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1 Introduction

Standard real business cycle models imply that per capita hours worked rise after a perma-
nent shock to technology. Despite the a priori appeal of this prediction, there is a large and
growing literature that argues it is inconsistent with the data. This literature uses reduced
form time series methods in conjunction with minimal identifying assumptions that hold
across large classes of models to estimate the actual effects of a technology shock. The re-
sults reported in this literature are important because they call into question basic properties
of many structural business cycle models.
Consider, for example, the widely cited paper by Gali (1999). His basic identifying

assumption is that innovations to technology are the only shocks that have an effect on
the long run level of labor productivity. Gali (1999) reports that hours worked fall after a
positive technology shock. The fall is so long and protracted that, according to his estimates,
technology shocks are a source of negative correlation between output and hours worked.
Because hours worked are in fact strongly procyclical, Gali concludes that some other shock
or shocks must play the predominant role in business cycles with technology shocks at best
playing only a minor role. Moreover, he argues that standard real business cycle models
shed little light on whatever small role technology shocks do play because they imply that
hours worked rise after a positive technology shock. In effect, real business cycle models are
doubly dammed: they address things that are unimportant, and they do it badly at that.
Other recent papers reach conclusions that complement Gali’s in various ways (see, e.g.,
Shea (1998), Basu, Kimball and Fernald (1999), and Francis and Ramey (2001)). In view of
the important role attributed to technology shocks in business cycle analyses of the past two
decades, Francis and Ramey perhaps do not overstate too much when they say (p.2) that
Gali’s argument is a ‘...potential paradigm shifter’.
Not surprisingly, the result that hours worked fall after a positive technology shock has

attracted a great deal of attention. Indeed, there is a growing literature aimed at constructing
general equilibrium business cycle models that can account for this result. Gali (1999) and
others have argued that the most natural explanation is based on sticky prices. Others, like
Francis and Ramey (2001) and Vigfusson (2002), argue that this finding is consistent with
real business cycle models modified to allow for richer sets of preferences and technology,
such as habit formation and investment adjustment costs.1

We do not build a model that can account for the result that hours fall after a technology
shock. Instead, we challenge the result itself. Using the same identifying assumption as Gali
(1999), Gali, Lopez-Salido, and Valles (2002), and Francis and Ramey (2001), we find that
a positive technology shock drives hours worked up, not down.2 In addition, it leads to a
rise in output, average productivity, investment, and consumption. That is, we find that a
permanent shock to technology has qualitative consequences that a student of real business
cycles would anticipate.3 At the same time, we find that permanent technology shocks play

1Other models that can account for the Gali (1999) finding are contained in Christiano and Todd (1996)
and Boldrin, Christiano and Fisher (2001).

2Chang and Hong (2003) obtain similar results using disaggregated data.
3That the consequences of a technology shock resemble those in a real business cycle model may well

reflect that the actual economy has various nominal frictions, and monetary policy has successfully mitigated
those frictions. See Altig, Christiano, Eichenbaum and Linde (2002) for empirical evidence in favor of this
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a very small role in business cycle fluctuations. Instead, they are quantitatively important
at frequencies of the data that a student of traditional growth models might anticipate.
Since we make the same fundamental identification assumption as Gali (1999), Gali,

Lopez-Salido, and Valles (2002) and Francis and Ramey (2001), the key questions is: What
accounts for the difference in our findings? By construction, the difference must be due
to different maintained assumptions. As it turns out, a key culprit is how we treat hours
worked. For example, if we assume, as do Francis and Ramey, that per capita hours worked
is a difference stationary process and work with the growth rate of hours (the difference
specification), then we too find that hours worked falls after a positive technology shock.
But if we assume that per capita hours worked is a stationary process and work with the
level of hours worked (the level specification), then we find the opposite: hours worked rise
after a positive technology shock.
Standard, univariate hypothesis tests do not yield much information about which speci-

fication is correct. They cannot reject the null hypothesis that per capita hours worked are
difference stationary. They also cannot reject the null hypothesis that hours worked are sta-
tionary. This is not surprising in light of the large literature that documents the difficulties
that univariate methods have in distinguishing between a difference stationary stochastic
process and a persistent stationary process.4

So we have two answers to the question, ‘what happens to hours worked after a positive
technology shock?’ Each answer is based on a different statistical model, depending on the
specification of hours worked. Each model appears to be defensible on standard classical
grounds. To judge between the competing specifications, we assess their relative plausibility.
To this end, we ask, ‘which specification has an easier time explaining the observation that
hours worked falls under one specification and rises under the other?’ Using this criterion,
we find that the level specification is preferred.
We now discuss the results that lead to this conclusion. First, the level specification

encompasses the difference specification. We show this by calculating what an analyst who
adopts the difference specification would find if our estimated level specification were true.
For reasons discussed below, by differencing hours worked this analyst commits a specification
error. We find that such an analyst would, on average, infer that hours worked fall after a
positive technology shock even though they rise in the true data-generating process. Indeed
the extent of this fall is very close to the actual decline in hours worked implied by the
estimated difference specification. In addition, the level specification easily encompasses the
impulse responses of the other relevant variables.
Second, the difference specification does not encompass the level specification. We calcu-

late what an analyst who adopts the level specification would find if our estimated difference
specification were true. The mean prediction is that hours fall after a technology shock. So,
focusing on means alone, the difference specification cannot account for the actual estimates
associated with the level representation. However, the difference specification predicts that
the impulse responses based on the level representation vary a great deal across repeated
samples. This uncertainty is so great that the difference specification can account for the
level results as an artifact of sampling uncertainty. As it turns out, this result is a Pyrrhic

interpretation.
4See, for example, DeJong, Nankervis, Savin, and Whiteman (1992).
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victory for the difference specification. The prediction of large sampling uncertainty stems
from the difference specification’s prediction that an econometrician working with the level
specification encounters a version of the weak instrument problem analyzed in the literature
(see, for example, Staiger and Stock, 1997). In fact, a standard weak instrument test finds
little evidence in the data.
To quantify the relative plausibility of the level and difference specifications, we compute

the type of posterior odds ratio considered in Christiano and Ljungqvist (1988). The basic
idea is that the more plausible of the two specifications is the one that has the easiest
time explaining the facts: (i) the level specification implies that hours worked rises after a
technology shock, (ii) the difference specification implies that hours worked falls, and (iii)
the outcome of the weak instruments test. Focusing only on facts (i) and (ii), we find that
the odds are roughly 2 to 1 in favor of the level specification over the difference specification.
However, once (iii) is incorporated into the analysis, we find that the odds overwhelmingly
favor the level specification.
This finding may seem strange in light of the literature which argues that it is hard to

determine whether a time series is stationary or contains a unit root.5 The resolution of
this apparent contradiction is that the literature in question relies on univariate methods,
while we rely on multivariate methods. Hansen (1995) shows that incorporating information
from related time series has the potential to enormously increase the power of unit root tests
(see also Elliott and Jansson, 2003). This phenomenon is what underlies our encompassing
results.
We assess the robustness of our results against alternative specifications of the low fre-

quency component of per capita hours worked. In particular, we consider the possibility of
a quadratic trend in hours worked. We show that there is a trend specification that has
the implication that hours worked drops after a positive shock to technology. Using the
methodology described above, we argue that the preponderance of the evidence favors the
level specification relative to this alternative trend specification.
The remainder of this paper is organized as follows. Section 2 discusses our strategy for

identifying the effects of a permanent shock to technology. Section 3 presents the results from
a bivariate analysis using data on hours worked and the growth rate of labor productivity.
Later we show that on some dimensions inference is sensitive to only including two variables
in the analysis. But the bivariate systems are useful because they allow us to highlight the
basic issues in a simple setting and they allow us to compare our results to a subset of the
results in the literature. Section 4 reports our encompassing results and the posterior odds
ratio for the bivariate systems. In Section 5 we expand the analysis to include more variables.
Here, we establish the benchmark system that we use later to assess the cyclical effects of
technology shocks. Section 6 explores the robustness of our analysis to the possible presence
of deterministic trends. In addition, we examine the subsample stability of our time series
model. In Section 7 we report our findings regarding the overall importance of technology
shocks in cyclical fluctuations. Section 8 contains concluding remarks.

5For example, see Christiano and Eichenbaum (1990).
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2 Identifying the Effects of a Permanent Technology
Shock

In this section, we discuss our strategy for identifying the effects of permanent shocks to
technology. We follow Gali (1999), Gali, Lopez-Salido, and Valles (2002) and Francis and
Ramey (2001) and adopt the identifying assumption that the only type of shock which affects
the long-run level of average labor productivity is a permanent shock to technology. This
assumption is satisfied by a large class of standard business cycle models. See, for example,
the real business cycle models in Christiano (1988), King, Plosser, Stock and Watson (1991)
and Christiano and Eichenbaum (1992) which assume that technology shocks are a difference
stationary process.6

As discussed below, we use reduced form time series methods in conjunction with our
identifying assumption to estimate the effects of a permanent shock to technology. An ad-
vantage of this approach is that we do not need to make all the usual assumptions required to
construct Solow-residual based measures of technology shocks. Examples of these assump-
tions include corrections for labor hoarding, capital utilization, and time-varying markups.7

Of course there exist models that do not satisfy our identifying assumption. For example, the
assumption is not true in an endogenous growth model where all shocks affect productivity
in the long run. Nor is it true in an otherwise standard model when there are permanent
shocks to the tax rate on capital income. These caveats notwithstanding, we proceed as in
the literature.
We estimate the dynamic effects of a technology shock using the method proposed in

Shapiro and Watson (1988). The starting point of the approach is the relationship:

∆ft = µ+ β(L)∆ft−1 + α̃(L)Xt + εzt . (1)

Here ft denotes the log of average labor productivity and α̃(L), β(L) are polynomials of
order q and q− 1 in the lag operator, L, respectively. Also, ∆ is the first difference operator
and we assume that ∆ft is covariance stationary. The white noise random variable, εzt ,
is the innovation to technology. Suppose that the response of Xt to an innovation in some
non-technology shock, εt, is characterized byXt = γ(L)εt, where γ(L) is a polynomial in non-
negative powers of L. We assume that each element of γ(1) is non-zero. The assumption that
non-technology shocks have no impact on ft in the long run implies the following restriction
on α̃(L) :

α̃(L) = α(L)(1− L), (2)

where α(L) is a polynomial of order q − 1 in the lag operator. To see this, note first that
the only way non-technology shocks can have an impact on ft is by their effect on Xt, while
the long-run impact of a shock to εt on ft is given by:

α̃(1)γ(1)

1− β(1)
.

6If these models were modified to incorporate permanent shocks to agents’ preferences for leisure or to
government spending, these shocks would have no long run impact on labor productivity, because labor
productivity is determined by the discount rate and the underlying growth rate of technology.

7See Basu, Fernald and Kimball (1999) for an interesting application of this alternative approach.
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The assumption that ∆ft is covariance stationary guarantees |1− β(1)| <∞. This assump-
tion, together with our assumption on γ(L), implies that for the long-run impact of εt on ft
to be zero it must be that α̃(1) = 0. This in turn is equivalent to (2).
Substituting (2) into (1) yields the relationship:

∆ft = µ+ β(L)∆ft−1 + α(L)∆Xt + εzt . (3)

We obtain an estimate of εzt by using (3) in conjunction with estimates of µ, β(L) and α(L).
If one of the shocks driving Xt is εzt , then Xt and εzt will be correlated. So, we cannot
estimate the parameters in β(L) and α(L) by ordinary least squares (OLS). Instead, we
apply the standard instrumental variables strategy used in the literature. In particular, we
use as instruments a constant, ∆ft−s and Xt−s, s = 1, 2, ...,q.
Given an estimate of the shocks in (3), we obtain an estimate of the dynamic response of ft

and Xt to εzt as follows. We begin by estimating the following q
th order vector autoregression

(VAR):
Yt = α+B(L)Yt−1 + ut, Eutu0t = V, (4)

where

Yt =

µ
∆ft
Xt

¶
,

and ut is the one-step-ahead forecast error in Yt. Also, V is a positive definite matrix. The
parameters in this VAR, including V, can be estimated by OLS applied to each equation.
In practice, we set q = 4. The fundamental economic shocks, et, are related to ut by the
following relation:

ut = Cet, Eete
0
t = I.

Without loss of generality, we suppose that εzt is the first element of et. To compute the
dynamic response of the variables in Yt to εzt , we require the first column of C. We obtain this
column by regressing ut on εzt by ordinary least squares. Finally, we simulate the dynamic
response of Yt to εzt . For each lag in this response function, we computed the centered 95
percent Bayesian confidence interval using the approach for just-identified systems discussed
in Doan (1992).8

3 Bivariate Results

This section reports results based on a simple, bivariate VAR in which ft is the log of business
labor productivity. The second element in Yt is the log of hours worked in the business sector
divided by a measure of the population.9 Our data on labor productivity growth and per
capita hours worked are displayed in the first row of Figure 1.
We consider two sample periods. The longest period for which data are available on the

variables in our VAR is 1948Q1-2001Q4. We refer to this as the long sample. The start
8This approach requires drawing B(L) and V repeatedly from their posterior distributions. Our results

are based on 2, 500 draws.
9Our data were taken from the DRI Economics database. The mnemonic for business labor productivity is

LBOUT. The mnemonic for business hours worked is LBMN. The business hours worked data were converted
to per capita terms using a measure of the civilian population over the age of 16 (mnemonic, P16).
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of this sample period coincides with the one in Francis and Ramey (2001) and Gali (1999).
Francis and Ramey (2001) and Gali, Lopez-Salido, and Valles (2002) work, as we do, with
per capita hours worked, while Gali (1999) works with total hours worked. Since much of
the business cycle literature works with post-1959 data, we also consider a second sample
period given by 1959Q1-2001Q4. We refer to this as the short sample.
We choose to work with per capita hours worked, rather than total hours worked, since

this is the object that appears in most general equilibrium business cycle models. There are
two additional reasons for this choice. First, for our short sample period, there is evidence
against the difference stationary specification of log total hours worked. We found this
evidence using a version of the covariates adjusted Dicky-Fuller test proposed in Hansen
(1995).10 Specifically, we regressed the growth rate of total hours worked on a constant, time,
the lag level of log total hours worked and 4 lags of the growth rate of total hours worked
and 4 lags of productivity growth. We then performed an F test for the null hypothesis
that the coefficient on the lag level of log total hours worked and the coefficient on time are
jointly zero. This amounts to a test of the null hypothesis that log total hours worked is
difference stationary, against the alternative that it is stationary about a linear trend. The
F statistics for the long and short sample periods are 5.72 and 9.07, respectively. According
to tabulated critical values, the F statistic for the long sample exceeds the 10 percent critical
value. However, the F statistic for the short sample exceeds the 1 percent critical value.11

Because the short sample plays an important role in our analysis, we are uncomfortable
adopting the difference stationary specification. Second, suppose we assume, as in Gali
(1999), that the log of hours is stationary about a linear trend. We find this specification
unappealing because it implies that permanent shocks, originating from demographic factors,
to total hours and total output are ruled out. Note that by working with per capita hours,
we do not exclude the possibility that demographic shocks have permanent effects on total
hours worked and total output.
We now turn to our results. Panel A of Figure 2 displays the response of log output and

log hours to a positive technology shock, based on the long sample. A number of interesting
results emerge here. First, the impact effect of the shock on output and hours is positive (1.17
percent and 0.34 percent, respectively) after which both rise in a hump shaped pattern. The
responses of both output and hours are statistically significantly different from zero over the
20 quarters displayed. Second, in the long run, output rises by 1.33 percent. By construction
the long run effect on hours worked is zero. Third, since output rises by more than hours
does, labor productivity also rises in response to a positive technology shock.
Panel B of Figure 2 displays the analogous results for the short sample period. As

before, the impact effect of the shock on output and hours is positive (0.94 and 0.14 percent,
10Other tests have been proposed by Elliott and Jansson (2003). We work with a version of Hansen’s

CADF test for two reasons. First, Elliott and Jansson show in simulations that the CADF test can have
better size properties but weaker power than their test. We are particularly concerned that the size of our
test is correct. Second, the CADF test is essentially the same as our test for weak instruments, and so using
the CADF test enhances consistency of the test statistics used in the paper.
11We used the tabulated critical values in ‘Case 4’, Table B.7, of Hamilton (1994, p. 764). To check these,

we also computed bootstrap critical values by simulating a bivariate, 4-lag VAR fit to data on the growth
rate of productivity and the growth rate of total hours. The calculations were performed using the short
and long sample periods. The results of these experiments coincide with what is reported in the text.
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respectively), after which both rise in a hump-shaped pattern. The long run impact of the
shock is to raise output by 0.96 percent. Again, average productivity rises in response to
the shock and there is no long run effect on hours worked. The rise in output is statistically
different from zero at all horizons displayed. The rise in hours is statistically significantly
different from zero between one and three years after the shock. So regardless of which
sample period we use, the same picture emerges: a permanent shock to technology drives
hours, output and average productivity up.
The previous results stand in sharp contrast to the literature according to which hours

worked falls after a positive technology shock. The difference cannot be attributed to our
identifying assumptions or the data that we use. To see this, note that we reproduce the
bivariate-based results in the literature if we assume that Xt in (1) and (3) corresponds to
the growth rate of hours worked rather than the level of hours worked. The two panels in
Figure 3 display the analogous results to those in Figure 2 with this change in the definition
of Xt.
According to the point estimates displayed in Panels A and B of Figure 3, a positive shock

to technology induces a rise in output, but a persistent decline in hours worked.12 Confidence
intervals are clearly very large. Still, the initial decline in hours worked is statistically
significant. This result is consistent with the bivariate analysis in Gali (1999) and Francis
and Ramey (2001).
The question is: Which results are more plausible, those based on the level specification

or the difference specification? We turn to this question in the next section.

4 Analyzing the Bivariate Results

The previous section presented conflicting answers to the question: how do hours worked
respond to a positive technology shock? Each answer is based on a different statistical
model, corresponding to whether we assume that hours worked are difference stationary
or stationary in levels. To determine which answer is more plausible, we need to select
between the underlying statistical models. The first subsection below addresses the issue
using standard classical diagnostic tests and shows that they do not convincingly discriminate
between the competing models. The following sections address the issue using encompassing
methods.

4.1 Standard Classical Diagnostic Tests

We begin by testing the null hypothesis of a unit root in hours worked using the Augmented
Dickey Fuller (ADF) test. For both sample periods, this hypothesis cannot be rejected at
the 10 percent significance level.13 Evidently we cannot rule out the difference specification,
12For the long sample, the contemporaneous effect of the shock is to drive output up by 0.56 percent and

hours down by 0.31 percent. The long run effect of the shock is to raise output by 0.84 percent and hours
worked by 0.06 percent. For the short sample, the contemporaneous effect of the shock is to raise output
0.43 percent and reduce hours worked by 0.30 percent. The long run effect of the shock is to raise output
by 0.74 percent and hours worked by 0.05 percent.
13For the long and short sample, the ADF test statistic is equal to −2.46 and −2.49, respectively. The

critical value corresponding to a 10 percent significance level is −2.57. In Appendix C, we compute the
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at least based on this test. Of course it is well known that standard unit root tests have
very poor power properties relative to the alternative that the time series in question is a
persistent stationary stochastic process. So while it is always true that failure to reject a null
hypothesis does not mean we can reject the alternative, this caveat is particularly relevant
in the present context.
To test the null hypothesis that per capita hours is a stationary stochastic process (with

no time trend) we use the KPSS test (see Kwiatkowski et al. (1992)).14 For the short sample
period, we cannot reject, using standard asymptotic distribution theory, the null hypothesis
at the five percent significance level.15 For the long sample period, we can reject the null
hypothesis at this level. However, it is well known that the KPSS test (and close variants
like the Leybourne and McCabe (1994) test) rejects the null hypothesis of stationarity too
often if the data-generating process is a persistent but stationary time series.16 It is common
practice to use size-corrected critical values that are constructed using data simulated from a
particular data-generating process.17 We did so using the level specification VAR estimated
over the long sample. Specifically, using this VAR as the data-generating process, we gen-
erated 1000 synthetic data sets, each of length equal to the number of observations in the
long sample period, 1948-2001.18 For each synthetic data set we constructed the KPSS test
statistic. In 90 and 95 percent of the data sets, the KPSS test statistic was smaller than 1.89
and 2.06, respectively. The value of this statistic computed using the actual data over the
period 1948-2001 is equal to 1.24. Thus we cannot reject the null hypothesis of stationarity
at conventional significance levels.

4.2 Encompassing Tests: A Priori Considerations

The preceding subsection showed that conventional classical methods are not useful for
selecting between the level and difference specifications of our VAR. An alternative way to
select between the competing specifications is to use an encompassing criterion. Under this
criterion, a model must not just be defensible on standard classical diagnostic grounds. It
must also be able to predict the results based on the opposing model. If one of the two views
fails this encompassing test, the one that passes is to be preferred.
In what follows we review the impact of specification error and sampling uncertainty on

critical values based on bootstrap simulations of the estimated difference model based on the long and short
samples. The 10 percent critical values are -2.87 and -2.78, respectively. These critical values also result in
a failure to reject at the 10 percent significance level.
14In implementing this test we set the number of lags in our Newey-West estimator of the relevant covari-

ance matrix to eight.
15The value of the KPSS test statistic is 0.4. The asymptotic critical values corresponding to ten and five

percent significance levels are 0.347 and 0.46, respectively.
16See Table 3 in Kwiatkowski et al. (1992) and also Caner and Kilian (1999) who provide a careful

assessment of the size properties of the KPSS and Leybourne and McCabe tests.
17Caner and Kilian (1999) provide critical values relevant for the case in which the data generating process

is a stationary AR(1) with an autocorrelation coefficient of 0.95. Using this value we fail to reject, at the
five percent significance level, the null hypothesis of stationarity over the longer sample period.
18The maximal eigenvalue of the estimated level specification VAR is equal to 0.972. We also estimated

univariate AR(4) representations for hours worked using the synthetic data sets and calculated the maximal
roots for the estimated univariate representations of hours worked. In no case did the maximal root exceed
one. Furthermore, 95 percent of the simulations did not have a root greater than 0.982.
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the ability of each specification to encompass the other. Other things equal, the specification,
that will do best on the encompassing test, is the one that predicts the other model is
misspecified. This consideration leads us to expect the level specification to do better. This
is because the level specification implies the first difference specification is misspecified ,
while the difference specification implies the level specification is correctly specified. This
consideration is not definitive because sampling considerations also enter. For example, the
difference specification implies that the level specification suffers from a weak instrument
problem. Weak instruments can lead to large sampling uncertainty, as well as bias. These
considerations may help the difference specification.

4.2.1 Level Specification

Suppose the level specification is true. Then the difference specification is misspecified. To
see why, recall the two steps involved in estimating the dynamic response of a variable to
a technology shock. The first involves the instrumental variables equation used to estimate
the technology shock itself. The second involves the vector autoregression used to obtain the
actual impulse responses.
Suppose the econometrician estimates the instrumental variables equation under the mis-

taken assumption that hours worked is a difference stationary variable. In addition, assume
that the only variable in Xt is log hours worked. The econometrician would difference Xt
twice and estimate µ along with the coefficients in the finite-ordered polynomials, β(L) and
α(L), in the system:

∆ft = µ+ β(L)∆ft−1 + α(L)(1− L)∆Xt + εzt .

Suppose that Xt has not been overdifferenced, so that its spectral density is different from
zero at frequency zero. Then, in the true relationship, the term involving Xt is actually
ᾱ(L)∆Xt, where ᾱ(L) is a finite ordered polynomial. In this case, the econometrician com-
mits a specification error because the parameter space does not include the true parameter
values. The only way α(L)(1−L) could ever be equal to ᾱ(L) is if α(L) has a unit pole, i.e.,
if α(L) = ᾱ(L)/(1 − L). But, this is impossible, since no finite lag polynomial, α(L), has
this property. So, incorrectly assuming that Xt has a unit root entails specification error.
We now turn to the VAR used to estimate the response to a shock. A stationary series

that is first differenced has a unit moving average root. It is well known that there does
not exist a finite-lag vector autoregressive representation of such a process. So here too,
proceeding as though the data are difference stationary entails a specification error.
Of course, it would be premature to conclude that the level specification is likely to

encompass the difference specification’s results. For this to occur, the level specification has
to predict not just that the difference specification entails specification error. It must be
that the specification error is enough to account quantitatively for the finding one obtains
when adopting the difference specification.

4.2.2 Difference Specification

Suppose the difference specification is true. What are the consequences of failing to assume
a unit root in hours worked, when there in fact is one? To answer this question, we must
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address two sets of issues: specification error and sampling uncertainty. With respect to the
former, note that there is no specification error in failing to impose a unit root. To see this,
first consider the instrumental variables regression:

∆ft = µ+ β(L)∆ft−1 + α(L)∆Xt + εzt . (5)

Here, the polynomials, β(L) and α(L), are of order q and q − 1, respectively. The econo-
metrician does not impose the restriction α(1) = 0 when it is, in fact, true. This is not a
specification error, because the parameter space does not rule out α(1) = 0. In estimating
the VAR, the econometrician also does not impose the restriction that hours worked is dif-
ference stationary. This also does not constitute a specification error because the level VAR
allows for a unit root (see Sims, Stock and Watson (1990)).
We now turn to sampling uncertainty. Recall that the econometrician who adopts the

level specification uses lagged values of Xt as instruments for ∆Xt. But if Xt actually has a
unit root, this entails a type of weak instrument problem. Lagged Xt’s are poor instruments
for ∆Xt because ∆Xt is driven by relatively recent shocks while Xt is heavily influenced by
shocks that occurred long ago. At least in large samples, there is little information in lagged
Xt’s for ∆Xt.19

Results in the literature suggest that weak instruments can lead to substantial sampling
uncertainty. This uncertainty could help the difference specification encompass the level
results simply as a statistical artifact. In addition, weak instruments can lead to bias, which
could also help the difference specification.
The implications of the literature (see, for example, Staiger and Stock (1997)) for the

weak instrument problem are suggestive, though not definitive in our context.20 Since the
precise nature of the problem is somewhat different here, we now briefly discuss it.21 First,
we analyze the properties of the instrumental variables estimator. We then turn to the
impulse response functions.
Suppose the instrumental variables relation is given by (5) with µ = 0. Let the predeter-

mined variables in this relationship be written as:

z̄t = [∆ft−1, ...,∆ft−q,∆Xt−1, ...,∆Xt−q].

So, the right hand side variables in (5) are given by xt = [z̄t,∆Xt]. The econometrician who
adopts the level specification uses instruments composed of q lagged ∆ft’s and q + 1 lagged
19To see this, consider the extreme case in which Xt is a random walk. In this case, Xt−1 is the sum of

shocks at date t − 1 and earlier, while ∆Xt is a function only of date t shocks. In this case, there is no
overlap between ∆Xt and Xt−1. More generally, when ∆Xt is covariance stationary, it is a square summable
function of current and past shocks, while Xt−1 is not. In this sense, the weight placed by Xt−1 on shocks
in the distant past is larger than the weight placed by ∆Xt on those shocks.
20For a discussion of this in the context of instrumental variables regressions of consumption growth on

income, see Christiano (1989) and Boldrin, Christiano and Fisher (1999).
21A similar weak instrument problem is studied in dynamic panel models. This literature considers the

case when the lagged level of a variable is used to instrument for its growth rate and the variable is nearly
a unit root process. The literature studies the consequences of the resulting weak instrument problem when
the panel size increases, holding the number of time periods fixed (see Blundell and Bond 1998, and Hahn,
Hausman, and Kuersteiner 2003.) Our focus is on what happens as the number of observations increases.
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Figure 1: Data Used in VAR
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Figure 2: Response of Log-output and Log-hours to a Positive Technology Shock
Level Specification

Panel A: Sample Period 1948Q1-2001Q4
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Figure 3: Response of Log-output and Log-hours to a Positive Technology Shock
Difference Specification

Panel A: Sample Period 1948Q1-2001Q4
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Figure 4: Encompassing with Level Specification as the DGP
Panel A: Sample Period, 1948Q1-2001Q4
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Figure 5: Encompassing with Difference Specification as the DGP
Panel A: Sample Period,1948Q1-2001Q4
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Figure 6: Six-variable System, Level Specification,Sample Period 1959-2001
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Figure 7: Six-variable System, Difference Specification, Sample Period 1959-2001

0 5 10 15

-0.5

0

0.5

1

1.5
Output     

0 5 10 15
-1

-0.5

0

0.5

Hours      

0 5 10 15

-0.2

-0.1

0

Inflation  

0 5 10 15
-100

-50

0

Fed Funds  

0 5 10 15

0

0.5

1

1.5

Consumption

0 5 10 15
-3

-2

-1

0

1

2

Investment 

Line with Triangles: Impulse Responses from Difference Specification
Gray Area: 95 percent Confidence Intervals For Simulation Impulse Responses

40



Figure 8: Encompassing Test with the Level Specification as the DGP, 1959-2001
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Figure 9: Encompassing Test with the Difference Specification as the DGP, 1959-2001
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Figure 10: Comparing the Six-Variable Specification to 2 different Four-Variable,
Level Specification
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Figure 11: Encompassing Four-variable systems with Six-variable systems
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Figure 12: The Effect of Adding A Quadratic Trend
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Figure 13: Encompassing pre-1979Q4 Period
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Figure 14: Encompassing post-1979Q3 Period
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Figure 15: Historical Decomposition: Bivariate System,
Level Specification
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Figure 16: Historical Decomposition: Six-Variable System , Level Specification
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Figure A: Encompassing Analysis for Level and Quadratic Trend Models
Panel A: DGP Levels
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Table 1: Contribution of Technology Shocks to Variance, Bivariate System
Level Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 81.1 78.1 86.0 89.1 91.8 96
Hours 4.5 23.5 40.7 45.4 47.4 48.3

Difference Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 16.5 11.7 17.9 20.7 22.3 23.8
Hours 21.3 6.4 2.3 1.6 1.0 0.5

Table 2: Contribution of Technology Shocks to Variance, Six-variable System
Level Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 31.2 40.3 44.6 41.5 44.8 70
Hours 3.6 15.4 28.8 28.4 28.8 43.9
Inflation 60.2 47.0 43.2 41.1 39.5 47.7
Fed Funds 1.6 1.4 1.7 1.7 3.7 23.3
Consumption 61.6 64.2 67.3 66.8 71.8 88.4
Investment 10.3 20.1 24.1 20.9 20.4 25.3

Difference Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 1.7 0.6 2.6 6.4 17.2 35.5
Hours 20.8 11.9 8.0 7.1 5.7 2.3
Inflation 58.5 54.7 55.6 52.4 47.4 33.8
Fed Funds 0.0 7.5 10.5 13.7 17.2 16.9
Consumption 7.9 4.1 8.7 14.3 25.3 34.3
Investment 1.1 2.0 1.1 1.3 3.7 13.8

51



Table 3: Contribution of Technology Shocks to Cyclical Variance (HP Filtered Results)
Level Specification

Variables in VAR Output Hours Inflation Federal Funds Consumption Investment
Y,H 63.8 33.4
Y,H,∆P,R 17.8 17.9 53.2 11.2
Y,H,C, I 19.9 18.5 20.1 20.7
Y,H,∆P,R,C, I 10.2 4.1 32.4 1.3 16.8 6.7

Difference Specification

Variables in VAR Output Hours Inflation Federal Funds Consumption Investment
Y,∆H 10.6 7.0
Y,∆H,∆P,R 6.8 8.5 48.4 8.1
Y,∆H,C, I 1.3 6.3 0.32 5.5
Y,∆H,∆P,R,C, I 1.6 6.1 35.2 4.9 3.7 2.6

Table A1: Power of Standard ADF t Test
Bivariate Specification Six-Variable Specification

Long Sample Short Sample Short Sample
Size Critical Value Power Critical Value Power Critical Value Power

0.01 -3.835 0.048 -3.705 0.108 -4.290 0.045
0.05 -3.253 0.184 -3.109 0.353 -3.410 0.223
0.10 -2.870 0.363 -2.780 0.548 -2.963 0.400

Table A2: Power of CADF t Test
Bivariate Specification Six-Variable Specification

Long Sample Short Sample Short Sample
Size Critical Value Power Critical Value Power Critical Value Power

0.01 -3.588 0.396 -3.266 0.589 -4.184 0.689
0.05 -2.908 0.784 -2.686 0.864 -3.350 0.888
0.10 -2.616 0.895 -2.403 0.938 -2.879 0.946
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