
Approximate oo 1750 460 210 125 82 56 41 31 25 20 17
Notes:
Model M1: Helkie and Hooper (1988).
Model M2: Model M1 by FIML.
Model M3: Model M1 by FIML, with partial adjustment, without non-price rationing.
Model M4: Bilateral trade model by FIML.
Model M5: VAR(4) of import and export volumes and price indices.
Model M6: AR(1) of the nominal trade balance.
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Mean forecasts using antithetic variates often result in markedly improved es-
timates of the nonlinearity bias from deterministic forecasts, requiring virtually no
additional programming and at most twice the computational time. Indeed, little jus-
tification remains for using naive Monte Carlo rather than antithetic variates, in so
far as estimating the nonlinearity bias is concerned. Antithetic variates as a technique
is applicable to calculating the deterministic bias arising either from nonzero future
disturbances only (“asymptotic”) or from nonzero future disturbances and coefficient
uncertainty (“approximate”). The simulation above appears to be the first analyzing
the bias from both sources by means of antithetic variates.

The precise gain from antithetic variates depends upon the forecast period, the
nonlinearity of the process, and whether the asymptotic or approximate formula is
used. However, the large gains in Table 4 are in line with other authors’ results;
cf. Hammersley and Handscomb (1964, p. 65), Calzolari (1979) and Fisher and Salmon
(1986). Interestingly, efficiency gains for the nonlinearity bias of deterministic fore-
casts can be substantial for purely dynamic processes: that contrasts with the zero
incremental gains from antithetic variates when measuring biases in the estimation of
parameters from linear autoregressive processes. However, antithetic variates prob-
ably would obtain only small gains for estimates of forecast variances because those
variances are nearly invariant to the sign of the random numbers drawn for (40)
and (41). For one-step ahead forecasts from a linear model, the forecast variance is
invariant to the sign, in which case the correlation p,  ; is unity and no gains accrue.

6 Conclusions

This paper advances a tripartite framework of design, evaluation, and post-evaluation
analysis for generating and interpreting economic forecasts. These concepts are not
new in themselves, and they have been previously discussed in a narrower context for
Monte Carlo analysis. The current paper generalizes these concepts and applies them
to forecasting, re-interpreting the various aspects of forecasting as parts of a whole
instead of as a collection of loosely related tasks.

This framework is illustrated by the Schmidt-Baillie formula for the MSFE of a
VAR, with specific applications to the AR(1) model as studied by Orcutt and Winokur
(1969), Hoque, Magnus, and Pesaran (1988), and ourselves. This framework is also
applied to forecasts from empirical models of U.S. external trade. Both classes of
models are characterized by properties of economic interest: the possible nonmono-
tonicity and nonexistence of the MSFE, and the nonlinearity bias of deterministic
forecasts. Each property has been studied before, but in isolation from other aspects
of the forecasting process. The framework advanced herein reveals how a clearer un-
derstanding of each property results from integrating all the activities generating the
respective forecasts.
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