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1. Introduction.

One of the key assumptions of the standard linear instrumental variables (IV) model
is that the instruments and endogenous variables are correlated. This is the identifi-
cation assumption, without which the usual IV estimator is neither consistent nor as-
ymptotically normal. If the correlation between the instruments and the endogenous
variables is nonzero, but slight, then the conventional Gaussian asymptotic theory
for the IV model can nevertheless provide a very poor approximation to the actual
sampling distribution of estimators and test statistics. An enormous literature has
considered the exact sampling distribution of the two stage least squares (TSLS) and
limited information maximum likelihood (LIML) estimators in models with nonsto-
chastic instruments and Gaussian innovations (see, for example, Richardson (1968),
Sawa (1969), Phillips (1980, 1983), Nelson and Startz (1990a, 1990b), Maddala and
Jeong (1992) and Bound, Jaeger and Baker (1995)). These exact distributions are far
from the limits obtained from conventional asymptotic theory when the instruments
are weak; TSLS is severely biased in the direction of the probability limit of ordinary
least squares and the associated t-statistic is highly nonnormal and can even be bi-
modal. Recently, alternative asymptotic nestings have been proposed, which provide
much better approximations to the actual sampling distribution of estimators and
test statistics in the IV model. Bekker (1994) models the number of instruments as

being an increasing function of the sample size. Staiger and Stock (1997) model the



correlation between the instruments and endogenous variables as being local to zero.

Recognizing the identification assumption on which the IV model relies, it is
quite common in the applied literature to test for instrument relevance by a first-
stage F-test (Basmann (1960)). This involves running a regression of the endogenous
variables on the instruments and testing the null hypothesis of the joint insignificance
of the slope coefficients, by means of an F-test. The null hypothesis is one of a total
lack of identification. A rejection of this hypothesis by no means implies that issues
of weak instruments can be ignored (see, for example, Staiger and Stock (1997)). But
a failure to reject this hypothesis is a strong indication of identification difficulties.
The first-stage F-test is an important and useful diagnostic in the IV model.

The generalized method of moments (GMM) model (Hansen (1982)) nests the
linear IV model as a special case. It is not surprising that analogous issues arise in
this model. Many researchers have found that, in a wide variety of contexts, the con-
ventional Gaussian asymptotic theory provides a poor approximation to the sampling
distribution of GMM estimators and test statistics. There are many possible reasons
why this could happen, but they include identification problems (the identification
condition here requires a certain matrix to have full column rank). The identification
condition is crucial in the GMM model, just as it is in the linear IV special case. But I
am aware of no test of the identification condition in the GMM model, in the existing

literature. This paper proposes such a test. Essentially, it involves an application of



the general approach to testing the rank of a matrix proposed by Cragg and Donald
(1997), using a Bonferroni argument to eliminate a nuisance parameter that is not
consistently estimable. The proposed test is, in general, asymptotically conservative.

The first-stage F-test in the linear IV model tests the null hypothesis that all
of the instruments are uncorrelated with all of the endogenous regressors. In the
presence of multiple endogenous regressors, the linear IV model may still fail to be
fully identified even if this null hypothesis is false. Choi and Phillips (1992) discuss
this situation and call it partial identification. It could arise, for example, if only
one instrument is correlated with the endogenous variables. The first-stage F-test
will not detect this kind of identification problem; if the model is partially identified
then the first-stage F-test will reject with probability one asymptotically (Nelson
and Startz (1990b), Shea (1997)). Cragg and Donald (1993) propose a test of the
null of partial identification in the linear IV model which can detect this kind of

L. The test that I propose in the GMM framework reduces to

identification problem
Cragg and Donald’s test in the linear IV model. If the test that I propose in the

GMM framework is used to test the null of a complete lack of identification, then it

reduces to the usual first-stage F-test in the linear IV model. In the special case of

!Shea (1997) proposed a partial R-squared measure of instrument relevance in the linear TV
model with multiple regressors, likewise motivated by the fact that a high R-squared (or F-statistic)
in the first-stage regression does not imply that the model is fully identified. This measure does not
however allow any formal test to be conducted.



the linear IV model, the proposed test is no longer asymptotically conservative.

The plan for the remainder of this paper is as follows. Section 2 discusses
the GMM model, the consequences of identification problems and approaches for
conducting inference when identification cannot be assumed. Section 3 discusses
the proposed test for detecting underidentification. Section 4 contains Monte-Carlo
evidence on its performance in the context of GMM estimation of the consumption

capital asset pricing model (CAPM) of Lucas (1978). Section 5 concludes.

2. The GMM Model.

The GMM model specifies that {Y;}L | is an observed time series and 6 is a px1

parameter vector with a true value 6, in the interior of a compact space ©, such that

Ey(h(Yy,00)) =0 (2.1)

where h(.,.) is a G-dimensional function and F(.) denotes the expectation conditional
on any variable in the information set at time ¢t. Let Z; be a kx1 vector of instruments
in the information set at time t. It follows that E(¢(Y;,0)) = 0, where ¢(Y;,6) =
(Y, 0) ® Z;, a Gkx1 vector. It is assumed that Gk > p.

The GMM estimator of 6 is

f = argming S(6)



where

5(0) = ¢*(0) Wre™(0),

¢*(0) = [T~Y25L (Y3, 0)] and Wy is a symmetric positive definite GkxGk weighting
matrix which converges almost surely to a symmetric nonstochastic O(1) positive
definite matrix W.

From here until the start of subsection 2.1, I adopt all of the following standard

assumptions for the GMM model:

Assumption Al: ¢*(0) is twice continuously differentiable, for all § in ©.

Assumption A2: T 1ST  ¢(Y;,0) —4s E(¢(Y;,0)) and T”EL% s E[%]7
uniformly in 6.

Assumption A3: T1/25T  ¢(Y;,00) —a N(0, A), where A = E(¢(Y;,00)0(Yz,60)").
Assumption A4: The GKxp matrix B = E[%] has rank p.

Assumption A5: E(¢(Y;,0)) has a unique zero at 6 = 6.

Assumption A6: Vi(0) = T XL ¢(V;,0)p(Y;, 0) is a continuous function of § which

converges to E(¢(Y,0)¢(Y;,6)') uniformly in 6.

Assumptions A2 and A3 are high level convergence assumptions. Assumption A4 is
the identification assumption and is the focus of this paper. Assumption A5 is rules
out the possibility that 6 could be locally, but not globally identified (Hsiao (1983)).

Under these assumptions, 0 —p 0 and



~

VT (0 —0) —4 N(0,(B'WB)~"'\B'WAW B(B'WB)™")

The asymptotically efficient estimator is obtained by choosing a weighting matrix such
that W = A™!; the variance of this asymptotic distribution is then (B’A"1B)"!.

In practice, GMM inference requires a specific weighting matrix to be chosen.
One possible choice of the weighting matrix is the identity matrix. This objective

function is
Sos(0) = [T7*5L, (Y, 0)) [T/*5L (s, 0)]

Denote the resulting estimator by 905 = argming Spg(f). This estimator is not
asymptotically efficient. A feasible asymptotically efficient estimator can be obtained

by setting the weighting matrix equal to VT(@OS)*l, yielding the objective function
Srs(0) = [T71251,6(Y:, 0)[ Vi (Bos) M T~ V25L 1 ¢(V;,0)].

Denote the resulting estimator, called the two-step estimator, by Ors = arg ming Sts(0).
Another feasible asymptotically efficient estimator can be obtained by setting the

weighting matrix equal to Vr(6), yielding the objective function
Scu(0) = [T7V25L1 (Y2, 0))' Vi (0) T V251, (Y3, 0)).

Denote the resulting estimator, called the continuous-updating estimator, by @CU =

arg ming Scy(#). This estimator was proposed by Hansen, Heaton and Yaron (1996).



If Gk > p, then there are surplus instruments, which may be used to test the
restriction that E¢(Y;,0p) = 0. This may be done by Hansen’s J-test, the statistic
for which is Jrg = STS(@TS) or Joy = SCU(@CU), depending on whether the two-step
or continuous-updating estimator is used. Under the null, Jrs and Joy are both

asymptotically y? distributed on Gk — p degrees of freedom.

2.1 Problems with Standard Gaussian Asymptotics for GMM.
The above asymptotic theory often works poorly in practice. Often, in empirically
relevant sample sizes, éTS and @CU are biased and have sampling distributions far from
those predicted by this asymptotic theory, and the associated J-statistics have erratic
rejection rates. These problems have been documented in Monte-Carlo studies by
Tauchen (1986), Kocherlakota (1990) and by the papers in a 1996 special issue of the
Journal of Business and Fconomic Statistics on GMM estimation, including Hansen,
Heaton and Yaron (1996). Problems with the conventional asymptotic theory in the
GMM model could occur for a number of reasons. It could be that T—/2%T  ¢(Y;, 6o)
fails to converge to normality, or converges only very slowly. Alternatively, it could
be that F(4(Y;, 0)) is zero, or close to zero, even for 6 # 6.

The focus of this paper is on problems with the asymptotic theory underlying
GMM which arise from this latter source: an identification problem. Stock and
Wright (2000) proposed an alternative asymptotic nesting in which E(¢(Y;,0)) =

O(T~'/?), uniformly in #. They derive an alternative asymptotic theory which nests



the completely unidentified model (E(¢(Y;,0)) = 0, uniformly in #) as a special case.
This alternative asymptotic theory works much better than the conventional Gaussian
asymptotic theory in providing an approximation to the finite sample distributions
of GMM estimators and test statistics in the consumption CAPM, considered by
Tauchen (1986), Kocherlakota (1990) and Hansen, Heaton and Yaron (1996). So,
it can account for many of the puzzles found in Monte-Carlo studies of the GMM
method. In the linear IV model, it reduces to the nesting proposed by Staiger and

Stock (1997).

2.2 S-sets.

The weak identification problem in GMM may be effectively circumvented by the
use of S-sets, as proposed in Stock and Wright (2000). The approach dispenses with
point estimation and instead forms a confidence set for 6 directly from an objective
function, using a nonlinear analog of the Anderson-Rubin confidence set (Ander-
son and Rubin (1949), Staiger and Stock (1997))?. If assumption A3 holds, and if
Vr(6p) —p A, then the continuous-updating objective function evaluated at the true
parameter vector, S (o), converges to a x? distribution on GK degrees of freedom.
No identification assumption (assumption A4 or A5) is required for this to hold.

The confidence set for 6 is formed as the inverse of the acceptance region of this

2The ordinary Anderson-Rubin confidence set applies in the linear IV model. In this model,
other closely related confidence sets have been proposed, which are likewise robust to identification
problems (Zivot and Wang (1998)).



test, i.e. the confidence set of coverage 1-a is Sj(a) = {0 : Scv(0) < Fy2(o, GK)}
where F,2(a,b) is the 100a percentile of a x? distribution on b degrees of freedom.
In a completely unidentified model (E(¢(Y;,6)) = 0, uniformly in #) or a locally as-
ymptotically underidentified model (E(¢(Y;,6)) = O(T~'/2), uniformly in ), such a
confidence set will have infinite expected volume. But this is the correct statement
of our uncertainty about € in the presence of weak identification. More formally,
under these circumstances, any confidence set that is valid (i.e. controls coverage)
must have infinite expected volume (Dufour (1997)). In an identified model, the S-
set is asymptotically equivalent to the usual confidence ellipse, based on conventional

asymptotic theory.

2.3 Local Identification, Global Identification and Partial Identification.
Assumption A4, specifying that B is of rank p, is the local identification assumption
(Hsiao (1983)). It implies that E(¢(Y;,0)) has a zero at 6y, that is unique at least in a
neighborhood of 6. Assumption A5 is the global identification assumption. A model
could be locally identified without being globally identified. In this case, we would
expect S-sets to be disjoint, in large samples. However, henceforth in this paper, all
references to identification refer exclusively to local identification.

If B is of rank p, then 6 is completely identified. If B is of rank zero, then
6 is completely unidentified (or completely underidentified). The case in which B

has a nonzero rank, smaller than p, can be called partial identification (or partial



underidentification). Choi and Phillips (1992) discuss a linear IV model in which
some endogenous variables are correlated with the instruments, while others are not.
This results in partial identification. The parameters associated with the endogenous
variables which are uncorrelated with the instruments are not consistently estimable.
The remaining parameters are root-1" consistently estimable. What is less intuitive,
but also shown by Choi and Phillips is that these latter parameters do not have their
usual normal limiting distributions; their limiting distributions are affected by the
fact that other parameters are not consistently estimable. Stock and Wright (2000)
provide the limiting asymptotic distribution of the estimators in the GMM model,
in the presence of partial identification. In the standard consumption CAPM, a
canonical application of the GMM method, B is unlikely to have zero rank, but may
well have rank smaller than p (see Stock and Wright, and section 4 below). So partial

identification is an important issue in considering identification in the GMM model.

3. Detecting Underidentification.

The focus of this paper is on tests for detecting a lack of identification. In the
linear IV model, it is common to test for instrument relevance by a first-stage F-test
(Basmann (1960)). This involves running a regression of the endogenous variables
on the instruments and testing the null hypothesis of the joint insignificance of the
slope coefficients, by means of an F-test. The null hypothesis is one of a total lack

10



of identification. A rejection of this hypothesis by no means implies that issues of
weak instruments can be ignored. But a failure to reject this hypothesis is a strong
indication of identification difficulties. However, I know of no analogous test in the
GMM model. The paper provides such a test?.

The identification condition which I wish to test is assumption A4, that the ma-
trix B is of rank p. I shall do this by testing the null hypothesis of underidentification
(partial or complete): that p(B) = r, where the operator p(.) denotes the rank of its

argument and 7 < p. For this purpose, I define B (0) = Tflzlew and

C(6) = T-1SL, [vec(“80) — vec(B(6))] [oee(“20H2) — vec(B(6))]

and introduce three more possible assumptions:

Assumption Bl: TY2[vec(B(0y)) — vec(B)] —4 N(0,C) where C = E([vec(%0tle)
B)Y [vec(MgZ;(Q02 — B))]) is a finite positive-definite matrix of full rank*.
Assumption B2: C(6y) —, C.

Assumption B3: Vp(6p) —, A

3The S-set works regardless of whether the model is identified or not. However, a means of
detecting underidentification is still useful because (a) if the model is identified, consistent point
estimates of the parameters are available, (b) if the model is identified, confidence intervals for
individual parameters which do not need to be asymptotically conservative are available and (c) the
S-set is hard to represent when there are more than 2 parameters.

4The requirement that C be of full rank could be relaxed along the lines proposed by Robin and
Smith (2000).

11



Assumptions B1, B2 and B3 are high level convergence assumptions, as are assump-
tions A2 and A3 above. In specific models, more primitive conditions may be available
that in turn imply that these assumptions hold. Assumptions A3, B1, B2 and B3 all
apply only at 8 = 0,. Assumption B3 is a special case of assumption A6.

Let

A

L(0,7) = T minp.q[vec(B(0)) — vee(P)'C(0) vec(B(h)) — vec(P)]

where €(r) is the space of all Gkxp matrices of rank r. If 6y were known, L(6,,r)
would be the statistic for testing the rank of B, proposed by Cragg and Donald (1997).

My first theorem is a direct consequence of Theorem 1 of Cragg and Donald.

Theorem 1: Under assumptions Bl and B2, if B is in fact of rank r, then L(6o,r)

converges to a x? random variable on (Gk — r)(p — r) degrees of freedom.

Clearly 6, is not known and is not consistently estimable (under the null hypothesis).
However, under assumptions A3 and B3, S;(«) is a confidence set for § with asymp-
totic coverage 1 — a. My second theorem follows from this fact, Theorem 1 and the

Bonferroni inequality.

Theorem 2: Under assumptions A3, B1, B2 and B3, if B is in fact of rank r and

L*(r) = infggsg(a) L(6,r), then limp_,oc P(L*(r) < Fe(o, (GE —71)(p—1))) < 20

L*(r) is a feasible statistic which yields an asymptotically conservative test; the lim-
iting probability of incorrectly rejecting the null is bounded above by 2c.. This is the

12



test statistic proposed in this paper; the test rejects iff L*(r) exceeds the x? critical
value. If p(B) is in fact lower than the hypothesized rank r, I conjecture (follow-
ing Cragg and Donald) that the test will continue to be asymptotically conservative.
If p(B) is higher than the hypothesized rank r, the test will reject with probabil-
ity one, asymptotically. To detect identification difficulties, it is perhaps especially

appropriate to test the null that p(B) =p — 1.

3.1 Ezisting Identification Tests and the Linear IV Model.

Consider the simple linear IV model

ye =Bz +

/
l’t:HZt+Ut,

. . I . .o .
where u; is a scalar error term, v, is a px1 error term, (, = (u¢,v,)" is iid with mean

7

Oy VU
zero and finite positive-definite covariance matrix » = (partitioned

2’U’u/ 2’U’U

conformably with (,), z; is a px1 vector of endogenous variables, z; is a kx1 vector
of instruments that is uncorrelated with (,, £ > p and II is a kxp matrix. The
sample size is T. Also, assume that T'%T (¢, —, B, T2 jwaw, —, Q and
T-125T ¢, ® 2z —q N(0,2 ® Q), where Q = FE(zz,) is a finite positive-definite
matrix of full rank. Lastly, assume that ¥,, # 0, so that the regressors in this model

are endogenous. The identification condition® is that II is of rank p.

®The rank of B is the same as rank of II, because I have assumed that Q is of full rank and

13



This model is a special case of the GMM model®, with G =1, 0 = 3, Y, =
(ye,x,, 2,) s Zy = 2, h(Y:,0) = y; — By and ¢(Y;,0) = z,(y; — f'z;). Accordingly,
% — 2., which does not depend on the parameter vector. This represents an
extremely useful simplification, since it in turn means that L(6,r) does not depend
on 6 and has a x? null limiting distribution as specified in Theorem 1. There is
therefore no need to eliminate 6 by a Bonferroni argument as in Theorem 2; to do
so would simply halve the asymptotic size of the test’. Accordingly, in the linear
IV model, the proposed test is no longer asymptotically conservative and instead has
size that is equal to its nominal level, asymptotically. Let Z be the Txk matrix, the
tth row of which is z; and let X be the Txp matrix, the tth row of which is z;. Since
C = Var(vec(zv;)) = Sy ® Q, C can be set equal to 3y, ® Q, where Q = T-12'Z,
Sop = T7ISL 4y, By = 2y — 'z and [T = (Z'Z) "' Z'X is the estimate of IT from a

multivariate regression of x; on z;. So, the proposed test statistic can be written in

the form

L(r) = T min peo(r) [vec(T1Z'X) — Uec(P)]’[fJ;vl ® Qfl][vec(Tle’X) — vec(P)].

because E(dmsg,e ) = QII.  There is no loss of generality in assuming that @ is of full rank, since

the instruments can always be rotated so that they are mutually orthogonal.

6The two-step and continuous updating GMM estimators reduce to the usual TSLS and LIML
estimators, respectively.

"In the general GMM model, the gradient of the moment condition depends on the parameter
vector (which is not consistently estimable without complete identification), necessitating the elim-
ination of the nuisance parameter 6 by a Bonferroni argument. The linearity of the standard IV
model ensures that the gradient of the moment condition does not depend on 6 and so this difficulty
is circumvented.

14



Here, and for the remainder of this section, I drop the now-degenerate dependence of
this statistic on 6. In this specific model, there is a closed form expression® for L(r),

since

L(r) = T minpegp trX; (T 2/ X — PYQ™(T7'Z'X — P)]

— T QIS — PY(QUAIS, M2 - P)] = SI5

where )\; is the ith generalized eigenvalue of II'Z' Z11 with respect t0 Sy, arranged in
increasing order (A\; < Ay < ...\,). This is simply the test statistic which Cragg and
Donald (1993) proposed to test the hypothesis that the rank of IT is r, in the linear IV
model’. As discussed in the introduction, Cragg and Donald’s test has the advantage
over the usual first-stage F-test that it can detect partial underidentification, not
just complete underidentification. If the researcher wishes to test the hypothesis of
complete underidentification in the linear IV model, then the proposed test statistic,
L(0), is simply tr(3,MI'Z' Z11) = vec(I1)(X,} ® Z'Z)vec(II). This is just the usual

first-stage F-test statistic!’.

8The test statistic in Cragg and Donald (1997) always simplifies to a closed form expression (a
solution to an eigenvalue problem), whenever C' can be written in the form Hy ® Hy, where Hy and
Hs are GkxGk and pxp matrices, respectively. This was pointed out in footnote 4 of Cragg and
Donald.

9Tt is also the test statistic which Anderson (1951) proposed for testing the rank of a coefficient
matrix in a multivariate least squares regression (here a regression of x; on z;).

WFor p > 1, this is a multivariate F-statistic (Staiger and Stock (1997)).
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4. Monte-Carlo Results.

One leading application of the GMM method is to inference in the consumption
CAPM of Lucas (1978) with intertemporally separable constant relative risk aversion
(CRRA) preferences. In this section, I evaluate the size and power of the proposed

test in this model. The Euler equation in this model is as given in equation 2.1, with

(Y. 0) = §Ret (G2) 7" —ia

7

where Y; = (R %)’, 0 = (6,7), Rt = (Ry, Rot,...Rgt)' is a Gx1 vector of gross

t+10 ",

asset returns, C; is nonstoreable consumption, ig is a Gx1 vector of ones, ¢ is the
discount factor and ~ is the coefficient of relative risk aversion (Hansen and Singleton
(1982)). Let Dy, Py and vy denote the dividend, price and price-dividend ratio for

asset ¢ at date ¢, so that v; = % and R;; = %‘g;“%ﬂ. The ith element of the Euler

equation can be rewritten as

D; Cian._
v = E[6(1 + Uz't+1)D—t:1( gzl) 7]

(4.1)

Note that if (2i -4, Cg =13 is iid (independent of anything in the information set at

date t), then the price-dividend ratio for the ith asset is constant and is v} =

_ . . . v¥
—1] 1. The gross return on the ith asset is R;; = D—Dfﬁﬁ;.
it— i

e S <Ct+1> ]

In GMM estimation of this model, ¢(Y;,0) = (5Rt+1(

H)77 —ig) ® Z; and

b= ( B[(%52) " Ria ® Z)]) —E[8(%62) 7 log(52) Reyy © Z] )

Cy

16



Let the vector of instruments consist of an intercept, lagged returns and lagged con-
sumption growth, as is typical in this literature. It is hard to imagine a case in which
the matrix B would have rank zero'!. But, it is easy to imagine circumstances in
which it has rank 1, while the identification condition requires it to have rank 2. Sup-
pose that G = 1 and (D—g;t"—l, C—tc'i'—l)’ is iid and independent of Z;. Then (R, C—g't'—l)’
is independent of Z;, so B is a kx2 matrix of rank 1, because all of its rows are
proportional to the first row'?. Alternatively, suppose that consumption is constant.
Then (regardless of the number of assets G or the instruments Z;), all the elements
of the second column of B are equal to zero, and the matrix again has rank 1. While
consumption is clearly not literally constant, C—tc'i'—l is always very nearly 1 and this is,

intuitively, a likely source of the difficulty in estimating ~v. Assumptions A3, B1, B2

and B3 will hold in this model, if it is assumed that (R 1, C—g‘t'—l, Z,)' is m-dependent,

Cyya
Ct

lv] <7 and Ryyq, (5£2)7, log(cé—f) and Z; all have 8 + w finite moments, for some
w > 0.

To simulate data from the consumption CAPM, I follow the approach of Tauchen

'This is the main reason why this paper does not simply focus on testing the hypothesis that B
has zero rank, like the first-stage F-test in the linear IV model. More generally, the point is that
in the linear IV model the constant is an instrument which identifies only the intercept parameter
in the structural equation: this parameter is of usually of little interest and its identifiability is
overlooked by simply projecting out the constant term. No such simplification is available in the
general nonlinear GMM context; so if the constant has identifying power, the matrix B must have
nonzero rank.

Ciia -
G, are id. I

12If G > 1, then the model will typically be formally identified even if Df)%jl and
would expect this identification to be very weak.

17



and Hussey (1991) (also used in Tauchen (1986), Kocherlakota (1990), Hansen, Heaton
and Yaron (1996) and Stock and Wright (2000)). This involves fitting a 16-state
Markov chain to consumption and stock-market dividend growth calibrated so as to

approximate the first-order VAR:

log( &) e log(G=L) L
=
log(2+) log(B=L) Uat

where D; is the stock-market dividend at date ¢ and (ue,ug) is iid normal with
mean zero and variance A. Consumption growth and dividend growth are the state
variables. Taking random draws of consumption growth and dividend growth from
this Markov chain, numerical quadrature is then used to calculate the prices of a
stock and a riskfree asset in each period implied by the consumption CAPM with
intertemporally separable CRRA preferences (from equation 4.1). In this way, time
series of consumption growth and stock returns may be simulated'®.

The Monte-Carlo simulation in this subsection is based on the Euler equation
in this consumption CAPM for a single asset (stocks, G=1) and with instruments
Zy = (1, Ry, %) I consider three sample sizes: T=100, 500 and 1000. The sample
size of 100 is most commonly used in Monte-Carlo simulations, as it is approximately
equal to the available sample size for U.S. annual data. The larger sample sizes are

also considered so as to include models with less severe identification problems. To

13T am grateful to George Tauchen for his Gauss code for implementing this.
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complete the specification, I must specify values of 8, v, u, ® and A. 1 consider
5 combinations of these parameters, as listed in Table 1, and refer to the resulting
models as models M1-M5, respectively.

Models M1 and M2 set ® equal to a matrix of zeros so as to wipe out all
serial dependence in the growth rates of consumption and dividends. Note that in
these models, consumption growth and dividend growth are still contemporaneously
correlated. The true rank of B is 1 in these models; the models are not fully identified
and so the rejection rate of the proposed test, used to test the hypothesis that p(B) =
1, represents the size of the test.

Kocherlakota (1990) chose values of p, ® and A by fitting a bivariate VAR(1)
to historical U.S. annual real dividend growth and real consumption growth data.
Models M3 and M4 use his values of p, ® and A. The true rank of B is 2 in these
models; the models are identified and so the rejection rate of the proposed test, used
to test the hypothesis that p(B) = 1, represents the power of the test. However, B is
close to being rank-deficient and so weak identification problems may arise. Hansen,
Heaton and Yaron and Stock and Wright (2000) show that the conventional Gaussian
asymptotic theory works very poorly in small samples in these models (e.g. the
estimators are biased and have nonnormal sampling distributions). It is of interest
to see how the power of the proposed test is related to the quality of the conventional

asymptotic theory.
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Model M5 uses values of p, ® and A for which Tauchen (1986) found that the
conventional asymptotic theory works well, even in small samples. My model M5
is Tauchen’s experiment 1B. The true rank of B is 2 in this model; the model is
identified and so the rejection rate of the proposed test, used to test the hypothesis
that p(B) = 1, represents the power of the test.

In models M1, M3 and M5, 6 = 0.97 and v = 1.3. In models M2 and M4, 6 =
1.139 and v = 13.7. These latter parameter values were advocated by Kocherlakota
(1990) as a solution to the equity premium puzzle.

The simulated rejection rates of L*(1) are reported in Tables 2-6 for models
M1-M5, respectively. The rejection rates represent the size of the test in Tables 2
and 3 (models M1 and M2) and represent the power of the test in the other tables.

In these tables, I also report:

(a) the 10th, 50th and 90th percentiles of 67s, Y7, dcu and 4y the two-step and
continuous-updating GMM estimators of 6 and ~,

(b) the 10th, 50th and 90th percentiles of the associated t statistics (t; _, t5 ., ¢

3Ts ’ ’?TS ) 8CU

and ¢4

Ycu

), which will be close to their theoretical values (-1.282, 0 and 1.282) if the
conventional asymptotic theory is working well,

(c) the Kolmogorov-Smirnov statistics comparing the sampling distributions of the t
statistics to the standard normal distribution and

(d) the rejection rates of Jrg and Joy.
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All tests have a 5% nominal size.

In the simulations without complete identification (models M1 and M2), the
estimators of 4 and v can exhibit severe median bias and the sampling distribution
of the associated t-statistics can be very far from the standard normal distribution
predicted by conventional asymptotic theory. These problems are much worse with
the parameters § = 1.139, v = 13.7 (model M2) than with the parameters 6 = 0.97,
v = 1.3 (model M1). Indeed, in model M1, ¢; _ and t5,  are both close to being
standard normal in samples of size 100 and 500, but then become less normal as
the sample size increases to 1000, in a clear sign of a lack of identification. In all
cases, the actual size of the proposed test is well below the nominal 5% level (not
surprisingly, as the test is asymptotically conservative).

In model M3, the predictions of conventional asymptotic theory work better
as the sample size increases. In a sample of size 100, the estimators exhibit some
median bias and the sampling distribution of the associated t-statistics is somewhat
nonnormal. These problems get less severe as the sample size increases. The proposed
test has very little power in the sample of size 100, but its power increases with the
sample size. In this model, with a sample size of 1000, conventional asymptotic theory
works well and the proposed test has 90.6% power.

In model M4, the predictions of conventional asymptotic theory work less well.

In a sample size of 100, the estimators exhibit considerable median bias and the
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sampling distribution of the associated t-statistics is far from being standard normal.
Again the problems get less severe as the sample size increases. The proposed test
has very little power in the sample of size 100. Its power increases with the sample
size, but (appropriately) does so more slowly than in model M3.

In model M5, I find (like Tauchen (1986)) that the conventional asymptotic
theory works well in all sample sizes. Correspondingly, the proposed test has a very
high rejection rate in all sample sizes.

In summary, the proposed test is conservative under the null while, in the sim-
ulations where the identification condition is satisfied (models M3-M5), the its power
is strongly associated with the quality of the conventional asymptotic theory. The
relationship is not a perfect one; no more than it is with the first-stage F-test in the
linear IV model (Staiger and Stock (1997))".

Returns on a riskfree asset can also be generated by the algorithm of Tauchen
and Hussey (1991). I do not run simulations in which both stocks and a riskfree asset
are in the Euler equation (G = 2). This is because in such a model, the matrix B will
always have rank 2, whenever there is an intercept in the set of instruments (given
that consumption is not constant). This is true even if all the other instruments

are random numbers. In this sense, the null hypothesis of underidentification is not

14The first-stage F-test is an imperfect measure of the quality of the conventional asymptotic
theory in the linear IV model. This is true even abstracting from issues of partial identification (e.g.
in a model with a single endogenous regressor).
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well defined when G = 2. Of course, such a model is likely to be only very weakly

identified.

5. Conclusion.

In the linear IV model, the first-stage F-test is an important diagnostic for checking
the quality of the instruments. In the existing literature, there is no analog of this
test in the GMM model. This paper has proposed a test of the null of partial or
complete underidentification in the general GMM model and has argued that it is a

useful diagnostic for identification difficulties in this model.
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Table 1: Parameter Values in the Models

Model I P A 1 5y
0.018 0 0 00012 0.0017

ML ( 0013 > ( 0 0 > ( 0.0017 0.0146 > 097 13
0018 0 0 00012 0.0017

M2 ( 0013 > ( 0 0 ) ( 0.0017 0.0146 > 1139 13.7
0.021 ~0.161 0017 0.0012  0.00177

M3 ( 0.004 > ( 0414 0.117 > < 0.00177 0.014 > 097 1.3
0.021 ~0.161 0017 0.0012  0.00177

Md ( 0.004 > ( 0414 0117 ) ( 0.00177 0.014 ) 1139 13.7

0 —-05 0 001 O
wo (D) (00 0) (ML) e s

Note: Models M3 and M4 were considered by Kocherlakota (1990). Models M1 and M2 set ® to a
matrix of zeros and adjust p and A so that the growth rates of consumption and dividends are the
same as in models M3 and M4. Model M5 is experiment 1B of Tauchen (1996). The models are
discussed further in the text.




Table 2: Simulation results in model M1.

T=100 T=500 T=1000
10th %tile of d7g 0.886 0.884 0.894
Median of é7g 0.971 0.971 0.972
90th %tile of érg 1.036 1.035 1.025
10th %tile of A7g -2.968 -3.111 22,621
Median of Apg 1.264 1.300 1.424
90th %tile of 4rs 5.331 5.415 4.715
10th %tile of dcyr 0.794 0.765 0.790
Median of 8¢y 0.967 0.965 0.967
90th %tile of dcys 1.068 1.068 1.065
10th %tile of Acu -6.674 -7.753 -6.668
Median of ¢y 1.284 1.207 1.281
90th %tile of 4cur 10.367 10.578 9.903
10th %tile of t5, -1.379 -1.430 -1.379
Median of thS 0.025 0.012 0.025
90th %tile of ;5 _ 1.122 1.131 1.092
10th %tile of t4,. -1.236 -1.258 -1.292
Median of ts,. -0.012 0.000 0.030
90th %tile of ts,. 1.258 1.308 1.218
10th Y%tile of t5 2.443 -2.525 -2.439
Median of 5, -0.079 -0.134 -0.070
90th %tile of t;, 1.485 1.513 1.484
10th %tile of t4,.,, 2.075 -2.021 -2.029
Median of t5,,, -0.011 -0.050 -0.008
90th %tile of t5.,, 2.183 2.138 2.228
KS(ts, ) 0.037 0.032 0.082
KS(ts5,5) 0.017 0.020 0.072
KS(ts,,) 0.127 0.150 0.152
KS(tse,) 0.114 0.129 0.117
Rej Rate of Jrg test 1.6 1.6 1.7
Rej Rate of Jop test 0.6 0.2 0.4
Rej Rate of Proposed test 0.7 0.9 1.0

Notes: In this model, the rejection rate of the proposed test represents its size. KS(.) refers to the
Kolmogorov-Smirnov statistic comparing the sampling distribution of the argument with a standard
normal distribution. All tests have 5% nominal size. 1,000 replications were conducted in each
simulation.



Table 3: Simulation results in model M2.

T=100 T=500 T=1000
10th %tile of d7g 0.918 0.922 0.919
Median of 675 1.002 1.005 1.001
90th %tile of drg 1.076 1.082 1.070
10th %tile of 47 -2.653 -2.734 -2.630
Median of Apg 1.474 1.670 1.496
90th %tile of 4rs 6.445 6.989 6.154
10th %tile of dcyr 0.353 0.331 0.294
Median of $oy/ 1.043 1.036 1.029
90th %tile of dcys 1.191 1.144 1.134
10th %tile of 4cu 1.685 1.642 1.675
Median of 4cu 13.152 14.018 13.852
90th %tile of 4cur 74.698 61.583 64.901
10th %tile of t5, -3.220 -5.810 -7.083
Median of t; -1.894 -3.173 -3.644
90th %tile of ;5 _ -0.542 -0.654 -0.901
10th %tile of ts,.4 -2.371 -2.336 -2.427
Median of ts,. -1.289 -1.244 -1.318
90th %tile of ts,. -0.368 -0.327 -0.394
10th %tile of t5 -11.536 -20.280 -22.966
Median of t; -1.348 -2.419 -3.024
90th %tile of t;, 0.410 0.047 -0.085
10th %tile of t4,.,, -1.833 -2.020 -2.045
Median of t5,., -0.027 0.020 0.011
90th %tile of t5.,, 7.311 5.511 5.765
KS(ts, ) 0.656 0.735 0.780
KS(t5,5) 0.549 0.539 0.557
KS(ts,,) 0.427 0.551 0.583
KS(tse,) 0.210 0.173 0.203
Rej Rate of Jrg test 1.1 1.0 0.9
Rej Rate of Jop test 0.9 1.2 2.0
Rej Rate of Proposed test 0.2 0.2 0.6

Notes: As for Table 2.



Table 4: Simulation results in Model M3.

T=100 T=500 T=1000
10th %tile of épg 0.917 0.941 0.949
Median of 675 0.978 0.972 0.970
90th %tile of épg 1.026 0.995 0.989
10th %tile of 47g 1.315 0.180 0.227
Median of Apg 1.699 1.385 1.321
90th %tile of 7g 4.213 2.626 2.262
10th %tile of dcyr 0.847 0.934 0.947
Median of 8¢y 0.972 0.970 0.969
90th %tile of dcrr 1.035 0.996 0.989
10th %tile of 4cu 4.254 -0.501 0.144
Median of Acu 1.394 1.298 1.258
90th %tile of o ur 4.843 2.662 2.259
10th Y%tile of t; _ -1.100 -1.238 -1.272
Median of thS 0.217 0.079 -0.011
90th Yitile of t5 1.260 1.302 1.319
10th %tile of s, -1.091 -1.167 -1.269
Median of ts, 0.203 0.081 0.032
90th %tile of ts, . 1.437 1.310 1.340
10th %tile of t5 -2.004 -1.488 -1.408
Median of t;, 0.067 0.000 -0.052
90th Ytile of ¢, 1.441 1.354 1.332
10th %tile of ¢, -1.847 -1.462 1377
Median of t5.,, 0.061 -0.003 -0.056
90th %tile of ts.,, 1.753 1.345 1.368
KS(t;, ) 0.092 0.045 0.027
KS(t5,5) 0.086 0.044 0.024
KS(t;,,) 0.087 0.037 0.035
KS(tse,) 0.084 0.038 0.037
% Rej Rate of Jpg test 1.3 1.8 3.2

% Rej Rate of Joy test 1.1 2.9 4.7

% Rej Rate of Proposed test 6.2 52.0 90.6

Notes: In this model, the rejection rate of the proposed test represents its power. KS(.) refers to the
Kolmogorov-Smirnov statistic comparing the sampling distribution of the argument with a standard
normal distribution. All tests have 5% nominal size. 1,000 replications were conducted in each
simulation.



Table 5: Simulation results in Model M4.

T=100 T=500 T=1000
10th %tile of d7g 1.026 1.096 1.108
Median of érg 1.094 1.126 1.133
90th %tile of drg 1.165 1.163 1.158
10th %tile of 47g 5.167 9.938 10.911
Median of Apg 9.598 12.502 13.150
90th %tile of 7g 16.577 17.224 17.060
10th %tile of dcu/ 0.916 1.093 1.110
Median of dcpr 1.111 1.130 1.135
90th %tile of Scpr 1.202 1.170 1.163
10th %tile of 4cu 8.456 10.612 11.292
Median of Acu 13.166 13.452 13.632
90th %tile of o ur 41.950 22.112 18.323
10th Y%tile of t; _ 2.018 -1.751 -1.710
Median of thS -0.768 -0.466 -0.303
90th Yitile of t5 0.273 0.583 0.739
10th %tile of s, -2.011 -1.627 -1.550
Median of ts, -0.752 -0.391 -0.238
90th %tile of ts, . 0.278 0.727 1.028
10th %tile of t5 -2.879 -1.849 -1.601
Median of t;, 0.473 0.324 -0.211
90th Ytile of ¢, 0.686 0.823 0.886
10th %tile of ¢, -1.513 -1.375 -1.341
Median of t3,,, -0.087 -0.076 -0.031
90th %tile of ts.,, 2.924 1.545 1.414
KS(t;, ) 0.314 0.188 0.144
KS(t5,5) 0.330 0.170 0.107
KS(t;,,) 0.188 0.129 0.091
KS(tse,) 0.102 0.043 0.025
% Rej Rate of Jpg test 19.1 14.8 10.3
% Rej Rate of Joy test 2.8 4.5 4.6
% Rej Rate of Proposed test 6.0 27.3 52.1

Notes: As for Table 4.



Table 6: Simulation results in Model MS5.

T=100 T=500 T=1000
10th %tile of épg 0.955 0.963 0.965
Median of 675 0.970 0.970 0.970
90th %tile of 615 0.984 0.976 0.974
10th %tile of 47g 1.084 1.200 1.226
Median of Arg 1.269 1.299 1.302
90th %tile of 7g 1.587 1.432 1.386
10th %tile of dcyr 0.955 0.963 0.965
Median of 8¢y 0.970 0.970 0.970
90th %tile of dcpr 0.984 0.976 0.976
10th %tile of 4cu 1.099 1.203 1.229
Median of Acu 1.306 1.304 1.304
90th %tile of o ur 1.639 1.439 1.390
10th Y%tile of t; _ -1.349 -1.381 -1.342
Median of thS -0.012 0.003 -0.017
90th Yitile of t5 1.315 1.332 1.326
10th %tile of s, -1.364 -1.322 -1.289
Median of ts, -0.149 -0.006 0.027
90th %tile of ts, . 1.194 1.368 1.285
10th %tile of t5 1417 -1.392 -1.342
Median of t;, -0.030 -0.003 -0.040
90th Ytile of ¢, 1.301 1.335 1.328
10th %tile of ¢, -1.260 -1.291 -1.214
Median of t5.,, 0.030 0.044 0.072
90th %tile of ts.,, 1.347 1.406 1.349
KS(t;, ) 0.015 0.029 0.025
KS(t5,5) 0.076 0.024 0.026
KS(t;,,) 0.024 0.030 0.024
KS(tse,) 0.035 0.035 0.040
% Rej Rate of Jpg test 5.2 4.2 4.8

% Rej Rate of Joy test 5.5 4.3 5.0

% Rej Rate of Proposed test 83.5 100.0 100.0

Notes: As for Table 4.



