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Abstract

Since the seminal work of Mandelbrot (1963), �-stable distributions with in�nite variance have been

regarded as a more realistic distributional assumption than the normal distribution for some economic

variables, especially �nancial data. After providing a brief survey of theoretical results on estimation

and hypothesis testing in regression models with in�nite-variance variables, we examine the statistical

properties of the coe¢ cient of determination in models with �-stable variables. If the regressor and

error term share the same index of stability � < 2, the coe¢ cient of determination has a nondegenerate

asymptotic distribution on the entire [0; 1] interval, and the density of this distribution is unbounded

at 0 and 1. We provide closed-form expressions for the cumulative distribution function and probability

density function of this limit random variable. In contrast, if the indices of stability of the regressor

and error term are unequal, the coe¢ cient of determination converges in probability to either 0 or 1,

depending on which variable has the smaller index of stability. In an empirical application, we revisit

the Fama-MacBeth two-stage regression and show that in the in�nite-variance case the coe¢ cient of

determination of the second-stage regression converges to zero in probability even if the slope coe¢ cient

is nonzero.
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1 Introduction

Granger and Orr (1972) begin their article, ��In�nite variance�and research strategy in time series analysis,�

by questioning the uncritical use of the normal distribution assumption in economic modelling and estimation:

It is standard procedure in economic modelling and estimation to assume that random variables

are normally distributed. In empirical work, con�dence intervals and signi�cance tests are widely

used, and these usually hinge on the presumption of a normal population. Lately, there has been

a growing awareness that some economic data display distributional characteristics that are �atly

inconsistent with the hypothesis of normality.

Due in part to the in�uential seminal work of Mandelbrot (1963), �-stable distributions are often consid-

ered to provide the basis for more realistic distributional assumptions for some economic data, especially for

high-frequency �nancial time series such as those of exchange rate �uctuations and stock returns. Financial

time series are typically fat-tailed and excessively peaked around their mean� phenomena that can be better

captured by �-stable distributions with 1 < � < 2 rather than by the normal distribution, for which � = 2.1

The �-stable distributional assumption with � � 2 is thus a generalization of rather than an alternative to

the Gaussian distributional assumption. If an economic series �uctuates according to an �-stable distribution

with � < 2, it is known that many of the standard methods of statistical analysis, which often rest on the

asymptotic properties of sample second moments, do not apply in the conventional way. In particular, as we

demonstrate in this paper, the coe¢ cient of determination� a standard criterion for judging goodness of �t

in a regression model� has several nonstandard statistical properties if � < 2.

The linear regression model is one of the most commonly used and basic econometric tools, not only

for the analysis of macroeconomic relationships but also for the study of �nancial market data. Typical

examples for the latter case are estimation of the ex-post version of the capital asset pricing model (CAPM)

and the two-stage modelling approach of Fama and MacBeth (1973). Because of the prevalence of heavy-

tailed distributions in �nancial time series, it is of interest to study how regression models perform when the

data are heavy-tailed rather normally distributed.

The �rst purpose of the present paper is to survey theoretical results of estimation and hypothesis testing

in regression models with in�nite-variance distributions, and the second is to establish that in�nite variance

of the regression variables has important consequences for the statistical properties of the coe¢ cient of

determination and tests of the hypothesis that this coe¢ cient is equal to zero. Third, we revisit the Fama-

1The normal distribution is the only member of the family of �-stable distributions that has �nite second (and higher-order)
moments; all other members of this family have in�nite variance.
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MacBeth two-stage regression approach and demonstrate that in�nite variance of the regression variables

can a¤ect decisively the interpretation of the empirical results.

The rest of our paper is structured as follows. In Section 2 we provide a brief summary of the properties

of �-stable distributions and of aspects of estimation, hypothesis testing, and model diagnostic checking

in regression models with in�nite-variance regressors and disturbance terms. Section 3 provides a detailed

analysis of the asymptotic properties of the coe¢ cient of determination in regression models with in�nite-

variance variables. In our empirical application, presented in Section 4, we revisit the data used in Fama

and French (1992), and we show that the statistical and/or economic interpretation of their �ndings can be

quite di¤erent under the maintained assumption of �-stable distributions from an interpretation based on

the assumption of normal distributions. Section 5 summarizes the paper and o¤ers some concluding remarks.

2 Framework

2.1 �-stable distributions

A random variable X is said to have a stable distribution if, for any positive integer n > 2, there exist

constants an > 0 and bn 2 R such that X1+ � � �+Xn
d
= anX + bn, where X1; : : : ; Xn are independent copies

of X and d
= signi�es equality in distribution. The coe¢ cient an above is necessarily of the form an = n

1=�

for some � 2 (0; 2] (see Feller, 1971, Section VI). The parameter � is called the index of stability of the

distribution, and a random variable X with index � is called �-stable. An �-stable distribution is described

by four parameters and will be denoted by S(�; �; 
; �). Closed-form expressions for the probability density

functions of �-stable distributions are known to exist only for three special cases.2 However, closed-form ex-

pressions for the characteristic functions of �-stable distributions are readily available. One parameterization

of the logarithm of the characteristic function of S(�; �; 
; �) is

ln
�
E ei�X

�
= i�� � 
�j� j�

�
1 + i� sign(�)!(� ; �)

�
; (1)

where sign(�) = �1 for � < 0, sign(�) = 0 for � = 0, and sign(�) = +1 for � > 0; and !(� ; �) = � tan(��=2)

for � 6= 1 and !(� ; �) = (2=�) ln j� j for � = 1.

The tail shape of an �-stable distribution is determined by its index of stability � 2 (0; 2]. Skewness is

governed by � 2 [�1; 1]; the distribution is symmetric about � if and only if � = 0. The scale and location

parameters of �-stable distributions are denoted by 
 > 0 and � 2 R, respectively. When � = 2, the log

characteristic function given by equation (1) reduces to i�� � 
2�2, which is that of a Gaussian random
2The three special cases are: (i) the Gaussian distribution S(2; 0; 
; �) � N(�; 2
2), (ii) the symmetric Cauchy distribution

S(1; 0; 
; �), and (iii) the Lévy distribution S(0:5;�1; 
; �); see Zolotarev (1986), Section 2, and Rachev et al. (2005), Section 7.
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variable with mean � and variance 2
2. For � < 2 and j�j < 1, the tail properties of an �-stable random

variable X satisfy

lim
x!1

P(X > x) =
�
C(�) 
�(1 + �)=2

�
x�� and (2)

lim
x!1

P(X < �x) =
�
C(�) 
�(1� �)=2

�
x�� ; (3)

i.e., both tails of the probability density function (pdf) of X are asymptotically Paretian. For � < 2

and � = +1 (�1), the distribution is maximally right-skewed (left-skewed) and only the right (left) tail is

asymptotically Paretian.3 The term C(�) in equations (2) and (3) is given by

C(�) =
1� �

�(2� �) cos(��=2)
for � 6= 1 (4)

and 2=� for � = 1; see, e.g., Samorodnitsky and Taqqu (1994), p. 17. The function C(�), which is shown

in Figure 1, is continuous and strictly decreasing in � 2 (0; 2), with lim�#0 C(�) = 1 and lim�"2 C(�) = 0.4

In consequence, even though all stable distributions with � < 2 have asymptotically Paretian tails, as � " 2

proportionately less and less of the distribution�s probability mass is located in the tail region. In addition,

the density�s tails decline at an increasingly rapid rate as � " 2, thereby limiting the likelihood of observing

very large draws conditional on the draw coming from the tail region. These observations explain why

potentially very large sample sizes are required if one desires to estimate the index of stability with adequate

precision if � is close to but smaller than 2.

Figure 1 somewhere here

Because E jXj� = limb!1
R b
0
P(jXj� > x) dx, it follows that E jXj� < 1 for � 2 (0; �) and E jXj� = 1

for � � � if X is �-stable with � 2 (0; 2).5 Only moments of order up to but not including � are �nite

if � < 2, and a non-Gaussian stable distribution�s index of stability is also equal to its maximal moment

3For � < 1 and � = +1, P(X < �) = 0, i.e., the distribution�s support is bounded below by �. Zolotarev (1986, Theorem
2.5.3) and Samorodnitsky and Taqqu (1994, pp. 17�18) provide expressions for the rate of decline of the non-Paretian tail if
� = �1 and � � 1.

4The function C(�) is smooth on the entire interval (0; 2). The numerator and the second term in the denominator of
equation (4) both converge to 0 as �! 1; C(1) = 2=� therefore follows from an application of L�Hôpital�s Rule.

5 Ibragimov and Linnik (1971, Theorem 2.6.4) show that this result holds not only for �-stable distributions, but that it
pertains to all distributions that are in the domain of attraction of an �-stable distribution. Ibragimov and Linnik (1971,
Theorem 2.6.1) provide necessary and su¢ cient conditions for a probability distribution to lie in the domain of attraction of an
�-stable law.
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exponent.6 In particular, if � 2 (1; 2), the variance is in�nite but the mean exists. For � > 1, it follows that

E(X) = �; in addition, for � = 0, � is equal to the distribution�s mode and median irrespective of the value

of �, justifying the use of the term �central location parameter�for � in the �nite-mean or symmetric cases.

In addition, for � 6= 1, one can show that S(�; �; 
; �) d
= 
 � S(�; �; 1; �=
).7 We make use of this property

below in the derivations of Theorem 1 and Remark 3.

The class of �-stable distributions is an interesting distributional candidate for disturbances in regression

models because (i) it is able to capture the relative frequencies of extreme vs. ordinary observations in the

economic variables, (ii) it has the convenient statistical property of closure under convolution, and (iii) only

�-stable distributions can serve as limiting distributions of sums of independent and identically distributed

(iid) random variables, as proven in Zolotarev (1986). The latter two properties are appealing for regression

analysis, given that disturbances can be viewed as random variables which represent the sum of all external

e¤ects not captured by the regressors. For more details on the properties of �-stable distributions, we refer

to Gnedenko and Kolmogorov (1954), Feller (1971), Zolotarev (1986), and Samorodnitsky and Taqqu (1994).

The role of the �-stable distribution in �nancial market and econometric modelling is surveyed in McCulloch

(1996) and Rachev et al. (1999).

2.2 Regression models with in�nite-variance variables

Let X and Y be two jointly symmetric �-stable (henceforth, S�S) random variables with � > 1, i.e.,

we require X and Y to have �nite means. Our main reason for concentrating on the case � > 1 lies in

its empirical relevance. Estimated maximal moment exponents for most empirical �nancial data, such as

exchange rates and stock prices, are generally greater than 1.5; see, for example, de Vries (1991) and Loretan

and Phillips (1994). An econometric (purposeful) reason for studying the case � > 1 is that, for �-stable

distributions with � > 1, regression analysis that is based on sample second moments, such as least squares,

is still asymptotically consistent for the regression coe¢ cients, even though the limit distributions of these

regression coe¢ cients are nonstandard.8 Suppose that the regression of a random variable Y on a random

variable X is linear, i.e., there exists a constant � such that

E(Y j X ) = �X a:s:; (5)

6The maximal moment exponent of a distribution is either a �nite positive number, or it is in�nite if a distribution has
�nite moments of all orders. For a Student-t distribution, the degrees of freedom parameter is equal to its maximal moment
exponent.

7This result also holds for the case � = 1 and � = 0.
8Another reason for this restriction comes from the viewpoint of statistical modelling. The conditional expectation of the

bivariate symmetric stable distribution in (5) is, as in the Gaussian case, linear in X only if � 2 (1; 2). The regression
function is in general nonlinear, or rather only asymptotically linear, under other conditions. For more on bivariate linearity,
see Samorodnitsky and Taqqu (1994, Sections 4 and 5).
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with

� =
[Y;X]�

x

�
X;

where 
x is the scale parameter of the S�S random variable X and [�; �]� in the numerator is covariation

(covariance in the Gaussian case), which can be calculated as E
�
XY <��1>

��
E
�
jY j�

�
, for all � 2 (1; �) with

a<�> � jaj�sign(a).

For estimation and diagnostics, the relation (5) can be written as a regression model with a constant

term,

yt = c+ �xt + ut; (6)

where the maintained hypothesis is that ut is iid S�S, with � 2 (1; 2]. The econometric issues of interest

are to estimate � properly, to test the hypothesis of signi�cance for the estimated parameter, usually based

on the t-statistic, as well as to compute model diagnostics, such as the coe¢ cient of determination, the

Durbin-Watson statistic, and the F -test of parameter constancy across subsamples.

The e¤ects of in�nite variance in the regressor and disturbance term can be substantial. If the variables

share the same index of stability �, the ordinary least squares (OLS) estimate of � is still consistent, but

its asymptotic distribution is �-stable with the same � as the underlying variables. Furthermore, the

convergence rate to the true parameter is T (��1)=�, smaller than the rate T 1=2 which applies in the �nite-

variance case. If � < 2, OLS loses its best linear unbiased estimator (BLUE) property, i.e., it is no longer the

minimum-dispersion estimator in the class of linear estimators of �. In addition, the asymptotic e¢ ciency of

the OLS estimator converges to zero as the index of stability � declines to 1. Blattberg and Sargent (1971)

(henceforth, BS) derived the BLUE for � in (6) if the value of � is known. The BS estimator is given by

��̂BS =

PT
t=1 x

<1=(��1)>
t ytPT

t=1 jxtj�=(��1)
; 1 < � � 2; (7)

which coincides with the OLS estimator if � = 2. Kim and Rachev (1999) prove that the asymptotic

distribution of the BS estimator is also �-stable. Samorodnitsky et al. (2007) consider an optimal power

estimate based on the BS estimator for unknown �, and they also provide an optimal linear estimator of

the regression coe¢ cients for various con�gurations of the indices of stability of xt and ut. Other e¢ cient

estimators of the regression coe¢ cients have been studied as well; Kanter and Steiger (1974) propose an

unbiased L1-estimator, which excludes very large shocks in its estimation to avoid excess sensitivity due to

outliers. Using a weighting function, McCulloch (1998) considers a maximum-likelihood estimator which is

based on an approximation to a symmetric stable density.
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Hypothesis testing is also a¤ected considerably when the regressors and disturbance terms have in�nite-

variance stable distributions. For example, the t-statistic, commonly used to test the null hypothesis of

parameter signi�cance, no longer has a conventional Student-t distribution if � < 2. Rather, as established

by Logan et al. (1973), its pdf has modes at �1 and +1; for � < 1 these modes are in�nite. Kim (2003)

provides empirical distributions of the t-statistic for �nite degrees of freedom and various values of � by

simulation. The usual applied goodness-of-�t test statistics, such as the likelihood ratio, Lagrange multiplier,

and Wald statistics, also no longer have the conventional asymptotic �2 distribution, but have a stable �2

distribution, a term that was introduced by Mittnik et al. (1998).

In time series regressions with in�nite-variance innovations, Phillips (1990) shows that the limit distrib-

ution of the augmented Dickey-Fuller tests for a unit root are functionals of Lévy processes, whereas they

are functionals of Brownian motion processes in the �nite-variance case. The F -test statistic for parameter

constancy that is based on the residuals from a sample split test has an F -distribution in the conventional,

�nite-variance case. Kurz-Kim et al. (2005) obtain the limiting distribution of the F -test if the random vari-

ables have in�nite variance. As shown by the authors, as well as by Runde (1993), the limiting distribution

of the F -statistic for � < 2 behaves completely di¤erently from the Gaussian case: whereas in the latter case

the statistic converges to 1 under the null as the degrees of freedom for both numerator and denominator

of the statistic approach in�nity, in the former case the statistic converges to a ratio of two independent,

positive, and maximally right-skewed �=2-stable distributions. This result is used below to derive closed-

form expressions for the pdf and cumulative distribution function (cdf) of the limiting distribution of the R2

statistic if the regressor and disturbance term share the same index of stability � < 2.

Moreover, commonly used criteria for judging the validity of some of the maintained hypotheses of a

regression model, such as the Durbin-Watson statistic and the Box-Pierce Q-statistic, would be inappropriate

if one were to rely on conventional critical values. Phillips and Loretan (1991) study the properties of

the Durbin-Watson statistic for regression residuals with in�nite variance, and Runde (1997) examines the

properties of the Box-Pierce Q-statistic for random variables with in�nite variance. Loretan and Phillips

(1994) and Phillips and Loretan (1994) establish that both the size of tests of covariance stationarity under

the null and their rate of divergence of these tests under the alternative are strongly a¤ected by failure of

standard moment conditions; indeed, standard tests of covariance stationarity are inconsistent if population

second moments do not exist.
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3 Asymptotic properties of the coe¢ cient of determination in models with

�-stable regressors and error terms

3.1 Basic results

For the general asymptotic theory of stochastic processes with stable random variables, we refer to Resnick

(1986) and Davis and Resnick (1985a, 1985b, 1986). Our results in this section are, in large part, an

application of their work to the regression diagnostic context.

The maintained assumptions are:

1. The relationship between the dependent and independent variable conforms to the classical bivariate

linear regression model,

yt = c+ �xt + ut; t = 1; : : : ; T : (8)

2. ut is iid S�S(�u; 0; 
u; 0), with �u 2 (1; 2).

3. xt is exogenous and is also iid S�S(�x; 0; 
x; 0), with �x 2 (1; 2).

4. The regressor and the error term have the same index of stability, i.e., �x = �u = �.

5. The coe¢ cients c and � are consistently estimated by ĉ and �̂.9

The fourth assumption, that the regressor and the error term have the same index of stability, is rather

strong, and its validity may be di¢ cult to ascertain in empirical applications. In Corollary 2 below, we

examine the consequences of having unequal values for the indices of stability for xt and ut for the asymptotic

properties of the coe¢ cient of determination.

The coe¢ cient of determination measures the proportion of the total squared variation in the dependent

variable that is explained by the regression:

R2 =
Explained Sum of Squares
Total Sum of Squares

=

PT
t=1(ŷt � �y)2PT
t=1(yt � �y)2

:

Because ŷt� �y = �̂(xt� �x) and yt� �y = �̂(xt� �x)+ ût, where �y and �x are the respective sample averages of yt

and xt, and because
PT

t=1(xt � �x)ût=0 by construction, the coe¢ cient of determination may be written as

R2 =
�̂
2PT

t=1(xt � �x)2

�̂
2PT

t=1(xt � �x)2 +
PT

t=1 û
2
t

: (9)

9 If �x = �u, OLS is known to generate consistent estimates of c and �. See Samorodnitsky et al. (2007) for an overview and
discussion of estimation methods that are consistent for various combinations of �u and �x.
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Since x2t and u
2
t are in the normal domain of attraction of a stable distribution with index of stability

�=2, norming by T�2=� rather than by T�1 is required to obtain non-degenerate limits for the sums of the

squared variables. Because �̂ !p � by the assumption of consistent estimation, an application of the law of

large numbers to �x, the continuous mapping theorem, and the results of Davis and Resnick (1985b) yield

the following expression for the joint limiting distribution of the elements in equation (9):

�
T�2=�
�2u

TX
t=1

û2t ; �̂
2
T�2=�
�2x

TX
t=1

(xt � �x)2
�
�
�
T�2=�
�2u

TX
t=1

u2t ; �
2T�2=�
�2x

TX
t=1

x2t

�
=
�
T�2=�

TX
t=1

(ut=
u)
2 ; �2T�2=�

TX
t=1

(xt=
x)
2
�

!d

�
Su ; �

2Sx
�
: (10)

For � < 2, the random variables Su and Sx are independent, maximally right-skewed, and positive stable

random variables with index of stability �=2 < 1, � = +1, 
 = 1,10 � = 0, and log characteristic function

ln E
�
ei�Sx

�
= lnE

�
ei�Su

�
= �j� j�=2

�
1� i sign(�) tan(��=4)

�
: (11)

We therefore conclude that, under the �ve maintained assumptions of this section, the R2 statistic of the

regression model (8) has the following asymptotic distribution.

Theorem 1 Under the maintained assumptions of the regression model in equation (8), the coe¢ cient of

determination is distributed asymptotically as

R2 !d
�2
2xSx

�2
2xSx + 

2
uSu

=
�Sx

�Sx + Su
=

�Z

�Z + 1
= eR(�; �) , say, (12)

where � = (�
x=
u)
2 � 011 and Z = Sx=Su. For � < 2, Sx and Su are independent and are identically

distributed with log characteristic functions given by equation (11).

Thus, for � < 2 and � > 0, the coe¢ cient of determination does not converge to a constant but has

a nondegenerate asymptotic distribution on the interval [0; 1]. This contrasts starkly with the standard,

�nite-variance result, which is stated here for completeness.

10To prove that 
 = 1, see equation (13.3.14) on p. 529 of Brockwell and Davis (1991). In that equation, put C = C(�=2),
where C(�) is given by equation (4), and employ the recursive relationship �(2� �=2) = (1� �=2) � �(1� �=2).
11Observe that � = 0 if and only if � = 0, as the dispersion parameters 
x and 
u are necessarily positive.
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Corollary 1 If � = 2, and hence if xt and ut have �nite variance, the limit variables Sx and Su in Theorem 1

are non-random constants and are, in fact, equal to 2.12 In the �nite-variance case, then, the limit of R2 as

T !1 is given by

R2 !p
�2�2x

�2�2x + �
2
u

=
�

� + 1
;

where now � = (��x=�u)2.

In the �nite-variance case, the model�s asymptotic signal-to-noise ratio, � = (��x=�u)2, is constant, as is

therefore the limit of the coe¢ cient of determination. In contrast, in the in�nite-variance case the model�s

limiting signal-to-noise ratio is given by �Z, where � = (�
x=
u)
2 and Z = Sx=Su, and is therefore a random

variable even asymptotically; it is this feature that causes the randomness of eR(�; �). We postpone a fuller
discussion of the intuition that underlies this result to the end of this section, after we provide a detailed

analysis of the statistical properties of eR.
Before doing so, however, we note that the fourth maintained assumption, i.e., that the indices of stability

of the regressor and error term in (8) be the same, is crucial for obtaining the result that the asymptotic

distribution of eR is nondegenerate. Indeed, if the two indices of stability di¤er, the asymptotic properties of
the R2 statistic are as follows.

Corollary 2 Suppose that the maintained assumptions of Theorem 1 apply except that �x 6= �u, i.e., suppose

that the indices of stability of the regressor and error term are unequal. Let � 6= 0 to rule out the trivial case

from further consideration. Then,

� if �x < �u, 1�R2 = op
�
T 2=�u�2=�x

�
; and

� if �u < �x, R2 = op
�
T 2=�x�2=�u

�
.

Thus, R2 converges to 1 in probability if �x < �u, and it converges to 0 in probability if �u < �x.

Proof. These results follow immediately from the fact that if �x 6= �u, di¤erent norming factors, viz.,

T 2=�x and T 2=�u , are needed in equation (10) to achieve joint convergence of the terms �̂
PT

t=1(xt� �x)2 andPT
t=1 û

2
t to the limiting random variables Sx and Su. Whenever the two norming factors di¤er, the larger

of the two factors dominates the ratio that de�nes R2 as T !1, and this statistic must therefore converge

either to 0 or 1 in probability.

Suppose �rst that �x < �u; since T 2=�x > T 2=�u , we �nd T�2=�x
P
û2t = T

�2=�u
�
T 2=�u�2=�x

�P
û2t =

op
�
T 2=�u�2=�x

�
. Therefore,

12Recall that in the �nite-variance case, 
2 = �2=2; therefore, norming by T�1
�2x and T�1
�2u in equation (10) produces a
constant of 2.
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R2 =
�̂
2
T�2=�x

P
(xt � �x)2

�̂
2
T�2=�x

P
(xt � �x)2 + T�2=�x

P
û2t

!d
�2
2xSx

�2
2xSx + op
�
T 2=�u�2=�x

�
!p 1 :

Similarly, if �u < �x, T�2=�u
P
(xt � �x)2 = op

�
T 2=�x�2=�u

�
, and R2 !p 0.

Heuristically, if �x 6= �u and � 6= 0, the limiting distribution of the R2 statistic is degenerate at 0 or 1

because the model�s asymptotic signal-to-noise ratio is either zero (if �u < �x) or in�nite (if �x < �u).

From an examination of the proof of this corollary, we can also deduce that if �x 6= �u, the �fth maintained

assumption� that the regression coe¢ cients are estimated consistently� could be relaxed, to require merely

that an estimation method be employed that guarantees �̂ 6= op(1); the result that R2 converges either to 0

or 1 would continue to hold in this case.

3.2 Qualitative properties of eR
Returning to the main case of �x = �u = �, we note that the random variable eR is de�ned for all values of
� 2 (0; 2), even though in a regression context one would typically assume that � 2 (1; 2). We now establish

some important qualitative properties of eR.
Remark 1 For � > 0, the median of eR, m, equals �=(� + 1).
Proof. For � > 0, observe that

P

�eR � �

� + 1

�
= P

�
�Sx

�Sx + Su
� �

� + 1

�
= P

�
Sx �

1

� + 1
(�Sx + Su)

�
= P

�
(� + 1)Sx � �Sx � Su

�
= P(Sx � Su) :

Because Sx and Su are iid and have continuous cdfs, P(Sx � Su) = 0:5 by an application of Fubini�s

Theorem.13

13See, e.g., Resnick (1999, p. 155).
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Thus, m is equal to the non-random limit of R2 in the �nite-variance case. Since Sx and Su are positive

a.s., we also have P(Sx=Su � 1) � P(Z � 1) = 0:5, i.e., the median of Z is equal to 1, regardless of the value

of �. As we will demonstrate rigorously later in this paper, the probability mass of Z is highly concentrated

around 1 for values of � close to 2. Conversely, for small values of �, Z is unlikely to be close to 1; instead, it

is very likely that one will obtain a draw of Z that is either very small, i.e., close to 0, or very large. A small

or large draw of Z has a crucial e¤ect on the model�s signal-to-noise ratio, �Z, and therefore also on R2. This

suggests that an informal measure of the e¤ect of in�nite variance in the regression variables on the value

of R2 in a given sample may be based on the di¤erence between the model�s coe¢ cient of determination and

a consistent estimate of its median m, say m̂ = �̂=(�̂ + 1), where �̂ = (�̂
̂x=
̂u)
2. The larger the di¤erence

between R2 and m̂, the more important the e¤ect is of having obtained a small (or large) value of Z.

The following remark shows that a �nite-variance property of R2(�) for � > 0, viz., R2(1=�) = 1�R2(�),

carries over in a natural way to eR.
Remark 2 For � > 0, the distribution of eR(�; �) is skew-symmetric, viz.,

eR(�; �) d
= 1� eR(�; 1=�) ;

or, equivalently, eR(�;m) d
= 1� eR(�; 1�m). The pdf of eR therefore satis�es

f eR(�;m)(r) = f eR(�;1�m)(1� r) 8 r 2 [0; 1] :

The distribution of eR is symmetric about 0:5 for � = 1.
Proof. Recall that Sx and Su are iid. Thus, for � > 0

1� eR(�; 1=�) = 1� (1=�)Sx
(1=�)Sx + Su

=
Su

(1=�)Sx + Su

=
�Su

�Su + Sx

d
=

�Sx
�Sx + Su

= eR(�; �) :
The symmetry of eR about 0:5 for � = 1 follows immediately from this result and the fact that the distribu-

tion�s support is the interval [0; 1].

Next, as the following remark shows, the pdf of eR has in�nite modes at 0 and 1, i.e., at the endpoints of
its support.
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Remark 3 (i) For � > 0, the pdf of eR is unbounded at 0 and 1, i.e., f eR(0) = f eR(1) = 1. (ii) The cdf ofeR is continuous on [0; 1], and the distribution does not have atoms at 0 and 1.
Proof. To demonstrate the validity of the �rst part of this remark, we apply a standard result for the

pdf of the ratio of two random variables,14 adapted to the present case where the random variables in the

numerator and denominator are both strictly positive. For � > 0, set V = �Sx and W = �Sx+Su. We have

f eR(r) =
Z 1

0

wfV;W (rw;w) dw; 0 � r � 1 ;

where the joint pdf fV;W (�; �) is nonzero on R+ � R+. The case r = 1 can occur only if Su = 0; if Su = 0,

however, the random variables V and W are perfectly dependent, their joint pdf is nonzero only on the

positive 45�-halfline, and the joint pdf fV;V (w;w) reduces to (1=
p
2)fV (w), w � 0. Hence, for r = 1 we �nd

f eR(1) =
Z 1

0

wfV;V (1 � w;w) dw =
1p
2

Z 1

0

wfV (w) dw =
1p
2
E(�Sx) =1 :

By Remark 2, we have f eR(0) =1 as well.

The continuity of the cdf of eR on [0; 1] for � > 0 follows from the continuity of the cdfs of Sx and Su

on R+ and the fact that their pdfs are equal to zero at the origin. For example, one �nds that P( eR = 1) =
P(Su = 0) = 0; the result P( eR = 0) = 0 then follows from Remark 2.

The fact that the probability density function of eR has in�nite singularities may seem unusual. However,

the presence of singularities is a regular feature of pdfs that are based on ratios of stable random variables.

For example, Logan et al. (1973) and Phillips and Hajivassiliou (1987) showed that if � < 1, the density of

the t-statistic has in�nite modes at �1 and +1; similarly, Phillips and Loretan (1991) demonstrated that if

� < 2, this feature is also present in the asymptotic distributions of the von Neuman ratio and the normalized

Durbin-Watson test statistic.

3.3 The cdf and pdf of eR
The remarks in the preceding subsection provide important qualitative information about some of the dis-

tributional properties of eR. However, they do not address issues such as whether the distribution has modes
beyond those at 0 and 1, whether the discontinuity of the pdf at the endpoints is simple or if f eR(r) diverges�
and, if so, at which rate� as r # 0 or r " 1, or how much of the distribution�s mass is concentrated near the

endpoints of the support. To examine these issues, we provide expressions for the cdf and pdf of f eR(r) in
this subsection. It is possible to do so because eR is a continuously di¤erentiable and invertible function of

14See, e.g., Mood, Graybill, and Boes (1974), p. 187.
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the ratio of two independent, maximally right-skewed, and positive �-stable random variables, and because

closed-form expressions for the cdf and pdf of this ratio are known. The latter expressions are provided in

the following proposition.

Proposition 1 (Zolotarev 1986, p. 205; Runde 1993, p. 11) Let S1 and S2 be two iid positive �-stable

random variables with common parameters �=2 2 (0; 1), � = +1, 
 = 1, and � = 0. Set Z = S1=S2. For

z � 0, the cdf of Z is given by

FZ(z) = P(Z � z) =
1

��=2
arctan

�
z�=2 + cos(��=2)

sin(��=2)

�
� 1

�
+ 1 : (13)

Di¤erentiating this expression with respect to z, the pdf of Z for z > 0 is obtained as

fZ(z) =
d

dz
FZ(z) =

sin(��=2)

�z
�
z��=2 + z�=2 + 2 cos(��=2)

� : (14)

As Z is a positive random variable, FZ(z) = fZ(z) = 0 for z < 0.

Figure 2 somewhere here

The cdf of the random variable Z is shown in Figure 2 for various values of � between 1.98 and 0.25.15

The random variable Z has several interesting properties. First, note that limz#0 fZ(z) = 1 and that the

rate of divergence to in�nity of fZ(z) as z # 0 is given by (1=z)1��=2; thus, the pdf of Z has a one-sided

in�nite singularity at 0. Second, as z ! 1, fZ(z) � � � z��=2�1 for a suitable constant � > 0. This

result, along with P(Z > 0) = 1, implies that Z lies in the normal domain of attraction of a positive stable

distribution, say Z 0, with index of stability �=2 and � = +1, the same parameters as that of the variables S1

and S2.16 Hence, the mean of Z is in�nite for all values of � < 2. Third, in the special case of � = 1, S1

and S2 are each distributed as a Lévy �-stable random variable, which is well known to be equivalent to the

inverse of a �2(1) random variable. For � = 1, then, the pdf of Z reduces to
�
�z1=2(1 + z)

��1
, which is also

the pdf of an F1;1 distribution; see Runde (1993).

As was noted earlier, the median of Z is equal to 1 for all values of � 2 (0; 2). The regression model�s

signal-to-noise ratio is given by the random variable �Z if � < 2, whereas it is given by the constant �

in the standard, i.e., �nite-variance case. The fact that the random variable which multiplies � has a

15Runde (1993) graphs pdfs of Z for values of � between 1:0 and 1:9.
16See Mittnik et al. (1998) for a discussion of some of the properties of the stable law Z0.
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median of 1 helps to develop further the intuition that underlies the result of Remark 1, viz., that the

median of eR, �=(� + 1), is the same in both the �nite-variance and the in�nite-variance cases. Finally, an
inspection of equation (13) reveals that lim�"2 P(Z < 1) = 0 and lim�"2 P(Z > 1) = 0; put di¤erently,

lim�"2 P(Z = 1) = 1. The probability mass of Z therefore becomes perfectly concentrated at 1 as � " 2,

even though, of course, its mean remains in�nite as long as � < 2.

From Theorem 1, we have eR = �Z=(�Z + 1) = g(Z), say. Note that Z � Sx=Su satis�es the conditions
of Proposition 1 and that the function Z = g�1( eR) = (1=�)

� eR=(1 � eR)� is continuously di¤erentiable and
strictly increasing in the interior of its domain. We are therefore able to provide the following expressions

for the cdf and pdf of eR by an application of the density transformation theorem.17
Theorem 2 For r 2 (0; 1) and � > 0, set z = g�1(r) = (1=�)

�
r=(1 � r)

�
, and let the cdf and pdf of Z be

given by equations (13) and (14). The cdf of eR for r 2 (0; 1) is given by
F eR(r) = FZ�g�1(r)� : (15)

Furthermore, F eR(0) = 0 and F eR(1) = 1.
The pdf of eR for r 2 (0; 1) is given by

f eR(r) =
���� ddr g�1(r)

���� fZ�g�1(r)�
=

1

�(1� r)2 �
sin(��=2)

�g�1(r)
�
[g�1(r)]��=2 + [g�1(r)]�=2 + 2 cos(��=2)

�
=
sin(��=2)

� r(1� r) �
�
z��=2 + z�=2 + 2 cos(��=2)

��1
; where z = r=

�
�(1� r)

�
. (16)

As r # 0 or r " 1, f eR(r) diverges to in�nity at a rate proportional to (1=r)1��=2 and �1=(1 � r)�1��=2,
respectively.

Proof. The results stated in equations (15) and (16) follow immediately from Proposition 1 and the density

transformation theorem. Because limr#0 dg�1(r)=dr = ��1, the rate of divergence of f eR(r) as r # 0 is equal
to� apart from the multiplicative constant ��1� that of fZ(z) as z # 0, which is (1=z)1��=2. Finally, it

follows from Remark 2 that as r " 1 the pdf of eR also diverges to in�nity at this rate.
The probability density functions and cumulative distribution functions of eR(�; �) for values of � be-

tween 0.25 and 1.98 are graphed in Figures 3 and 4. (In all cases, we have set � = 1.) The pdfs in Figure 3

17See, e.g., Mood, Graybill, and Boes (1974, p. 200).
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are shown with a logarithmic scale on the ordinate. Since we know that f eR(0) = f eR(1) = 1, we graph the
functions only for r 2

�
10�13; 1� 10�13

�
. The graphs show that

� If � is close to but less than 2, e.g., if � = 1:98 or � = 1:90, the pdf has an interior mode, and most of

the probability mass of eR is concentrated near its median. Conversely, only very little mass is located
near 0 and 1, and the pdfs register only mild increases as r approaches either edge of the distribution�s

support.

� For � = 1:75 and � = 1:50, the distribution of eR continues to have an interior mode (as well as, of

course, the two unbounded modes at 0 and 1). However, the distribution is noticeably less concentrated

around the interior mode than if � is closer to 2.

� By � = 1:20, the interior mode has disappeared and the distribution is nearly uniform over the entire

interval [0; 1].

� If � takes on even smaller values, less and less of the probability mass of eR is located near the median,
and more and more of it is concentrated close to 0 and 1.

� If � = 0:25, about 75 percent of the probability mass lies within 0.001 of the two endpoints of the

distribution, while the probability of observing a realization of eR for r 2 [0:25; 0:75] is less than 5

percent.

Figures 3 and 4 somewhere here

A heuristic summary of these properties of eR is straightforward. We begin by recalling that the multi-

plicative term C(�), shown in equation (4) and Figure 1, a¤ects the probability of tail-region values of the

random variables in question, and that the rate of decline in the tail areas of density of �-stable random

variables increases as � " 2. Suppose �rst that � is very close to 2; then, C(�) is close to 0, and the fraction

of observations of xt and ut that fall into the respective Paretian-tail regions is therefore very low; moreover,

given the fairly rapid decay of the density�s tails for � close to 2, the likelihood of obtaining a very large

draw, conditional on obtaining a draw from the Paretian tail area, is also low. As a result, the probability of

observing large observations of xt and ut is quite low. This, in turn, makes it unlikely to observe a very large

draw of either Sx or Su and thus of observing a value of Z that is either close to 0 or very large. Therefore,

if � is very close to 2, Z is likely close to its median of 1, and most of the mass of eR is concentrated near
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its median, �=(� + 1). Next, as � moves down and away from 2, say to around 1.5, C(�) increases rapidly,

leading to a higher frequency of observing tail-region draws for xt and ut. In addition, as the density in the

tail region declines more slowly for smaller values of �, it is much more likely of obtaining very large draws

of the regressor and error term than if � is close to 2. In consequence, if � is around 1.5, it is quite likely to

obtain draws of Z that are either very close to zero or very large, and thus more of the probability mass of eR
is located near the edges of its support. Conversely the interior mode of eR is considerably less pronounced
than if � is close to 2. Finally, as � decreases further, C(�) rises further, and both the frequency of tail

observations and the likelihood that any draws from the tail areas will be very large increase. Therefore, it

is very likely that the largest few observations of xt or ut will dominate the realization of Z and therefore

the realization of eR. As a result, if � is small the central mode of eR vanishes entirely and almost all of its
probability mass is located very close to the endpoints of the distribution�s support. In the limit, as � # 0, eR
converges to a Bernoulli random variable, for which all of the probability mass is located at 0 and 1.

4 An empirical application

Fama and MacBeth (1973) proposed the so-called Fama-MacBeth regression to test the hypothesis of a linear

relationship between risk and risk premium in stock returns in a cross-sectional setting. Let rit be the return

on market portfolio i at time t, where i = 1; : : : ; N and t = 1; : : : ; T ; denote the average return of portfolio i

as �ri = T�1
PT

t=1 rit; denote the average portfolio return at time t as Rt = N�1PN
i=1 rit; and denote

the average portfolio return across all time periods by �R = T
�1PT

t=1Rt. The �rst-stage Fama-MacBeth

regression is an ex post CAPM,

rit = �0i + �iRt + ut; t = 1; : : : ; T; (17)

where E(ut) = 0, E(utRt) = 0, and ut is iid S�S with the same index � 2 (1; 2] as rit. We may assume that

the distribution of �i has a �nite mean and variance, say, E(�) and Var(�). Denote the OLS estimates of the

regression coe¢ cients in equation (17) by �̂0i and �̂i. The second-stage Fama-MacBeth regression is given

by

�ri = �0 + �1�̂i + "i; i = 1; : : : ; N ; (18)

where "i is iid S�S with the same index � as rit, E("i) = 0, and E("i�̂i) = 0.
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The R2 statistic of the second-stage Fama-MacBeth regression is given by

R2 =
N�1�̂

2

1

PN
i=1

�
�̂i � �̂i

�2
N�1�̂

2

1

PN
i=1

�
�̂i � �̂i

�2
+N�1PN

i=1 "̂
2
i

: (19)

This statistic has the following asymptotic properties.

Theorem 3 If the individual portfolio returns rit follow an iid S�S distribution with � 2 (1; 2] and if

�R > 0, the coe¢ cient of determination in (19) has the following limits as T !1 and N !1:

� If � = 2, R2 !p �
��
� + 1), where � = �21Var(�)

�
Var("); and

� If � < 2, R2 = op
�
N1�2=��.

Thus, if � < 2, R2 !p 0, at a rate that is proportional to N1�2=�.

Proof. The result for the �nite-variance case follows immediately from Corollary 1. For � < 2, observe that

the normalized estimator of �i, T (��1)=�
�
�̂i�E(�)

�
, is in the domain of attraction of an �-stable distribution

for �xed values of T . As T ! 1, the dispersion of �̂i about E(�) converges to 0, and the distributional

properties of the estimated regressors �̂i converge to those of �i; by assumption, the variance of �i is �nite.

Thus, as N ! 1 and T ! 1, the numerator in equation (19) converges to �21Var(�). In contrast, the

second summand in the denominator of (19) requires norming by N2=� > N in order to attain a proper

limit. The coe¢ cient of determination therefore converges to 0 in probability as N !1 and T !1, at a

rate of N1�2=�.

This result does not con�ict with the one provided in Theorem 1, as the present case is one of an

unbalanced regression design: the regressor has an asymptotically �nite variance, whereas the error term

has in�nite variance, implying that the asymptotic signal-to-noise ratio is zero. Instead, this result is closely

related to the one provided in Corollary 2, which examined the asymptotic limit of R2 if �x 6= �u. We note

that even if T is �xed (as is generally taken to be the case in Fama-MacBeth regressions), the dispersion of

�̂i will likely be quite a bit smaller than that of "i, indicating that the model�s signal-to-noise ratio, �, and

hence the median of R2, in the second-stage regression will be quite small unless �1 is su¢ ciently large in

absolute value.

These qualitative observations are con�rmed by a small-scale Monte Carlo simulation, shown in Table 1,

in which we report the median value of R2 as a function of two values of � and selected values of T , N ,

and �R.
18 It is evident for both � = 1:5 and � = 1:75 that the median value of R2 declines as N increases

18The design of the simulation and the choices of values for �, T , N and �R were in�uenced by a desire to maximize the
empirical relevance of the simulation exercise. We chose � = 1:5 and � = 1:75 because �̂ � 1:5 for most empirical economic
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if T is �xed, that this e¤ect is particularly strong if T is large, and that this e¤ect is more pronounced for

� = 1:5 than it is for � = 1:75. The �nal result is as one would expect, given that Theorem 3 states that

the rate of convergence of R2 to zero increases as � moves down further from 2.

Table 1 somewhere here

On the basis of the small value of coe¢ cient of determination from the Fama-MacBeth regression, Ja-

gannathan and Wang (1996) con�rm the �nding of Fama and Macbeth (1973) of a ��at�relation between

average return and market beta. They report a very low coe¢ cient of determination of 1.35%=0.0135 for the

Sharpe-Lintner-Black (SLB) static CAPM. Regarding �thick-tailed� phenomena in empirical data, Fama

and French (1992) conjectured that neglecting the heavy-tails phenomenon of the data does not lead to

serious errors in the interpretation of empirical results. In the following, we use the same CRSP dataset as

was used by Jagannathan and Wang (1996); the data are very similar to those that were used in the study

of Fama and French (1992). The data consist of stock returns of non�nancial �rms listed on the NYSE

and AMEX from July 1963 until December 1990 covered by CRSP alone; the frequency of observation is

monthly. In the preceding notation, we have T = 330 and N = 100. Figure 5 displays the time series of

these monthly returns.

Figure 5 somewhere here

For our analysis we need to obtain point estimates the index of stability of the stock returns and determine

whether the estimates are less than 2. Under the assumption of symmetry, which implies that the left and

right tails of the returns distribution possess the same maximal moment exponent and dispersion coe¢ cient,

the point estimate of � for monthly stock returns in the CRSP dataset using the Hill method (Hill, 1975)

data. We study the cases of T = 100, 250, 1;000, and 2;500 because T = 250 corresponds approximately to the number of
business days in a calendar year. The values of N = 30, 100, 500, and 1;000 correspond to the numbers of stocks contained
in certain well-known stock price indices, such as the U.S. Dow-Jones Industial and German DAX indices, the U.K. FTSE-100
index, the U.S. S&P-500 index, etc. The choice of �R = 0 provides a reference to contrast the cases of �i = 0 and �i 6= 0;
�R = 0:1 is particularly relevant for the empirical study provided below.
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is 1.77, with a standard deviation of 0.15.19 On the basis of these estimates, normality (� = 2) can be

excluded only at a con�dence level of approximately 87.5 percent. However, inference about the width of

the con�dence interval for the Hill estimator is valid only asymptotically; in �nite samples, the Hill-method

estimates are known to be quite sensitive to even minor departures from exactly Paretian tail behavior.20 In

contrast, the method of Dufour and Kurz-Kim (2007) provides exact con�dence intervals for �nite samples.

By their method, the point estimate of � for the monthly stock returns data is 1.78, and the exact �nite-

sample 90% con�dence interval for this point estimate is [1.64, 1.99]. This result also does not o¤er very

strong evidence against the hypothesis � = 2. Nevertheless, because of estimation uncertainty in small

samples, and because this uncertainty is especially severe if � is close to 2, the data can be regarded as being

in the domain of attraction of a stable distribution with � < 2.21 We therefore proceed to investigate the

consequences of this �nding for the proper interpretation of the low R2 statistic reported by Jegannathan

and Wang (1996).

We designed Monte Carlo simulations to obtain the cdf of R2 for our empirical data, �rst under the

assumption that the returns data are in the domain of attraction of an �-stable distribution with � < 2, and

second under the assumption of normality (� = 2). The simulation was calibrated to the main characteristics

the empirical data; we set � = 1:78, T = 330, N = 100, and we set the expected return equal to the average

annual return in the full sample, i.e., �R = 0:1088. The number of replications of the �rst-stage and second-

stage Fama-MacBeth regressions is 100,000, for the both values of �. The simulated cdfs of the R2-statistic

are shown in Figure 6, where a vertical line is drawn at R2 = 0:0135 to indicate the in-sample value of the

coe¢ cient of determination. The shapes of the two curves are rather di¤erent, with the one for � = 1:78

rising much more quickly for small values of R2.

Figure 6 somewhere here

19 In this estimation, we used 0.0031 as the centering o¤set for the empirical data; this adjustment is necessary because the Hill
estimator is not location-invariant. The o¤set is equal to the estimated location parameter obtained by the quantile estimation
method of McCulloch (1986). The choice of the number of order statistics to include in the Hill method used was determined
by the Monte Carlo method of Dufour and Kurz-Kim (2007). For the present dataset, this method indicated the use of 43% of
all observations.
The Hill estimator uses extreme observations from both tails of the empirical distribution under the assumption of symmetry,

but it uses only observations from the right (left) tail under the assumption of right-skewed (left-skewed) asymmetry. In the
case of the monthly stock returns, the distribution is clearly left-skewed, i.e., the largest negative returns are larger in the
sample than the largest positive returns; see Figure 5. Under the assumption of left-skewed asymmetry, the point estimate of �
for the left tail using the Hill method is 1.47, with one standard deviation of 0.18.
20Stable distributions have tails that are asymptotically Paretian. In �nite samples, and especially if the index of stability is

not far below 2, it is known that the tails of stable distributions are not approximated particularly well by Pareto distributions
with the same value of alpha. See Resnick (2006, pp. 86�9) for a discussion of the consequences of these �nite-sample features
for the reliability of the Hill estimator.
21For a broader discussion of how to decide if � < 2, see McCulloch (1997).
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The simulated median R2 of the second-stage Fama-MacBeth regression is 0.384 for � = 2, but it is

only 0.072 for � = 1:78. The simulated probability of obtaining R2 � 0:0135 is a minuscule 1.55 percent for

� = 2, but it is a much more sizable 21.88 percent for � = 1:78; thus, if � = 1:78 the event R2 � 0:0135 is

about 14 times more probable than if � = 2. On the basis of these �ndings, we conclude that the inference

drawn from the low value of R2 by Fama and French (1992)� that the empirical usefulness of the SLB CAPM

is refuted� does not seem to be robust once proper allowance is made for the distributional properties of the

data that give rise to this statistic.

5 Concluding remarks

After providing a brief overview of some of the properties of �-stable distributions, this paper surveys

the literature on the estimation of linear regression models with in�nite-variance variables and associated

methods of conducting hypothesis and speci�cation tests. Our paper adds to the already-wide body of

knowledge that there are substantial di¤erences between regression models with in�nite-variance and �nite-

variance regressors and error terms by examining the properties of the coe¢ cient of determination. In the

in�nite-variance case with iid regressors and error terms that share the same index of stability �, we �nd

that the R2 statistic does not converge to a constant but instead that it has a nondegenerate asymptotic

distribution on the [0; 1] interval, with a pdf that has in�nite singularities at 0 and 1. We provide closed-form

expressions for the cdf and pdf of this limit random variable. If the regressors and error term do not have the

same index of stability, we show that the coe¢ cient of determination collapses either to 0 or to 1, depending

on whether the model�s signal-to-noise ratio converges asymptotically to zero or in�nity. Finally, we provide

an empirical application of our methods to the Fama-MacBeth two-stage regression setup, and we show

that the coe¢ cient of determination asymptotically converges to 0 in probability if the regression variables

have in�nite variance. This, in turn, strongly suggests that low values of the R2 statistic should not, by

themselves, be taken as proof of a ��at�relationship between the dependent variable and the regressor.

In view of the random nature of the limit law eR if the regressors and error terms share the same index of
stability, and given our related �nding that the coe¢ cient of determination converges to zero in probability

if the tail index of the disturbance term is smaller than that of the regressor, a case that may be di¢ cult to

rule out in empirical practice unless the sample size is very large, we view our results as establishing that

one should not rely on R2 as a measure of the goodness of �t of a regression model whenever the regressors

and disturbance terms are su¢ ciently heavy-tailed to call into question the existence of second (population)

moments. At the very least, if one chooses to report the coe¢ cient of determination in regressions with

in�nite-variance variables at all, one should also report a point estimate of the median of eR, m̂ = �̂=(�̂+ 1),
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where � is as in Theorem 1. In addition, one should indicate whether the error terms and regressors may

reasonably be assumed to share the same index of stability. If the validity of that assumption is in doubt,

the authors should also indicate which of the two parameters is likely to be smaller and how far apart the

two parameters may plausibly be.

It is widely known, and it is certainly stressed in all introductory econometrics textbooks, that a high

value of R2 does not provide a su¢ cient basis for concluding that an empirical regression model is a �good�

explanation of the dependent variable, or even that the regression is correctly speci�ed. Nevertheless, one

suspects, researchers may view low values of R2 in an empirical regression as an indication that the (linear)

relationship is either weak or unreliable. A direct implication of the work presented in this paper is that

whenever the data are characterized by signi�cant outlier activity, a low value of R2 should not, by itself, be

used to disqualify the model from further consideration.

Several extensions to the work presented here are possible. First, the regression F -statistic is a simple

function of the coe¢ cient of determination; e.g., F = (T � 2) �R2=(1�R2) in the bivariate regression case.

Given the close connection between the two statistics, it seems useful to study if and how the distributional

properties of the regression F -statistic are a¤ected by the presence of �-stable regressors and error terms

under both the null hypothesis, � = 0, and the alternative hypothesis, � 6= 0. It would also be useful to

elaborate on our idea, o¤ered after Remark 1 in subsection 3.2, that the di¤erence between the estimate

of R2 and a consistent estimate of its median may serve as a diagnostic check of the size of the e¤ect of

in�nite variance on R2. For example, it may be feasible to develop an asymptotic theory of the distributional

properties of this di¤erence.

It also seems desirable to study how well the distribution of eR approximates the empirical distribution

of R2 in �nite samples, for various types of heavy-tailed distributions that are in the domain of attraction of

S�S distributions, and for various types of estimators (such as OLS, Blattberg-Sargent�s BLUE, and the least-

absolute deviation estimator). In addition, an extension to a multiple-regression framework may produce

additional insights into the properties of the coe¢ cient of determination in the in�nite-variance case. Finally,

the theoretical results presented in our paper depend crucially on the assumption that the random variables

are iid. Relaxing this assumption would seem to be useful, as many economic and �nancial time series�

especially if they are sampled at very high frequencies� are characterized by interesting dependence and

heterogeneity features. Introducing serial dependence and heterogeneity, especially conditional heterogeneity,

would serve the purpose of studying how the properties of eR may be a¤ected by such departures from the

basic case of iid variables. The authors are considering conducting research to extend the work presented in

this paper along these lines.
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Table 1: Median value of R2 as a function of �, T , N , and �R

� T N �R

0:0 0:1 0:3 0:5 1:0

1:50 100 30 0:0404 0:0425 0:0576 0:1009 0:2963
100 0:0162 0:0172 0:0292 0:0596 0:2019
500 0:0068 0:0075 0:0147 0:0325 0:1206
1000 0:0046 0:0055 0:0114 0:0264 0:0973

250 30 0:0402 0:0426 0:0779 0:1598 0:4417
100 0:0161 0:0190 0:0448 0:1058 0:3304
500 0:0064 0:0075 0:0220 0:0565 0:2020
1000 0:0047 0:0058 0:0172 0:0452 0:1667

1000 30 0:0387 0:0484 0:1499 0:3320 0:6748
100 0:0162 0:0223 0:0940 0:2272 0:5558
500 0:0065 0:0104 0:0521 0:1341 0:3994
1000 0:0046 0:0072 0:0399 0:1079 0:3443

2500 30 0:0403 0:0580 0:2478 0:4806 0:7962
100 0:0155 0:0294 0:1621 0:3581 0:6973
500 0:0066 0:0130 0:0883 0:2243 0:5507
1000 0:0047 0:0103 0:0737 0:1896 0:4970

1:75 100 30 0:0488 0:0543 0:1332 0:2944 0:6410
100 0:0260 0:0328 0:1032 0:2413 0:5756
500 0:0177 0:0222 0:0779 0:1941 0:5055
1000 0:0149 0:0199 0:0720 0:1778 0:4792

250 30 0:0474 0:0642 0:2509 0:4899 0:7993
100 0:0265 0:0430 0:2066 0:4264 0:7560
500 0:0169 0:0290 0:1571 0:3500 0:6950
1000 0:0143 0:0251 0:1440 0:3273 0:6730

1000 30 0:0470 0:1193 0:5351 0:7665 0:9309
100 0:0265 0:0871 0:4612 0:7124 0:9115
500 0:0169 0:0635 0:3910 0:6507 0:8865
1000 0:0144 0:0579 0:3663 0:6257 0:8744

2500 30 0:0480 0:2185 0:7214 0:8804 0:9677
100 0:0255 0:1704 0:6599 0:8474 0:9578
500 0:0169 0:1251 0:5900 0:8066 0:9452
1000 0:0149 0:1202 0:5674 0:7902 0:9394

The numbers in the body of the table are the medians from simulated distributions with 100,000 replications.



Figure 1.  The function ( )αC , 20 <<α  



Figure 2.  Cumulative distribution functions of ux SSZ ≡  



Figure 3.  Probability density functions of ( )ηα ,~R , 1=η  



Figure 4.  Cumulative distribution functions of ( )ηα ,~R , 1=η  

 



Figure 5.  CRSP Returns, July 1963 to December 1992   
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Figure 6.  Simulated cdf of 2R , Second-stage Fama-MacBeth regressions 
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