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1.  Introduction

The assumption that capital is homogeneous is a key building block of most

growth models.  This assumption contradicts intuition and empirical evidence that the

majority of advances in technology are embodied in the capital stock.  It is tempting to

conclude that it makes little difference whether is is assumed that technological change is

embodied in capital (vintage capital) or disembodied (homogeneous capital).  After all,

papers from the late 1950�s and 1960�s show that neoclassical models with constant

savings rates display the same asymptotic growth rates whether technological change is

embodied or disembodied.  However, the question of whether alternative assumptions

about capital embodiment have different implications for transitional dynamics was left

open because the techniques to answer it were not available at the time.

In this paper I extend the analysis of capital embodiment.  I update the analysis by

replacing the constant savings rate with optimal savings behavior.  In a more fundamental

departure from earlier studies, I use new numerical optimization techniques to solve for

the entire optimal time paths of the key economic variables.  I confirm the result that

steady state growth rates are the same regardless of the capital embodiment assumptions.

Breaking new ground, I find that the transitional dynamics vary greatly between the

vintage and non-vintage capital versions of the models.

I examine the transitional dynamics of the models by focussing on two

convergence hypotheses, β-convergence and σ-convergence. The β-convergence
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hypothesis is the hypothesis that �poor economies grow faster than rich economies.�1

The σ-convergence hypothesis is the hypothesis that the levels of per capita output of

different economies will converge.  It can only be examined by numerical methods

because the time path of the level of output is required.  The results of this paper

concerning σ-convergence are therefore new for both the vintage and non-vintage

versions of the models. My results show for the first time that conditional σ-convergence

occurs for both the non-vintage and vintage capital versions of the models, and that the

rates of both β-convergence  and σ-convergence are higher in the vintage capital versions.

The models examined in this paper are discrete time, finite horizon,

parameterized, optimization versions of the three main types of neoclassical vintage

capital models (the types are described in section 4). The algorithms used to obtain the

solutions to these models fall under the category of path-following algorithms.  This is a

relatively new class of algorithms not previously utilized in examining macroeconomic

models.2  This class of algorithms has been shown to be highly effective in large-scale

optimization problems (Wright 1997). This effectiveness is reflected in the present work.

Each of these models contain two to six thousand variables, yet running on a personal

computer, the algorithms terminate within a few hours (usually within an hour).  A brief

                                                
1 The definitions of σ-convergence and β-convergence are defined as in Sala-i-Martin
(1996).  The terms were first introduced in Sala-i-Martin (1990).
2 Only 1 citation on Econlit was found (as of September 2001) applying a similar
algorithm to a model. R. Ostermark, �Solving a Linear Multiperiod Portfolio Problem by
Interior-Point Methodology,� Computer-Science-in-Economics-and-Management 5(4),
November 1992, pp. 283-302.
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description of the algorithms is contained in section 5.  A more detailed description can

be found in Berger (2001).

The paper is divided into the following sections.  Section 2 discusses the relevant

background convergence literature.  Section 3 explains in greater detail the differences in

the types of technology and the technical difficulties of examining vintage capital

models.  Section 4 contains general descriptions of the three models as well as

explanations of the common parameters used.  Section 5 is a brief description of the

optimization method.  Sections 6, 7, and 8 each give a detailed explanation of one of the

models and the corresponding results.  Section 9 is a conclusion, and an appendix that

mathematically describes β-convergence  and σ-convergence follows.

2.  Convergence

While the σ-convergence hypothesis has been examined in the empirical

literature, this is the first examination of σ-convergence in a theoretical paper.

Previously, it was possible to derive only steady-state growth rates and the transitional

dynamics (linearized) around the steady state. This approach does not provide enough

information to examine the levels of output or consumption.  Therefore the literature is

often limited to asking whether �poor economies grow faster than rich economies,� that

is, whether there is β-convergence.

However, if per capita output is used as the measure of �rich� and �poor�, the β-

convergence hypothesis is only relevant to different economies at the same point in time

and cannot be applied to the same economy at different points in time. For example, all
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economies examined in this paper are getting richer in the usual sense that per capita

output is always increasing.  If a particular economy approaches the steady-state growth

rate from below, as time passes, the economy becomes much richer in terms of per capita

output but the economy is also growing faster.  In order for β-convergence to hold for a

single economy as time passes, �poor� and �rich� must be defined relative to a steady

state constant.

Galor (1996) suggests a useful refinement of the σ-convergence hypothesis into

three different forms, which can also be applied to the β-convergence hypothesis.

Galor�s convergence hypotheses are the absolute convergence hypothesis, the conditional

convergence hypothesis, and the club convergence hypothesis. The absolute convergence

hypothesis predicts that, in the long run, regardless of economies' initial conditions and

their structural characteristics (e.g., population growth rate, preferences, government

intervention,1 etc.), per capita output of economies will converge.  Conditional

convergence requires that structural characteristics of economies be identical if

convergence is to occur. Identical structural characteristics as well as sufficiently

proximate initial conditions are necessary under the club convergence hypothesis.  This

last hypothesis assumes multiple stable equilibria.

Economists have empirically rejected the absolute form of β-convergence.  Barro

(1991) states that �per capita growth rates have little correlation with the starting level of

per capita product.�3  On the other hand, the conditional form of β-convergence is

supported by Barro (1991), Mankiw, Romer, and Weil (1992), and Barro and Sala-i-
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Martin (1992). Mankiw et. al find that when controlling for variances in structural

variables such as investment and population growth rates, there is a �strong tendency for

poor countries to grow faster than rich ones.�4  Quah (1996) provides empirical evidence

of club β-convergence.

The rate of β-convergence is a subject of intense debate. Articles such as Sala-i-

Martin (1996), and Barro and Sala-i-Martin (1992) show a convergence rate of

approximately 2% in their cross country regressions, and this is usually taken as the

benchmark rate.  Evans (1997) shows a higher rate of convergence of 7% in cross-

country regressions and up to 15% for the contiguous states of the United States.

Barro and Sala-i-Martin (1995) contribute to the theoretical convergence literature

by demonstrating conditional β-convergence in a Ramsey type model.  They show that

that if output per effective worker, �y , starts below its steady state level, then the growth

rate of output per worker will decline monotonically toward its steady state growth rate.

Their model is a continuous time, infinite horizon model with exogenous labor

augmenting technological growth and Cobb-Douglas production.  As shown in Appendix

1, β-convergence is a necessary, but not sufficient condition, for monotonic σ-

convergence.

                                                                                                                                                
3 Barro 1991, pp. 407-408.
4 Mankiw et al. 1992, p.428.
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3.   Vintage Capital

Technological progress is widely accepted as the primary engine of sustained

growth in per capita output. There are two basic ways of modeling technology, as

embodied or disembodied. Embodied technology is inherent in the capital stock of the

economy. Therefore, to access new technology, the economy must invest in new capital.

Embodied technology models are often referred to as �vintage capital� models because

the capital stock is heterogeneous, with each vintage characterized by the technology

available at the time of its construction.

Disembodied technology, however, affects all capital (or the entire productive

process).  It is not necessary to invest in order to capture advances in disembodied

technology.  The prototypical example of an advance in disembodied technology is the

introduction of the assembly line.  This innovation did not create a new factor of

production but instead reorganized existing factors in a manner that improved

productivity.

The first growth models featured disembodied technology, but in the late 1950's

and 1960's, embodied technology models were developed in an attempt to more

accurately capture the way technology enters the economy.  Unfortunately, these vintage

capital models have inherent in them the difficulty of tracking multiple capital stocks. In

a continuous time model, there would be an infinite number of capital stocks even over a

finite time horizon.  A discrete time, infinite horizon model would also have an infinite

quantity of stocks.  Because of the difficulty of vintage capital models, the literature only

examined asymptotic steady state results, derived by using aggregate capital stocks or
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assuming that the depth of capital, the number of vintages used each period, is constant.

This paper solves the problem of tracking multiple capital stocks and the accompanying

large-scale nature of the models to obtain numerical solutions to optimization versions of

the classic vintage capital models. The numerical solutions to the models are the entire

time paths of consumption, output, capital, and their associated shadow values.

4.  General Model Descriptions

The three models examined are referred to as �putty-putty,� �clay-clay,� and

�putty-clay.�  They differ in the assumptions regarding the substitutability of factors of

production.  �Putty� implies that labor and capital can be paired in any ratio, while �clay�

refers to a fixed capital-labor ratio. The first word in each pair describes conditions at the

time of installation of the capital and the second word refers to all time after the

installation.  For example, the term putty-clay refers to a model in which the capital-labor

ratio may be chosen at the time of capital installation, but for all time thereafter, labor

must be used with that vintage of capital according to the chosen proportion.

Each of the three models is based on the basic consumption-savings model.  A

central planner of the economy chooses a time path of consumption with the objective of

maximizing the population�s sum of discounted utility, which is solely a function of

consumption.  Utility is represented by a constant-elasticity-of-intertemporal-substitution

utility function:

( )11( ) 1              1
1

        ln( )                           1

t t

t

u C C

C

γ γ
γ

γ

−= − ≠
−

= =
(1)



8

The elasticity of intertemporal substitution equals 1
γ

− , and for fixed tC , (1) is a

continuous function of γ.

The three models are based on a Cobb-Douglas production function.  The

function has the form:

1( , )v v v t v v vf N K d A N Kα α−= (2)

where v represents the vintage, vA  is the embodied technology parameter, and 0 1α< < .

Total output for  period t is:

1
1

1

V t

t t v v v
v

f d A N Kα α
+ −

−

=

= � (3)

where V is the number of vintages available in the initial period (a new vintage becomes

available each period), and td  is the disembodied technology parameter.  td  and vA

could be combined into a single parameter, ,t vA , incorporating both the disembodied and

embodied technological growth.

An important difference between vintage and non-vintage models is that the

allocation of labor becomes a non-trivial problem in the vintage case.  In growth models,

the main utility maximization encapsulates another maximization problem.  Each period

the planner or representative agent must maximize production given the factors of

production available that period.  When capital and labor are homogeneous and

production Cobb-Douglas, the solution is simply to use all of the available capital and

labor together.  Therefore the production function usually seen in growth models is the

indirect production function resulting from a one period maximization.  For vintage
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capital models, labor must be allocated to each vintage.  Only in the putty-putty case does

this allocation have a unique closed form solution that leads to a new indirect production

function utilizing an aggregate capital stock (see section 4 and Berger (2001)).  There is

no such closed form solution for the clay-clay and putty-clay models.

Several parameter values are common to all three models, and are approximately

the same as those used in previous numerical papers.  For all three models, α, the

production elasticity of capital, is set equal to 0.35, the historic share of income paid to

capital when capital is defined in the traditional narrow sense (i.e. not including human

capital, Maddison (1987)).  β, the discount factor reflecting the planner's rate of time

preference, is set equal to 0.97.  The population growth rate, n, is equal to 1.5%, which

reflects that the models are calibrated more closely to industrialized countries. The

number of vintages available in the initial period, V, equals 2 for all of the models.  This

value was chosen so that the clay-clay model would not be labor constrained initially, and

was kept the same in the other models for consistency.  Although vintages aren't

explicitly tracked in the putty-putty model with an aggregate capital stock, the value of V

does affect the initial value of the aggregate capital stock.  The values of γ used are

γ=1,2,3, and 5.  The growth rate of technology used in the model is 3%, whether

embodied or disembodied.  This value was chosen because of its use in the literature and

because it is empirically supportable. Greenwood et al. (1997) find annual growth in

investment-specific productivity (embodied growth) to be 3.2%.
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5.  Optimization Method

Two different path-following algorithms are used to obtain the results in this

paper.  An interior-point algorithm is used for the putty-putty and clay-clay models.  An

interior-point algorithm is so named because at each iteration all of the variables are in

the interior of the feasible set.  This is achieved through the use of penalty functions

which go to infinity as the boundary of the feasible set is approached.  In effect, the

original optimization problem is replaced by an unconstrained problem in which penalties

based upon constraint values are imposed. The penalty functions are multiplied by a

positive scalar, µ, which decreases monotonically with the iterations.  Each value of µ

represents a different unconstrained problem to which a solution can be found. The

sequence of solutions to the unconstrained problems are the points comprising the

�central path.�  It is this path of solutions which is followed to the solution of the original

problem.  As 0µ → , the solutions to the unconstrained problems go to the solution of the

original problem.

A non-interior path-following algorithm is used to obtain results for the putty-clay

model.  The algorithm is based on Burke and Xu (2000), though their setup is for a linear

model as opposed to a general nonlinear model such as the putty-clay model of this

paper.  Instead of penalty functions, a new function ( , , )x vφ µ  is introduced where x is a

vector of the primal variables and multipliers, v is a vector of the value of optimality

conditions, and µ is once again a positive scalar. For a given µ, 0φ =  represents the

solution to a relaxed version of the original problem.  It can be shown that if 0µ =  then

the optimality conditions of the original problem will be satisfied if and only if 0φ = .
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The path followed to the solution of the original problem is comprised of the solutions to

the relaxed problems as µ is monotonically reduced at each iteration.

6.  Putty-Putty Model

The putty-putty vintage capital model was introduced in Solow (1959). In that

paper Solow showed that a continuous-time version of equation (3) could be rewritten

using an aggregate capital term.  In Berger (2001), it is shown that this holds for the

discrete time function.  The rewritten function is:

1( , )t t t t t tf N Q d N Qα α−= (4)

where tQ  is the level of the aggregate capital stock at time t, and

1 1

1

V t

t v v
v

Q A Kα
+ −

=

= � (5)

1V t+ −  is the number of vintages available at time t given V vintages available in time

period 1.  Hence, tQ  is a weighted sum of the stock of each available vintage with the

weights a function of the technology embodied by each vintage.  (5) leads to the

dynamic equation in ( )ppP , the model formulation which follows. The putty-putty model

used here is a discrete time version of the Phelps (1962) model with a finite time horizon.

Phelps (1962) extended the work of Solow (1959) by explicitly deriving the dynamic

capital equation and steady state growth rate.  The Phelps and Solow models, unlike this

paper, use a constant rate of savings and are divorced from dynamic optimization.  In all

of the models, technological growth is exogenous. The model ( )ppP  below allows for
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both embodied and disembodied technology.  When technology is embodied there is

heterogeneity in the capital stock; and when technology is entirely disembodied the

model reduces to the standard Ramsey, Cobb-Douglas, growth model.  Because there are

no stochastic elements in the model, the central planner is choosing the entire time path

of consumption in the initial period.  The formal optimization problem is:

( )1 1

1

1

1
1

1

1Maximize    1
1

over     , ,         for 1
subject to:
     0

     
     0
     

     ( )       for 1 1 .

T
t

t
t

t t t

t

t t t t

t t

t t V t t t

C

C Y Q t T

C
Y d N Q
Y C
Q Q

Q Q A Y C t T

γ

α α

α

β
γ

− −

=

−

+ +

−
−

=

≥

=
− ≥

=

= + − = −

�

�

�

( )ppP

tC  is the chosen level of consumption in period t. tY  is the chosen level of output in

period t.  tQ  is the level of the aggregate capital stock at time t.  tN  is the given labor

stock each period.  Q  is the given level of aggregate capital stock in the initial period,

where 
1

1

V
v vv

Q A Kα
=

=� .  vK  is the given initial level of capital of vintage v.  td  is the

given level of disembodied technology at time t.  V tA +  is the given level of embodied

technology corresponding to the vintage produced at time t.  The technology parameters

grow at a constant rate, such that ( )1 t
V t eA A g+ = + , ( ) 11 t

t dd d g −= + , and

( ) 11 t
tN N n −= + , where , , , , dA d N n g  and eg  are exogenous parameters. T is the given
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total number of time periods.  It is shown in Berger (2001) that this problem can be

written as a convex programming problem and therefore has a unique global solution.

Parameter values unique to the putty-putty model are:

200       1vT N A d K= = = = = .

The above parameters give 1.9709Q =  when technology is entirely embodied, and 2Q =

when technology is entirely disembodied.  The cases with simultaneous embodied and

disembodied technological growth are not examined in this paper.

The optimal time paths of output and consumption have the same steady-state

growth rates across all the differing parameter values of γ and types of technological

change (Figures 1 and 2). This is not surprising since output and consumption series

created by assuming a constant savings rate have identical steady-state growth rates that

are insensitive to the choice of the savings rate.  Phelps (1962) found the asymptotic

growth rate to be 
1
e d

Y
g gg n

α
+= +
−

.  This is approximately the asymptotic rate found

here.  The difference is attributable to the difference between the discrete time of this

model and the continuous time of the Phelps model.  The asymptotic growth rate of

output and consumption in the discrete-time model is:

( )
1

1(1 )(1 ) (1 ) 1Y e dg g g nα−= + + + − (6)

Thus, in switching from continuous to discrete time it is no longer true that only the total

amount of technological growth (disembodied and embodied) affects the growth rate,

although the difference from splitting the source of technology is small.  From the

dynamic equation it can be seen that aggregate capital grows at the rate:
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1
(1 )(1 ) 1Q Y eg g g α= + + − (7)

At the given parameter values, 15.58%Qg =  when technology is embodied, and

6.22228%Q Yg g= =  when technology is disembodied.

These discrete time models demonstrate turnpike behavior (Blanchard and Fischer

(1989)).  The calibrated models converge toward the discrete time asymptotic steady state

growth rate of output, 6.22228%Yg = , but they then turn away as the terminal point of

the model approaches (Figures 1 and 2). There is no salvage value of capital so

consumption equals output in the final period.  The behavior differs somewhat from the

typical turnpike behavior for the values of γ that approach the steady state from above.

Since the value of investment goes to zero as the terminal period approaches, less is

invested in the final periods and the growth rate decreases.  Therefore, for these γ-values,

the growth rate actually passes through the asymptotic steady state level (Figures 1 and

2).

For examining a single economy at different points in time, a steady-state

constant must be used to determine whether the economy is rich or poor.  The constant

used is the output-effective labor ratio:

� t
t

t t

YY
Nθ

= (8)

where tY  is total output, tN  is the labor supply, and 
1

1
1( )t V t tA d αθ −

+ −=  is the level of



15

technology adjusted such that it has the same production elasticity as labor (when

technology is disembodied).5

Both vintage and non-vintage models can approach the steady state growth rate

from above or below depending on whether the initial level of the output-effective labor

ratio is above or below the steady state level (Figure 3).  The steady-state level is

inversely related to the value of γ (Figure 4).  In economic terms, as γ increases the

marginal utility of early consumption is relatively greater and decreases rapidly. This

causes lower initial savings, a lower growth rate of output in the transition, and

consequently a lower steady-state output-effective labor ratio.

The rate of β-convergence, as measured by the fraction of the distance an

economy moves toward the steady state growth rate each period, is affected by whether

the economy is modeled as having embodied or disembodied technology.  When

technology is embodied, the β-convergence rate is universally higher than in the

disembodied case (Figures 5 and 6).  Furthermore, the preference parameters affect the

convergence rate in the embodied case, but not in the disembodied case.  The steady-state

convergence rate for disembodied technology is 8.7% (Figure 5), while the convergence

rates of the embodied technology case range from 10.8%-15.8% (Figure 6).  Allowing

preferences to vary across regions would provide an explanation for different observed

growth and convergence rates in the empirical literature.  All of these rates are consistent

                                                

5 The production function in ( )ppP  can be rewritten as 
11

1
t t t tY N d Q

α
αα

−

−
� �

= � �
� �
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with the rates found by Evans (1997), but exceed the benchmark of 2% commonly found

in the literature.

The putty-putty model with both vintage and non-vintage capital demonstrate

conditional σ-convergence in that per capita output goes to the same time path given

structural characteristics, regardless of the initial level of capital (Figure 7).  The figure

shows the convergence of per capita output for 1γ =  and 3, and 0.5K =  (poor) and 4

(rich).6  It can be seen that convergence takes longer in the disembodied case. This is

borne out in an examination of the σ-convergence rates (Figures 8 and 9).  This rate is the

fraction of the distance between the per capita outputs that is eliminated each period. The

convergence rates for the non-vintage cases are 4.4% for both values of γ.  The vintage

capital model, however, has different rates corresponding to the values of γ.  For 1γ =

the convergence rate is 11.87%, and it is 8.15% for 3γ = .

The result that per capita output converges for both the non-vintage and vintage

models is somewhat surprising. It is surprising because if series are created by imposing

an exogenous, constant, savings rate on the putty-putty model, the vintage capital model

demonstrates σ-convergence, but the non-vintage model does not. In the non-vintage

model the difference in per capita output may initially decline but the difference

eventually expands. Under most reasonable parameter values, per capita output diverges

                                                
6 The figures show the corresponding levels of 1Q  that the values of K  represent in the
non-vintage and vintages cases
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immediately.7  Figure 10 shows this for a savings rate of 10%, and the parameters used in

the optimization model.8  The steady state convergence rate is -0.67%  (negative value

indicates divergence) (Figure 11).  However, the disembodied technology series shows β-

convergence in that at each point in time the rich country grows more slowly than the

poor country (Figure 12).  The poor country approaches the steady state growth rate from

above, while the rich country approaches from below.  This series makes clear that

although intuitively β-convergence should be associated with σ-convergence, it is quite

easy to develop counter-examples.  Appendix 1 details why Sala-i-Martin may be

overstating the case when he says, �the existence of β-convergence will tend to generate

σ-convergence.�9

7.  Clay-Clay Model

The clay-clay model, also known as the Leontief or fixed factor production

model, is a discrete time variation of Solow et. al. (1966) with a finite time horizon. In

addition, Solow et. al. used a constant savings rate while this model is a central planner

optimization problem.  The central planner maximizes societal discounted utility over a

finite lifetime T.  There is no salvage value of capital, and no aggregate capital stock.

The capital stock cannot be aggregated because there is no closed form solution for the

indirect production function. Thus, each vintage must be tracked separately.  The capital

                                                
7 This phenomenon was observed for a wide range of parameter values. Only when the
technology growth rate was sufficiently low (1.7%) did the disembodied case converge.
8 The optimal savings rates for the models ranged from 5.52%-22.9% for the disembodied
model, and 10.55%-28.47% for the vintage model.
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stock each period is a vector of V+t-1 elements, where V is the number of vintages

available in the initial period. The savings of period t becomes the amount of capital of

vintage V+t.

In the most intuitive form of the model ( )'ccP , tC  is the chosen level of

consumption in period t. tvY  is the chosen level of output in period t using capital of

vintage v.  tvK  is the amount of capital available at time t of vintage v.  tvN  is the amount

of labor at time t applied to vintage v.  tN  is the given  labor stock each period. tva  is the

given level of productivity of labor in time period t of vintage v.  tvd  is the given level of

productivity of capital in time period t of vintage v. ( )'ccP  explicitly shows the allocation

of labor.

                                                                                                                                                
9 Sala-i-Martin (1996), p. 102
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( )'ccP

( )ccP is an equivalent statement of the problem, but the number of variables has been

reduced and the production function constraint has been broken into two separate parts so

that the constraint functions are differentiable. In this version, tvN  is no longer a choice

variable.  In the labor constraint, tvN  has been replaced by tv

tv

Y
a

.  This can be done since

tv
tv

tv

Y N
a

=  when the labor constraint is binding. All of the constraints are now affine so

that ( )ccP , when converted to a minimization, will be a convex programming problem

and therefore have a unique global solution.  It is this formulation that is used to generate

results.
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( )ccP

The technology and labor parameters have constant growth rates, with

1(1 ) (1 )N v t
tv ae ada a g g− + −= + + , tvd = constant, and 1(1 )t

tN N n −= + .  The parameter values

particular to the clay-clay model are:

45     3     3     (5,5)     20tiT a d K N= = = = = .

The initial levels and productivity of labor and capital were chosen such that the economy

is labor constrained initially.  By having technology affect only the a parameter,

technology is said to be �purely labor enhancing� or �Harrod neutral.�  While a unit of

capital is always capable of producing the same amount of output, improvements in

technology enable society to achieve that output per machine by applying less labor.
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When technology is only disembodied, tva  is increasing in t and constant in v; whereas it

is increasing in v and constant in t when technology is only embodied. The most

important result stemming from fixed factor production models with vintage capital is

that they exhibit economic obsolescence unlike their non-vintage and putty-putty

counterparts.  This obsolescence is a direct consequence of the scarcity of labor.

The vintage model, unlike the non-vintage model, is characterized by a cyclic

steady-state, not a constant one (Figures 13 and 14).  This is due to the obsolescence of

vintages and the discrete-formulation used here.  In continuous time clay-clay models,

capital of a particular vintage is either completely used or not used.  The depth of capital,

the number of vintages used each period, which in continuous time models is not

restricted to integer values, adjusts to make this so.  This leads to the  �replacement

echoes,� discussed in Benhabib and Rustichini (1991), and Boucekkine et. al. (1998),

which eventually dissipate.  With the depth of capital restricted to integer values in this

paper, not all of the available capital of the oldest productive vintage will generally be

used.  It is this discrete nature of the vintages that perpetuates the echo effect. The length

of the steady-state cycle is equal to the depth of capital, which is constant in the steady-

state cycle.  The arithmetic average growth rate during the cycle is equal to the steady

state growth rate in the disembodied technology model:

(1 )(1 ) 1 4.54%Y techg g n= + + − = (9)

The optimal depth of capital is 5 vintages when 1γ = , 6 vintages when 2γ =  or 3, and 7

vintages when 5γ = .
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The steady state savings rate is the same 1.52% in the non-vintage model across

values of γ.  Since all capital in the non-vintage model is equivalent, investment is simply

the level required to keep labor fully employed with zero obsolescence.  Because the

savings rate determines the depth of capital (or vice versa) in the vintage capital model,

the savings rate follows the same pattern as the depth of capital.  The average savings rate

over the steady state cycle is 7.60% for 1γ = , 6.47% for 2γ =  and 3, and 5.67% for

5γ = .

There is conditional σ-convergence in the clay-clay model for both embodied and

disembodied technology.  For the disembodied case, there is convergence for different

economies regardless of the value of γ.  This can be seen in part by examining the output-

effective labor ratio as defined for the clay-clay model (Figure 15).10  For the non-vintage

model, the output-effective labor ratio equals one as soon as the economy is labor

constrained.  The per capita output of economies in this model converges very quickly.

All capital is homogeneous so any two economies that are labor constrained at the same

point in time will have the same per capita output.

The convergence of per capita output (σ-convergence) is affected by the values of

γ in the vintage capital model.  In this model, the key to convergence is the depth of

capital.  Economies with the same steady state depth of capital have the same steady state

output-effective labor ratio.  The output-effective labor ratio is not affected by the initial

capital value (Figure 17).  In fact, the output-effective labor ratio for this model can be

                                                
10 tθ  in equation (8) is now defined as , 1t t V taθ + −= , the technology of the latest vintage
available.
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viewed as a rating of the technology in the capital stock.  If the amount of stock allows

full employment, and it only utilizes the latest technology, then the ratio is equal to one as

in the disembodied technology case.  As the depth of capital increases, the average level

of technology represented by the capital stock decreases, and this is reflected in the

output-effective labor ratio.

Economies with the same depth of capital will have convergent per capita output.

This is because economies with the same depth of capital will be effectively utilizing the

same average level of technology, and hence, are able to use the same quantity of capital.

The difference between the outputs per capita of two economies which converge may not

be exactly zero if the cycles do not line up exactly, but the difference in the outputs

cycles around zero. Figure 18 shows σ-convergence for two economies with the same

value of γ but differing initial capital values.  Figure 16 shows σ-convergence for

economies with differing values of γ (2 and 3), and both the same and differing initial

values. Like the non-vintage model, this convergence occurs much more quickly than in

the empirical convergence literature.  Per capita output converges quickly in part because

of the rapid β-convergence.  This corresponds to the non-optimization work of

Ramanathan (1973).  As can be seen in Figure 14, the clay-clay model with embodied

technology achieves its steady state cycle in less than 10 time periods.  The model with

disembodied technology achieves its steady state as soon as the economy is labor

constrained (Figure 13).

Convergence in the clay-clay model is obviously much faster than the

convergence seen in the empirical literature.  However, it is an undeniable fact that
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obsolescence occurs in the world.  Obsolescence occurs because all capital must be used

with some scarce resource.  The non-existence of perpetual motion machines means that

at the very least capital must use energy if not labor to function.  When that scarce

resource becomes more valuable elsewhere, the capital becomes obsolete.  The fact that

obsolescence occurs implies both that some technology must be embodied and that factor

proportions are somewhat rigid.

8.  Putty-Clay Model

The putty-clay model serves as a bridge between the putty-putty and the clay-clay

models. Leif Johansen (1959) first introduced the putty-clay model.  Phelps (1963)

extended Johansen's work by allowing the lifetime of capital (before obsolescence) to be

a dependent variable rather than a parameter.11  Mathews (1964) generalized Phelps

framework to show that the depth of capital can be affected by the savings rate.  Bliss

(1968) derives, under a partial equilibrium framework, several theorems regarding

balanced growth. However, none of the previous articles placed the putty-clay framework

in a representative agent or central planner setting.  The production function for the putty-

clay model is derived from the putty-putty model of section 4.

1
tv tv tv tvY A N Kα α−= (10)

This is the same production function for each vintage that the central planner faces in

( )ppP , but in the putty-clay model the planner must impose a fixed capital-labor ratio,

                                                
11 Phelps coined the term �putty-clay.�
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0vr > , for each vintage v.  Fixing the capital-labor ratio does not limit the amount of

labor that can be applied to a particular vintage, nor the amount of capital of a particular

vintage that can be used. The capital-labor ratio only implies that if labor and capital are

applied outside of the ratio, then either some capital or some labor is being unproductive.

This is similar to the clay-clay model.  The implied capital-labor ratio of ( )ccP  is tv

tv

a
d

.

By fixing vr , output in the putty-clay model can be written as:

1min , tv
tv tv v tv tv

v

AY A r N K
r

α
α−

� �
= � �

� �
(11)

The minimum value will be the expression involving tvN  when labor is the

constraining factor, tvK  if capital is the constraining factor, and they will be equal if tvN

and tvK  are used in the proportion of vr .  Writing the production function as in (11)

highlights the relationship between the clay-clay and putty-clay models.  tva  and tvd  of

the production function in ( )'ccP  are equivalent to tv vA rα  and 1
tv

v

A
r α− , respectively in (11).

Hence, the central planner in choosing vr  can raise the productivity of labor or capital

arbitrarily high, but only by reducing the productivity of the other resource. Another

relationship to the clay-clay model can be seen if vr  is chosen to be a constant. In that
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case, the putty-clay model is equivalent to a clay-clay model with �Hicks neutral�

technology growing at the same rate as tvA .12

If ir  grows at a constant rate, rg , then tva  increases at the constant rate

(1 )(1 ) 1tech rg g α+ + − , while tvd  will change at the rate 1

1 1
(1 )

tech

r

g
g α−

+ −
+

.  Harrod neutral, or

purely labor enhancing, growth occurs if tvd  is constant.  This occurs when

1
* 1(1 ) 1r r techg g g α−= = + − .  If *

r rg g> , tvd  will decrease at a constant rate. When *
r rg g= ,

tva  grows at the rate 
1

1(1 ) 1techg α−+ − . In this manner, the putty-clay model may be

calibrated to coincide with the clay-clay model of section 5.

It also leads to the question of how to measure technological growth.  In the clay-

clay model, the measure of technological growth is the growth rate of tva .  However, in

the putty-clay model, technology is only a part of tva .  If empirically the growth rate of

tva  is used as the measure of technological growth, when the world is in fact putty-clay,

then the estimate of technological growth may be significantly upwardly biased.

( )pcP  is the discrete time, finite horizon, optimization putty-clay model.  In this

model, tC  is the chosen level of consumption in period t.  tvY  is the chosen level of

output in period t using capital of vintage v.  tvK  is the amount of capital of vintage v

available at time t. The model could be written with labor as a choice variable, but it has

                                                
12 Hicks-neutral technological growth is when labor and capital productivity, tva  and tvd ,
grow at the same rate.
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been eliminated as in ( )ccP .  vr  is the chosen capital-labor ratio for each vintage v.  tN  is

the given  labor stock each period.  tvA  is the given level of the technology stock each

period for each vintage.  V is the number of vintages available at time 1t = .  T is the

given total number of time periods.
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( )pcP

Unlike the putty-putty and clay-clay models, the putty-clay model cannot be

rewritten as a convex programming problem.  Therefore, multiple solutions to the model

are possible, and the solutions need not be global. Two types of solutions, differing in the

optimal path of vr , were found for the embodied technology case using the non-interior

path-following algorithm.
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The first type of solution has vr  constant from an early time period through the

terminal period. Analysis of the results suggests that there may be a local maximum for

every constant level of vr  up to some threshold level (Berger 2001). For example, two

solutions of this type had the following parameter values with 1 1(1 ) (1 )v t
tv e dA A g g− −= + + ,

and 1(1 )t
tN N n −= + :

45       0     0.03     3     2
0.97   2      (5,5)    20

d eT g g A
V K N

γ
β

= = = = =
= = = =

The first solution obtained for these parameter values has the capital-labor ratio equal to

1.9 from the third vintage (the first not given) through the final vintage.  The growth rate

of consumption cycles similarly to the clay-clay model but not in a well-defined pattern.

The growth rate from the twentieth to the thirty-fifth time period averaged 4.72%.  The

depth of capital decreases during these periods from 6 to 4 vintages.  A second solution

of the same type has the capital-labor ratio equal to 1.0 from the third vintage onward.

The solutions do not achieve a steady-state cycle within the specified time horizon.

The solutions with vr  constant are equivalent to a clay-clay model with Hicks

neutral growth and thus they will eventually go to a steady state where the depth of

capital is 1 vintage, and the steady state growth rate is (1 )(1 ) 1eg g n= + + − . Constructing

series created with the same parameters as above but with A =1, 1vr =  and constant

savings rate of 5,10,15, and 20%, it takes 103, 80, 66, and 56 time periods, respectively,

for the depth of capital to achieve a steady state of 1 vintage.  With A =3, as in the
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numerical analysis of the clay-clay model, it takes 66, 43, 29, and 19 periods

respectively.

The second solution type discovered shows vr  increasing over time.  vr  increased

from the third period onward but not at a constant rate.  This solution also did not reach a

steady state.

In general, solutions to the putty-clay model are difficult to obtain.  The programs

require many iterations and often become mired at a point distant from a solution.

Obtaining results for problems with longer time horizons is impractical at this time.  To

shed more light on the models, series were generated using a constant savings rate and a

constant growth rate of the capital-labor ratio.  The following parameter values were

used:

2000     0     0.03     1
0.97     2      (5,5)
0.015    20    1, 2,3,5
1           0.2% 10%       0.04 0.24

d e

r

T g g A
V K

n N
r g s

β
γ

= = = =
= = =
= = =
= = − = −

A different series was created for each of the rg  and s. rg  was increased in increments of

0.2%, and s was increased in increments of 0.02.  550 series were created of 2000 periods

each.  Despite the fact that there is no optimization in the creation of series, the γ

parameters are included because the total discounted utility of consumption for each

series was calculated (Figure 19). Table 1 gives the levels of r and s that achieved the

greatest value of discounted utility for each of the γ values.  None of the previous papers

that have examined putty-clay models have used utility functions.
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Only when the growth rate of r was 0.046 and the savings rate was 0.06-0.24 was

the depth of capital sustained at a level other than V+t-1 (all) or 1 over the entire 2000

periods.  This is not surprising since * 0.0465rg =  for the chosen parameter values.  The

depth of capital is only sustainable at an intermediate value when technology is purely

labor enhancing.  This knife's edge result corresponds to the results of Solow et. al.

(1966) and Bliss (1968).  In fact, with 0.046rg =  the series didn't achieve a steady state

after 2000 periods.  Given enough time, the depth of capital would go to 1.  This shows

how long the transition to the steady state can be in the vintage capital putty-clay model.

The steady-state depth of capital for a 3000 period series and *
r rg g=  is summarized in

Table 2.

Asymptotic growth rates of output were also calculated for each of the series.

The growth rates for each rg  were constant across s and increased by a constant amount

for each 0.2% increment in rg , until *
rg  (Table 3).  When *

r rg g>  the growth rate of

output goes to zero. The growth rate of output will not go to a steady state unless the

depth of capital has gone to a constant or includes all available capital. Thus if the change

in the capital-labor ratio over time can be measured as close to *
rg , then convergence to a

steady state growth rate is unlikely since the initial structural parameters will probably

not remain valid for the entire transition. It is worthwhile to point out that none of the

utility maximizing levels of rg  were as close to *
rg  as allowed.  Thus, even though *

rg

and its accompanying maximum growth rate may be perceived as a golden rule rate of
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change, the transition to the maximum growth rate is slow enough that the value of the

asymptotic rate is somewhat irrelevant.

The above results show that there will not in general be convergence of per capita

output in the putty-clay model.  The first argument against convergence of output is that

there are multiple solutions to the problem.  This should not be confused with the concept

of multiple equilibria discussed by Galor (1996) in relation to club convergence.

Multiple equilibria are said to occur if given different initial values there are differing

long run output paths.  The multiple solutions of this model say that economies with

identical initial values and structural parameters could converge to entirely different

paths of output that satisfy the optimality conditions.  Also, the optimization results

combined with the results of the constructed series show that it is unlikely that the

optimal growth rate of the capital-labor ratio will go to *
rg .  If two economies go to

different constant rates of growth of the capital-labor ratio, then the economies will have

differing long run growth rates and convergence is impossible.

9.  Conclusion

Numerical results are obtained for the three basic utility maximizing growth

models with vintage capital.  Given the specified parameter values, the results for the

putty-putty and clay-clay model are definitive in that they have unique global solutions.

Numerical results have not been previously obtained for these vintage capital models, and

in fact, vintage capital models with constant elasticity of intertemporal substitution utility

functions have not been examined. Previous papers have only looked at asymptotic
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steady state results. The methods of this paper, however, allow the examination of the

entire time path of the key economic variables.  Therefore questions can be answered not

only about β-convergence, but σ-convergence as well.

This examination reveals that although the steady states of vintage capital and

non-vintage models may be characterized by similar growth rates, the transitions are

quite different.  While vintage and non-vintage putty-putty models demonstrate both β-

convergence and σ-convergence, convergence rates are uniformly higher for the vintage

models than for the non-vintage models.  Furthermore, different preference parameters

lead to different convergence rates for the vintage models (through changes in the savings

rate), but not for the non-vintage model.  Also, the optimization method reveals that for

both vintage and non-vintage models, the value of γ can affect whether the steady state

growth rate is approached from above or below.  Empirical evidence may therefore be

difficult to interpret, since poor countries may grow faster or slower than rich countries if

wealth is measured by per capita output and preferences vary across countries.

The differences between the vintage and non-vintage clay-clay models are more

obvious than in the putty-putty model. The clay-clay model with vintage capital exhibits

economic obsolescence of capital while the non-vintage model does not.  The transition

to the steady state takes somewhat longer in the vintage models and the steady-state, at

least in discrete time models, is characterized by a cycle rather than a constant steady-

state growth rate.  The length of the cycle is equal to the depth of capital, and the

arithmetic average of the growth rates during the cycle is equal to the non-vintage steady-

state growth rate. Furthermore, since the value of γ affects the optimal savings rate, and
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the savings rate determines the depth of capital, the depth of capital varies over the values

of γ. Also, σ-convergence is seen across all values of γ in the non-vintage case, but

depends on γ in the vintage case because γ affects the depth of capital.  Economies with

the same depth of capital will conditionally converge in both the σ-convergence and β-

convergence sense. For both the vintage and non-vintage clay-clay models with Harrod-

neutral technological growth, the transitions to the steady state growth rate and

convergence of per capita output are faster than in the empirical literature.

While numerical results were obtained for the putty-clay model, they are not

definitive.  The putty-clay problem cannot be rewritten as a convex programming

problem and has multiple solutions that are not all global solutions.  One type of solution

has a constant capital-labor ratio.  Multiple solutions of this type were obtained.  Another

type of solution has an increasing capital-labor ratio.  Neither type of solution achieves a

steady-state growth rate before the terminal period specified.  Hicks-neutral progress,

which occurs with a constant capital-labor ratio, will lead to a steady state where

eventually all or only one vintage of capital is used. The length of the transition will vary

greatly depending on the savings rate and initial technology stock. Also, for a putty-clay

model, an interior solution to the depth of capital exists only if the capital-labor ratio

grows such that technological progress is purely labor-enhancing. This knife's edge result

seems highly unlikely in the real world, as it fails to maximize utility when the savings

rate and the growth rate of the capital-labor ratio are constrained to be constant from the

initial period.  If the growth rate in the capital-labor ratio is merely close to this knife's

edge result, it can take thousands of years to complete the transition to the steady state,
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which is obviously much slower than the empirical literature suggests.  If empirically it

can be shown that different countries have different growth rates in their capital-labor

ratios, then the putty-clay model concludes that the countries will converge in the long

run to differing growth rates, despite the fact that their capital depths may all be going to

one.  Differing long run growth rates implies a lack of both σ-convergence and β-

convergence.  Conditional σ-convergence is also unlikely given that the multiple

numerical solutions demonstrate that different output paths are possible for economies

even if they have identical initial values and structural parameters.

The neoclassical models studied in this paper are simpler in terms of the origins of

growth than the endogenous growth models that are in vogue today. However, even these

neoclassical models show that under relatively simple assumptions about how technology

enters the economy, and straightforward dynamics, the steady state may be many years in

the future.  Therefore, the study of the transition is important and the vintage capital

models presented here illustrate that the transition is affected by the modeling of

technology. Ignoring the fact that much of technology is embodied can lead to significant

errors in the forecasting of convergence rates, expected depth of capital, and savings

rates.
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Appendix 1.  Conditions for σ-convergence and β-convergence

Per capita output at time t for two economies, 1
ty  and 2

ty , can be viewed as

sequences.  σ-convergence, the convergence of per capita output, is said to occur if and

only if:

1 2lim 0t tt
y y

→∞
− = (12)

The definition of β-convergence or �poor economies grow faster than rich

economies� depends on how �poor� and �rich� are measured.  If they are measured in

terms of per capita output then β-convergence occurs if and only if:

1 1               
i j

i j t t
t t i j

t t

y yy y t t
y y

+ +> ∀ ⇔ < ∀ (13)

If in the long run the growth rate of the two economies approach constant growth

rates, ig  and jg , then it is obvious that in order for there two be β-convergence:

*i jg g g= = (14)

If (14) is not true when economies tend toward constant rates of growth, eventually the

economy tending toward the higher growth rate will be richer, yet growing faster.

The assumption that economies converge to a common growth rate is not

sufficient for β-convergence. A rich economy could converge to the growth rate from

above, and the poor country from below.  Sometimes in the literature it is assumed that

rich countries only converge from below and the poor from above.  This makes sense

only when rich and poor are defined in terms of a steady state constant.  Unfortunately,
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the fact that economies converge to a common growth rate is not sufficient to guarantee

the existence of a steady-state constant.

The steady-state constant is derived by dividing output by something growing at

the steady-state growth rate.  Examining a single economy, let �
(1 )

t
t t

yy
g

=
+

. Then for

some finite constant K:

�lim           limt tt t
g g y K

→∞ →∞
= � = (15)

To demonstrate (15), the sequence ty  can be written as a sequence which is a product of

growth rates:

0 1 2(1 )(1 ) (1 )t ty y g g g= + + +� (16)

where

lim tt
g g

→∞
= (17)

So the limit of �ty  can be rewritten:

0 1 2

 times

(1 )(1 ) (1 )�lim lim
(1 )(1 ) (1 )

t
tt t

t

y g g gy
g g g→∞ →∞

+ + +=
+ + +

�

�
���������

(18)

Let 1
1

t
t

g
g

α +=
+

.  Then 0tα >  and 1tα → .  It can be seen that the limit in (18) goes to a

constant K, if and only if:

1 0

lim '
n

tn
t

K K
y

α
→∞

=

= =∏ (19)

Let 1ln( )t
tm

α = .  Then 
1

tm
t eα = , and (19) becomes:
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1
1

1

lim lim '
n

t
t

n
m

tn nt

e Kα =

→∞ →∞
=

�
= =∏ (20)

But (20) is only true if and only if:

1

1lim ln( ')
n

n t t

K
m→∞ =

=� (21)

In order for the 
1

1n

t
tm=�  to converge to a constant as n → ∞ , tm  must go to positive or

negative infinity at faster than a linear rate (i.e. 1lim 1t
t

t

m
m

+

→∞
> ).  Thus, even if the growth

rate of an economy goes to a constant, that alone does not guarantee the existence of a

steady-state level such as the output-effective labor ratio.

However, suppose that the convergence rate of the growth rate of output is fast

enough for the above to hold. Then suppose that for two economies:

1 2 *� � �lim limt tt t
y y y

→∞ →∞
= =  (22)

Restating (22):

1 2

lim 0
(1 ) (1 )

t t
t tt

y y
g g→∞

− =
+ +

(23)

If it is assumed that the sequences 1�ty  and 2 *� �ty y→   monotonically, and that

1 2
1 2� � 0

(1 ) (1 )
t t

t t t t
y yy y

g g
− = − →

+ +
 monotonically, then it can be shown that (13) holds, but

the conditions do not guarantee σ-convergence. Rewriting (23):

( )1 21lim 0
(1 ) t ttt

y y
g→∞

− =
+

(24)
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It is easy to see that (24) will remain true as long as the difference in per capita output

grows at a rate less than g, which is not precluded by any of the above assumptions. Thus

the statement �poor countries grow faster than rich countries� is not sufficient for

convergence of per capita output, though it is obviously necessary.
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TABLES

Table 1.1.  Putty-Clay Model: Growth rate of capital-labor ratio
and savings rate achieving maximum utility for 2000 period series

γ= 1 2 3 5
r rate 0.062 0.078 0.032 0.002

s 0.24 0.22 0.18 0.12

Table 1.2.  3000 Period Series:  *
r rg g=

s 0.24 � -0.02 � 0.14 0.12 0.10 0.08 0.06 0.04
depth 5 � +1 � 10 13 17 25 3001 3001
growth
rate

0.0622 � � � � � � 0.0622 0.0600 0.0400

Table 1.3.  Growth Rate of Output

rg 0 0.2% 0.4% � +0.2% � 4.4% *
rg =4.65%

growth rate 4.55% 4.62% 4.69% � +0.07% � 6.13% 6.22%
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FIGURES

Figure 1.  Growth Rate of Output, Putty-Putty, Disembodied Technology

Figure 2.  Growth Rate of Output, Putty-Putty, Embodied Technology
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Figure 3.  Output-Effective Labor Ratio, Putty-Putty, Embodied Technology, Rich vs. Poor

Figure 4.  Output-Effective Labor Ratio, Putty-Putty
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Figure 5.  β-convergence Rate, Putty-Putty, Disembodied Technology

Figure 6.  β-convergence Rate, Putty-Putty, Embodied Technology
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Figure 7.  Convergence of Per Capita Output, Putty-Putty

Figure 8.  σ-convergence Rate, Putty-Putty, Disembodied Technology
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Figure 9.  σ-convergence Rate, Putty-Putty, Embodied Technology

Figure 10.  Convergence of Per Capita Output, Putty-Putty Series, savings rate=0.1, q1=2 vs. q1=8
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Figure 11.  σ-convergence Rate, Putty-Putty Series, savings rate=0.1, q1=2 vs. q1=8

Figure 12.  Growth Rates, Putty-Putty Series, savings rate=0.1, disembodied technology
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Figure 13.  Growth Rate of Output, Clay-Clay, Disembodied Technology

Figure 14.  Growth Rate of Output, Clay-Clay, Embodied Technology
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Figure 15.  Output-Effective Labor Ratio, Clay-Clay

Figure 16.  Convergence of Per Capita Output, Clay-Clay, Embodied Technology, γ=2/γ=3
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Figure 17.  Output-Effective Labor Ratio, Clay-Clay, Embodied Technology, k1=(5,5) vs. k1=(10,10)

Figure 18.  Convergence of Per Capita Output, Clay-Clay, Embodied Technology, k1=(5,5) vs. k1=(10,10)
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Figure 19.  Discounted Utility, Putty-Clay Series: 2000 Periods,, Embodied Technology
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