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1 Introduction

Following the large body of literature on testing a null hypothesis that a uni-
variate time series is integrated of order one against the alternative hypothesis
that it is integrated of order zero, a number of unit root tests have recently
been developed for use with panel data (Quah(1994); Levin and Lin(1993);
Im, Pesaran, and Shin(1997); and Maddala and Wu (1996)). These tests are
being used with increasing frequency in applied work.! While results have
been obtained concerning test optimally in the univariate context (see Elliot,
Stock and Rothenberg (1996) and the references therein), there are as of yet
no similar results for tests applied to cross sections of time series. This is
of some importance because the tests that have been proposed for use with
panels differ markedly in form, and there is ample room for confusion without
some guidance as to the contexts in which a test will or will not be optimal.

In this paper the class of admissable tests for unit roots in multivariate
data sets of autoregressive, Gaussian time series will be partially character-
ized. Using this characterization, several recently suggested tests are shown
to be inadmissable. Since the sufficient statistic for this testing problem is
multidimensional, there is no uniformly most powerful test, however, in light
of the inadmissability result, a new class of tests is proposed that appear to do
well relative to existing tests. The class is parameterized in a way that allows
choice of different directional deviations from the null hypothesis over which
power is to be maximized, giving added flexibility to researchers.

Given a set of realizations ¥ = (..., Yns,...) from N stochastic processes,
indexed by n = 1... N, observed over time periods ¢t = 0...7', existing tests
assume that each individual process has an autoregressive form

AYpt = OpYni—1 + B;L (AZy — 0nZe 1) + B 2nt + €nt (1)

where AYns = Ynt — Ynt—1, Z¢ 15 a set of nonstochastic regressors,

Znt = [ AYpt—1 oo DYpp }/7

€nt 15 1.1.d. and has mean zero and variance 02, and the first P+ 1 observations
are treated as fixed. The paper will employ generalizations of this model. In
contrast to most of the literature, it will not be assumed that the e,; are
necessarily independent across groups, however it will be assumed in line with

!This work includes Bernard and Jones (1996); Canzoneri, Cumby and Diba(1999); Evans
and Karras (1996); Frankel and Rose (1995); O’Connell (1998); Oh (1996); Papell (1997);
Wei and Parsley (1995); and Wu (1996). These tests have also been used in constructing
tests of cointegration in panel data (see Pedroni (1997)).



existing literature that the first P+ 1 observation are uninformative about the
parameters of the model.?

A panel unit root test will be defined as a test of the joint hypothesis #,, = 0
for n =1...N. Assuming that one is uninterested in explosive cases, there is
a multivariate set of one-sided alternatives: 6, < 0 for all n and 6,, < 0 for
at least one n. There are two aspects that make the construction of optimal
tests more complicated than in either the case of a univariate unit root test or
a multivariate one-sided test with I(0) data: (1) there is a multidimensional
sufficient statistic for each group even as T' grows large, (2) we wish to combine
sufficient statistics across groups to make a joint inference concerning the #,,.
It is the combination of these two aspects that lead to the inadmissability
of several of the tests proposed in the existing literature. In more standard
problems either there would be no problem of joint inference or each group’s
parameter of interest would have a one-dimensional sufficient statistic (at least
asymptotically). The analysis requires added statistical theory that has not
been used in the univariate case, and leads to a somewhat richer set of results.
For instance, there will be an asymptotically uniformly most powerful test for
certain directional deviations from the null, something that is not true in the
univariate case.

Initial tests in this literature (Quah (1994) and Levin and Lin (1993)) either
implicitly or explicitly assumed that the 6, were homogenous, so that either
all groups were (1) or all groups were 1(0) with 6, = 6 < 0. For small T this
hypothesis may be a practical necessity since power against heterogeneous
alternatives is likely to be low. However for larger 7', for example sample
sizes on the order of those typically found in macro data sets, the assumption
of homogeneity can be relaxed while maintaining good power against a wide
set of alternatives. Because theoretical arguments for homogeneity are often
weak, the primary focus of this paper will be on optimality results that can
be established when allowing the alternative set to include heterogeneous 6,,’s,
however some further optimality results will also be provided for the more
restrictive case of homogeneity.

Readers at this stage might expected to wonder in what sense a test which
does not constrain the 6,, to be homogeneous can be thought of as a “panel”
test or why, if the assumption of homogeneity is dropped, univariate unit root
tests should not be calculated for each group individually. This will be briefly
addressed before proceeding. On a practical level, the approach taken in this

2Extending the paper’s results to cases in which the first observations are informative
about 6,, (as in Elliot (1993)) or d,, (Elliot, Stock and Rothenberg (1996)) can be accom-
plished in a straightforward manner, but is at odds with the tests that have been considered
in the existing literature and so will not be discussed in the interest of brevity.



paper will be shown to lead to tests that can offer some attractive trade-offs
relative to tests that assume homogeneity or that calculate individual test
statistics for each group. On a more abstract level, any problem of joint
inference will involve pooling data across groups and in this sense can be
thought of in terms of a panel. In estimation problems with a cross section
of time series observations will be pooled across groups if they are modeled
as sharing some set of parameters that determine each group’s distribution.
In the notation of Liu and Tiao (1980), if the probability distribution of v, is
P(Yn; 0r), where 6, is drawn from a distribution 7(6; o), then

pl0niy) = [ 700 )plosy)da,

and information will be pooled across groups to estimate each individual
group’s parameters. In problems of testing a joint hypothesis involving param-
eters from different groups observations will automatically be pooled because
they must be used to form a single test statistic. However, unless there is a
uniformly most powerful test, different admissable tests will have maximize
power against different regions of the space of alternatives. In a rough sense a
choice of an admissable test will amount to the choice of a weighting function
m(0; ) of alternatives against which the test will have maximal power. Thus,
in estimation problems pooling observations is a modelling choice; in multi-
variate testing problems involving parameters from different groups pooling is
automatic, and the choice of test represents a choice of alternatives against
which power is to be maximized.

The rest of the paper will proceed as follows. Section 2 will provide a
brief outline of existing tests and will present some definitions required in the
following sections. Section 3 will analyze the case in which all nuisance pa-
rameters are known and will discuss the relevance of these results to existing
tests. Section 4 will introduce a new class of tests within the context of known
nuisance parameters. Section 5 will then drop the assumption that nuisance
parameters are known and will show how the results of Section 3 can be gen-
eralized. Section 6 will adjust the tests introduced in Section 4 for unknown
nuisance parameters and conclude.

2 Existing Tests and Required Definitions

2.1 Existing Tests

Existing tests assume that the data is generated by (1) and deal with three
standard cases concerning the elements included in the deterministic compo-
nent Z,:: (1) no deterministic components; (2) a constant mean; and (3) a
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constant and time trend. Time effects are sometimes allowed and are treated
by removing time averages from each variable before testing (assuming that
the panel is balanced).

The simplest and most frequently used method of testing the hypothe-
sis 0, = 0 forn = 1...N is to conduct a univariate unit root test for each
group. To ensure that these NV tests have an overall size of «, the Bonferroni
bound can be used, this bound implying that if each test is conducted individ-
ually at the ai/N level then the set of N tests will have joint size no greater
than «, where the joint hypothesis is rejected if any of the individual tests
exceed the o/N critical value. While the other tests that will be described
typically assume that e, is independent across groups, the Bonferroni bounds
will produce a test with correct size even when the error term is correlated
across groups.> Throughout the paper will refer to the “Bonferroni test” as a
test that uses the Bonferroni bounds in conjunction with individual augmented
Dickey Fuller (ADF) t-tests. This is a useful but somewhat distortionary piece
of terminology since the Bonferroni bounds can be used with any set of tests.

Building upon work by Quah (1994), Levin and Lin (1993) propose a t-
test based upon a GLS regression estimate of # under the assumption that
0, = 0 in equation (1) while 3,, 3,, and o2 are allowed to be heterogenous
in the regression. The GLS estimator is used to correct for heteroscedasticity
(07 # 02). When a deterministic component is included (other than time
effects) Levin and Lin propose a nonparametric correction for the bias induced
by this inclusion.*

Im, Pesaran, and Shin (1997) propose two sets of tests, one based upon the
average of individual ADF t-tests of 6,, = 0, the other based on the average of
individual Lagrange multiplier tests of the same hypothesis. Specifically, if 7,
is either the ADF t-test or LM test for group n, then Im, Pesaran, and Shin’s

test has the form
a

N
NS I
n=1 b

where a and b are the mean and standard deviation of an ADF t-test or LM
test (which are calculated by Monte Carlo methods and depend upon 7', the

31f independence across groups is a maintained hypothesis then the Bonferroni bound
can be tightened so that the test rejects if any individual test execeeds the & + R(c, N)

critical level, where R(a, N) = 1 — § — (1 — @)% > 0. For standard values of a or moderate
N this correction will be neglible — for instance, R(0.05,2) = 0.00032.

4Levin and Lin state conditions under which they claim their proposed test statistic will
have a standard normal distribution as both N and T' grow large, % — 0, however as will be
discussed in more detail in section 6, the conditions they provide are too weak to establish
the claim.



order of the autoregression, and the form of the deterministic component).
Im, Pesaran, and Shin state that, assuming normally distributed errors, their
test based on LM statistics will have a standard normal distribution as both
N and T grow large, % — K, 0 < kK < co. While they are unable to prove that
their test based on averages of ADF t-tests has the same property, their small
sample Monte Carlo results indicate that their ADF-based test has somewhat
better power than the LM-based test.

Another test has been proposed by Maddala and Wu (1996). Based upon
theory developed by Fisher (1932), Maddala and Wu propose combining p-
values of individual unit root tests. If 7, is a test of the univariate hypothesis
0, =0 and P( 7,) is its significance level, then Maddala and Wu propose the
statistic

—2 leog (P(70))

which will be distributed as a x? with 2N degrees of freedom. In theory, any
univariate unit root test could be used in this procedure, however Maddala
and Wu use ADF t-tests.

In this paper we will concentrate upon the Bonferroni, Levin and Lin (LL),
and Im, Pesaran, and Shin (IPS) tests, since these are the most commonly
used. However, some of the theory developed below will also apply to the test
proposed by Maddala and Wu.

2.2 Defining Required Terms

Defining a parameter space © and (strict) subsets ©9 C ©, ©; = © — Oy,
we are interested in testing a hypothesis of the form Hy : 0 € ©g against
the alternative §# € ©;. Considering the probability density function p(y;0)
parameterized by 6 € O, a test of Hy is a measurable function 7 = 7(y),
0 < 7(y) < 1, where Hy is rejected with probability 7(y) when sample y is
observed. A test is nonrandomized if 7 € {0,1}. Defining Y as the support of
y and 3;(0) = 1— [, p(y; 0)7(y)dy as the probability that the test 7 will accept
Hy when 0 is the parameter point, the risk function of a test 7 is defined as:

G- (0) 00,
re(0) = { 1—3,(0) 6¢c6,

A test 7' is uniformly as good as another test 7 if r.(0) > r-(0) for all 6.
A test 7" is uniformly better than another test 7 if it is uniformly as good as
7 and 7(0) > r.(0) for some 0. A test is admissable if there is no other test
which is uniformly better. A class of tests is called complete if for every test



outside the class there is a test within the class which is uniformly better. A
class of tests is called essentially complete if for every test outside the class
there is a test which is uniformly as good as it within the class.

A probability measure 7 in © is an a priori distribution in ©. The average
risk function with respect to m is defined as r*(7,7) = [o7(©)dn(©). A test
To 1s a Bayes solution relative to  if it minimizes 7* (7, 7). A test 7 is a Bayes
solution in the strict sense if there is an a priori distribution, 7, such that 7 is
a Bayes solution relative to 7. A test 7 is a Bayes solution in the wide sense if
there is exists a sequence of a priori distributions, {7}, such that 7 is a Bayes
solution relative to {m;}.

3 Known Nuisance Parameters

3.1 Characterization of Admissability

In this section it will be assumed that all nuisance parameters are known, so
that the only uncertainty concerns the vector §. We begin with this case not
because it is realistic, but because the basic mechanisms are most clear in this
context.

The presentation requires first establishing some notation. If z,; is a vari-
able defined over n = 1...N,t = 0...7T then let z,, and x,  respectively be
the T x 1 vectors [,y ...Znr| and [Tno...Zpr-1], and let z; be the N x 1
vector [zys...xn¢) . If X is a square matrix, then let vech(X) be the linear
operator vectorizing the lower triangular portion of X and let avech(X) be
the same as vech(X) after multiplying the off diagonal elements by 2. Thus if

11 T12 T3
X =| xo1 T2 To3
31 T3z T33

then
/
vech(X) = [a:n To1 Xog X3l Tz 3733]

/
CLU@Ch(X) = |:3711 2,1721 T99 2,1731 2,1732 ,1733] .

This section will employ the following generalization of (1). It will be
assumed that the observations are generated by

Ynt = dnt‘l'unt (2)
Aunt = gnuntfl‘l'vnt (3)



where d,,; is a deterministic component and wv,; is an unobserved stationary
mean-zero Gaussian process with a positive spectral density function at fre-

quency zero. The assumptions made in this section are set out in Assumptions
1 and 2:

Assumption 1 The sequence {v;} is stationary and has a positive definite

spectral densily matriz; il has a moving average representation vy = > oo o VYrer_k
where the e, are independent N(0,Q.) random variables and Y32 ok | ¥rij |<

oo for each i, j = 1...N, vy;; denoling the row i column j element of V.

The distribution of the initial observation ug independent of 6.

Assumption 2 The parameters Q, = Evv' and d are known.

Stack equations (2) and (3) across both groups and time:

hn ] [ dy Uy
. _ . X .
Yn | | dn UN
AT [ 0 0 0, vy
. _ 0 0 . X .
Auy | 0 0 uy- On UN

or, more compactly,

y = d+u (4)
Au = u 0+ (5)
We are interested the problem of testing § = 0 against the alternative

hypothesis # < 0,0 # 0. Formally, we consider the parameter set © C {0 €
RY ] 6 <0} and study tests with (simple) null § = 0 and (possibly composite)
alternative set ©; = © \ 0. Without loss of generality it will be assumed that
foreachn =1... N there is a # € ©; such that 0, < 0, since any group known
to be I(1) can be excluded from the test.

Under assumptions 1 and 2 the probability density for y is

p(y;0) = h(y)exp (9’ W, Au] - %9’ W 0, | 9)
= h(y)ex (9’ [u’,le A u] — avech(&@’)’[vech(uLleu,)])
0

p
= h(y)exp (+(0)'s)



where

v(0) =10 — avech(00')],

and

s=[ Q' Au veeh(u Q u ).

This describes a curved exponential family (Effron 1975,1978) with a M@
dimensional sufficient statistic for §. While vech(u’ Q,'u_) would have a de-
generate distribution for large 71" if one was testing a stationary null against
stationary alternatives (for instance testing § = —1 against 6 # —1), it has
a nondegenerate distribution for large T" under the null # = 0, so that the
dimension of the sufficient statistic remains M@ even as I' — oo in the
current problem.” In considering the set of admissable tests attention can be
restricted to tests based upon the sufficient statistic. The problem is then one
of optimally combining M@ statistics into a single, one-dimensional, test
statistic.

When the alternative set ©; has a larger dimension than one there can be
no uniformly most powerful test.® To obtain some sense of what properties
an optimal test might have it is helpful to consider a test of the null against
a simple fixed alternative, 8¢ = (..., 0¢,...). By the Neyman-Pearson lemma,
the most powerful test of the null # = 0 against the alternative § = §* has the

5Under Assumption 1 the probability density for 7, is
1
P(Un | On) = I (yn) exp <0n [uL QtA u] — 50,% [u;% Qvnlun]> .

This describes a curved exponential family with a two-dimensional sufficient statistic for 8,,.
In contrast to linear exponential families, there is no uniformly most powerful test of the
one-sided hypothesis 6,, = 0 versus 6, < 0. If Q, = I then Effon’s measure of statistical

1
curvature when evaluated at the null is v = % (%‘%) 2, where Effon’s measure of

curvature is defined as v = (det(M)/MH)%

. . 2 .
Y var [ 212 gzim@n cov 810g(p8(0?in70n))’ 2 10%12%27%)))
T cow [(2log(@(ynifn)) 97 log(p(yni0s)) var (22102 (yni0x))
6., ) (860,,)2 (86,,)2

For any positive definite €, the curvature of this family remains positive as T — oo (
limyp_, o0y = %), indicating that both elements of the sufficient statistic have nondegenerate
distributions for large 7', so that even asymptotically the sufficient statistic remains two-
dimensional.

STf this is not immediately obvious, consider that a size « test of § = 0 that attempts
to maximize power against alternatives of the form 6; < 0 can only have power a against
alternatives of the form 6; < 0 if i # j.



form

1 otherwise

T:{O if ~v(0%)s <c

Two properties are evident. First, the test is less likely to reject as any element
of s increases, and second, the set of values of s for which the test accepts
the null hypothesis is convex. Both properties are intuitive. Assuming for a
moment that Q, =/ andd =0, then s=[... Ay yn ... Y, Yo ...|. Ly, is
a random walk, then Ay y,_ should be close to zero, while if it is stationary
then Ayl y,  should be negative; likewise 4/, v,  should be larger if y, is a
random walk than if it is stationary. The second property, a convex acceptance
set, is one shared by most tests in econometrics.”

So far we have only shown that an optimal test has these properties when
a single alternative point is considered. The following lemma states that these
two properties are shared by any Bayes solution with respect to a discrete set
of alternative points.

Lemma 1 Let 7 be a Bayes solution in the strict sense with respect to a dis-
crete probability measure m over the parameter space ©. Then T is a.e. equiv-
alent to a nonincreasing and quasiconvexr function of the sufficient statistic
s.

Proof: Pick J41 discrete elements of © and let 7 be a probability measure
over these points, m(6?) representing the probability of ¢ € ©, j = 0...J,
where 0° = 0 and ¢ € ©, for j > 0. By the Neyman-Pearson lemma, 7 is a
Bayes solution relative to 7 if

0 i pHO(0) > 3 plys ) (o)
T = 1 Hp%@ﬂ@<ﬁp%“h@?

M~

ply; 07)m(67)

0<6<1 if p(y;0)7(0) =

J

I
=

We have seen that

p(y;0%) = hiy) exp (v(67)'s)

"Within the context of linear exponential families Stein (1956) provides a general suf-
ficient condition for admissibility of any test with a closed convex acceptance set in the
sufficient statistics.




Define A(s; ej) = W(ej) eXP(’V(Qj)/S) > 0. Given the absolute continuity of
p(y; 0), T is a.e. equivalent to

0 if 3 A(s; 69) < (0)
i=1

1 otherwise
J )
Defining 7(s) = > A(s;67), we can see that 7(s) is analytic and that
i=1

J

Z A(s;07)y(07) <0

=1

J

= D A(s;0)v(@°)v(¢°) >0

=1

which implies that 7 is nonincreasing and convex, therefore quasiconvex, func-
tion of the sufficient statistic s. QED.

While the set of Bayes solutions in the strict sense with respect to a discrete
measure do not form an essentially complete class, Wald (1950) establishes that
the set of Bayes solutions in the wide sense with respect to discrete measures
do form an essentially complete set.® The content of the next theorem is that
limits of Bayes solutions with respect to discrete probability measures share
the two properties under discussion.

Theorem 2 The set of nonrandomized tests that are nonincreasing, quasicon-
vex functions of the sufficient statistics is essentially complete.

Theorem 2 states that one can always do at least as well by using a test that
is a nonincreasing, quasiconvex function of the sufficient statistics. However, it
does not state that one can always do better. Although it seems plausible that
quasiconvexity is necessary for admissibility, at the moment only the weaker
claim that a test must be a nonincreasing function of the sufficient statistics
in order to be admissable can be proved.

Theorem 3 Any test that is not almost everywhere equivalent to a nonran-
domized test that is a nonincreasing function of the sufficient statistics is in-
admaissable.

81f we were willing to assume that the intersection of the closure of ©¢ and the closure
of ©; were empty, then the methodology of lemma 1 could be used to show that the set of
nonrandomized tests that are nonincreasing, quasiconvex functions of the sufficient statistics
is complete. However, this type of assumption is uncommon in econometrics.
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3.2 Homogenous Alternatives

Theorems 2 and 3 characterize the set of admissable tests against any general
alternative set ©; = © \ 0. As noted in the introduction, some existing tests
either explicitly or implicitly assume that the alternative set is one dimensional
and that the parameter of interest is homogeneous across groups. If it is
assumed that the 0, are homogeneous across groups, so that 6, = 0 for n =
1... N, then there is a two-dimensional sufficient statistic for 0.

p(y; 0) = h(y) exp (5 [i]’VTuLle A u] — %9_2 [i}VTULleu, ZD (6)
where iyp is an NT x 1 column vector of ones. As before, p(y;0) forms a
curved exponential family, however the curvature vanishes as N — oo under
the conditions of Assumption 1. Assuming that Q, = I (if this is not the case,
a rotation of the variables that satisfies this condition can always be chosen
when any nuisance parameters are known) equation (6) becomes

p(y:0) = hy) exp (9‘ [ Nil i A u] Ly [ Nil uub

While N2 S N_jul A u, has a nondegenerate distribution for large N,
N-'Y N W, u, converges weakly to a constant, so that for  within an

N3 neighborhood of the null the density becomes

p(1:9) = e(D)hly) exp (é [ Ni A u])

as N — oo. Standard results then imply the existence on a uniformly most
powerful one-sided test. This is the logic behind the following theorem.

Theorem 4 Let © C {0 € RV | 0, = 0 < 0}. Under Assumption 1 and 2,
for N — oo there is a uniformly most powerful test of the null hypothesis Hy :
0 = 0 against the alternative Hy : 0 € © \ 0.

The phenomenon discussed in this theorem can be confirmed in Figure 17,
which shows the power envelope and a locally most powerful test of § = 0
versus § < 0 when T" = 10 (all tests have 5% size). If a uniformly most
powerful test exists, it must be equivalent to the locally most powerful test.
As shown in the figure, for N = 1 the power of the local test is well below the
power envelope for nonlocal alternatives. However by the time N = 25 the
power of the local test is virtually indistinguishable from the power envelope.

9Details of all monte carlo experiments are described in the second appendix.
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Locally Most Powerful

—TN:O

Figure 1: Power function of locally most powerful test of § = 0 compared to
the power envelope for N = 1 (top panel), N = 4 (middle panel), and N = 25
(bottom panel); 5% size, T = 10.

3.3 Relevance To Existing Tests

We will examine the Bonferroni, LL, and IPS tests in light of the previ-
ous section. The presentation will be made most clear by assuming that
there are no nuisance parameters, so that Q, = I, d = 0, and s = [... A
Y Yn oY Y ..., however any statements made for this case will also be
true when there are known nuisance parameters. Under these conditions the
Levin and Lin test is equivalent to

N /
21 DY Yy

L= ————
N /
\| 2, Yn—Yn-

Since we have seen from Theorem 4 that the denominator will converge in
probability to a constant, 777 will be uniformly most powerful against alter-

12



natives of the form 0, = 0 < 0 for large N.
When there are no nuisance parameters the ADF-based IPS test is equiv-

alent to
N DY Yy

T = )
IPS(ADF) nz::l ,riyni

and the LM-based IPS test is equivalent to

N (Ayhyn)
TIPS(LM) — - -
(£ nz::l Yn—Yn—

Neither statistic is a non-increasing or quasiconvex function of s, therefore by
Theorem 3 they are inadmissable.

The Maddala and Wu proposal of summing p-values across individual unit
root tests would, if augmented Dickey-Fuller tests were used for each group,

N /
TMW = Z log (P (7Ayﬂyn ))
n=1 \/ y;lfynf
and this is likewise neither non-increasing nor quasiconvex.

If unknown nuisance parameters are introduced then Theorems 2 and 3
must be extended, however it is straightforward to show that neither the
IPS nor Maddala-Wu test (if it uses augmented Dickey-Fuller tests) will be
nonincreasing or quasiconvex in the relevant subvector of sufficient statistics

have the form

discussed in the extensions presented in the next section.

To obtain a sense of how the Bonferroni, LL and IPS tests perform in
practice it is useful to introduce a benchmark that they can be compared
to. The right panel of Figure 2 presents the point by point maximal power
obtainable against possible alternatives by a symmetric test when there are two
groups. It is the envelope of the set of uniformly most powerful invariant tests
(where invariance is with respect to permutations of the groups) against each of
the simple alternatives represented. With two groups (/N = 2) and one hundred
time series observations per group (7" = 100) the figure graphs the envelope
of a collection of Neyman-Pearson tests of the simple null (64,602) = (0,0)
against simple alternatives (61,62) = (0%,05), where (6¢,05) € [—.01, —.20] x
[—.01,—.20]. Each point on the z-axis represents the maximal power by a
permutation-invariant test against the specific alternative represented by the
x- and y-axes. The right panel of Figure 2 displays a segment of the symmetric
power envelope for N = 10 (for NV > 2 the full envelope cannot be shown). It
graphs the maximal power against point alternatives in which K < N groups
are stationary with 6, = 0 < 0 and the remaining N — K groups have 0,, = 0 as

13



Figure 2: Full symmetric power envelope for N = 2 (left panel) and segment
of symmetric power envelope for N = 10 (right panel); 5% size, T = 100.

K and 0 are varied over K =1...N, 0 = —0.01... — 0.40.'° These envelopes
provide a benchmark, however it is important to keep in mind that since there
is no uniformly most powerful test for this multidimensional set of alternatives,
it would be unrealistic to expect any test to be everywhere close to the power
envelope.

Figure 3 compares the powers of the Bonferroni, LL and IPS tests to the
symmetric power envelopes shown in Figure 2. The Bonferroni bound does
well when there are a only a few outlier groups with nonzero 0,, and for those
groups 6, is well below zero. The LL test is quite near the power envelope
when 0,, are close to being equal for all groups, but is well below the power
envelope when most groups are I(1) and only a few are I(0). Since the results
of Im, Pesaran, and Shin indicate that their ADF-based test has better power

10Ty generate this envelope each possible value of # requires consideration of
Z%:l ﬁifw alternative points per monte carlo replication, so that in practice gen-
erating this type of envelope for NV much larger than 10 quickly becomes infeasible.
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properties than their LM-based test in small samples, we focus on the ADF-
based test in Monte Carlo experiments. The IPS ADF-based test is seen to be
fairly close to the LL test, doing a bit less well when the 0,, are nearly equal
for all groups, but better than the LL test against other alternatives.

4 A New Class of Tests

The Im, Pesaran, and Shin tests have been shown to be inadmissable in the
absence of unknown nuisance parameters. In the absence of unknown nuisance
parameters the Levin and Lin test meets the admissability criteria presented
in section 3, and if IV is of reasonable size will be close to uniformly most
powerful when the parameters of interest are homogeneous, however it does
poorly against other alternatives. The Bonferroni bound does well when there
are a few stationary outliers mixed in with groups that are I(1), but does not
do well when all or most groups are stationary and highly persistent. Given
this, it may be desirable to look for a new form of test.

The theory of the previous section demonstrated that Bayes tests will auto-
matically be nonincreasing and quasiconvex, therefore it is natural to explore
tests from that set. In doing so the emphasis will be on choosing a weighting
function over alternatives that yields a convenient test with generally good
properties, rather than on choosing a function based upon actual a priori
beliefs. For instance, Wald tests correspond to Bayes tests with weighting
functions that are constant on certain ellipses, and locally most powerful tests
correspond to Bayes tests that put weight only on alternatives very near the
null. These weighting functions are used not because they are plausible, but
because they yield easily calculable tests that in certain circumstances have
good properties.

If 7(0y,...,0N) is a probability measure over § € RY then a test that is a
Bayes solution with respect to 7 will have the form

01,....0
/ ooppyyf m’o];)w(el,...,eN)del---deN (7)

For the moment assume that the error term, v,, is independent across groups
— correlated errors will be discussed later. In the current context one flexible
class of tests that does well is the following. If we assume that the measure 7 is
such that each 6, is independent with identical marginal probability densities
then (with some abuse of notation) 7(6y,...,0x) = [\, 7(0,). Defining

i) = B
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independence of v,, across groups implies that % = TI0_, A(yn; 0,) and

(7) becomes

0

/0 Ay; 01)7(61)d0; - - - / Ay Ox ) (0 ) dO. (8)

— 00 — 00

Taking the log yields the test statistic

TR = nivjllog ( / (yn; 0 )d6>

Like the tests proposed by Levin and Lin; Im, Pesaran, and Shin; and Maddala
and Wu, this test sums individual test statistics across groups, however it has
a clear weighting function against the multivariate set of alternatives. A test
that rejects for large values of 75 is equivalent to a Bayes solution in the strict
sense with respect to a probability measure that assigns probability 7(0) to
the event ¢, = 0 independent of the values of the other 0,,.

The nature of the test as 7(0) approaches the extremes 0 or 1 can be
understood by rewriting (8)

N

11 (W(O) + (1= 7(0)) /@ i O)m(6:6 < 0)d8>

n=1

and recognizing that the term 7(0)" in the resulting polynomial is a constant,
and therefore immaterial to size or power of the test since it can be absorbed
in the critical value. Holding the conditional probabilities 7(#; 6 < 0) constant
and taking the limit as 7(0) — 1 yields a test statistic equivalent to

Z/k (yn; 0)7(6; 0 < 0)d0 (9)

Taking the limit as 7(0) — 0 yields a test statistic equivalent to

H/@ (yn; 0)7(0;0 < 0)d0 (10)

A test that rejects for large values of (9) is a Bayes solution with respect to a
probability measure that assigns probability one to alternatives in which there
is a single group that is 7(0), each group having equal weight.!! Equation

HThe critical value for the Bonferroni bounds is calculated by assuming that with proba-
bility one there is at most one group that will exceed the critical value under the null, each
group having equal probability of being the one to reject, which is suggestive of (9).
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(10) is a Bayes solution with respect to a probability measure that assigns
probability one to alternatives in which all N groups are I(0). Further, if
m(0;0 < 0) is chosen to place probability one on a single point #° then (10)
becomes [T, A(yn;0%), and as ¢ — 0 this statistic is equivalent to a locally
most powerful test of the null hypothesis when the 0,, are constrained to be
homogenous — a test that the previous section has shown will be arbitrarily
close to the uniformly most powerful test (and the Levin and Lin test) for
large N in the absence of nuisance parameters.

For purposes of computation the integral can be approximated by approx-
imating 7() with a discrete probability measure; in practice it appears that
a probability measure over at most four or five discrete points is sufficiently
flexible. In univariate curved exponential families it is frequently the case that
Neyman-Pearson tests of the null against a fixed alternative have good power,
so long as the alternative is in a range for which the test has 50% to 80% power
(see Effron (1975) and Davies (1969); Elliot, Rothenberg, and Stock (1996) is
an example in the case of a univariate unit root test), so testing against a
fixed discrete distribution over alternatives in this range has some appeal in
the multivariate context. In this case the test statistic becomes

N J
Tg = zjllog (7T0 + z; A(Yn; 93)7Tj) )
n— =

By varying m one can produce tests which have maximal power against
clear regions of the alternative space. This feature is shown in Figure 4, where
m(0;0 < 0) is chosen to place probability one on a single point, 6% and the
parameters (7, 0%) are varied.

Figure 4 demonstrated that Bayes tests can closely match both the Levin
and Lin (when 7y = 0) and Bonferroni (when 7y = 1) bound. This suggests
that Bayes tests that move 7y away from these two limiting values could po-
tentially do about as well in the regions where the Levin and Lin or Bonferroni
bound maximize power, while perhaps doing better elsewhere. As the top and
middle panels of Figure 5 show, Bayes tests can both mimic the LL. and Bon-
ferroni tests and do much better in areas where the tests are weak without
giving up significant power in areas of the alternative space where the tests are
good (for brevity only the more relevant case of N = 10 will be shown from this
point on). The previous section proved that the IPS test was inadmissable,
implying that there is at least one test that does uniformly better. While it
isn’t possible to prove that a test of the chosen form will uniformly dominate
the IPS test, the bottom panel of Figure 5 shows that the Bayes tests have
the ability to significantly outperform the IPS test over a fairly representative
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area of the alternative space.!?

Allowing for correlation across groups introduces further considerations.
Both Levin and Lin and Im, Pesaran, and Shin recommend subtracting time
averages to control for time effects — one standard method for allowing cor-

relation across groups in panel data. If 4, = % SN Yne then (1) implies that

(Aynt — ATG) = On(Ynt—1 — Te—1) + Une (11)

where v, is an I(0) process. There are several reasons why subtracting time
averages in this manner is unattractive. First, the time effects model is con-
venient when there is a single common factor affecting each group in the same
manner and the principle desire is to answer questions concerning the data
conditional on the common factor. However in testing for unit roots the time
series properties of such a factor is of direct interest — if there is a common
factor and it is /(1) then the null hypothesis is correct — and so conditioning
on any common factor will yield a test with incorrect size if the null hypothesis
is that the unconditional series are I(1). Second, while it is true that remov-
ing time effects is appropriate if there is a common factor that is known to
be 1(0) and only homogenous alternatives are considered, the same procedure
will yield an inconsistent test if heterogeneous alternatives are considered. If
group n is 1(0) while some other groups in the panel are I(1) then (y,:— ;) will
contain a unit root even if y,; does not, and a test based on (11) will tend to
find that ,, = 0 when it is not. The top panels of Figure 6 displays the power
functions of the Levin and Lin and Im, Pesaran and Shin ADF tests when the
error term has an idiosyncratic and common component, e,; = £,¢ + ¢;, where
both £ and ¢ are i.i.d. N(0,1) variables and time effects are used to remove the
component ¢; from the data. As can be seen, removing time effects reduces
the power of both tests against heterogeneous alternatives — most markedly
for the IPS test since the LL test already did poorly against such alternatives.

Rather than time effects, error correlation will be modelled here by sup-
posing that (1) holds with Q = Fe.e, nondiagonal. This usefully circumvents
the first objection to the time effects model raised above.!® Because it is a
Bayesian test with an explicit prior, the test can be adjusted to allow for cor-
relation across groups in a conceptually straightforward manner based on (7).

12%While the previous section proved the existence of a test that is uniformly better than
the IPS test, there are no practical methods of finding such a test. Since it is infeasible to
examine the entire (ten-dimensional) space of alternatives, it cannot be and is not claimed
that the test shown is uniformly better. The only claim is that it presents an attractive
alternative.

13This model is also used by Abuaf and Jorion (1990) and O’Connell (1998). Given a
consistent estimate () = PP’, both employ a t-test based on the pooled GLS estimator of 6
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The test statistic will no longer have the form of a simple sum across groups
since covariance terms will also be included in 75, but the analogue can be cal-
culated. The middle and bottom panels of Figure 6 graph the relative power
of the Bayes tests shown in Figure 4, using the Monte Carlo experiment de-
scribed above. As can be seen, in contrast to the IPS and LL tests the power
of the tests (with the exception of my = 0) against heterogeneous alternatives
actually rises.

For the purposes of comparison the power functions in Figure 6 are shown
relative to the power envelope used in the previous figures, where the error
term was independent across groups, explaining why the Bayes tests are ac-
tually above the envelope in the figure. Comparing the power functions to
the power envelope generated with the true 0 would make the performance
of LL and IPS tests appear worse and would make the powers of the Bayes
tests appear fairly close to those shown in Figure 4. When the covariance
matrix £ = Fewe} is known the maximal power possible against any given
alternative point is higher for heterogeneous alternatives (it is unchanged for
homogeneous alternatives), and this is the source of the increased power of
the Bayes tests. (The performance of the Bayes tests can be improved by
adjusting its parameters to reflect this change in the power envelope, but this
is not done in Figure 6). As noted in a previous footnote, versions of the IPS
and LL test that make use of the known ) matrix have results that are quite
close to the time effects model, so the better relative performance of the Bayes
tests is not due to their use of the known covariance matrix for this particular
experiment. Of course, when () is unknown it must be estimated and this will
diminish power for small 7.

This performance is not completely costless. The critical values for the
Bayes tests will in general depend on parameters of the covariance matrix
when error correlation is present and they become computationally more bur-

obtained by fitting form (1) to the orthogonalized data:
P l'Ay=0P 'y 1+ B (A% — 0z 1)+ 8P 'z + P ley

This procedure corresponds to a variant of the LL test. As with time effects, this would be
valid for homogeneous alternatives (where 6 is scalar), however if heterogeneous alternatives
are considered it will yield an inconsistent test since if any of the N groups in y; is I(1)
then in general all of the N data series in P~ !y, will be I(1) (unless 0 is scalar or € is
diagonal then in general P10 £ 0P~ !). A monte carlo experiment simliar to the one used
to generate figure 6 found that the power functions of the Abuaf and Jorion/O’Conell test
and also the IPS-ADF test when the data is first orthogonalized using the true {2 are quite
close to the corresponding power functions (shown in the top panels of figure 6) when time
effects are removed, although the IPS test does somewhat better for alternatives near the
null by orthogalizing than by removing time effects.
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densome. However, the dependence of the critical value on the parameters
of the covariance matrix may be simply unavoidable if one wishes to have
nontrivial power against heterogenous alternatives in this context, and com-
putational costs can be cut by using approximations to the Bayes test that
are computationally simpler (if less well theoretically based) and appear to
preserve power.

5 Unknown Nuisance Parameters

In this section the restriction that nuisance parameters are known will be
relaxed. In order to parameterize the model it will be assumed that d,; is
a linear combination of a set of D nonstochastic regressors, Z;, and that the
process generating the data can be written in the form:

Ayt = Qytfl + B/ (Azt - QZt,l) + ﬂ/zt + ent (12>
where
th
8 pr—
On

is an N x N diagonal matrix!*, and

2t = [ Aypy . Ayip ]/

is a PN x 1 vector of observed data. The first P+ 1 data points, 11_p, ..., o,
will be considered fixed and e; will be taken to be a sequence of independent
N-dimensional Gaussian variables with mean zero and variance €),.

Equation (12) is more restrictive than (2) - (3), however it continues to
encompass (1) and generalizes the assumption made in Levin and Lin and Im,
Pesaran, and Shin, that the error term is independent across groups.

If z; is a given K x 1 vector then let z, Az and z_ respectively be the
K x T matrices [Ty, [Azg] and |zg 1], where k = 1... K, t =1...T. We
can then write:

e = Ny —0y_ - (AZ’ — 92’,) — 'z
- QM

where () = [ In =0 =3 —03 -3 } and M’ = [ Ny oy NFFY

14We will switch between defining @ as an N x 1 vector to defining it as an N x N diagonal
matrix with elements #,, on the diagonal; the use should be clear from context.
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The probability density for y is
p:0.6) = (det(279.))  exp {—%tr (e’Qele)>}
— (&) exp {—%tr (MM’QQelQ’>}
— (&) exp {—%avech (9, vech (MM’)}

As in the previous section, this describes a curved exponential family, now
with sufficient statistic vech (M M’). Partition the sufficient statistic into two
subvectors, vech (MM') = [s' r'|', where

S=[..ANYyn Y Yo ..
is a 2N vector and r contains the remaining elements of vech (M M’). The only
restrictions placed upon the parameters are that § < 0 and that €2, is a positive
definite and symmetric matrix. As a result most of the vector avech (QQ, Q")
is unrestricted, however the restrictions that have been placed are sufficient
to guarantee knowledge of the sign of the components of avech (QQ,'Q’) as-
sociated with s. This knowledge allows Theorems 2 and 3 to be generalized
with respect to the subvector s holding the remaining elements of the suffi-
cient statistic constant — that is, to consider the behavior of any test 7(s,7)
as 1 is held fixed. In this sense the presence of unknown nuisance parameters
forces Theorems 2 and 3 to be weakened, however the set s considered in this
section is directly comparable to the set of sufficient statistics considered in
the previous section when examining the tests suggested by Levin and Lin,
Im, Pesaran and Shin, and Maddala and Wu, so our generalizations will be
sufficiently strong to be of use in understanding current panel unit root tests.

Defining the N x N matrices (3 --- 3p, where ' = [ By ... PBp }, the

vector £ = (vec(B), vec(B),vech(Q.)) and vy = (I — p1L — -+ — BpLY) ey,
we suppose that £ € =, where = is a linear subspace of RWAPNHEGIN oo
taining the point & = (0,...,0,vech(I)’) such that v, satisfies the conditions of
Assumption 1 for all elements £ and consider the parameter set © x =. We
study tests with composite null {(0,£) € © x = | § = 0} and alternative set
{(6,§) e © x =0 +#0}.

The following theorem is counterpart to Theorems 2 and 3:

Theorem 5 (1)The set of nonrandomized tests that are nonincreasing, qua-
siconver functions of s conditional on r is essentially complete. (2) Any test
that is not almost everywhere equivalent to a nonrandomized test that is a
nonincreasing function of s conditional on r is inadmissable.
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5.1 Homogenous Alternatives with Nuisance Parameters

The results of Section 4 clearly lessen the practical importance Theorem 4.
Although a uniformly most powerful test exists for known nuisance parame-
ters when alternatives are restricted to be homogenous in the parameter of
interest, Bayes tests exist that do virtually as well against such alternatives
and substantially better over others. Nonetheless, extensions of Theorem 4
to cases with unknown nuisance parameters has theoretical interest, if only in
pointing out certain difficulties that have been missed in earlier literature on
panel unit root tests.

In this subsection it will be assumed, as in Levin and Lin, that the data
is generated by (1) and e, is independent across groups. The full set of
assumptions are:!?

Assumption 3 {ynttn—1. n4—1.7 @5 generated by (1) where the ey are inde-

-1
pendent N(0,02); Yt = 0 for t < 0. If vy = (1 — B L — -+ -ﬂanP> Ent,
then v, s stationary with strictly positive spectral density and a moving average
representation vny = 322 o Ynse ; that forn =1... N satisfies the conditions

Y5200 | tny |< 00,

2
N o'
im NS 5 vy || <oo

N—oo

n=1 \j=0
N 00 4

lim N72% | > ||| =0.

N—oo n—1 \j—0

Since the work of Levin and Lin emphasis has largely been on models that
allow (3, and o, to differ across groups as N — oo. Tests with an infinite
number of nuisance parameters are inherently difficult to deal with, and here
the asymptotics will have to be altered to let T" — oo at a fast enough rate
to obtain consistent estimates of the heterogeneous nuisance parameters. The
primary difficulty with allowing nuisance parameters to differ across groups
as both N — oco and 1" — o0 is that tools such as the continuous mapping

15 A5 is standard within the literature on univariate unit root tests, Levin and Lin assume
that the number of lagged differences of the dependent variable in each regression may
grow at rate o(7"/*). However Faust (1998) has shown that uniform rather than pointwise
convergence is required to obtain tests with nontrivial size, and that uniform convergence
requires stronger condtions on the moving average representation of the process than is
implied by allowing the number of lagged differences to grow at such a rate. Whatever
conditions are to be assumed, it is clearly necessary that there be some uniform bound on
the number of lags in each equation across groups in the current context.
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theorem cannot be automatically applied to triangular arrays, as demonstrated
in the following claim:

Claim 6 xz,7 = 0,(1) for n =1... Ny does not imply Ny' S0 x0p = 0,(1).

Proof: Examples are simple to create. Suppose for instance that Ny = kT
for some oo > 7y, k > 0. In this case consider the indexed array of independent
random variables x,, where x,7 = 0 with probability 1 —T"" and x,7 =T"
with probability 777, Then limy_,o pr(znr =0) =1 for n=1... Np, but

Nt
1
jlgn pr(Ng' Dy = E) = kexp(—k) >0
°e n=1

where % > 0.

The example demonstrates that even if certain terms weakly converge to
zero for each group as T' — oo, the average across groups need not converge
to zero, or converge at all, if both N — oo and T' — oo, even if T grows at a
faster rate than V.

To see understand the complications this presents in the current context,
assume for a moment that there are no deterministic components and de-
fine the matrices Q,, = 2,(2,2,) 2., M, = Iy — Q, and the scalar ¢, (1) =

220Yns. Levin and Lin assert that the pooled least squares estimator of
has a limiting normal distribution:

N

R 1

0=N3T'S 6,%, Mye, — N(0, §V) (13)
n=1

2

2 is a consistent estimate of o2 under the null and

where &
N

1 -1 2

VZ]\}LH;ON nz::ld)n(l) .

Under the assumptions of this section it is relatively straightforward to estab-

lish that v
1 1
Nz 2y e, = N(0,=V).
M 0, e = N(O.5V)

Therefore if (13) is true then it must imply
d=N AT 1Y ((02% = 00°) v Mueo — 0,9 Quen) = 0p(1).
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It is in fact the case that (by the continuous mapping theorem) ¢ will converge
to zero as 1" — oo holding N fized, but the example above shows that this
is insufficient. Instead, a law of large numbers must be applied directly to
¢. Billingsly’s weak law of large numbers for triangular arrays states that if
Var(¢) — 0 then plim ¢ = lim F¢, requiring statements about the limit of the
first two moments of ¢. This is nontrivial because the moments of ¢ involves
moments of inverted quadratic forms in the error term e,;, and in the case of
(), it involves a rather complicated function of such forms. The conditions of
Levin and Lin are too weak to establish that ¢ even has moments, let alone
that they converge to zero.'6

The most general counterpart to Theorem 4 that can be constructed at this
point is accordingly fairly limited and given by the following, where invariance
refers to invariance to location (more formally, invariance to the parameters
comprising limy_, ., Eoyr, which refers to both invariance to 3 under either the
null or alternatives and to invariance to the initial value, yo, under the null):

Theorem 7 Let © C {0 € RN | 0, = 0 < 0}. (1) Under Assumption
3, for N — oo, T — oo, NT™' — 0 there is a uniformly most powerful
invariant test of the null hypothesis Hy : (0,€) € 0 X E against the alternative
Hy @ (0.6) € (0\0) x Z if N AT IS 02y Quen = o,(1). (2) If in
addition P < 1 and N-' 3N | wn(l)nyéo < 0o, N 2N (1) yn0 < o0,
where Yno = limy o E(Ay2,), then N 3T YN o2 Qe = op(1).

The first part of Theorem 7 states a general sufficient condition for existence
of a uniformly most powerful invariant test. The proof establishes that under
Assumption 3

N 2! > ((3;2 — 0;2> Yn_ Mpen, = 0,(1),

it is the second term in ¢ that presents more difficulty. This difficulty is demon-
strated in the second part of the theorem, where it can only be established
by assuming that the first-differenced data is generated by at most an AR(1)
under the null. Whether this can be generalized to higher order autoregressive

16Establishing that the needed moments are finite for finite 7" is relatively straightfor-
ward, but this is not sufficient. Levin and Lin implicitly assume that if z7 is some
random variable such that Fxp is finite for finite 7" and Elimy_,., zr is finite, then
limy_, oo Exp = Elimp_, o p. This does not follow without stronger restrictions (for in-
stance, in the example to the claim in the text Exz,7 = 1 for all T, but E limp_, ., z,7 = 0.)
In fact, even if it is true that limy_, oo Fx,r = Elimy_, o Ty, this would not be of direct use
unless it could also be established that limy_, oo N7 Zgil Ex,r = Elimr_, o Nt Zgil TnT
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models is unclear. There is a fairly wide literature on the exact moments of
least squares estimators for autoregressive models with normal errors in the
AR(1) case, including Sawa (1978) and Nankervis and Savin (1988). There is
no corresponding literature for AR(P) models, indicating that the task may
be difficult, since the analytics that would be used to calculate the moments
of the estimators for a higher order autoregressive model are similar to what
would be required to establish the desired generalization. Without machinery
that can either establish the existence of the required limiting moments or a
law of large numbers that does not require their existence, analysis of panel
tests in which both N and T grow large appears difficult in the present con-
text of autoregressive models in which the coefficients on lagged differences
are group-specific nuisance parameters.

6 Adjusting the Bayes Tests for Nuisance Parameters

Unknown nuisance parameters force certain practical considerations in finite
samples. Typical sizes of N and 7T in panel data will preclude fitting the
data as a general vector autoregression since doing so would necessitate the
estimation of an unreasonably large number of parameters. Accordingly, the
focus of this section will be on constructing tests when each series can be
written as a linear function of its own lags, as in (1). Since standard tests
of homogeneity of the nuisance parameters, 3, = J and 0, = o, will have
chi-squared distributions under the usual regularity conditions regardless of
whether the data contain I(1) components, it may make sense to test this
hypothesis and impose it if it cannot be rejected before moving on to a unit
root test. However, in most macroeconomic data sets 1" will be large enough
relative to IV for consistent estimators of group specific nuisance parameters to
yield reasonably precise estimates and here it will simply be assumed that —
as seems most relevant — the nuisance parameters are heterogeneous. In light
of the previous section and because with macroeconomic data sets it seems
most compelling to consider N fixed, it will be assumed that N is fixed and
T — oo (or more informally we will think of T" being large relative to V).
Assuming independence across groups, but allowing for the other nuisance
parameters, the proposed test can be adjusted to one having a form similar to
(8). When there known nuisance parameters and (1) holds, the Bayes tests of
section 4 are defined in terms of
62 _

On N / 7l = /= 7l =
)‘(yn; en) = ;(Ayn_ﬂ Azn_ﬂzn) (ynf _ﬂ Zn) _ﬁ(yrr _ﬂ Zn)(ynf _ﬂ Zn)

n

Defining (as in the previous section, but now with deterministic components)
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the least squares projection matrix

Mn:]—[én zn}<[2n zn]/[zn an[Zn zn}/

the LL, IPS, and Bonferroni tests are functions of the statistics ,, > Ay My,
and &, %y, My, , where G, is a consistent estimator of o,,. For fixed N and
T — oo the statistic

2
0n(6,% N gy, My ) — 6—2"(% 2y Moy )
is asymptotically equivalent to A(y,;#,) under the null and will inherit the
same invariance properties that the other tests have.

The distribution of A(y,; #,,) under the null will depend on the nuisance pa-
rameter 1, (1) (see, for instance, Hamilton (1994)). The test statistic is easily
adjusted to be asymptotically invariant to the full set of nuisance parameters
by using a consistent estimator 1/A)n(1) of 1, (1) and defining

R 0 1/ 6 \°
A n;eu n(l)) = = A;2 A ;Mn n—) 5|7 1 A;Q ;th n—
(Yns 0,40 (1)) %(1)(0 Yo My ) 5 (%(D) (0,°y Yn—)

The proposed test statistic is then

N J
T = ;log (7T0 + Z; A(Yn; Qja d’n(l))%’)

where 3,, 6, are estimated from (1) using OLS and the estimate of ¥, (1) is

1[}71(1) = (1 - iﬁnj)

As discussed in section 4, when Q = FEee} is nondiagonal then in general
Bayes tests will have increased power against heterogeneous alternatives but
will not be invariant to the full set of nuisance parameters, and critical values
must be calculated on a case by case basis, for instance through Monte Carlo
methods.!”

"Defining §p, = My, and L@(l) as the diagonal matrix with elements 151(1) <N (1),
then for nondiagonal ) the general form of A(y;6,1(1)) is

. . T 1 . . . T
(@)Y A ) = tr(OP ()T 0 Ge1edi )
t=1

=1
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Three Monte Carlo experiments were run in order to study the properties
of the Bayes test in the presence of unknown nuisance parameters. In the first
it was assumed that groups were independent with Z,; = 0 and an AR(2) was
estimated for each group to provide estimates of 1,,(1) and o2 (the data were
generated with 3, = 0 and 02 =1 for each n and T' = 100). Table 1 displays
the powers of the LL, IPS, Bonferroni, and two Bayes tests for alternatives in
which there are K groups that are stationary with § = 0. The fact 3, and o,
must be estimated results in relatively small losses in power that are roughly
similar across the tests, and so the conclusions made in the case with known
nuisance parameters remain. While the LL test tends to do somewhat better
when N = K, the IPS test does nearly as well and does better against other
alternatives, and the Bonferroni test does best when only a small proportion
of the groups are stationary. The parameters of the test Bayesl where chosen
so that it was roughly similar to the IPS test for homogeneous alternatives
and better for heterogeneous alternatives. The test Bayes2 was chosen to do
roughly as well as the Bonferroni for heterogeneous alternatives and better
for homogenous alternatives. While the Bayes test and IPS test have quite
similar power when K is close to IV, the Bayes test does better than the IPS
test when K is small, having up to 60% better power against IPS and up to
85% better power against LL. Likewise, the power of the Bayes2 test is quite
close to the Bonferroni for K = 1 or 3, while having up to 60% better power
for N = K.

Tables 2 and 3 repeat the exercise with a constant (Table 2) and a constant
and time trend (Table 3) included in each regression. Because estimation
of either a group specific constant or group-specific constant and time trend
noticeably reduces the power of all tests, the relative power of the Bayes tests
tends to be diminished (since there is a lower bound on the power of any test).
However appropriately chosen forms of the Bayes tests (again labelled Bayes]1)
continue to have as much as 30% better power in Table 2 and 25-30% better
power in Table 3 than the IPS test and as much as 70-80% better power than
LL in either table when K is small, while having nearly identical power to the
IPS test when K is close to N. And forms of the Bayes tests (again labelled
Bayes2) continue to have up to 70% better power in Table 2 and 50% better
power in Table 3 than the Bonferroni test when K = N, while having nearly
identical power for smaller K.

These results argue that Bayes tests can be a feasible and attractive alter-
native to the existing tests. While existing tests may be simpler to calculate
and can (in the cases of the IPS and Bonferroni tests) be based on output
from standard statistical packages, Bayes tests offer a far wider range of flexi-
bility concerning where power is to be concentrated, and can offer substantial
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increases in power against many ranges of the alternative set. While for com-
parability this paper has dealt only with the case in which initial observations
are treated as fixed, it is straightforward to extend most of the results to
other assumptions concerning the initial observation, for instance that of El-
liot, Rothenberg, and Stock (1996), and one would expect increases in power
similar to those they report for the univariate case when their assumptions are
met by all groups within the panel .

7 Appendix-Proofs

Proof of Theorem 2: By Wald (1950) Theorem 18, the closure (in the regular
sense) of set of all Bayes solution in the strict sense with respect to a discrete
probability measure 7 over the parameter space © is essentially complete. In
the current framework, Wald’s definition of regular convergence corresponds
to weak™® convergence, therefore by Lemma 2 we must show that the set tests
that are nonincreasing, quasiconvex functions of the sufficient statistics are
closed in the sense of weak™ convergence.

Let ® be the set of nonempty, closed, convex subsets of R?Y. If V is a
convex cone then let ®(V') be the elements of ® such that if C' € & and ¢y is a
boundary point of C' then V' C C' — ¢y. A test 7 is said to have an acceptance
region C' if 7 = 0 on the interior of C and 7 = 1 on the complement of
C. Let D(V) be the set of tests which have acceptance regions C such that
C € ®(V), where 7 = 1 is taken to be an element of D(V). Consider a
sequence of tests {7;}, 7, € D(V). The set D(V) meets the conditions under
which Eaton (1970) and Matthes and Truax (1967) prove closure in the sense
of weak™ convergence, so that any limit point 7 must itself be an element of
D(V). By Lemma 2 each Bayes solution in the strict sense with respect to
discrete support has an acceptance set of the form C' = {s | 7(s) < 7(#°)}.
The proof of Lemma 2 implies that C' € ®(R?"), so that Bayes solutions in the
strict sense with respect to a discrete support is an element of D(RiN ). Each
element of D(RiN ) will be a nonincreasing and quasiconvex function of the
sufficient statistics, and therefore since this set is closed in the sense of weak™
convergence each limit point will have the same property. Absolute continuity
of the probability measure p(-) allows us to restrict attention to nonrandomized
tests, i.e. the set of 7 € D(R2Y) for which there is a C' € ®(R?N) and 7 =0
on the interior of C', 7 = 1 everywhere else. QED.

Proof of Theorem 3: Since p(y; 6) is absolutely continuous with respect to
Lebesgue measure, we can restrict ourselves to nonrandomized tests that are
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functions of the sufficient statistics. Without loss of generality let 7 be a test

with the form
T_{ 0 if 7(s) <ec

1 otherwise

for some critical value c. Assume that 7 is not almost everywhere equivalent
to a nonincreasing function of the sufficient statistics. Then by assumption
there exist measurable sets U C {s | 7(s) < ¢} and B C {s' | § > sV
s € U} such that BN {s | 7(s) < ¢} is of measure zero. By the absolute
continuity of p we can choose measurable subsets U’ C U and B’ C B such
that p(s € U’;0) = p(s € B’;0). But p(s € B';0) > p(s € U’;0) for all
0 € ©4, with strict inequality for at least one 6 € Oy, therefore the test with
acceptance region {B' U {s | 7(s) < ¢,s ¢ U'}} is uniformly better. QED.

Proof of Theorem 4: The conditions of Assumptions 1 and 2 are sufficient
2 .0
to ensure that if limy oo N 71%%2%» converges in probability to a constant
C > 0 under the null then the log-likelihood will have the form

log(p(y; 0)) = log(p(y; 9)) + % (0-0)

for 0 — 0 = O(Nfé), where 0 is the maximum likelihood estimate of . Since
this is a linear exponential family with univariate sufficient statistic é, there
is a uniformly most powerful test of hypotheses of the form 6 = 0 versus
alternatives 0 < 0 within an N 2 neighborhood of the null.

We need now only verify that limy .o NV 7182%%2&» converges in prob-
ability to some constant C' > 0. For fixed N, Assumption 1 implies that
U = > oo Yrer_i 1s invertible and that there is a nonsingular matrix W such
that Q. = WW’. Writing U(L) = ¥y + U, L + ¥yL%2 + - - and imposing the

constraint 0, = 0 for n = 1... N, equation (3) can be rewritten:
Aug = Ou; 1 + U (L)e;
Multiplying by W10 (L)"! and defining w, = W1 (L) 'y, we have
Awy = 0wy + &4

where g, = W le; is a sequence of independent N (0, ) variables. The likeli-
hood therefore takes the form

pl050) = hly) e (03 1| = 57 [ o)
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implying

0" log(p(y; 9)) S
Nt U = N DY Wl wp
(60) ; t

We can write N 10 wi jwi 1 = 3.0 | Xnn, Where xyn = N 137 w2,
and (xw1,.-.Xnn) is a set of IV independent random variables. Well known re-
sults (see for instance Fuller (1976)) imply that under the null £, XNn) =
ﬂ%) and V(XN | xwn) = w Since limy o0 V(X0 Xam) ™ 3 =0
Theorem 6.2 of Billingsley (1986) estabhshes that Y | xwn will converge in

probability to C' = E(X_, xyn) > 0. QED.

Proof of Theorem 5

Step (1): Deriving the conditional density.

If X is a square matrix, then let vec(X) vectorize the elements of X,
vecl(X) vectorize the elements of X below the diagonal, and let vecd(X)
vectorize the diagonal of X. Thus if

11 T12 T3
X =| 21 X2 To3
31 T3z T33

then
/
vec(X) = [3711 T12 X133 To1 Top Tz X31 T3z I33
/
U€Cl(X) = [,1721 31 ,1732}
/
U@Cd(X) = [,1711 X929 ,1733} .

Let Z' = [ Nz Z } and 3 = [ g 03 g } Define

[ vecd(Ayy')
| vecd(y 1)
Tl 1

B Juecd(092;1)
v(0,8) = _—lvecd(Qleg/)

2

' Uechqﬂgyhﬁyf }) '

ro= vec(y' %)
vecl(Ayy')
vecl(y ')
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—svech ([ iNB ] 0! [NIN -7 D

w(0,§) = —vec(0Q,13)
vecl(0Q,1)

—vec (09, 10")

Then

p(y;0,8) = c({)exp{—%vech(QQelQ’>/vech(MM’)}
Qe (0,5 + w0, 6)7)

Since (), is positive definite, the diagonal elements of Q_' must be strictly
positive, and therefore y(0,£) < 0 for all (0,¢) € © X =, v(6,€) = 0 if and only
if & = 0. Since the signs of the elements of 3 and the off-diagonal elements of
(). are unconstrained, the sign of any element of w(0,£) is unrestricted without
further assumptions.

Let S x R be the support of (s,7) and p(s;7,0,&) denote the probability
density of s conditional on r given parameter (0, ). By Lemma 2.8 of Lehmann
(1959) p(s;7,0,€) can be represented in the form

p(s;7,0,8) = . (0,8) exp {7(0,8) s} p(s;7,0,&0)

where in this instance

c.(6,8) = [/s exp {7(0,£) s} p(s;7,0,&)ds

and straightforward calculations shows that ¢,(0,£) > 0, ¢.(0,&) = 1.
Step (2): Establishing a counterpart to Lemma 1.
Suppose that the conditional density of s given » € B C R has the form

plsir € B,0,€) = (B, 0,8) exp {7(0,&)'s} (s € B0, &)

where ¢(B, 0,£) > 0 and the measure p(s; 7 € B, 0, &) is absolutely continuous.
(Note that p(s;r,0,€) has this form.)

Pick J = Jy + J; discrete elements of © x = and let 7 be a probability
measure over these points, 7(67,£7) representing the probability of (67,£%) €
OxZ,7=0...J, where ## =0for 1 <j< Jyand ¢ € ©, for J, < j < J.
By the Neyman-Pearson lemma and the absolute continuity of p, 7 is a Bayes

-1

solution relative to 7 if it is a.e. equivalent to

J . . J . .
0 if zoju(s;TEB,QJ,SJ)?T(@J,SJ)> > ul(s;r e B 67, &)m(07,87)
T = = j=Tot1
1 otherwise
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Define A(s; B,0,&) = w(0,£)¢(B,0,€) exp(v(6,£)'s) > 0. From the expres-
sion for p(s;r € B,0,£), T is equivalent to

J o
0 if > Xs;B,#,8)<c
T = j=Jo+1
1 otherwise

J . ,
where ¢ = ZO: ¢(B,0,8)m(0,£7) is a positive constant. Defining 7(s; B) =
=1

J o
> A(s; B, 67 ,£7), we can see that 7 is analytic and that

j=Jo+1
Do = 3 As B ENn,&) <0
j=Jo+1
Dir = 3 NwB.LONEOn0.) 20
j=Jo+1

which implies that 7(s; B) is nonincreasing and convex function of the sufficient
statistic s. Given density p and any B C R the arguments of Theorems 2 and
3 can be applied to the set of tests conditioned on the event r € B.

Step (3): Establishing the measurability of the proposed test statistic.

This step follows an argument in Matthes and Truax (1966). Partition R
into a countable number of Borel sets, let B,, be the o-field generated by this
partition, and let F, be the associated o-field in S x R. Take a sequence of
such partitions and o-fields, each a refinement of the previous one, such that
the smallest o-field B, (Fi) containing them is the class of all Borel sets in R
(S x R). In terms of F), define (up to a constant of integration) the conditional
density

pn(s;7,0,8) = exp(y(0,£) s)p(s;r € B,0,&)

if 7 is in an atom B of B,. Let 7(s,7) be any test of the null hypothesis
{(6,&) € © x Z| 8 = 0}. Define the sequence of tests

mlsr) = [ (s r)p(ri0,&)dr
rcB
= Elr(s,r) | Fy,s]
if r i1s an atom B of B,,.
For each atom B of B,, we can use step 2 to prove the existence of a non-

randomized test 7/ (s, B) that is a non-increasing and quasiconvex function
of s such that 7 is uniformly as good as 7,, and if 7, is increasing then 7,
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is uniformly better with respect to p,. Since there are a denumerable set of
atoms in B, the resulting function 7/ (s,7) = 7),(s, B) if r € B is a test. Since
7/ can be chosen to have the same size as 7, we have just established that

[ s7) = 7l 0)] exp(r(0, ) hua(s57,0,€0)ds 20 (14)

with equality for all § € Oy and strict inequality for at least one § € Oy if
T is increasing in s conditional on r. The argument of Matthes and Truax’s
Theorem 3.1 establishes that

[ 77 exp((0.) s)pun(5i7,0, &0)ds — [ (5.7 exp(y(0. ) s)p(s: 7. 0, &o)ds

Application of the martingale convergence theorem implies that

[ 75, exp((0,) s)pn(si7,0,€0)ds — [ (s, 1) exp(3(6. ) s)p(si 7.0, &0)ds

Theorem 4.2 of Rao (1962) implies that if 77 — 7’ then 7/ must itself be
nonincreasing and quasiconvex in s for given r. Taking the limits of both sides
of (14) and multiplying both sides by the positive constant ¢, (6, ) establishes
for any test 7 the existence of a test 7/ which is a nonincreasing and quasiconvex
function of s conditional on r such that

/ST’(S,T)p(s;T,Q,S)dsZ /ST(S,T)p(s;T,Q,S)ds (15)

with equality for all (0,£) € 0 x = and strict inequality for at least one (0,€) €
(©\0) x Zif 7 is increasing in s conditional on r. Since (15) represents the
conditional power of the two tests, the claim of the theorem is established.

QED.

Prelude to the proof of Theorem 7: Stacking across ¢t = 1...7T for some
group n gives

Ay = Oy + (DZ0 = 02, ) G+ 2un + 0

where under the conditions of Theorem 6 Z, = [Znt)t—1.7, 2n = [DYnt—1-+- A
Ynt—ple—1..7, and e, = [en)i—1..7 are T'x D, T x P and T x 1 matrices respec-
tively; Z,. € {{0},{1},{1,¢}}; ene ~ N (0,02) is independent across n and t;
and 3, = [ &npl' is a P X 1 vector.

Define the 1" x T matrices Q, = 2,(2,2,) Z.

n?

Mn:]—Qn, and M, =
M, — Mz, (z;ann>i z;Mn All three matrices are symmetric, idempotent,
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positive semidefinite. Since AZ, and Z,_ both lie in the space spanned by Z,
we have

The proof will frequently employ the Beveridge-Nelson decomposition under
the null hypothesis

o My, = Y (V)M Hep + M, u, (16)
where 1, (1) = 32320 ¥nj, €n = [Ent]t=1..7, the e are i.i.d. standard normal
variables, Un— = [Nnt—1 — Nnolt=1..75 M = D50 Wng€t—js Ygeo | Onj |= 25207 |
Yn; |, and

o1 1 -+ 17
oo 1 ---1
[T )
0 0 O 1

L0 0 0 ]

The proof of Theorem 7 will employ the following lemmas

Lemma 8 Lel ¢ = [g...5] be a vector of k ii.d. N(0,1) variables. If A

s a k X k nonstochastic, real symmetric and positive semidefinite matric then
!

B (& A2)T < 328 [tr(A))".

Proof: Since A is real symmetric, A = SDS’ where S and D are k X k
matrices S’S = I, and D is a diagonal matrix whose diagonal elements are the
eigenvalues of A. If ¢ ~ N(0, [;) then S’ ~ N(0, I;) since S is orthogonal.
Therefore

A= b€l
=1
where the ¢; are i.i.d. N(0,1) variables, the §; are the nonzero eigenvalues of

A, and r = rank(A). By independence and the formula for the moments of a
standard normal variable

pewee 2w 2o Qe (20
1 2 r -
20 (qq!) 22 (qo!) 29 (g!)
o (24
— 29(qg!)
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ifg=qg+q¢+---+¢q. If6 >0fori=1...r then by expanding terms in
the polynomial (¢ Ag)? this implies
s (3%

since tr(A) = Y7, 6; this completes the proof. QED.

E (£ Ag)?

Lemma 9 The following moment bounds hold under the null hypothesis, where
T=1...00,0<¢g<o00,0<v<o00:

(2) B (T2 (1)), H' M, H=, ) < 28111 — 5] 4, (1)1,

(b) B (T 2w, My, )" < 28 (£)" [s52,02,]"

24(q)

(¢) fir isa T x 1 column vector of ones, then

E | T (1), H' Myu, |7< 280 11(1 — —)r (T) [z;ooam] (1)

(d) E(T 0, Ay My Ayn) ' < qrgpgay for T—P—2> 2.

(e) If Q, = M, 2, (z;]\_fnzn>7 2! M,,, then
E | T ' (1)el, HQuen |'< (T, )t (1)"

g
o 2
2
Z Q5
=0

E | T, Qnen [7< cea(T, q)

where c.1 (T, q) is O(1) and c.o(T, q) is O(T ™ 2).
(f) If P =1 then

E(T o, %2, M,2,) 9 < (r)” for T'— D > 2q
noinMnin) DS e Ty )
_ _ 29(2q!
E(T 2 722,/ MnHH/MnZn>q < ( q)wn(l)Qq,yO

(¢)

where Y0 = limy o Var(Ay,.).

Proof of (a): Since
g H'He, =& HQ,He, +< HM_ Hes,
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the following bound
0 < (=, H'N, Hey )" < (<), H' He,)!
holds for ¢ > 0. T 2%¢ H'He, is a quadratic form in independent standard

normal variables and T 2H’H is positive definite, tr(T ?2H'H) = %(1 — %),
therefore by Lemma 8

P q 2¢) 1 1.7
E@j%HH%><;égbﬂ—ﬁ]<m

for T'=1...00, 0 < ¢ < c0. Since | ¢¥,(1) |< co we have the stated result.
Note for later reference that the expression holds with equality for ¢ = 1.
Proof of (b): This can be established using the same method as in (a) since

T~2u/, u, can be written as a positive semidefinite form in i.i.d. N(0,1) vari-

2

ables, the sum of the eigenvalues of the quadratic form bounded by % 2520 Qs

which is finite by the absolute summability of the a,;.
Proof of (¢): By Holder’s inequality

B | T (V) H My, <
[E (Tﬁan(l)Q‘S;H,MnHé‘n>q B (T72u/ Wi Un,>q}%

and the bound follows from (a),(b).
Proof of (d): Under the null 0,2 A y, M, Ay, = & M,s. Since M, is

idempotent

r
EMue=> €
=1

where r = rank(M,), T > r >T — P — 2, and the ¢; are independent N(0,1)
variables. Obviously

r —q T-P-2 \ ¢
b (Tl 26?) < kK (Tl Z ef)

Using the density for a x? variable

(54) e

=1

for k > 2¢. Combining gives the stated result.
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Proof of (e): Since ¢, H'Qnen, = <, (W) £, One can write

r
e H'Quen = 667
i1

where ¢; are ii.d. N(0,1) variables, the §; are the nonzero eigenvalues of
(@%ﬁ) and r is its rank. If the §; are arranged in ascending order then

by Fan and Hoffman (1955) | §; |< (ui)%, where the p; are the eigenvalues of
(Q.H'HQ),), also placed in ascending order. By the Poincaré Separation The-
orem there are P nonzero eigenvalues of (Q,H'HQ,) and A\; < p; < Ap_pyy,
i = 1... P, where the \; are the eigenvalues of H'H. But the eigenvalues of
H'H are all positive and the largest eigenvalue is less than T2. Therefore

P
| T H'Qren |< Zef
i—1
and the first bound follows from Lemma 8. The second bound can be estab-
lished with the same method.
Proof of (f): Writing 0,12, = Bpen, where B, is a T' x T matrix,

[0 1 B, - B2
00 1 ... g3
P :
00 0 . 1
(00 0 0 |

the _ﬁrst bound can be established as in Lemma 9(d) once it is noted that
B M, B,, has T'— D nonzero eigenvalues, the smallest nonzero eigenvalue being
bounded from below by i for any value of 3, or T'.
Writing
T 20,22 My HH' N2, = &, (T By, M, HH' M, By) <.
By the Poincare Separation Theorem
tr(T 2B, M, HH' M, B,) < tr(I'" 2B, HH'B,)
where
tr(T>B, HH'B,,) < 40,(1)* 0.

Lemma 7 then establishes the second bound.

QED.
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Lemma 10 If (Z;";Oj | Y ]) is finite for each n and
N 00 2
() N (D7 g |
n=1 \j=0
N 00 4
(i) N2 (Z] | %n; !)
n=1 \j=0
for0 <k <1, then
plim(N 1T QZU”L M,yn-) = plim(N T~ 220 Yo M Yn-)
1 1
=— lim N~ an

N—oo

Proof: Using (16)

WY Moy, =
2

Q>

" [1/%( Vel H' M, He,, + 20, (1)el, H' M, uy + 1l M, u,
Applying Billingsley’s (1986; Theorem 6.2) weak law of large numbers for
triangular arrays term by term.

_9 2
< N~ QZE <T 20n "y, (1)25;H’Mnﬂgn>

n=1 Tn

N2 Z ¥n(1)"

using independence across groups, Lemma 9(a), 8(d) and Hoélder’s inequality,
which implies that

1
2

2
E <T 20—%( 1) g;H’Mann> <

B (%)4 E (T2¢n(1)%;H’MnH5n)1
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Using the fact that 33200k, < X207 | ¥ns | (obviously 4, (1) < X247 |
Yn; |), the same steps imply

N & 2 N 00
Var( 1T22 5H’Mun><0 Z ijnj!
7=0

13

N 00
Var( 1T22 ul, Mun><0 Z Zj’wnj’

From these expressions it is immediate that for each term Var (-) — 0 as
N, T — oo under the conditions of the lemma.
By Lemma 9(a)-(d)

3

( 1T2§:A2 5H’Mun><0 3 IZ[ZN%’]

N =

n=1 | 5=0

n n=1 |5=0

From these expressions it is immediate that for each term F (1) — 0 as N,T —
oo under the conditions of the lemma. By Billingsley’s weak law of large
numbers this implies that

plim(N~1T™ 225 Yy M) =
N, T—o00 n

. 12 Un 2 ¥
lim E(N T ;ﬁwn(l) 5;H’MnH5n>

_ 2
Since it has been established that limy .o F (T 29”—1/%( ) 5%H’MnH<€n> is
finite then by Theorem 4.52. of Chung (1974)

—2 A2
. 290 2 1 I W _ . —20n 2 1 I W
%EI;OE (T g p—l (1)’ H MnH5n> =F (%EI;OT 0;21/)71(1) e H MnH5n>
and this establishes that
- 1
. —1rp—2 _ = 1
N}%IEOOE< T zg v y) L v nzl%
The same steps obv1ous1y imply
- 1
. 1 2 1
plim(N 1T ZU Y- Myyn-) = 5 lim N an

QED.

39



Lemma 11 If in addition to the conditions of Lemma 10, % — 0 then

N
plim(NféTf1 > (6;2 — 0;2> Y, M,e,) =0

n=1

Proof: Using (16)

((3;2 — 0;2> Y M e, = (iiz — 1) (%(1)5;}]’1\_4“5“ + uLMngn>

n

where i1 is a T" X 1 column vector of ones. Expanding I (%‘E—z — 1>q and using

the proof of Lemma 9(d), it is straightforward to show

5,2 \° 00\
E (L — 1) < max F l(— — 1) | rank(z,) = l{:] =7(T'q) <o

0,2 0<k<P+2 g2

for T — P — 2 > 2q and that v(T,q) = O(T!). Tt is also easily shown that
2q
-1 TR Y 2q

E (Tﬁlu;,Mn€n> S 622 T q (Zj ’ 7‘/}”.7 ’)

where c91(T, q), and c92(T, q) are bounded.
By independence across groups and Holder’s inequality

N /a2
Var (]\T%T1 Z (% — 1) %(1)5;}[’1%571) <
%

n=1 n

G2 4
55 )

= % 12(2]’1/)71] ’)

1
2

[E (T1¢n(1)g;H’Mngn)4]

N

N

n=1

1
2

In the same way

N /~-2 N [
n=1 \j=0

n=1 Un
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For both terms under the stated conditions Var (-) — 0 for N, T — oco.
In the same way

E|N- 2le<0

2

N
1) U (1)l H' Mz, <O(T T3 )N~ 3 (Z] | Ynj ’)
1

n=

_ (%)é {0(1)N1 i (;)J | g !)}

n

n=1
~_9 B N % N 00 %
BN TS (2521l e = () 0N 3 (5]
n n=1 \j=0

The expression in brackets are finite for all /V,T" establishing that

N
E (N%Tl > (6.2~ 0,7 y;Mnen> —0
n=1
if % — 0. QED
Proof of Theorem 7:
Step 1: Known nuisance parameters.
Consistent with the treatment of y; as fixed for ¢ < 1, define the maximal

invariant (for large 7') with respect to location, Myy,. If B, and o, (n =
1...N) are known, the log-likelihood for € is (ignoring constants)

N / — — — —
10 = ~33 (M) (AL (Fhe)
= _% nivjl o2 (Ayn — Oy, — znﬂn>/ M, (Ayn — Oy, — znﬂn>

and the maximum likelihood estimate is

i T 0. (D = fh) My
Zflv 105 yn*Mnyn*

therefore
£(d0) = £0) + 92(20 i

The proof of Theorem 4 demonstrates that the relevant neighborhood of the
null hypothesis 6 = 0 is O(Nf%Tfl). Writing

1 ~ —
g(N%Teo>=€<0>+5(N%T90)2< N 220 oM y)
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The claim will be established as in Theorem 3 for (3, and ¢, known if
plim(N ITQZU v, My, )=C

where (' is some positive, finite constant, but this is established in Lemma 10.
Step 2: Unknown nuisance parameters.
If 8, and 0, (n =1...N) are unknown then the theorem will be established

if there is an invariant statistic 6, such that
NT (0. — 00) = 0,(1) (17)

Define

= (Z Gy Y _nyn> (Z T VA VA yn>

where

=T Ay M, Ay,.
The statistic 0, is invariant to 3 since it can be written in terms of the invariant

. . w _ o0 . 2 _ o) . 4
statistic Mg, TNV SSN | (S50 [ Wn |) < 00, N7252N 1 (504 | s |)
0 then Lemma 10 establishes that

plim< N 226 2yl nyn> :plim< N 220 _nyn> .
Under the null
fo 2yl M, Ay, = fo 2yl Mye, — fo 2yl Quen

If in addition to the conditions of Lemma 10, % — ( then Lemma 11 establishes
that

N
plim (N%Tl S 62y Mnen> = plim (N%Tl S oy Mnen> :

n=1 n=1

and a proof similar to the one found in Lemma 9 can easily establish

N
plim <N%T1 > (6;2 — 052) yLQnen> =0

n=1
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The proof is therefore concluded if NV —3-l SN 0% Qnen converges weakly
to zero. Using (16)

U;Qy;h@nen = %(U%H/Qnﬁn + u;,angnu

Lemma 9(e) establishes that

N N 00
Vcw(NféTf1 Z Uy, Qnen) < O(Tfl)Nfl Z (Zﬂ | Ynj ’)
n—1 =0

n=1

(%) O(WN ! i (iy [ s r) 5

N
BN Y, Quen) |

n=1

IA

therefore under the conditions of Lemma 11 plim(u],_Q,c,) = 0. Lemma 9(e)
is not strong enough to establish plim (T~ 14, (1)e), H'Q,z,) = 0, however this
can be established for P = 1.

If P =1 then Tf%é:;lH’Qngn = 6¢? where § is the single nonzero eigen-
$ 10 1Qull )

value of (TW Using the Poincare Separation Theorem | ¢ |<

p(T Y H Mz, (2, Myz,)~ 25 My, H), where pu( A) represents the maximum eigen-
value of matrix A. But if rank(z,) = 1 then

(T H Mz (2 Mpzn) 2 My H) = (T o, %2, Myzn) (T 20, %2, M, HH' M, z,).

This expression in conjunction with Lemma 9(f) and Hdélder’s inequality im-
plies

B | T34 (L)=, H Quzn 'S T, q)ibn(1) 0
where ¢(T',q) = O(1) for ¢ < co. Therefore

N
Vcw"(]\f*%T*1 Z Un(1)er, H' Qnen) <

n=1

N
BN 3IT 'Y (1) H'Quen) | <
n=1

el

(00N 3 40) 0]

1

N\ 2
7)

S

N 1
fomn S uh)
n=1

and plim(T 4, (1)e), H' Qney) = 0 if
N N 5
N72 Z ,L/}n(l)47n0 < 00, Nil Z 1/%(1)2%30 <00
n=1 n=1
and % — 0. QED.
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8 Appendix-Details of Monte Carlo Experiments

All reported Monte Carlo exercises were based on twenty thousand indepen-
dent replications for each point of the power functions. All data were generated
from AR(1) models with standard normal disturbances, where initial values 7o
(‘and y_ for Tables 1-3, where higher order AR models were estimated) were
fixed at 0 and no deterministic components were present (although determin-
istic components were estimated in Tables 2 and 3) . For Figure 6 random
normal disturbances were generated using the GAUSS “rndn” function and
adjusted to have covariance matrix ) = Iy + iy éy. In all other exercises i.i.d
disturbances were generated using the MATLAB “randn” routine. All power
calculations used size-adjusted critical values so that reported powers are for
tests with exact 5% size.

The parameters of Bayes tests that are not fully described in the text are:

Figure 5, top left panel:f = (0,—.015), 7(6) = (0, 1).

Figure 5, top right panel:d = (0, —.015 — .24), 7(0) = (.2,.78,.02).

Figure 5, middle left panel: § = (0,—.23), 7(0) = (1,0).

Figure 5, middle right panel:

0 = (0,—.075 — .15 — .24), w(0) = (.82,.07,.04, .07).

Figure 5, bottom panel: § = (0, —.015—.075—.18), 7(¢) = (.7,.28,.016,.004).

Table 1, Bayesl: Same as Figure 5, bottom panel

Table 1, Bayes2:

6 =(0,—.015,—.3,—.45,—.6,—.75), 7(¢) = (.31,.11,.15,.08, .33,.02).

(This is similar in power to the test in Figure 5, middle right panel, however
it does a bit less well against heterogeneous alternatives for small N, and better
for homogeneous alternatives.)

Because the inclusion of a constant or a constant and time trend affects
the overall shape of the power envelope, Bayes tests need to be adjusted to
place weight on alternatives further away from the null to keep good power.
The tests used in Tables 2 and 3 were:

Table 2, Bayesl:

6 =(0,—.13,—.25,—.5,—.55 —.65), w(6) = (.19,.15,.16,0.21, .14, .15).

Table 2, Bayes2:

0 =(0,—.2,—.45,—.85,—.95), m(A) = (.21,.01,0.09,0.17,0.52).

Table 3, Bayesl:

6 = (0,—.125,—.35,—.45, —.5,—.85), w(0) = (.04, .06, .07, .21, .35, .27).

Table 3, Bayes2:

6 =(0,—.035,—.5,—.6,—.9,—1), 7(6) = (.125,.05,.165, .2,.29, .17).
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Table 1 (Zp: = 0) B
Size Adjusted Powers for N Groups, K of which have 8§ = 8 (5% size)

0= —.05 0= —.10
N=5 N=10 N=15 N=20 N=25 N=5 N=10 N=15 N=20 N=25
LL K=1 0.11 0.08 0.07 0.07 0.06 0.12 0.09 0.08 0.07 0.07
3 041 0.19 0.16 0.13 0.11 0.48 0.22 0.16 0.14 0.13
5 1.00 0.41 0.28 0.22 0.18 1.00 0.46 0.32 0.24 0.21
10 1.00 0.77 0.59 0.47 1.00 0.82 0.64 0.53
15 . 1.00 0.93 0.82 . 1.00 0.95 0.86
20 1.00 0.98 1.00 0.99
25 . . . . 1.00 . . . 1.00
IPS-ADF  K=1 0.13 0.10 0.10 0.08 0.08 0.22 0.15 0.13 0.11 0.10
3 055 0.33 0.26 0.21 0.19 0.89 0.60 0.44 0.37 0.31
5  0.98 0.69 0.53 0.42 0.36 1.00 0.96 0.83 0.72 0.62
10 . 1.00 0.99 0.93 0.86 . 1.00 1.00 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00
25 . . . . 1.00 . . . 1.00
Bayesl K=1 0.13 0.10 0.09 0.08 0.08 0.23 0.17 0.14 0.12 0.12
3 0.54 0.32 0.24 0.20 0.17 0.85 0.59 0.47 0.38 0.34
5  0.99 0.67 0.50 0.40 0.33 1.00 0.95 0.83 0.72 0.64
10 1.00 0.99 0.92 0.84 1.00 1.00 1.00 0.99
15 1.00 1.00 1.00 1.00 1.00 1.00
20 . 1.00 1.00 . 1.00 1.00
25 . . . . 1.00 . . . 1.00
Bonferoni ~ K=1 0.11 0.08 0.07 0.07 0.06 0.32 0.21 0.17 0.15 0.12
3 0.23 0.14 0.11 0.10 0.09 0.65 0.45 0.36 0.30 0.26
5  0.33 0.20 0.15 0.13 0.11 0.82 0.61 0.51 0.43 0.39
10 0.33 0.24 0.20 0.17 0.84 0.74 0.66 0.60
15 . 0.33 0.26 0.23 . 0.87 0.79 0.73
20 0.32 0.28 0.88 0.83
25 . . . . 0.33 . . 0.89
Bayes2 K=1 0.12 0.09 0.07 0.08 0.08 0.28 0.21 0.18 0.15 0.14
3 0.39 0.18 0.13 0.13 0.12 0.76 0.52 0.44 0.37 0.33
5  0.95 0.34 0.22 0.21 0.18 1.00 0.80 0.67 0.59 0.54
10 . 0.99 0.58 0.47 0.40 . 1.00 0.98 0.93 0.89
15 1.00 0.88 0.72 1.00 1.00 0.99
20 1.00 0.98 1.00 1.00
25 . 1.00 1.00
0= —.20 0= —.40
LL K=1 0.13 0.09 0.09 0.07 0.06 0.13 0.09 0.08 0.07 0.07
3 051 0.25 0.18 0.14 0.13 0.53 0.25 0.18 0.14 0.12
5 1.00 0.50 0.34 0.25 0.21 1.00 0.52 0.33 0.26 0.22
10 1.00 0.85 0.67 0.55 1.00 0.85 0.68 0.57
15 1.00 0.96 0.88 1.00 0.97 0.89
20 . 1.00 0.99 1.00 0.99
25 . . . . 1.00 . . 1.00
IPS-ADF  K=1 0.37 0.22 0.18 0.15 0.14 0.60 0.37 0.28 0.23 0.20
3 1.00 0.87 0.72 0.61 0.53 1.00 0.99 0.95 0.88 0.81
5 1.00 1.00 0.99 0.95 0.89 1.00 1.00 1.00 1.00 0.99
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 . 1.00 1.00 1.00 . 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00
25 . . . . 1.00 . . . 1.00
Bayesl K=1 0.57 0.43 0.36 0.31 0.28 0.98 0.94 0.89 0.83 0.78
3 1.00 0.96 0.91 0.86 0.81 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00
10 . 1.00 1.00 1.00 1.00 . 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00
25 . . . . 1.00 . 1.00
Bonferoni ~ K=1 0.86 0.72 0.64 0.57 0.54 1.00 1.00 1.00 0.99 0.99
3 1.00 0.97 0.95 0.91 0.89 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 0.99 0.98 0.97 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
20 . 1.00 1.00 1.00 1.00
25 . . . . 1.00 . 1.00
Bayes2 K=1 0.80 0.71 0.64 0.57 0.53 1.00 1.00 1.00 0.99 0.99
3 1.00 0.99 0.97 0.96 0.95 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 . 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00
25 1.00 1.00
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Table 2 (Zp: = 1) B
Size Adjusted Powers for N Groups, K of which have 8§ = 0 (5% size)

0= —.05 0= —.10
N=5 N=10 N=15 N=20 N=25 N=5 N=10 N=15 N=20 N=25
LL K=1 0.07 0.06 0.06 0.06 0.06 0.09 0.07 0.06 0.06 0.06
3 0.7 0.11 0.09 0.08 0.08 0.33 0.16 0.12 0.10 0.09
5  0.46 0.19 0.14 0.12 0.11 0.97 0.33 0.21 0.17 0.13
10 . 0.82 0.42 0.28 0.23 . 1.00 0.66 0.46 0.35
15 . . 0.95 0.62 0.46 . . 1.00 0.86 0.69
20 . . . 0.99 0.79 . . . 1.00 0.95
25 . . . . 1.00 . . . . 1.00
IPS-ADF  K=1 0.08 0.07 0.06 0.07 0.07 0.13 0.10 0.09 0.08 0.08
3 0.19 0.14 0.12 0.11 0.10 0.50 0.30 0.24 0.20 0.17
5  0.41 0.25 0.20 0.18 0.16 0.94 0.63 0.48 0.38 0.32
10 . 0.72 0.52 0.43 0.37 . 1.00 0.97 0.89 0.81
15 . . 0.88 0.75 0.66 . . 1.00 1.00 0.99
20 . . . 0.96 0.89 . . . 1.00 1.00
25 . . . . 0.98 . . . . 1.00
Bayesl K=1 0.09 0.08 0.07 0.07 0.07 0.15 0.11 0.11 0.10 0.09
3 0.23 0.17 0.13 0.13 0.11 0.63 0.42 0.33 0.28 0.24
5  0.46 0.31 0.23 0.21 0.18 0.95 0.79 0.66 0.55 0.47
10 . 0.73 0.58 0.51 0.42 . 1.00 0.99 0.98 0.95
15 . . 0.86 0.79 0.71 . . 1.00 1.00 1.00
20 . . . 0.94 0.90 . . . 1.00 1.00
25 . . . . 0.98 . . . . 1.00
Bonferoni ~ K=1 0.07 0.05 0.05 0.05 0.05 0.11 0.08 0.07 0.06 0.06
3 0.09 0.07 0.06 0.06 0.05 0.22 0.15 0.11 0.09 0.09
5  0.12 0.08 0.07 0.07 0.06 0.32 0.21 0.16 0.13 0.11
10 . 0.11 0.10 0.08 0.07 . 0.34 0.24 0.20 0.17
15 . . 0.12 0.10 0.09 . . 0.33 0.27 0.22
20 . . . 0.12 0.10 . . . 0.33 0.28
25 . . . . 0.11 . . . . 0.33
Bayes2 K=1 0.08 0.07 0.06 0.06 0.06 0.14 0.12 0.10 0.09 0.09
3 0.15 0.11 0.09 0.09 0.09 0.42 0.31 0.25 0.22 0.21
5  0.23 0.16 0.13 0.13 0.12 0.69 0.53 0.44 0.39 0.37
10 . 0.32 0.25 0.24 0.22 . 0.91 0.84 0.79 0.74
15 . . 0.41 0.38 0.35 . . 0.98 0.96 0.94
20 . . . 0.53 0.48 . . . 0.99 0.99
25 . 0.61 . 1.00
9= —.20 9= —.40
LL K=1 0.11 0.08 0.07 0.07 0.06 0.12 0.08 0.07 0.07 0.07
3 048 0.20 0.15 0.12 0.11 0.54 0.23 0.16 0.13 0.12
5 1.00 0.44 0.27 0.21 0.16 1.00 0.51 0.32 0.24 0.20
10 . 1.00 0.80 0.60 0.46 . 1.00 0.85 0.67 0.54
15 . . 1.00 0.95 0.83 . . 1.00 0.97 0.89
20 . . . 1.00 0.99 . . . 1.00 1.00
25 . . . . 1.00 . . . . 1.00
IPS-ADF  K=1 0.24 0.17 0.13 0.12 0.11 0.49 0.31 0.24 0.20 0.18
3 0.93 0.67 0.50 0.42 0.36 1.00 0.97 0.88 0.79 0.69
5 1.00 0.98 0.89 0.80 0.71 1.00 1.00 1.00 0.99 0.98
10 . 1.00 1.00 1.00 1.00 . 1.00 1.00 1.00 1.00
15 . . 1.00 1.00 1.00 . . 1.00 1.00 1.00
20 . . . 1.00 1.00 . . . 1.00 1.00
25 . . . . 1.00 . . . 1.00
Bayesl K=1 0.35 0.24 0.19 0.17 0.15 0.83 0.61 0.49 0.42 0.37
3 1.00 0.92 0.80 0.70 0.62 1.00 1.00 1.00 1.00 0.99
5 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 1.00 1.00
10 . 1.00 1.00 1.00 1.00 . 1.00 1.00 1.00 1.00
15 . . 1.00 1.00 1.00 1.00 1.00 1.00
20 . . . 1.00 1.00 1.00 1.00
25 . . . . 1.00 . . . . 1.00
Bonferoni ~ K=1 0.41 0.28 0.23 0.19 0.17 0.97 0.92 0.87 0.83 0.80
3 077 0.60 0.48 0.43 0.37 1.00 1.00 1.00 0.99 0.99
5  0.91 0.78 0.66 0.59 0.53 1.00 1.00 1.00 1.00 1.00
10 . 0.95 0.88 0.82 0.76 . 1.00 1.00 1.00 1.00
15 . . 0.96 0.92 0.88 1.00 1.00 1.00
20 . . . 0.97 0.94 1.00 1.00
25 . . . . 0.97 . . . . 1.00
Bayes2 K=1 0.48 0.35 0.32 0.28 0.24 0.97 0.94 0.90 0.85 0.81
3 0.97 0.91 0.86 0.80 0.75 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 0.99 0.98 0.97 1.00 1.00 1.00 1.00 1.00
10 . 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 . . 1.00 1.00 1.00 1.00 1.00 1.00
20 . . . 1.00 1.00 1.00 1.00
25 . . . . 1.00 1.00
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Table 3 (Znt = {1,t}) B
Size Adjusted Powers for N Groups, K of which have 8§ = 0 (5% size)

0= —.05 0= —.10
N=5 N=10 N=15 N=20 N=25 N=5 N=10 N=15 N=20 N=25
LL K=1 0.07 0.06 0.06 0.06 0.06 0.09 0.07 0.07 0.06 0.07
3 0.2 0.09 0.08 0.08 0.08 0.27 0.15 0.12 0.11 0.10
5  0.20 0.13 0.12 0.10 0.10 0.69 0.30 0.21 0.18 0.16
10 . 0.34 0.25 0.20 0.17 . 0.95 0.63 0.47 0.39
15 . . 0.49 0.36 0.29 . . 0.99 0.85 0.71
20 . . . 0.59 0.48 . . . 1.00 0.95
25 . . . . 0.69 . . . . 1.00
IPS-ADF  K=1 0.06 0.06 0.06 0.06 0.06 0.10 0.09 0.08 0.07 0.07
3 0.11 0.10 0.08 0.08 0.07 0.30 0.20 0.15 0.15 0.12
5  0.18 0.14 0.11 0.10 0.10 0.64 0.39 0.29 0.25 0.21
10 . 0.31 0.23 0.20 0.18 . 0.92 0.75 0.63 0.54
15 . . 0.41 0.33 0.29 . . 0.98 0.93 0.86
20 . . . 0.51 0.44 . . . 1.00 0.98
25 . . . . 0.60 . . . . 1.00
Bayesl K=1 0.06 0.06 0.06 0.06 0.06 0.11 0.09 0.08 0.08 0.07
3 0.11 0.09 0.09 0.08 0.08 0.31 0.21 0.17 0.15 0.14
5  0.19 0.13 0.12 0.11 0.10 0.61 0.40 0.31 0.27 0.23
10 . 0.30 0.24 0.21 0.19 . 0.90 0.77 0.66 0.57
15 . . 0.42 0.35 0.30 . . 0.98 0.93 0.88
20 . . . 0.53 0.45 . . . 1.00 0.99
25 . . . . 0.61 . . . . 1.00
Bonferoni ~ K=1 0.06 0.05 0.05 0.05 0.05 0.09 0.07 0.06 0.06 0.06
3 0.07 0.06 0.06 0.05 0.05 0.14 0.10 0.08 0.08 0.08
5  0.09 0.07 0.06 0.06 0.06 0.21 0.14 0.11 0.10 0.09
10 . 0.09 0.08 0.07 0.07 . 0.23 0.17 0.14 0.13
15 . . 0.09 0.08 0.07 . . 0.22 0.19 0.17
20 . . . 0.09 0.08 . . . 0.23 0.21
25 . . . . 0.09 . . . . 0.24
Bayes2 K=1 0.06 0.06 0.05 0.06 0.06 0.11 0.08 0.08 0.07 0.06
3 0.09 0.07 0.06 0.07 0.07 0.22 0.14 0.13 0.11 0.10
5  0.11 0.09 0.08 0.08 0.07 0.32 0.23 0.19 0.17 0.15
10 . 0.14 0.12 0.12 0.10 . 0.42 0.37 0.33 0.29
15 . . 0.15 0.15 0.13 . . 0.55 0.50 0.45
20 . . . 0.18 0.17 . . . 0.64 0.59
25 . 0.20 . 0.71
9= —.20 9= —.40
LL K=1 0.12 0.09 0.08 0.08 0.07 0.15 0.10 0.09 0.08 0.08
3 0.52 0.26 0.17 0.16 0.13 0.69 0.34 0.24 0.20 0.18
5 1.00 0.55 0.36 0.29 0.23 1.00 0.71 0.49 0.38 0.33
10 . 1.00 0.91 0.76 0.64 . 1.00 0.97 0.89 0.81
15 . . 1.00 0.99 0.94 . . 1.00 1.00 0.99
20 . . . 1.00 1.00 . . . 1.00 1.00
25 . . . . 1.00 . . . . 1.00
IPS-ADF  K=1 0.18 0.15 0.12 0.10 0.10 0.42 0.27 0.21 0.18 0.17
3 079 0.54 0.39 0.31 0.29 1.00 0.94 0.83 0.72 0.64
5 1.00 0.91 0.76 0.64 0.57 1.00 1.00 1.00 0.98 0.96
10 . 1.00 1.00 0.99 0.98 . 1.00 1.00 1.00 1.00
15 . . 1.00 1.00 1.00 . . 1.00 1.00 1.00
20 . . . 1.00 1.00 . . . 1.00 1.00
25 . . . . 1.00 . . . . 1.00
Bayesl K=1 0.25 0.17 0.14 0.13 0.11 0.68 0.46 0.34 0.29 0.24
3 0.84 0.62 0.50 0.42 0.37 1.00 1.00 0.98 0.95 0.90
5 1.00 0.94 0.84 0.76 0.68 1.00 1.00 1.00 1.00 1.00
10 . 1.00 1.00 1.00 0.99 . 1.00 1.00 1.00 1.00
15 . . 1.00 1.00 1.00 1.00 1.00 1.00
20 . . . 1.00 1.00 . 1.00 1.00
25 . . . . 1.00 . . . . 1.00
Bonferoni ~ K=1 0.25 0.18 0.14 0.12 0.11 0.85 0.76 0.69 0.65 0.61
3 0.53 0.38 0.30 0.26 0.23 1.00 0.98 0.96 0.95 0.93
5 071 0.53 0.43 0.37 0.34 1.00 1.00 1.00 0.99 0.99
10 . 0.78 0.65 0.59 0.54 . 1.00 1.00 1.00 1.00
15 . . 0.79 0.72 0.68 . 1.00 1.00 1.00
20 . . . 0.82 0.77 1.00 1.00
25 . . . . 0.84 . . . . 1.00
Bayes2 K=1 0.33 0.23 0.19 0.16 0.15 0.91 0.81 0.72 0.66 0.57
3 074 0.61 0.54 0.49 0.45 1.00 1.00 1.00 1.00 1.00
5  0.91 0.84 0.79 0.74 0.72 1.00 1.00 1.00 1.00 1.00
10 . 0.99 0.98 0.97 0.97 . 1.00 1.00 1.00 1.00
15 . . 1.00 1.00 1.00 1.00 1.00 1.00
20 . . . 1.00 1.00 1.00 1.00
25 . . . . 1.00 1.00
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Figure 3: Deviations of power functions of the Bonferroni, LL, and IPS tests
from symmetric power envelope for N = 2 (left panels) and N = 10 (right
panels).
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Figure 5

Comparison of Powers of Various Bayes Tests to IPS, LL, and Bon-

100, 5% Size

ferroni Tests (T

. N Groups, K of which have p < 1.)
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Figure 6: Comparison of Powers of LL, IPS and Bayes Tests when covarinace
matrix is nondiagonal (T=100, 5% Size. N Groups, K of which have p < 1.)
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