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How Does the Border Affect Productivity?

Evidence from American and Canadian Manufacturing Industries∗

Robert Vigfusson

December 8, 2003

Abstract

This paper studies how much of productivity fluctuations are industry specific versus
how much are country specific. Using data on manufacturing industries in Canada and
the United States, the paper shows that the correlation between cross-border pairings of
the same industry are more often highly correlated than previously thought. In addition,
the paper confirms earlier findings that the similarity of input use can help describe the
comovement of productivity fluctuations across industries.
Keywords: productivity, comovement, border effects
JEL D24 F4

1 Introduction

A national border often appears to reduce the comovement between economic variables that
are on opposite sides of the border. Knowing whether this border effect extends to productivity
fluctuations would be of interest for a number of reasons. For example, evidence either for or
against a border effect would help us understand the true nature of these productivity shocks.
Evidence that productivity shocks are industry-specific shocks that affect industries equally on
either side of a national border would be evidence in favor of interpreting productivity shocks
as being caused by changes in technology. Such a finding would, therefore, let us take seriously
the notion of using these industry-level measures to examine technology-driven explanations
of economic fluctuations (as in Basu Fernald and Kimball 1999). Evidence that productivity
shocks do not depend on industry characteristics but rather are country-specific phenomena
would be evidence against technology-driven models (Stadler 1994). Evidence of a large country-
specific factor would emphasize the need to understand further the role of government, culture
and other country-specific factors in determining industry-level productivity.

The current paper studies productivity growth of manufacturing industries in Canada and
the United States. Because these two countries are so similar, one might expect to find no border
effect.1 Studies of both trade and prices, however, find found such border effects. McCallum

∗Thanks for comments from David Bowman, Tim Conley, Brian Doyle, Joe Gagnon, Maral Kichian, John
Rogers, and Jonathan Wright. Thanks also to the Bureau of Labor Statistics and Statistics Canada for their
assistance with data. The views in this paper are solely the responsibility of the author and should not be
interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any person
associated with the Federal Reserve System.

1Although the countries are similar, Baldwin and Sabourin (1998) report survey evidence that Canadian and
American firms differ on their views on technology adoption.
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(1995) and Helliwell(1996) find border effects for trade. Recent work by Anderson and Van
Wincoop (2003) suggests that the border effect is smaller; but that the border still reduces
trade by 44 percent. For prices, Engel and Rogers (1996) find a border effect for Canada
and the United States. Furthermore, Costello (1993) studies the cross-country industry-level
productivity correlations for some OECD countries. In her study, none of the correlations
between Canadian and American versions of the same industry are statistically significant.
Because several pairs of American industries and several pairs of Canadian industries had
significant correlations, Costello’s finding of no significant cross border correlations can be
interpreted as evidence of a considerable border effect.2

In this paper, productivity is measured using the KLEMS data sets from Statistic Canada
and the U.S. Bureau of Labor Statistics.3 These data sets are what the respective statistical
agencies use to measure multifactor productivity in the manufacturing industries. The acronym
KLEMS stands for capital, labor, energy, materials, and business services. For each industry,
the data set reports both an index of the amount used (the volume) and also the nominal
expenditure (the value) on any given input. The data set also reports the value and volume of
each industry’s gross output.

Productivity studies often use data sets that lack information on intermediate inputs. Be-
cause productivity is measured as a residual, any omitted variables can potentially result in an
inaccurate measure. In particular, Basu and Fernald (1995) argue that measuring productivity
using data only on capital and labor can result in an inaccurate measure that over states the
degree of cross-industry comovement.

An important contribution of this paper is that it constructs productivity using
information on intermediate inputs, in contrast to other work, such as Costello (1993).4 In

addition, because there are more industries in the KLEMS dataset, the current paper reports
on correlations on 10 additional industries beyond the 5 studied in Costello. The increased
coverage of the KLEMS dataset results in finding more positive correlations than is found for
a dataset restricted to Costello’s original five.

Another advantage of calculating productivity with data on intermediate inputs is that it
allows a reassessment of Conley and Dupor (2003). They study the industry-level comovement
of productivity growth rates in the United States. They construct their productivity series using
information on the changes of output, labor, and capital services (measured using electricity
usage). Because they study data at the quarterly frequency, they however do not have data

2The current paper focuses on exogenous fluctuations in technology and hence is of most relevance to macro-
economics. Depending on the difference between exogenous and endogenous fluctuations, this paper’s results
may have implications for trade theory. One might hold the view that the channels through which endogenous
improvements in an industry’s productivity transfers to other industries are the same as for exogenous improve-
ments. If there is a large border effect and hence knowledge spill-overs are country specific then comparative
advantage in research and development can become endogenous (Grossman and Helpman 1990). Branstetter
(2001) uses firm level data on patents to examine spill-overs in knowledge between U.S. and Japanese firms. He
found evidence that the knowledge spillovers are more intra-national than international in scope. Related to the
current paper, he too uses a measure of technological proximity to weight how much other firms’ research spills
over to an individual firm. Finding an important role for within country spill-over effects has some important
policy implications. In particular, if there are within country spill-overs, a country might want to subsidize
research to gain comparative advantage

3One desirable extension of this research would be to compare industry-level productivity fluctuations across
regions in the United States with each other and Canadian industries. Unfortunately, the data to do such a
comparison are not available.

4Other papers, such as Basu Fernald and Kimball (1999), that have constructed productivity measures using
intermediate inputs have not looked for border effects.
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on quarterly changes in intermediate inputs. Conley and Dupor’s finding of a high degree of
comovement could be subject to the criticisms of Basu and Fernald (1995). In particular, Basu
and Fernald report that the earlier comovement results of Caballero and Lyons (1992) were
highly dependent on constructing productivity without using data on material usage.

Conley and Dupor’s comovement results are important because they provide an organizing
principle for the observed empirical comovement patterns. In particular, Conley and Dupor
provide evidence that comovement between industries depends on the similarity of the inputs
that each industry uses. (While they do not have quarterly data on intermediate input use,
Conley and Dupor can classify industries by their input use from the input-output tables. These
benchmark input-output tables, however, are available only every five years.) Comovement has
often been viewed as a defining characteristic of business cycles. Insights into comovement,
therefore, should lead to a better understanding of business cycles. Confirmation of their results
would emphasize the need for further investigation into how input usage leads to comovement.

The empirical evidence presented here confirms Conley and Dupor’s results in two crucial
ways. First, constructing the productivity series using data on material usage does not change
qualitatively the observed comovement patterns in the United States. Second, the dependence
on input similarity is not restricted to the United States. In Canada, comovement also depends
on input similarity.

The rest of the paper has the following structure. Section 2 lays out the modelling frame-
work. Section 3 describes the data and some of the measurement issues in constructing produc-
tivity series. Section 4 reports the empirical work. The section first reports simple correlations
between industry pairs to provide evidence against earlier claims of a large border effect and
then reports on the correlations between all industry pairs. As in Conley and Dupor (2001),
using information on input usage can concisely summarize the comovement patterns found in
the data. Here also, the border effect is found to be small. In particular, variation in input
usage has a larger effect on correlations than does being separated by a border. Section 5 offers
conclusions and provides suggestions for future research.

2 Modelling Framework

In studying the covariance between productivity growth rates, this paper examines the con-
nection between the similarity of input use and the covariance between industries. Conley and
Dupor present an econometric model where the covariance between industries is a function of
the similarity of input usage. However, they do not explicitly model why input usage might
matter.5 Although not a full structural model for estimation, the following discussion should
provide some intuition.

2.1 Economic Modelling

To provide some intuition for why input usage might matter, consider the following production
function.6 Industry j produces output Yj by combining inputs xji in the following production

5The closest model is that of Dupor (1996) where productivity comovement should depend on where industries
sell their output. The evidence in Conley and Dupor, however, is more supportive of productivity comovement
depending on where industries buy their inputs.

6This version of the model does not take into account the international aspect of productivity comparisons.
Appendix B presents a version of the model with two countries.
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function

Yj = θAθj

NY
i=1

(xjivi)
γji

where θA is an aggregate productivity term, θj is an industry-specific productivity term, and
vi is an input-specific productivity term. For intuition, the reader could think of θA as arising
from gains due to national infrastructure, θj from industry-specific production improvements
that are not readily transferable to other industries, such as for the steel industry finding an
improved way to make steel, and vi a general technology that makes better use of a particular
input i. Examples of input-specific improvements include: vintage capital, human capital7,
labor-augmenting technological progress, or even something as simple as fewer defects per box
of metal fasteners.8 The log of each of these productivity terms is assumed to be a random
walk with the disturbances having a constant variance and being independent of each other.
Suppressing time subscripts for notational simplicity, these assumptions can be expressed as:

∆ ln vi = ui

∆ ln θj = εj

∆ ln θA = εA

where [ui, εj , εA] are independent both across time and each other with variances
n
σ2vi,σ

2
θj ,σ

2
A

o
.

The change in the log of industry-level productivity ∆zj would be the following

∆zj = ∆ ln θA +∆ ln θj +
X

γji∆ ln vi

Hence the covariance between any two industries can be written as follows.

E∆zj∆zk = E (∆ ln θA)
2 +E (∆ ln θj∆ ln θk)

2 +
X³

γjiγki

´
E (∆ ln vi)

2

= σ2A +
X³

γjiγki

´
σ2vi if j 6= k

= σ2A + σ2θj +
X³

γji

´2
σ2vi if j = k

Assuming constant-returns-to-scale and industry-level cost minimization, the above Cobb-
Douglas production function implies that γji equals the industry’s expenditure share sji. With
a further assumption that all of the individual input-productivity terms (σ2vi) have the same
variance (σ2v), the resulting covariance function would be the following.

E∆zj∆zk = σ2A + σ2v
X
sjiski if j 6= k

= σ2A + σ2θj + σ2v
X
(sji)

2 if j = k

Therefore, the covariance between two industries is larger for those industries that have more
similar input shares, because more similar shares implies a larger value for the product of input
shares

P
sjiski.

7Although the BLS does account for changes in skill composition for private (nonfarm) business, the BLS
does not correct for changes in skill composition at the industry-level. (BLS Handbook of Methods, 1997).

8An industry that reduces the fraction of defective output would likely have a measured increase in productiv-
ity only if the defective output had not been previously counted as output. Furthermore, if improved inspections
reduced the amount of output sold but not produced, then measured productivity would actually fall. In such
a case, a lower rate of defective inputs would then show up as an improvement in productivity for the using
industry.
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2.2 Econometric Spatial Model

Conley and Dupor estimate a similar but more general function for covariance between indus-
tries.9 Their assumption is that the covariance between any two industries can be written as a
function of input shares,

E∆zj∆zk = c

µqX
(sji − ski)2

¶
where c () is a smooth function. The estimator becomes a ‘spatial estimator’ by viewing the
similarity of input usage as a measure of economic distance, where distance is defined as:

djk =
qX

(sji − ski)2

This specification implies that each industry has a location that is described by the vector sj
that describes its input shares {sji}Ni=1. The covariance between two industries then depends
on the Euclidian distance djk between these industries’ locations. Note, that this distance is an
economic distance not a geographic distance.

Although Conley and Dupor estimated c () using non-parametric kernel regression, I will
estimate c () using a version of the sieve estimator describe in Chen and Conley (2001). The
function form of c () is the following

c (d) =
X
bkHk (d)

where Hk are the set of functions, described in the Appendix, that approximates the covariance
function. With the restrictions that b1 is positive and bk+1 > bk, the sieve estimator has the
advantage of guaranteeing a valid covariance matrix, which is important for the hypothesis
testing reported here.

3 Discussion of the Data

Productivity measures how much output can be produced for a given amount of inputs. The
standard approach is to linearize a production function and thereby express the growth in
productivity dz as the growth in output dy minus the growth in inputs. Several measures of
the inputs are considered here. Beginning with the most general, output Y is produced by
function that has as inputs: technology z, capital services k, labor services l, and intermediate
inputs (energy e, materials m, and services s).

Y = F (K,L,E,M,S, Z)

Linearizing this production function results in

dz = dy − (γkdk + γldl + γede+ γmdm+ γsds) (1)

The output elasticities γ are calculated in several different ways. The empirical part of this paper
reports results where the values of γ are estimated by an instrumental variables regression. An

9Appendix B reports on the similarities and differences between the production function described here and
Conley and Dupor’s covariance function. In particular, the Conley and Dupor econometric model is estimated
on the simulated data from the economic model described above. While the two models are not identical, the
econometric model does approximate the simulated covariances.
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alternative approach is that taken by Statistics Canada and the Bureau of Labor Statistics to
calculate their productivity measure, multi-factor productivity (MFP). Under their assumptions
of constant returns to scale, the values of γj are the nominal expenditure on an input j as a
share of the total nominal value of gross output.

dz∗ = dy − (skdk + sldl + sede+ smdm+ ssds) (2)

More restricted measures are often constructed due to data limitations. For many countries,
the available data sets, (such as the OECD STAN data set) do not have data on intermediate
input use. In the United States, no statistical agency publishes data on intermediate input use
at higher frequencies than annual. Therefore, to do higher frequency work, one has to follow
Conley and Dupor and estimate the following equation that measures productivity using gross
output as a function of just capital and labor services.

dzy = dy − (γkdk + γldl) (3)

Rather than measuring output as the total value of production, one could measure output
using value added (for example, industry-level GDP). Productivity measured in value-added
terms can be written as.

dzv = dv − (γvkdk + γvl dl) (4)

where dv is the growth rate of value added. In both of these cases, the values of γ will be
estimated. An alternative approach is to ignore the data on capital usage and focus entirely
the amount of gross output produced using labor. Labor productivity is defined as

dzl = dy − dl (5)

The data set studied here is the KLEMS data set for Canada and the United States for 1960-
1997. Using this data set rather than other options has several advantages. First, for any given
industry, the statistical agencies construct output and inputs with a goal of being consistent.
Other studies that have examined productivity often combine output data reported by one
statistical agency with input data reported by another. For example, industrial production
from the Federal Reserve is often matched with hours data from the BLS Current Employment
Statistics survey.10 As such, one should be concerned that the firms used in measuring output
are not the same firms as those used in measuring inputs. An additional advantage of using
the official KLEMS data sets from the two countries is that others have already studied the
comparability of the two data sets. Eldridge and Sherwood (2001) found that the differences
for the two data sets are minor and do not contribute substantially to any differences in average
productivity growth.

The industries studied here are the two-digit Standard Industrial Classification (SIC) man-
ufacturing industries. These industries can be divided into two groups: the durable goods
industries and the nondurable goods industries. Table 1 lists the industries studied in this
paper and their corresponding U.S. 1987 SIC code. The Canadian industries were mapped into
their U.S. counterpart.

10Choosing to combine different data sources is one of the many trade-offs a researcher must make. For
example, choosing to use the KLEMS dataset implies that the researcher also chooses to work with annual data.
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3.1 The Effect of Missing Data on Materials Inputs

Materials usage data are often not available. Because productivity growth is measured as
the growth of output minus the growth of inputs, missing inputs should therefore lead to
a contaminated productivity series. Two different strategies can attempt to deal with this
problem. First, production functions can be assumed to be separable: observed inputs such as
labor and capital move together with the missing inputs. The problem with the separability
assumption is that counter examples are easy to find. For example, suppose that the workers
vary their effort. When they have work to do, they work and when there is nothing to do,
they still are counted as working. In that case, to produce more output, a firm may increase
the amount of intermediate inputs without changing the amount of employed labor. Hence,
the production function is not separable. The other strategy is to use output that has be
constructed with the contribution of intermediate inputs removed, value-added data.

Basu and Fernald (1995), however, showed that these intermediate inputs can still contami-
nate productivity measures constructed using value-added data. There are several different ways
to measure value added using data on intermediate inputs and gross output. One approach
measures value added as the growth rate of output minus the expenditure share weighted growth
rate of intermediate inputs. Basu and Fernald discuss other approaches and show that these
other methods have more biases. Abstracting away from energy and services, one can express
valued added as follows. Assuming constant returns to scale, real gross output can be written
as a combination of materials and value added:

dy = (1− sm) dv + smdm
where sm denotes the expenditure on materials as a fraction of total input expenditure. This
equation can be rewritten as an expression for value added

dv =
1

1− sm (dy − smdm)

This equation is sensible with perfect competition since it implies that if gross output and
materials both increase by one percent, value added will also increase by the same amount.

Notice however the implication for the measure of productivity when the elasticity of output
with respect to materials γm differs from the expenditure share, such as when the industry has
increasing returns to scale.

dv =
1

1− sm ((γkdk + γldl + γmdm )− smdm) + 1

1− smdz

=
γk

1− smdk +
γl

1− smdl +
γm − sm
1− sm dm+

1

1− smdz

But in estimating this equation, one will actually estimate the following equation

dv = γvkdk + γvl dl + dz
v (6)

where

dzv =
γm − sm
1− sm dm+

1

1− smdz
Hence as long as γm does not equal the expenditure share sm, then the technology measure

will be contaminated with material usage data. Material usage is likely correlated across in-
dustries within a country because of demand linkages and aggregate shocks such as monetary
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policy. Therefore one might expect to find larger border effects when examining productivity
calculated using value-added data than using gross output data.11

3.2 Input Output Tables

To construct distances between sectors requires a measure of industry similarity. One source of
such data is the Input-Output table that describes how much of each input an industry uses in
production. The inputs reported are materials and labor. Under the assumption that industries
that use similar inputs are more similar than industries that do not, the information on inputs
is used to calculate the economic distance between sectors.

In order to reduce the dimension of the space, the Input-Output table is condensed into
a table with 18 rows: fifteen rows for the manufacturing industries studied here, one row for
petroleum, one row for labor, and one for all other industries. Likewise the aggregated table
has 15 columns representing each industry’s use of the inputs. Each element of this table is
divided by its associated column sum to make a matrix S of input shares. The element sij
denotes the share of sector j’s inputs that come from sector i. The distance between sectors j
and k, djk is defined as the Euclidean distance between the two sectors input shares.

djk =
³X

(sij − sik)2
´1/2

The input-output matrices have several important properties. First the matrices are sparse.
At the two digit level, most of the entries are near zero.12 A subsection of the input output
table is reported in Table 2. For most industries, one of the largest sources of inputs is itself.
The Chemicals industry is one of the few industries that is an input into all of the others. Also
the durable goods industries that are between SIC 33 and SIC 37 are the most interconnected
manufacturing industries.

3.2.1 Distribution of Distances

Figure 1 reports the distribution of distances. The distribution has a mass at zero because the
distance between a sector and itself is zero. About eighty percent of the distribution is located
between 0.25 and 0.6. The number of zero distances is smaller for the cross-border distances
because the Canadian and U.S. sectors have different input requirements.

3.3 Capital Services and Utilization

The discussion of measuring productivity referred to the inputs as capital services and labor
services rather than capital and labor. This distinction is to emphasize the need to differentiate
between changes in output due to changes in inputs versus changes in outputs due to better use
of the same inputs. For example, a fixed amount of capital (a particular machine) can be run
at a greater utilization rate and thereby provide additional capital services. Therefore, in this
paper, the estimation procedure will not measure capital services using the published series for

11Estimating the coefficients in equation (6) may mitigate the problem of using value added data if the
instruments are correlated with the omitted variable (dm). With the instruments correlated with material usage,
the estimated coefficients should be biased in such a way to reduce the amount of material usage in the residual.
12The sparseness of these matrices has implications for economic modelling. As noted in Horvath (2000),

sparseness postpones the law of large numbers result that idiosyncratic sector-specific shocks would nullify each
other in aggregate output.
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capital.13 Rather, as in Burnside Eichenbaum and Rebelo (1993), Costello (1993), and Conley
and Dupor (2003), changes in capital services are approximated by changes in energy usage.14

Dropping capital may be controversial. As such, results are also reported for the published
multifactor productivity series that includes the measured capital stock as an input. As will be
clear from the results reported in the following sections, the paper’s conclusions are not overly
sensitive to the treatment of capital.

4 Empirical Results

The empirical results are presented in four parts. The first part describes the estimated coeffi-
cients of the production function that are used to construct the estimated productivity series.
The second part reports pair-wise correlations for both the estimated productivity series and
also the published labor and multifactor productivity series. The pair-wise correlations make
clear that the border effect is smaller than had been previously reported. The third part char-
acterizes the dependence of the observed productivity comovement on the similarity of input
use. The final part presents results regarding weak instruments and hypothesis testing.

Two different approaches are used to measures the dependence on input use. The first
approach is a linear regression of the sample correlation between industries on the distance
measure of input use similarity. The second approach uses the analogous covariance function of
Conley and Dupor. Both approaches support the conclusion that the observed comovement is
dependent on the similarity of input use. To strengthen these conclusions, several alternative
hypotheses are tested. The hypothesis testing confirms that input use is a useful organizing
tool. There, however, needs to be further refinement.

4.1 Estimation Based Productivity Series

To compute the correlations between American and Canadian productivity series, I need to
estimate the most general production function and the resulting technology series. For each
industry j the technology series is given by the residual from the following regression.

4 ln yj = γl4 ln lj + γe4 ln ej + γm4 lnmj + γs4 lns+zj (7)

The technology shock is defined as z. The observable variables in the equation are output
y, labor l, energy e, materials m, and services s.

The values of the observed inputs may depend on the value of the technology shock. There-
fore, a consistent estimate of the equation 7 requires using instrumental variables. For both
countries, the estimation process uses five instrumental variables to estimate the four coef-
ficients. For the American industries, the instruments are current and lagged values of the
changes in real U.S. defense expenditure, and the changes in the IMF spot oil price, and the
current value of a monetary policy shock taken from the VAR estimated in Christiano Eichen-

13Estimating the production function with the reported change in ∆k results in the estimate of the coefficient
on ∆k being strongly negative with an average value of −0.3. This may reflect some kind of adjustment cost.
14Basu and Fernald (2000) discuss other approaches that one can use to approximate for changes in utilization.

Their preferred approach, however, requires data on average hours worked per employee which are not available
in the datasets used here.
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baum and Evans (1999).15 For Canada, the instruments include current and lagged changes
in the oil price and the U.S. monetary policy shock. An additional instrument is the current
change of non-oil commodity prices. That the Canadian economy responds to commodity price
fluctuations is well established. For example, Amano and van Norden (1995) report on the
strong relationship between the Canadian exchange rate and commodity prices. Since the tech-
nology shocks may be correlated across industries, the equations for all of the industries in a
particular country are estimated jointly using three-stage least squares (two-step GMM). The
weighting matrix is constructed using the standard sample covariance matrix.

Table 3 reports the coefficient estimates. The coefficient estimates do vary between durables
and nondurables and between Canada and the United States. First the nondurable sectors in
the United States places almost all of its weight on labor and business services, the most labor-
like of the intermediate inputs. The U.S. durable sector places much more weight on material
usage.16 The Canadian estimates are quite different. Energy and material usage are much
more important. These factors are the ones most likely to correct for utilization. Standard
asymptotic confidence intervals are also reported.17

4.1.1 Returns to Scale

Table 3 also reports a measure of the returns-to-scale, the sum of the estimates γi. The statis-
tical agencies assume constant returns-to-scale when computing multi-factor productivity. The
estimation approach used here allows for returns-to-scale different from one. For the United
States, the nondurable industries have increasing returns to scale while the durable industries
have decreasing returns to scale. Neither of these estimates is statistically significant.18 In
Canada, both industries have increasing returns to scale but only the estimate for the Non-
durable industries is statistically significant.

4.2 Pair-wise Correlations

Table 4 reports the sample correlations between industries pairs across borders and also for dif-
ferent industries within a country. This exercise is analogous to Costello (1993).19 For Canada
and the United States, Costello did not find any statistically significant cross-border own-
industry correlations. There, however, were a number of significant correlations for industries
that were located in the same country.

These correlations are reported for several different productivity measures. In all cases, the
measures are constructed using the BLS and Statistics Canada KLEMS data sets. The first

15In the Christiano Eichenbaum and Evans paper, the sample period is only from 1964 to 1995. I extend the
sample back to 1959 and forward to 1997 in order to match the span of the KLEMS data. The shocks do result
in very similar impulse responses. Due to data revisions, the shocks identified here, however, are not identical
to the shocks identified in the CEE paper. The correlation between their monetary policy shocks and the ones
used here is 0.62.
16A large weight on materials is compatible with Basu’s (1993) use of materials to approximate for changes in

utilization.
17Section 5 discusses the possibility of weak instruments and how it might affect inference concerning the size

of the border effect.
18For the United States, economists have found different estimates of the relative size of the returns-to-scale in

the durable and non-durable good producing industries. Basu Fernald and Kimball (1999) found that nondurables
have lower returns to scale than durables, but Conley and Dupor found the opposite result. Given the wide
confidence intervals of the two estimates, the results reported here are insufficient evidence to decide the issue.
19While the sample period is longer than Costello’s, using the shorter sample is not responsible for the results.
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column reports the correlation between industries using labor productivity. The second column
reports calculations using the multi-factor productivity measures calculated by the BLS and
Statistics Canada. The third column reports the results from the estimated productivity series.

Comparing the results for the MFP measure and the estimated measure suggests that the
estimation procedure has removed a common term from all of Canada’s measures. The average
correlation between solely Canadian pairs has gone down dramatically. The average correlation
between a Canadian and American pair has not seen the same reduction. In terms of a border
effect, one could apply Costello’s criterion of statistical significance. Out of the 15 industries
studied here, labor productivity correlations are statistically significant for nine industries,
multifactor correlations are significant for 12 industries, and the estimated productivity series
has significant correlations for 7 industries.

4.2.1 Comparing Results With Costello

The large percentage of statistically significant industries suggests that the border effect is less
important than Costello had claimed. A major reason behind the difference in results is the
industries studied. The five industries that Costello studied are some of the least likely to have
significant cross border correlations. For the results reported here, both Food and Textiles are
never statistically significant. For all three measures, the Chemicals industry is statistically sig-
nificant. Primary Metals and Fabricated Metals both have statistically significant correlations
for the MFP measure. For the estimated productivity series, although the points estimates
reported in Table 4 are above 0.25, the correlations are not statistically significant. Overall,
these results suggest that Costello’s conclusion of a large border effect was highly dependent on
the industries that she studied. Studying a greater number of industries reverses her conclusion
and allows us to conclude that the border effect is smaller than previously claimed.

4.2.2 Further Diagnostics

Table 5 reports further diagnostics of the productivity series. For each industry, the table reports
the standard deviation of the MFP measure and the ratio of that measure to two others: the
labor productivity series and the estimated productivity series. One of the standard reasons for
mismeasured productivity growth is labor hoarding, where workers vary their effort over the
business cycle. If labor hoarding were a serious issue at the annual frequency then the labor
productivity series would have a much higher standard deviation than the MFP measure. If
the estimation procedure actually corrects for the roles of market power and the changes in
utilization, then the estimated productivity series should have a much lower standard deviation
than the multifactor productivity series.20

As reported in Table 5, labor productivity often has a much larger standard deviation
than does the MFP. A larger standard deviation is suggestive of a labor hoarding hypothesis.
Labor hoarding is most likely in industries with highly skilled workers that are difficult to
replace. In both countries, the two industries that had the largest ratios were Apparel [SIC
23] and Transportation Equipment [SIC 37]. That the industry that produces airplanes and

20The claim may be false if utilization changes and technology changes were negatively correlated. Many
macroeconomic models would have a positive correlation. Of course, counter examples do exist. For example,
suppose that an increase in utilization results in a greater depreciation rate for capital. In a model with investment
adjustment costs, utilization and technology could then be negatively correlated. A reduction in utilization would
be way to ‘avoid’ the investment adjustment costs and to preserve capital for the next period.
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automobiles [SIC 37] is a high skill industry seems sensible. The high ratio for Apparel is
perhaps more puzzling as it contradicts conventional stereotypes.

For Canada, the estimated productivity series has, on average, a much lower standard
deviation than the MFP measure. The lower value further suggests that the estimation process
did correct for the role of utilization. In particular, the standard deviation of durable good
producing industries are much lower. It is commonly thought that durable goods industries
would be the industries most likely to have large time-varying utilization rates.

4.3 Distance Based Correlation Functions

The following section reports two sets of calculations describing how industry comovement
depends on the similarity of input usage. The first results are from OLS regressions on the
sample correlations. The second set of results are from methods similar to those used in Conley
and Dupor, where the correlation between industries is a function input-use similarity.

4.3.1 Linear Regressions

To understand the relationship between distance and the correlation between industries, I first
estimate the following simple regression.

ρ (∆zi,∆zj) = β0 + β1dij + β2d
2
ij + uij

where ρ (∆zi,∆zj) is the correlation between productivity growth in industry i and industry j.
Table 6 also reports the R2 of the regression for each possible set of pairings (i.e. a regression
for all Canadian pairs, another for all American pairs, and another for cross-border pairs).
The table also reports the F-test of the distance coefficients both equal to zero. For both
countries, input similarity helps explain the pattern of productivity correlations. In particular,
the F-test reject the hypothesis that input similarity does not help. As can be seen by the
R2 statistics, even though the input-usage information is useful, there remains a great deal
of unexplained variation. Whether the unexplained variation comes from omitted explanatory
variables or mismeasured productivity growth is an open question. From Figure 2, the decline
in correlation as a function of distance is somewhat greater for the U.S. estimates than the
Canadian estimates. The labor productivity results are flatter for the cross-border pairs. The
evidence for cross border pairs depending on distance is strongest for the estimated productivity
series.

To investigate further the cross-border effects, consider the following direct test of the border
effect for all pairs both within each country and also across countries

ρ (∆zi,∆zj) = β0 + β1dij + β2d
2
ij + φcrossδ + uij

where δ equals one if it is a cross border pairing and otherwise equals zero. The border effect
measured as φcross is largest for the constructed productivity series. With the average correla-
tion between U.S. pairs is 0.30, a decline of 0.06 is somewhat small. The result for the estimated
productivity series is statistically significant. The values of φcross found for the other produc-
tivity measures are smaller and are not statistically significant. The size of these coefficients
are similar to the results reported in the next section.
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4.4 Explicit Distance Function Based Estimates

The correlation regressions reported in the previous section may be sufficient proof that (1) the
border effect is relatively small and that (2) the correlation between industries is dependent
on what inputs the industries use. One, however, may want to consider the more general
distance based measure used in Conley and Dupor. One advantage of their approach is that
these measures allow for changes in distances between industries over time. Over time, the
subcomponents of the industries might change. These changes will be reflected in their input
usage and cause changes in the distance measures. For example, SIC 35 includes the computer
industry. As the importance of that industry grows relative to other industries that are also
included in SIC 35, the types of inputs SIC 35 buys should change. They may use more
Electrical Machinery SIC 36 and less Fabricated Metal SIC 34. Therefore, the distance from
other sectors that continue to use a lot of metals would grow over time.

This estimation implements the semi-parametric methods of Chen and Conley in estimating
the size of the border effect. Although their methods are proposed for a distance-dependent
covariance matrix, the approach taken here will be to first normalize each growth rate by
dividing by its sample standard deviation. The covariance matrix on the resulting normalized
growth rates corresponds to the correlation matrix of growth rates. The advantage of this
approach is that it abstracts away from heterogeneity in variances across industries and countries
already described in Table 5. This abstraction is not because the heterogeneity is uninteresting
but rather because the heterogeneity is of only secondary importance to the question of border
effects.

Figure 3 plots the correlation function for all three measures. For each productivity measure,
three estimates of C (d) are reported. The thick solid line is the estimate of C(d) found by
estimating the following equation

∆zi∆zj =
X
bkHk (dij)

for all pairings of i and j and with the restriction that bk+1 > bk. The estimation is a straightfor-
ward application of the methods in Chen and Conley, with no allowance made for border effects.
The sign restriction on bk insures that the correlation matrix is positive definite, which is im-
portant for constructing the confidence intervals. The gray interval is the bootstrap confidence
interval generated as in Chen and Conley. The covariance matrix Σt of the productivity shocks
zt is a time-varying matrix that depends on the time-varying distances between industries. As
such, a vector of i.i.d errors ut with variance one can be constructed as

ut = chol (Σt)
−1 zt

where chol denotes the matrix operator that maps between a positive definite matrix Σ and
its upper triangular Cholesky factorization. A simulation run is constructed by drawing with
replacement from the set of the errors {us}Ts=1 for each time period a value u∗t and then multi-
plying it by the Cholesky factorization of the corresponding variance covariance matrix to get
a simulated productivity series

z∗t = chol (Σt)u
∗
t

For each of five hundred simulation runs, the coefficient estimates of C(d) are stored. These
simulations are then used to construct a ninety percent confidence interval for the covariance
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function.21

The second set of results allow for two border effects. The first controls for cross-border pairs
of the same industry and the second controls for all cross-border pairs of different industries.

∆zi∆zj = φ1δ1 + φ2δ2 +
X
bkHk (dij)

where δ1 equals one when i and j indicate the equivalent industries in the two different countries
and δ2 equals one when i and j indicates non-equivalent industries that are located in different
countries. In addition, the restriction of the bk’s is not imposed because these off-diagonal
constants imply that the resulting correlation matrix is not necessarily positive-definite. The
thin line reports the value of

P
bkHk (d) and the line with circles reports the value of φ2 +P

bkHk (dij). Hence the difference between the two lines is the value of φ2, the effect of the
border.

The figure reports C (d) over the entire range of observed distances. In addition, the dashed
lines indicate the interval between 0.23 and 0.70 that contains 90 percent of the non-zero
distances. The estimates of C(d) are all fairly steep. For example, within-country industries
that use similar inputs (a distance of 0.25) have an estimated correlation for labor productivity
of 0.36 that decline to 0.10 when the distance increase to 0.70.

Table 8 reports the cross-border coefficients and the associated sampling uncertainty. The
first result is a test of the null hypothesis of no border effect between the same industry in the two
countries. These results are generated by the same bootstrap simulations of the data generating
process described above that made no allowance for border effects. As an additional check, a 90
percent confidence interval for the cross border coefficient is estimated by a alternative bootstrap
where the vector of growth rates is sampled with replacement. This process is typically less
efficient (Horowitz 2002) but is valid under the assumption of no serial correlation.

For both labor productivity and the estimated productivity series, one would fail to reject the
null hypothesis that φ1 equals zero at the 10 percent significance level. For the MFP measure,
one would reject the null hypothesis that φ1 equals zero at the 1 percent significance level.
For all three productivity measures, one would reject the null hypothesis of no border effect
for non-identical industries. Similar results are found using the confidence intervals generated
by the alternative bootstrap procedure. One can conclude that the statistical evidence favors
non-identical cross-border industries being less correlated than similar industries located in the
same country. The evidence is weaker for cross-border pairs of industries in the same country.
For these cross-border pairs of the same industry, stronger evidence may be found if we imposed
the sign restrictions on bk. Part of the relative fall in C(d) for small distances may be attributed
to controlling for cross-border pairs of the same industry. As mentioned in the discussion of
Figure 1, the cross-border pairs are close together because they use very similar inputs.

Having established statistical significance, the next question concerns the border’s economic
significance. As mentioned above, the dependence on distance shows a fairly strong decline. For
example for labor productivity, industries that use similar inputs (a distance of 0.23) have an
estimated correlation 0.26 more than industries that are quite dissimilar (a distance of 0.70).
Crossing the border results in a 0.14 decline in correlation. Hence, for labor productivity,
cross-border pairs that use similar inputs are more correlated than within country pairs that

21The confidence interval is constructed as follows. First, generate 500 simulations of the statistic of interest xi
where x∗ is the empirical estimate of the same statistic. Calculate the differences between the simulated statistics
and the empirical statistic. Denote the 5th percentile of these differences as ζlow and the 95

th percentile as ζhigh.
The resulting confidence interval is [x∗ − ζhigh, x

∗ + ζlow]
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use dissimilar inputs. The border effect, however, is smaller for the multifactor and estimated
productivity series. Therefore we can conclude that, although the border effect does still exist,
it is much smaller than earlier evidence suggested.

5 Allowing for Weak Instruments

Conventional confidence intervals often over state the precision of instrumental variables esti-
mates. This section describes how adopting the weak instruments approach affects inference
of the importance of the border effect. As in Stock and Wright (2001), an S set describes all
those parameters whose GMM objective function is less than the critical value from a chi-square
distribution with degrees of freedom equal to the number of moment functions

S =
n
γ : J (γ) < χ2

o
where J (γ) is the continuous-updated version of the objective function22 estimated in Section
4.1.23 Each γ in S results in a productivity growth series for each industry ∆zi (γ) that can
then be used to estimate the border effect coefficients φ1 (γ) and φ2 (γ). One could therefore
construct, confidence intervals for φ1 (γ) and φ2 (γ).

24 Theoretically, it is known that these
confidence intervals will be conservative (in other words, wider than optimal). With degrees of
freedom equal to 180 and a resulting critical value of 237, a 90 percent confidence interval for
the size of the border effect is quite large. For φ1 the interval is from -1.13 to 0.10. For φ2 the
interval is from -0.97 to 0.04. Therefore, one can conclude that the instruments used here are
not strong enough to impose a tight confidence interval on these border effects.25

Although the wide interval suggests a problem with the estimated technology series, the
weak instrument criticisms are not applicable to the results for multi-factor productivity or
labor productivity. Because these results confirm each other, overall conclusions are more
robust.

5.1 Further Hypothesis Testing

One might be interested in knowing how well the estimated model matches the unconditional
covariance matrix. Based on a classical likelihood ratio statistic, the evidence suggests that
unexplained influences on the comovement remain. Overall, however, the input-based measure
of similarity appears to be a useful organizing principle.

If the distance matrix is fixed at a constant value, then the distance based covariance
matrix could be nested by the sample covariance matrix.26 Furthermore, assuming that the
22For ease of computation, I modify the objective function in two respects. First, I allow for covariance

between Canadian and American industries. Second, I impose additional moment conditions that the Canadian
industries productivity growth rates are orthogonal to the defense expenditure shock and that the American
industries productivity growth rates are orthogonal to the commodity price shock.
23The estimates reported in Table 3 are from a two-step GMM estimator, where the efficient weight matrix

is evaluated at the one-step estimator. For the continuous updated estimator, the efficient weight matrix is
evaluated at the same value as the moment conditions.
24Because the objective function is invariant to reparameterization, having the objective function depend on

the γ’s rather than the φ’s does not affect the S-set.
25In spite of the large intervals, the objective function, however, is not entirely flat with respect to φ1 and φ2.

A much smaller critical value like 190 would produce much tighter intervals with φ1 being between -0.39 and
-0.02 and φ2 being between and -0.23 and -0.10.
26I continue to normalized the productivity growth rates by dividing by the sample standard deviations.
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vector of productivity shocks are normally distributed implies the following likelihood ratio test
(Hamilton, 1994).

L (ΩU )− L (ΩR) = T

2
log

¯̄̄
Ω−1U

¯̄̄
− 1
2

TX
t=1

ztΩ
−1
U zt −

T

2
log

¯̄̄
Ω−1R

¯̄̄
+
1

2

TX
t=1

ztΩ
−1
R zt

With 15 industries in each of the two countries, the number of degrees of freedom is large,
with 465 coefficients in the sample covariance ΩU . The distance based measure has only the
30 diagonal terms, and the 4 distance coefficients. Hence in the current application there are
431 degrees of freedom. A 95 percent critical value is 480.40. Fixing the distance matrix at
the 1987 values, the estimated likelihood ratio is 536.44 for labor productivity, 504.67 for the
multifactor productivity, and 442.93 for the estimated productivity. Therefore, as for the R2

statistics reported earlier, there is evidence that there remains unexplained variation. Trying
to understand what additional factors or refinements could help explain this variation is a topic
for future research.

5.2 The Implications of Not Having Data on Materials Inputs

As mentioned earlier, an advantage of the KLEMS data set relative to other data sets is that
the KLEMS data set has information on intermediate inputs. This section reports two sets
of results to describe the effect of excluding the intermediate inputs data. In the first set of
results, the measure of output is the value-added measure expressed as the growth rate of gross
output minus the share-weighted growth rates of materials and services. The only inputs are
labor and energy. Therefore, for the value-added data, productivity is calculated as the residual
from the following regression. :

(∆y − sm∆m− ss∆s) = ∆v

∆v = γl∆l + γe∆e+ z

An alternative is to measure output using gross output but still have as inputs only labor and
energy.

∆y = γl∆l + γe∆e+ z

This equation is similar to the equations estimated in Conley and Dupor (2003) and Costello
(1993).

In terms of simple correlations, the different measures do not make a substantial difference.
The first rows of Table 9 report the average correlation between cross-border pairs of the same
industry for the estimated productivity and these two new measures. The number of significant
correlations was also very similar.

For the border effect, the magnitudes of φ1 and φ2 were qualitatively similar. For the
measures without intermediate inputs, non-identical industries have a somewhat larger border
effect. For all three measures, the correlation patterns depend on the similarity of input use.

6 Conclusions

The paper has made three contributions to understanding industry-level productivity comove-
ment. First, for Canada and the United States, cross-border productivity fluctuations are more
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highly correlated than had been reported. Second, the paper confirms that the similarity of
input usage can help explain the pattern of covariances between industries. Third, there is a
border effect. The correlation in productivity growth between similar industries in Canada and
the United States is smaller than the correlations between similar industries within a country.
In contrast to some of the border effect literature, the difference between cross-border correla-
tions and within-country correlations of similar industries is not overwhelming. In particular,
for a given industry, its correlation with a within-border industry that uses dissimilar inputs is
less than its correlation with a cross-border industry that uses similar inputs.

These results suggest directions for further theoretical and empirical research. In particular,
understanding what generates the dependence on input-usage could lead to a better understand-
ing of the sources of productivity fluctuations. One possibility is that the dependence on input
similarity reflects a measurement problem. Improvements in the quality of intermediate inputs
is being measured as improved productivity by the users rather than the producers of the input.

As discussed in Engel and Rogers (2001), the ‘first generation’ of border-effect papers docu-
ment the size of the border effect. As Engel and Rogers did for prices, there needs to be a ‘second
generation’ of papers that explore the economic forces behind border effects. For productivity,
one could follow the example of Evans (2003), who uses firm-level data to better understand
the economics behind border effects for trade. In particular, she examines variations in sales
between domestic and foreign multinationals to determine the importance of nationality versus
location. A similar study for productivity growth would be very informative. In particular, if
one could obtain firm-level information on intermediate input usage, then one might be able to
better understand the dependence on input usage.
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A Details on the Estimation

The following section describes the calculation behind the estimation procedure used to calculate
the covariance between industries as a function of economic distance. The covariance is written
as the weighted sum of basis functions Hk ():

C (dij) =
X
bkHk (dij)

where Hk () arises from the spectral representation of the covariance function. The spectral
representation is implemented here using the following specification

Hk (dij) =

Z
h (ωdij)B

1
m,k (dij) dω

where B1m,k (dij) is the first-derivative of the k-th b-spline
27 of order m. The function h (x) is

defined as

h (x) = 2(l−2)/2Γ (k/2)
J(l−2)/2 (x)
x(l−2)/2

where J(l−2)/2 (x) is a Bessel function of the first kind and l is the dimension of the location
vector. In the current application, l equals the number of inputs in the input-output table. The
covariance matrix is computed using the values of {bk} and the distance between sectors. The
off-diagonal elements of the covariance matrix are defined as a function of the distance between
the two industries C(dij). The diagonal elements are defined as σ

2
j + C(0) where C(0) is the

value of
sumbkHk (0) and σ

2
j is the industry-specific covariance term. The own-industry covariances are

computed as

σ2j = max

Ã
1

T

TX
t=1

∆z2jt −C (0) , 0
!

The values of bk are computed as the solution to the following least squares problem subject to
the constraint that b1 is non-negative and that bk+1 ≥ bk.

min
TX
t=1

n−1X
i=1

X
j 6=i

³
∆zcit∆z

c
jt −

X
bkHk

³
dcij

´´2

+
TX
t=1

n−1X
i=1

X
j 6=i
(
³
∆zuit∆z

u
jt −

X
bkHk

³
duij

´´2

+
TX
t=1

n−1X
i=1

X
j 6=i
(∆zcit∆z

u
jt − φ2 −

X
bkHk

³
daij

´
)2

+
TX
t=1

n−1X
i=1

(∆zcit∆z
u
it − φ1 −

X
bkHk (d

a
ii))

2

where ∆zcj is the productivity measure from Canadian industry j, ∆zuj is the productivity
measure from the American industry j, dcij is the distance between Canadian industries i and
j, duij is the distance between American industries i and j, and d

a
ij is the distance between

Canadian industry i and American industry j. When φ1 and φ2 are set equal to zero, these
conditions on the coefficient estimates insure the resulting variance covariance matrix is a valid
positive-definite matrix (Yaglom, 1987).
27Judd (1998, p 227-8) gives a concise discussion of b-splines.
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B Similarity Between the Production Function and the Esti-
mation

B.1 Economic Modelling

A two country version of the economic model described in the text is a straightforward extension.
Consider the following production function for industries in two countries: Home and Foreign.
Each country has J industries that each produce output Y ∗j by combining inputs x∗ji in the
following production function, where ∗ is either H for Home or F for Foreign,

Y Hj = θHθHj θj

NY
i=1

³
xHjivi

´αHji
Y Fj = θF θFj θj

NY
j=1

³
xFjivi

´αFji
where θH is a country-specific productivity term, θHj is a country-specific industry-specific
productivity term, θj is an industry-specific productivity term, and vi is an input-specific pro-
ductivity term. The log of each of these productivity terms is assumed to be a random walk
with the disturbances having a constant variance and being independent of each other. These
assumptions can be expressed as

∆ ln vi = ui

∆ ln θj = εj

∆ ln θH = εH

∆ ln θF = εF

where
h
ui, εj , ε

H , εF
i
are independent of each other with variance

h
σ2vi,σ

2
θj ,σ

2
H ,σ

2
F

i
The growth rate in industry level productivity would be the following (suppressing time

subscripts for notational simplicity):

∆zHj = ∆ ln θH +∆ ln θj +
X

αHji∆ ln vi

∆zFj = ∆ ln θF +∆ ln θj +
X

αFji∆ ln vi

Hence the covariance between any two industries can be written as follows.

E∆zHj ∆z
H
k = E

³
∆ ln θH

´2
+E (∆ ln θj∆ ln θk)

2 +
X³

αHjiα
H
ki

´
E (∆ ln vi)

2

= σ2H +
X³

αHjiα
H
ki

´
σ2vi if j 6= k

= σ2H +
X³

αHji

´2
σ2vi + σ2θj if j = k

E∆zHj ∆z
F
k = E (∆ ln θj∆ ln θk)

2 +
X³

αHjiα
F
ki

´
E (∆ ln vi)

2

=
X³

αHjiα
F
ki

´
σ2vi if j 6= k

=
X³

αHjiα
F
ji

´
σ2vi + σ2θj if j = k

19



E∆zFj ∆z
F
k = E

³
∆ ln θF

´2
+E (∆ ln θj∆ ln θk)

2 +
X³

αFjiα
F
ki

´
E (∆ ln vi)

2

= σ2F +
X³

αFjiα
F
ki

´
σ2vi if j 6= k

= σ2F +
X³

αFjiα
F
ki

´
σ2vi + σ2θj if j = k

Assuming industry-level cost minimization, the above Cobb-Douglas production function,
implies that αji equals the industry’s expenditure share sji. With a further assumption that
σ2vi equals σ

2
v for all i, the resulting covariance function would be the following.

E∆zHj ∆z
H
k = σ2H + σ2v

X³
sHjis

H
ki

´
if j 6= k

= σ2H + σ2θj + σ2v
X³

sHji

´2
if j = k

E∆zHj ∆z
F
k = σ2v

X³
sHjis

F
ki

´
if j 6= k

= σ2v
X³

sHjis
F
ji

´
+ σ2θj if j = k

E∆zFj ∆z
F
k = σ2F + σ2v

X³
sFjis

F
ki

´
if j 6= k

= σ2F + σ2θj + σ2v
X³

sFjis
F
ki

´
if j = k

Hence the covariance between two industries is larger for those industries that have more
similar input shares and hence have large values of the product of input shares. There would
also be a border effect because of the role of country-specific shocks.

B.1.1 Production Function Based Estimation:

The economic model was useful in order to give some perspective on the relevance of input
usage. Besides providing intuition, the model could itself be estimated. To estimate the model,
one would estimate the following regression.

1

T

TX
t=1

∆zHjt∆z
H
kt = σ2H +

NX
i=1

sHjis
H
ki σ

2
vi if j 6= k

1

T

TX
t=1

∆zHjt∆z
F
kt =

X
sHjis

F
ki σ

2
vi if j 6= k

1

T

TX
t=1

∆zHjt∆z
F
kt = σ2F +

X
sFjis

F
kiσ

2
vi if j 6= k

The only caveat of this regression is a need to reduce the number of inputs to a more
manageable number. Because the input-output matrix is sparse, the number of inputs is reduced
to the ten most important. The first column of Table A lists these inputs. The coefficient
estimates are not too surprising. Both Chemicals (SIC 28) and Primary Metals (SIC 33)
are important inputs to many different industries. Users of these inputs tend to have higher
covariances. Having a high labor shares in both industries is the most important predictor of a
high covariance. The one counter intuitive estimate is for textile users (SIC 24). The estimated
coefficient is negative but this value may be a fixed effect for Textiles and Apparel industries.
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B.1.2 Simulation Evidence to Compare the Two Models

The production-based model described in Section 2 and the econometric model of Conley and
Dupor are similar but not identical. Using a simulation approach, this appendix explores how
well the Conley and Dupor model can match the economic model. A panel of productivity
fluctuations is simulated using the above production functions as the data generating process
[DGP]. This simulated data are then used to estimate the Conley and Dupor spatial model.
While obviously not a proof, it helps illustrate the properties of the two models. The simulation
was made with the following assumption with the respect to the variances

σ2H = σ2F = 0.25
2

σ2θ = 1

σ2v = 1

The input shares used are the actual 1987 input shares for the American and Canadian
industries. The panel of industries was simulated for 500 observations. These data were then
used in estimating the Chen and Conley spatial model with 5 splines of order 2. The resulting
covariance functions and the true theoretical correlations are reported in Figure A1. The
estimation method does preserve the general shape of the correlations from the production
function model. In addition, the cross-border effect is estimated to be close to its true value.
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C Tables

Table 1: Durable and NonDurable Industries

Durable SIC Code NonDurable SIC Code
Lumber 24 Food 20
Furniture 25 Textiles 22
Glass Stone & Clay 32 Apparel 23
Primary Metals 33 Paper 26
Fabricated Metals 34 Printing 27
Industrial Machinery 35 Chemicals 28
Electrical Machinery 36 Rubber and Plastics 30
Transportation (Equipment) 37

Table 2: A subsection of the U.S. Input Output Table 1987

Industries
Inputs 22 26 28 29 33 35 36 37
Other 22 22 29 82 34 18 20 17
20 Food 0 0 0 0 0 0 0 0
22 Textiles 29 1 0 0 0 0 0 0
26 Paper 0 29 2 0 0 0 1 0
28 Chemicals 21 8 33 1 3 0 2 1
29 Petroleum 0 0 1 8 0 0 0 0
33 Primary Metals 0 0 0 0 27 10 7 5
34 Fabricated Metals 0 0 1 0 1 4 4 7
35 Industrial Machinery 0 0 0 0 2 15 1 5
36 Electrical Machinery 0 0 0 0 0 7 16 4
37 Transportation Equipment 0 0 0 0 0 0 0 23
Labor 22 26 25 5 26 39 39 26

Notes: Each table entry reports the percentage of total inputs used by the industry
listed in the column produced by the industry listed in the row.
Bold text denotes the input share produced by the own-industry.
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Table 4: Correlations Between Industry Pairs

Industry Measure of Productivity
SIC Code Labor Multifactor Estimated
20 Food 0.26 0.15 0.21
22 Textiles 0.26 -0.12 -0.03
23 Apparel -0.14 0.36* 0.23
24 Lumber -0.09 0.12 0.26
25 Furniture -0.04 0.50* 0.58*
26 Paper 0.62* 0.49* 0.61*
27 Printing 0.44* 0.33* 0.24
28 Chemicals 0.55* 0.56* 0.48*
30 Rubber and Plastics 0.29* 0.54* 0.59*
32 Glass Stone & Clay 0.43* 0.64* 0.33*
33 Primary Metals 0.51* 0.33* 0.25
34 Fabricated Metals 0.26 0.37* 0.28
35 Industrial Machinery 0.30* 0.35* 0.16
36 Electrical Machinery 0.58* 0.44* 0.30*
37 Transportation Equipment 0.60* 0.62* 0.30*

Average Correlation
between Industry Pairs

American Pairs 0.22 0.27 0.33
Canadian Pairs 0.28 0.37 0.19
Cross Border Pairs 0.12 0.23 0.17

Percentage of Statistically
Significant Correlations

American Pairs 51% 55% 65%
Canadian Pairs 54% 74% 31%
Cross Border Pairs 32% 50 % 30%
* denotes correlations that are statistically significant
at the 90 percent significance level.
Bold text denotes industries examined in Costello (1993).
Sample Period 1961-1997
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Table 5: Comparing the Standard Deviation of Various Productivity Measures

Industry United States Canada
Std Dev Ratio of Std Dev to MFP Std Dev of Ratio of Std Dev.to MFP
of MFP Labor Estimated of MFP Labor Estimated

20 Food 2.41 0.96 1.00 0.87 2.17 1.03
22Textiles 1.98 1.25 1.08 2.44 1.65 0.60
23 Apparel 1.14 3.51 2.81 1.68 1.87 0.88
24 Lumber 3.43 1.30 1.23 2.35 1.56 0.75
25 Furniture 1.79 1.42 1.51 3.13 1.47 0.79
26 Paper 2.96 0.67 1.00 2.87 1.21 0.56
27 Printing 1.68 1.43 1.11 2.32 1.19 0.75
28 Chemicals 4.04 1.04 0.97 2.29 1.76 0.72
30 Rubber and Plastics 2.33 1.32 1.15 2.92 1.46 0.68
32 Glass Stone & Clay 2.26 0.87 0.95 3.44 1.19 0.56
33 Primary Metals 2.94 1.18 1.06 1.90 2.62 0.71
34 Fabricated Metals 1.77 1.34 1.24 1.90 1.85 0.65
35 Industrial Machinery 2.99 1.20 1.15 3.02 1.62 0.53
36 Electrical Machinery 3.02 1.33 1.10 2.64 1.69 0.76
37 Transportation Equipment 2.92 1.63 1.21 2.37 2.56 0.83
Average 2.51 1.36 1.24 2.41 1.72 0.72

Standard Deviation Of Multifactor Productivity Growth Multiplied by 100.
Bold text denotes industries examined in Costello (1993).

Table 6 : OLS Regressions on Distance-Based Correlations

R2 of Regression F-test of No Explanatory Role for Inputs
U.S. Canada Cross U.S. Canada Cross

Labor 0.11 0.22 0.02 6.13 14.46 2.27
P-values <0.01 <0.01 0.1059
Multifactor 0.23 0.17 0.07 15.41 10.53 7.60
P-values <0.01 <0.01 <0.01
Estimated 0.29 0.10 0.09 20.57 5.59 10.67

P-values <0.01 <0.01 <0.01

Notes: For the U.S. and Canada regressions, there are 2 and 15*7-3 degrees of freedom
For the Cross Border regression, there are 2 and15*14-3 degrees of freedom
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Table 7: Estimated Coefficients for Border Effect

β0 β1 β2 φCROSS R2 F-test
Labor Productivity 0.44 -0.40 0.01 -0.04 0.04 4.57

2.91 -0.54 0.01 -1.44
MFP 0.79 -1.77 1.62 -0.01 0.06 6.17

5.36 -2.42 1.83 -0.55
Estimated Productivity 0.83 -2.16 1.71 -0.06 0.15 18.48

5.68 -2.97 1.93 -2.54
Notes: Numbers in italics are t-statistics for the hypothesis that
coefficient equals zero. F-test is that β1 and β2 equals zero.

Table 8: Testing for A Border Effect

Productivity: Labor MFP Estimated

Cross-Border Decline: Identical Industries -0.073 -0.164 -0.092

P
³
φ1,sim < φ1,est|H0 φ1 = 0

´
0.112 0.008 0.100

90% Confidence Interval ( -0.205 0.012) (-0.306 -0.036) (-0.215 0.028)
Cross-Border Decline: Non-identical Industries -0.147 -0.117 -0.081

P
³
φ2,sim < φ2,est|H0 φ2 = 0

´
0 0 0

90% Confidence Interval (-0.209 -0.088) (-0.185 -0.043) (-0.194 0.049)
Confidence Interval for φ1,sim − φ2,sim (-0.029 0.141) (-0.156 0.031) (-0.112 0.107)

Notes: Hypothesis Tests are generated using 500 Simulations of
Distance-Based Correlation Matrix DGP with no Border Effect.
Confidence Intervals are generated by drawing with replacement .
from vector time series of productivity growths. 500 Simulations

Table 9: Effect of Not Having Intermediate Inputs Data

Baseline Value Added
Gross Output

No Intermediate Inputs
Average Correlation 0.3192 0.3158 0.3212
Significant Correlations 7 8 9

φ1 -0.092 -0.113 -0.059
φ2 -0.081 -0.113 -0.124

d C(d)

0 0.511 0.507 0.461
0.126 0.372 0.404 0.345
0.253 0.354 0.357 0.335
0.379 0.281 0.260 0.266
0.505 0.162 0.147 0.155
0.632 0.087 0.079 0.085
0.758 0.047 0.042 0.047
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D Figures

Figure 1: Histogram of Distances
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Figure 2: The Correlation of Productivity Growth as Function of Similar Input Use
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Figure 3 Correlation Between Industries As Function Of Input Similarity
Figure 3a: Labor Productivity
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Figure 3b: Multifactor Productivity
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Figure 3c: Estimated Productivity
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Notes: Thick Line, C(d) estimated under null hypothesis of no border effect
Thin Line: Estimate of C(d) absent a border effect, Circles: Estimate of C(d) +φ2 (include a border effect)
Grey Area 90 percent confidence interval of C(d) under null of no border effect.
Dashed Lines. Interval Between 0.23 and 0.7 that includes 90 percent of non-zero distances
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Figure A: Comparing the Two Models
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Appendix Table A
β T-stat Average Product Median Product

Constant -0.4 -0.98
U.S. 1.8 10.99
Canada -0.2 -1.51
Other 0.8 0.39 0.047 0.041
22 —0.1 -0.01 -0.000 -0.000
24 -78.2 -5.32 -0.064 -0.000
26 12.1 0.92 0.015 0.001
28 22.9 4.33 0.087 0.011
33 9.9 1.25 0.026 0.0002
34 63.6 1.08 0.039 0.008
35 -6.4 -0.09 -0.002 0
36 113.9 2.48 0.040 0
37 27.8 0.21 0.007 0
Labor 10.5 3.91 0.790 0.763
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