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Abstract

Methods of inference based on a unit root assumption in the data are typically not robust to

even small deviations from this assumption. In this paper, we propose robust procedures for a

residual-based test of cointegration when the data are generated by a near unit root process. A

Bonferroni method is used to address the uncertainty regarding the exact degree of persistence in

the process. We thus provide a method for valid inference in multivariate near unit root processes

where standard cointegration tests may be subject to substantial size distortions and standard OLS

inference may lead to spurious results. Empirical illustrations are given by: (i) a re-examination

of the Fisher hypothesis, and (ii) a test of the validity of the cointegrating relationship between

aggregate consumption, asset holdings, and labor income, which has attracted a great deal of

attention in the recent �nance literature.
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1 Introduction

Cointegration tests have been among the most important and in�uential tools in empirical economics

since their introduction over two decades ago. In essence, cointegration tests attempt to identify com-

mon driving factors in stochastically trending data, thus identifying long-run equilibrium relationships

between economic variables. The most common cointegration tests are based on the assumption that

the individual variables are unit root processes. The unit root assumption, however, is often hard to

fully justify for actual economic data. In �nite samples, many economic variables appear highly, but

not totally, persistent; that is, the largest autoregressive root is close to, but not necessarily equal

to, unity. Unfortunately, inferencial procedures designed for unit root data tend not to be robust to

even small deviations from the unit root assumption. For instance, Elliot (1998) shows that large size

distortions can occur when performing inference on the cointegrating vector in a system where the

individual variables follow near unit root processes rather than pure unit root processes.

Unit root tests go some way toward alleviating the uncertainty regarding the persistence in a given

time series but do not provide a de�nitive answer. Since unit root tests have low power against local

alternatives, a failure to reject the null hypothesis of a unit root does not rule out the possibility of a

root slightly di¤erent from unity. On the other hand, rejecting the null of a unit root does not rule out

that the process is still fairly persistent and leaves open the possibility of spurious regressions. It is

thus far from obvious how to deal with a multivariate near unit root process: Standard cointegration

tests will not be valid under deviations from the pure unit root assumption and the possibility of

spurious regressions invalidates standard OLS inference.1

The aim of this paper is to design a test of cointegration that is robust to deviations from the pure

unit root assumption. In particular, we extend the standard framework to the case where the original

data possess autoregressive roots that are local-to-unity, rather than identically equal to unity. The

methods developed here are useful from two di¤erent perspectives. First, they provide a robustness

check to standard cointegration tests in the typical situation where it is not known with certainty that

there is an exact unit root in the data. Second, and just as importantly, the test procedures in this

paper allow for valid inference in the case when the data is likely not a pure unit root process, but still

highly persistent.

1 In most cointegration studies, the regressors are endogenous, in which case OLS inference would be further compli-
cated and invalid even in the strictly stationary case. Stock (1997) provides a detailed discussion on many of the issues
that arise in inference with near unit root variables.
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While there is a large literature on cointegrating regressions with near unit root regressors, the

focus has been on inference on the slope parameter in these regressions, rather than actual tests of

cointegration; see, for example, Cavanagh et al. (1995), Elliot (1998), Campbell and Yogo (2006) and

Jansson and Moreira (2006). Typically, the models in this literature have been speci�ed such that under

the null hypothesis of a zero slope coe¢ cient, the dependent variable is a stationary process. Tests

on the slope coe¢ cient therefore become joint tests of cointegration as well, and the issue of spurious

regressions never occurs. Although this is a useful speci�cation, for instance, in tests of stock-return

predictability which motivated much of this literature, it is less convenient in most typical economic

applications where both dependent and independent variables are near-integrated. The closest related

literature to the current paper is the work on stationarity tests (Leybourne and McCabe, 1993, and

Shin, 1994) and the work by Wright (2000). In particular, Wright (2000) develops a joint test of a

speci�c hypothesis regarding the cointegrating vector and a test of the null hypothesis of cointegration

that is robust to deviations from the pure unit root framework.

We focus on a residual-based test of cointegration. Following the work of Phillips and Ouliaris

(1990), we extend the asymptotic results for a residual-based test to the case of near-integrated

processes. Unlike the pure unit root case, the asymptotic distribution of the test statistic now depends

on an unknown nuisance parameter; the local-to-unity root. Since this parameter is not consistently

estimable, feasible tests cannot be directly constructed from the asymptotic distribution. Instead,

we propose to replace the unknown parameter value for the local-to-unity root with a conservative

estimate.

In order to understand the intuition behind our procedure, it is useful to consider the potential errors

when applying a standard, pure unit root case, cointegration test to a set of near unit root variables. A

residual-based cointegration test evaluates whether the residuals from the empirical regression contain

a unit root. Now, if the original data are in fact near-integrated, with a root less than unity, the test

will over-reject since the residuals will not contain a unit root even if there is no cointegration. But, by

instead using critical values based on a conservative estimate of the local-to-unity root in the original

data, a valid test is obtained. Intuitively, if one views a residual-based test of cointegration as a test

of whether there is less persistence in the residuals than in the original data, then this test is only

valid if the persistence of the original data is not overstated.2 In a spirit similar to the Bonferroni

2Although, perhaps, less obvious, the same also holds true for non-residual-based tests, such as those of Johansen
(1988,1991); see Hjalmarsson and Österholm (2007).
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methods proposed by Cavanagh et al. (1995), we show how an appropriately conservative estimate of

the local-to-unity root is obtained.

The rest of the paper is organized as follows. Section 2 outlines the modelling assumptions and the

theoretical results. Section 3 describes the Bonferroni methods. In Section 4, the proposed procedure

is evaluated using Monte Carlo simulations. We show that once the conservative estimate for the

local-to-unity parameter is chosen appropriately, the resulting test has both good size and power

properties. This is in contrast to standard cointegration tests, based on the unit root assumption,

which are shown to severely over-reject as the data generating process deviates from a pure unit root

setup. As an illustration of the method, two empirical applications are considered in Section 5. First,

we re-examine the Fisher hypothesis and show that using the robust methods proposed in this paper,

one can no longer �nd signi�cant support for a long-run equilibrium relationship between nominal

interest rates and in�ation; using standard unit root based cointegration tests on the other hand, the

null hypothesis of no cointegration is rejected. In a second illustration, we consider the robustness

of the long-run relationship between aggregate consumption, asset holdings, and labor income, which

was initially studied by Lettau and Ludvigson (2001) and has since received a great deal of attention

in the �nance literature. We �nd that after controlling for the unknown persistence in the variables,

there is still strong evidence of cointegration between the three variables. Section 6 concludes and the

Appendix contains tables of critical values for the test statistic.

2 Theoretical framework

2.1 Model and assumptions

Let fztg10 be anm�vector of nearly integrated processes, such that the data generating process satis�es

zt = Azt�1 + ut (1)

where A = I + C/T is an m�m matrix with A = diag (a1; :::; am) and C = diag (c1; ::; cm), and T is

the sample size. That is, each component process in zt is generated as a near unit root process with

individual local-to-unity parameters ci, i = 1; :::;m. The initial conditions are set at t = 0 and z0 is

assumed randomly distributed with �nite variance. Although none of the formal results depend upon

it, we will work under the assumption that ci � 0 for all i, which rules out explosive processes. The
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innovations ut satisfy a general linear process.

Assumption 1 1. ut = D (L) �t =
P1

j=0Dj�t�j ;
P1

0 j jjDj jj <1; jD (1)j 6= 0:

2. �t is iid with mean zero, variance matrix ��, and �nite fourth-order moment.

By standard results, e.g. Phillips and Solo (1992), T�1=2
P[Tr]

t=1 ut ) B (r) � BM (
), where B (r)

is a Brownian motion with covariance matrix 
 = D (1)��D (1)
0. Partition zt = (yt; x0t)

0 such that yt is

a scalar and xt is an n�vector (n = m� 1). Let B (r) =
�
B1 (r) ; B2 (r)

0�0, 
 = [(!11; !021) ; (!21;
22)],
and C = [(c1; 0) ; (0; C2)] be conformable partitions of B (r), 
, and C, respectively. We assume that


22 > 0 and write 
 = L0L. Denote an m�vector standard Brownian motion as W (r), and it follows

that B (r) = L0W (r). Further, as T ! 1, zt/
p
T ) JC (r) =

R r
0
e(r�s)CdB (s). Partition JC

conformably with B and let JWC (r) =
R r
0
e(r�s)CdW (s) :

We consider residual-based tests of the null of no cointegration using the regression residuals, v̂t,

from the following empirical regression:

yt = �
0xt + vt: (2)

2.2 The test statistic

We focus on the traditional Augmented Engle-Granger t�test (Engle and Granger, 1987) of the null of

no cointegration, which is probably the most commonly used residual-based test of cointegration. Our

analysis could easily be extended to cover the Z� and Zt cointegration tests proposed by Phillips and

Ouliaris (1990), but for brevity we restrict ourselves to the Augmented Engle-Granger test (henceforth

denoted AEG test).

The AEG test is de�ned as the t�statistic for �̂� from the regression�v̂t = ��v̂t�1+
Pp

i=1 'i�v̂t�i+

wt. The below result follows from the results in Phillips and Ouliaris (1990) and the results for near-

integrated processes in Phillips (1987,1988).

Theorem 1 Let the data generating process satisfy equation (1) for some given C = diag (c1; :::; cm),

and let Assumption 1 hold. Suppose that the autoregressive order in the AEG regression satis�es
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p!1 as T !1 such that p = o
�
T 1=3

�
. Then, under the null of no cointegration, as T !1,

AEG) c1

�Z 1

0

�
JW1�2;C

�2�1=2
+

R 1
0
JW1�2;CdW1�2�R 1

0

�
JW1�2;C

�2�1=2 (3)

where

JW1�2;C (r) = J
W
1;c1 (r)�

�Z 1

0

JW1;c1J
W 0
2;C2

��Z 1

0

JW2;C2J
W 0
2;C2

��1
JW2;C2 (r) (4)

and

W1�2 (r) =W1 (r)�
�Z 1

0

W1W
0
2

��Z 1

0

W2W
0
2

��1
W2 (r) ; (5)

are the L2�projection residuals of JW1;c1 and W1 on the spaces spanned by JW2;C2 and W2 respectively.

Remark 1.1 The limiting distribution of the AEG statistic depends on the unknown parameter C,

but is otherwise free of nuisance parameters. For a given C, the asymptotic distribution can thus easily

be tabulated. The next section describes a feasible implementation of the test when C is unknown.

Remark 1.2 E¤ectively, the AEG test evaluates whether the persistence in the residuals is less than

that predicted under the null hypothesis of no cointegration. However, since the original data is not

necessarily a unit root process, the critical values re�ect this fact. In the special case of C = 0, the

limiting distribution reduces to the usual one for pure unit root variables.

Remark 1.3 In empirical work, a constant or a constant and a linear trend are typically included

in the empirical regression (2). As in standard cointegration analysis, this will a¤ect the limiting

distribution in a straightforward manner (e.g. Phillips and Ouliaris, 1990) and thus the critical values

used, but will otherwise not alter the analysis.

3 Feasible implementation

For a known C, the above test is trivial to use once critical values for the asymptotic distribution are

obtained. Unfortunately, C is typically not known. We therefore consider a Bonferroni test approach,

which is similar to that used by Cavanagh et al. (1995) and Campbell and Yogo (2006) in their pursuit

of inference in predictive regression with near-integrated variables.
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Consider con�dence intervals for ci, i = 1; :::;m, of the shape f[ci; ci]g
m
i=1 with an overall coverage

rate equal to 100 � (1� �1) percent. Let feci 2 [ci; ci]gmi=1 be the set of parameter values in this
con�dence region for which the critical value of the asymptotic distribution of the AEG statistic is

most conservative, for some given �2 percent level (e.g. �ve percent). If the AEG statistic is evaluated

using this conservative critical value, calculated at the �2 percent level, the size of the resulting

cointegration test will be less than or equal to � = �1 + �2, by Bonferroni�s inequality.

However, relative to the Cavanagh et al. (1995) and Campbell and Yogo (2006) studies, there is an

additional complication in the current setup. In those papers, there is only one local-to-unity process,

whereas here there are at least two in the simplest case with just one regressor. In the univariate

case, con�dence intervals of the local-to-unity parameter can be obtained by inverting a unit root test

statistic (Stock, 1991). In the m�dimensional case, a con�dence region for C could be obtained by

inverting individual unit root test statistics in order to obtain con�dence intervals [ci; ci], i = 1; :::;m,

each with coverage rate 1��1=m. The overall con�dence level of f[ci; ci]g
m
i=1 is at least 100� (1� �1)

percent, again by Bonferroni�s inequality. Although theoretically sound, such an approach su¤ers from

the practical disadvantage that it would be virtually impossible to tabulate the critical values for

the asymptotic distribution beyond the simple two-dimensional case. We therefore propose a simpler

approach that allows for tabulation of critical values and seems to give up little in robustness.

Intuitively, the AEG test evaluates whether the persistence, or autoregressive root, in the regression

residuals, vt, is less than in the original data, yt. As seen in equations (3) and (4), the critical values of

the test depend on both the persistence in the �dependent�variable, yt, and the regressors, xt, denoted

c1 and C2 respectively. However, it seems reasonable to conjecture that the main determinant of the

asymptotic distribution will be c1, rather than C2. Thus, using Ĉ = Ĉ1 = diag (ĉ1; :::; ĉ1) for some ĉ1,

rather than ~C = diag (~c1; ~c2; :::; ~cm), to form critical values might not cause a large size distortion in

the test. Although this conjecture is di¢ cult to evaluate analytically, extensive simulation evidence

supports it. For instance, Figure 1 shows the critical values for the AEG test in the two-dimensional

case with an intercept in the empirical regression. As is evident, the primary changes come from

changing c1, whereas the critical values are almost constant across C2. Additional evidence supporting

this conclusion is provided by simulations in the following section.

Furthermore, if C1 = diag (c1; :::; c1) is used to calculate the critical values for the asymptotic

distribution in Theorem 1, the AEG cointegration test will be more conservative as the value of c1
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decreases; that is, as c1 becomes more negative, so do the corresponding critical values, as shown in

Table A3. Only the lower bound on c1, say c1, is therefore of interest in constructing a conservative

test; for a given con�dence level, such a lower bound can be obtained from a one-sided con�dence

interval for c1, [c1;+1).

By restricting the attention to the parameter c1, and calculating critical values based on C1 =

diag (c1; :::; c1), it now becomes easy to implement the Bonferroni method. The lower con�dence

bound for c1, c1, is obtained by inverting a unit root test statistic for the variable yt. Based on this

lower bound of c1, the test is evaluated using the corresponding critical value for C1 = diag (c1; :::; c1).

If the lower bound c1 has con�dence level 1 � �1 and the AEG test is evaluated at the �2 level, the

resulting test will have a size no larger than � = �1 + �2.3

In general, Bonferroni�s inequality is strict, and the size of the test will be less than �. To obtain

a correctly sized test of size ~�, which is distinct from � = �1 + �2, we �rst �x �2 at some level and

then �nd �1 such that the resulting test has size ~�. Finding �1 is e¤ectively a trial and error exercise.

In the simulations below, we let ~� = �2 = 0:05 and show that setting �1 equal to 50 percent will

approximately result in an overall �ve percent test. Thus, by e¤ectively using a median unbiased

estimate of c1, an approximately correctly-sized test is obtained. These results are discussed more

extensively in conjunction with the Monte Carlo simulations in the next section.

In terms of practical implementation, we follow Campbell and Yogo (2006) and invert Elliot et

al.�s (1996) DF-GLS unit root test statistic to obtain a lower bound for c1. Table A1 provides the

lower 95th, 75th, 50th, 25th, and 5th percent con�dence bounds of c1, given a value of the DF-GLS

test statistic.4 For instance, the lower con�dence bound that corresponds to �1 = 0:05 is given in the

100� (1� �1)% = 95% column. Table A2 provides the corresponding bounds when a trend is allowed

for in the DF-GLS regression. Table A3 tabulates the �ve percent critical values for the AEG statistic,

for c1 = 0 to c1 = �60, assuming that c1 = c2 = ::: = cm; values for one to �ve regressors are provided

for the cases of no intercept, intercept, and intercept and a linear trend in the empirical regression.

Henceforth, we will refer to the cointegration test constructed in the manner above as the Bonferroni

AEG test, with the additional speci�cation of the value of �1 when necessary. Unless otherwise noted,

we let �2 = 0:05.

3Since C2 is assumed not to play an important role in the distribution of the test-statistic, the only uncertainty
regarding the persistence of the data comes from uncertainty regarding c1. The con�dence level of the lower bound C1
is therefore 1� �1 rather than 1�m� �1, as discussed above.

4Note that, for instance, the two lower con�dence bounds at the 5 percent and 95 percent level provide a two-sided
con�dence interval with con�dence level 90 percent.
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4 Finite-sample properties

4.1 Size properties

We analyze the �nite-sample properties of the proposed test procedure through a series of Monte Carlo

simulations. Starting with the size properties, it is assumed that the data generating process (DGP)

is given by equation (1), with the innovations ut drawn from a multivariate normal distribution such

that E [ut] = 0 and E [utu0t] = I. The sample size is set to either T = 100 or 500 and the number of

regressors, n = m� 1, is equal to either one or three. The regression

yt = �+ �
0xt + �t (6)

is estimated, which is a spurious regression given the above DGP, and the cointegration tests are

applied to the �tted residuals, v̂t. Each simulated m�dimensional time-series zt is thus partitioned

as zt = (yt; x
0
t)
0, as described previously. When all components in zt are ex-ante identical, i.e. have

the same persistence c, the �rst component series is set to yt and the remainder to xt. When ci varies

between each series, we describe explicitly which series are set as yt and xt. All tests are performed at

the �ve percent signi�cance level and are evaluated using the critical values given in Table A3. The

results are based on 10; 000 repetitions.

In the �rst round of simulations, we let the local-to-unity matrix for zt be given by C = diag (c; :::; c),

so that all the series have identical persistence. The local-to-unity parameter c varies from 0 to �30.

Figure 2 shows the size properties for the traditional AEG cointegration test, which by de�nition

is evaluated at c = 0, as a function of the local-to-unity parameter c. The nominal size of the test is

�ve percent, and for c close to zero, the actual rejection rate is also close to �ve percent. However, as

c decreases in value, the test starts over-rejecting and the rejection rates already approach ten percent

for c = �5. The rejection rates become even larger and approach one as c becomes even smaller. It

should be stressed that this is not a small-sample bias, but a re�ection of the inconsistency of the test

when c < 0. Since the autoregressive root of the residual in equation (6) is less than one for c < 0, the

AEG test, evaluated under the assumption of c = 0, will reject the null of a unit root in the residuals

more frequently than its nominal size. For time series that do not necessarily have a unit root, standard

cointegration tests can thus be highly misleading. This raises questions regarding previous studies that

have relied on cointegrating methods, despite having found evidence of stationarity of the included
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variables; see, for example, Crowder and Ho¤man (1996).

We next consider the size properties of the Bonferroni AEG test using a conservative estimate of

C. As discussed in the previous section, we use C1 = diag (c1; :::; c1) where c1 is the lower bound on

the persistence in yt. A direct application of the Bonferroni method suggests choosing c1 such that the

one-sided con�dence interval [c1;+1) has con�dence level 100� (1� �1) percent, and then evaluating

the AEG test-statistic at the �2 percent level for a total size of � = �1 + �2 percent. In practice,

however, such an approach will deliver extremely conservative tests. For instance, if �1 = �2 = 0:05,

the rejection rate for the resulting test is virtually identical to zero in the simulations considered here.

Instead, we follow the approach outlined above and �x �2 = 0:05 and choose �1 such that the size

of the overall test is close to �ve percent. In particular, we consider setting �1 = 0:25; 0:50 and 0:75.

That is, c1 is chosen as the lower bound in one-sided con�dence intervals with con�dence levels equal to

75, 50, and 25 percent, respectively. To obtain these values for c1, the DF-GLS unit root test-statistic

is inverted, using the values in Table A1.5

Figure 3 shows the results for the Bonferroni AEG test using these di¤erent estimates of C1. It

is immediately apparent that for small values of c, the test tends to over-reject when �1 = 0:75, and

under-reject when �1 = 0:25. For �1 = 0:50, the test still tends to under-reject somewhat, except

for small values of c in the case of T = 500 and n = 1, where there is instead a slight over-rejection.

Overall, however, for �1 = 0:50, the rejection rate is typically between two and �ve percent. One

could achieve rejection rates that are somewhat closer to the nominal size by letting �1 vary with c1

in some manner, but at the cost of a substantially more cumbersome procedure. Using a �xed value

of �1 = 0:50, for all values of c1, yields a very simple test to implement. The procedure would simply

be given as:

(i) Obtain the value of the AEG test statistic from a standard implementation of the Engle and

Granger test.

(ii) Calculate the DF-GLS unit root statistic for the yt variable and obtain the corresponding value

of c1 from Table A1 or A2.

(iii) Compare the AEG test statistic to the critical value corresponding to c1 in Table A3.

5The number of lags included in the DF-GLS test is chosen using the Schwarz (1978) information critierion, with a
maximum number of two allowed in order to keep the simulation times managable. The same number of lags is also
included in the AEG regression; that is, in �v̂t = ��v̂t�1 +

Pp
i=1 'i�v̂t�i + wt.
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It may seem surprising that using, for instance, a lower bound with only a 25 percent con�dence

level, does not result in a larger size distortion. Figure 4 helps shed some light on this puzzle. The

results in the �gure are based on 10; 000 simulations of a univariate local-to-unity process, with local-

to-unity parameter c, iid normal innovations and sample size T = 500. It shows estimates of the

lower bounds of c, with con�dence levels of 25, 50, and 75 percent, using the inversion of the DF-GLS

statistic in Table A1. The panels in Figure 4 show the densities for the lower-bounds estimates for

c = �5;�10;�20; and �30. As expected, the bounds estimates at the 75 percent con�dence level are

furthest to the left. However, the densities are far from symmetric, especially for c close to zero; the

density for the 25 percent con�dence bound is also less symmetric than the density for the 75 percent

bound. Thus, although the density is shifted further to the right as the con�dence level decreases,

which leads to estimates of c closer to zero, the shift is not symmetric and the risk of vastly over-

estimating c is not increased dramatically. This explains, to some extent, why the rejection rates in

the cointegration test only increase slowly as the con�dence level of the lower bound is decreased.

In the last set of size simulations, shown in Figure 5, we analyze the properties of the Bonferroni

AEG test when the local-to-unity parameters ci, i = 1; :::;m are not identical; i.e. when the processes

in zt do not have the same persistence. Two di¤erent cases are considered. In the �rst case, there

are two regressors with persistence parameters equal to �10 and �20. In the second setup, there are

three regressors with persistence parameters 0;�10, and �20. In both cases, it is assumed that the

persistence in yt, c1, varies between 0 and �30. Thus, in the �rst case, C = diag (c1;�10;�20), and

in the second case C = diag (c1; 0;�10;�20). The same methods as in the case with identical cis

are used and the results for �1 = 0:25; 0:50; and 0:75, are shown. Overall, the results in Figure 5

are very similar to those in Figure 3. Using �1 = 0:50 and a nominal size of �ve percent results in

actual rejection rates around three percent. Given the results shown previously in Figure 1, it is not

surprising that the test also performs well when the cis are not identical.

In summary, the proposed procedure for tests of cointegration in data with an unknown C appears

to work well in �nite samples, once the con�dence level of the lower bound is chosen appropriately.

Additional �ne tuning of this con�dence level could be done to bring the actual size even closer to the

nominal size, but at the cost of adding some complexity.
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4.2 Power properties

We next perform a second Monte Carlo simulation to evaluate the �nite-sample rejection rates under

the alternative of cointegration. The �independent�variable xt is still generated according to equation

(1) using iid standard normal innovations. However, the �dependent�variable yt, is now generated as

yt = �
0xt + vt; (7)

where vt is an AR (1) process with an auto-regressive root �; the innovations to this AR process are

iid standard normal. � is set to an n-vector of ones. The same empirical regression, including the

constant, as in the size simulations is estimated, and the Bonferroni AEG test with �1 = 0:50 is

applied to the estimated residuals v̂t. The critical values that are used are thus for the case with a

constant in the regression. Two di¤erent sample sizes, T = 100 and 500, and n = 1 and 3 regressors,

are considered. In the case of one regressor, the persistence in xt is set equal to either C2 = �2;�10;

or �20. In the case of three regressors, it is assumed that C2 = diag (0;�10;�20).

Figure 6 shows the results in four sub-plots corresponding to the di¤erent combinations of sample

size and number of regressors. The vertical axes of the graphs show the power of the Bonferroni AEG

test plotted against the persistence � in the error term vt. In the case of T = 100, results for � 2 [0:5; 1]

are shown and for the T = 500, results for � 2 [0:8; 1] are shown. As is to be expected, power is a

monotone and declining function of the persistence, �. It should be noted that for very large values

of �, we expect the test to have low power; for example, in the bivariate case, a residual that is less

persistent than yt cannot be generated by regressing yt on xt when � > 1 + C2=T . For most values of

�, however, the test appears to exhibit good power properties and appears su¢ ciently powerful that

it would be a useful tool in many empirical applications, including those with relatively small sample

sizes.

5 Empirical illustrations

To illustrate the empirical use of the Bonferroni AEG test, we next consider two applications where

the variables in question are all fairly persistent, but not necessarily pure unit root processes. As a

comparison to the robust methodology proposed in this paper, we will also conduct the traditional

AEG test.
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5.1 The Fisher hypothesis

It is well known that both nominal interest rates and in�ation are fairly persistent in most countries.

Accordingly, cointegration techniques have been a popular approach to test the Fisher hypothesis in

more recent years; see, for example, Mishkin (1992), Wallace and Warner (1993), Evans and Lewis

(1995), and Crowder and Ho¤man (1996). However, the assumption made in most of these studies of

exact unit roots in both nominal interest rates and in�ation can be questioned on both theoretical and

empirical grounds.6 It is therefore worth re-interesting this issue using the Bonferroni AEG test.

A common formulation of the Fisher hypothesis is that the m-period nominal interest rate (imt ) is

related to the real interest rate (rmt ) and in�ation (�
m
t ) according to

imt = Et (r
m
t ) + Et (�

m
t ) : (8)

Relying on the commonly made assumption of a constant or mean-reverting real interest rate, an

empirical version of the Fisher hypothesis can be written as

imt = �+ ��
m
t + vt; (9)

where the constant � has the interpretation of the (constant) equilibrium real interest rate, the error

term vt is assumed to be a stationary ARMA process and �, in the most traditional interpretation,

should be equal to unity.7

Monthly data on the short nominal interest rate �given by the three month treasury bill �and

CPI in�ation from January 1955 to October 2006 in the United States were provided by the Board

of Governors of the Federal Reserve System. Table 1 shows the results from the DF-GLS unit root

test and the KPSS stationarity test, as well as the median unbiased estimate of c, denoted ĉ, and

a 90 percent con�dence interval for c; the estimates and con�dence intervals of c are derived using

the values in Table A1 and linear interpolation.8 As can be seen, the evidence for a unit root in the

interest rate appears reasonably strong; the DF-GLS test fails to reject the null of a unit root whereas

the KPSS test rejects the null of stationarity. For in�ation, on the other hand, the evidence is more

6See, for example, Wu and Zhang (1996), Culver and Papell (1997), and Wu and Chen (2001).
7Note that in the estimations below, time t in�ation is given as future in�ation between t and t +m. This can be

motivated by assuming rational expectations; see, for example, Mishkin (1992).
8Regarding the speci�cation of deterministic terms in the unit root tests, it should be noted that we test for mean

reversion around a constant level.
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mixed since the DF-GLS test rejects a unit root but the KPSS test rejects stationarity.9

Table 1: Unit root tests.
it �t

DF-GLS -1.40 -2.54�

KPSS 0.53� 0.52�

ĉ -3.40 -12.91
90% CI for c [-9.06, 2.00] [-21.37, -3.46]

Notes: * indicates signi�cance at the �ve percent level.

The cointegration tests are conducted using a signi�cance level of �ve percent. For the Bonferroni

AEG test, based on the simulation results in the previous section, we set �1 = 0:5; thus ĉ = �3:40,

the median unbiased estimate for the nominal interest rate, is used to establish the critical value in the

Bonferroni AEG test. The results from the cointegration tests based on the speci�cation in equation

(9) are given in Table 2.10 Asymptotic critical values are used for both the standard Engle-Granger

test (denoted AEG) and the Bonferroni AEG test (denoted AEGC) and are provided in Table 2; the

AEGC critical value is obtained from Table A3 and linear interpolation.

Table 2: Cointegration tests.

Test statistic -3.43

Critical value AEGC -3.47
Critical value AEG -3.34

Notes: Nominal size is 0.05.

As can be seen, the null hypothesis of no cointegration is rejected if the standard method is used,

as the test statistic is smaller than the critical value for the traditional AEG test. However, when

the Bonferroni AEG test is used, the null hypothesis is not rejected. Thus, performing inference using

robust methods, there is no strong evidence of cointegration, or co-movement, between the nominal

interest rate and in�ation in U.S. data. This raises doubts about the validity of the Fisher hypothesis,

and also illustrates the importance of controlling for the unknown degree of persistence in the data;

assuming unit roots in the data, the cointegration test would have resulted in evidence favorable of
9Lag length in the DF-GLS test was determined using the Schwarz (1978) information criterion. For the KPSS test,

a Newey-West estimator was employed to correct for serial correlation.
10As in the DF-GLS test, lag length in the test equation is determined using the Schwarz (1978) criterion.
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the Fisher hypothesis. Having looked at a traditional application from the macroeconomic literature,

we next turn to a recent issue from �nancial economics.

5.2 Consumption, aggregate wealth and stock returns

Many studies argue that �nancial valuation ratios such as the dividend- and earnings-price ratios

may have predictive power for excess stock returns over the risk-free rate. In a novel attempt to

tie macroeconomic variables more closely to �nancial markets, Lettau and Ludvigson (2001) argue

that consumption is a function of aggregate wealth. Based on this claim, they suggest that aggregate

consumption (kt), asset holdings (at) and labour income (yt) are cointegrated and that the deviation

from equilibrium is useful in terms of predicting both excess stock returns and real stock returns.

The empirical speci�cation used by Lettau and Ludvigson accordingly takes its starting point in a

cointegrating relationship of the type

kt = �+ �at + �yt + �t; (10)

where the error term �t is assumed to be a stationary ARMA process which has predictive power for

future returns.

However, there is no strong a priori reason to assume that the above variables contain pure unit

roots.11 We therefore investigate the sensitivity of Lettau and Ludvigson�s results when the uncertainty

regarding the persistence in the data is taken into account. Quarterly data on US consumption, asset

holdings and labour income ranging from the �rst quarter 1952 to the fourth quarter 2006 were obtained

from Professor Ludvigson�s web page;12 all variables are given by the natural logarithm of real, per

capita data.

Table 3 shows the results from unit root tests and stationarity tests for all variables and also

provides the median unbiased estimates of c, ĉ, as well as 90 percent con�dence intervals.13 The

11As was shown above, the persistence of the dependent variable is of special importance when using the AEG test.
The assumption of a unit root in consumption is thus of particular interest. Although this conjecture �nds some support
� see, for example, Hall (1978) and Gali (1993) � the opinion in the litterature is far from unanimous. For instance,
the vast literatue that uses linear trends to detrend consumption � see, for example, Cooper and Ejarque (2000) and
Casares (2007) � implicitly or explicitly assumes that consumption is trend stationary rather than generated by a unit
root process. Furthermore, it has been argued that consumption and output should be integrated of the same order.
Thus, if output is trend stationary (e.g. Flavin, 1981 and Diebold and Senhadji, 1996) then consumption should be as
well.
12http://www.econ.nyu.edu/user/ludvigsons/
13Note that in this application, the unit root tests have both constant and trend included in the speci�cation. Thus,

the estimates and con�dence intervals of c are derived using the values in Table A2; again, linear interpolation is used.
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evidence for unit roots in consumption and labour income seems strong, whereas it is mixed for asset

holdings.

Table 3: Unit root tests.
kt at yt

DF-GLS -1.95 -2.54 -0.78
KPSS 0.36� 0.20� 0.38�

ĉ -4.06 -9.98 2.32
90% CI for c [-12.28, 3.35] [-19.63, 2.32] [-2.18, 4.44]

Notes: * indicates signi�cance at the �ve percent level.

As in the previous application, we choose a signi�cance level of �ve percent for the cointegration

tests and set �1 = 0:5. The results from the AEG and Bonferroni AEG cointegration tests are shown

in Table 4. The null hypothesis of no cointegration is rejected regardless of which test is used. The

robust cointegration methods developed here thus support the conclusion of Lettau and Ludvigson

that US consumption, asset holdings and labour income are cointegrated.

Table 4: Cointegration tests.

Test statistic -4.03

Critical value AEGC -3.86
Critical value AEG -3.77

Notes: Nominal size is 0.05.

6 Conclusion

For many economic time series, it is di¢ cult to justify theoretically that they are generated by unit

root processes. This is problematic from an empirical point of view since cointegration tests may

be misleading when the data follow near-integrated, rather than pure unit root, processes. The size

distortions of cointegration tests relying on the unit root assumption �combined with the fact that

standard OLS inference could lead to spurious results �makes it unclear how to analyze a multivariate

time series of near-integrated variables.
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In this paper, we have extended a standard residual-based cointegration test to allow for an unknown

local deviation from the unit root assumption. This more robust test is easy to implement and Monte

Carlo simulations show that it works well in �nite samples. Unlike standard cointegration tests, the

methods developed in this paper thus provide a means of performing valid inference on a multivariate

near unit root process. The framework suggested in this paper therefore takes another step towards

addressing the problems associated with inference when variables are near-integrated. The methods

presented here take their starting point in the work of Engle and Granger (1987). In future research

it would also be of interest to see Johansen�s (1988,1991) VAR-based framework extended to a setting

with near-integrated variables.
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Figure 1: Critical values at the five percent level for the AEG test as a function of c1 and c2. The
top panel shows the surface describing the five percent critical values of the AEG test, in the case
of an intercept and one regressor, when c1 and c2 are non-identical. The bottom panel shows the
corresponding contour plot. The values are based on 10, 000 repetitions with T = 1, 000.
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Figure 2: Size properties of the Engle and Granger (1987) test of cointegration, as a function of the
local-to-unity parameter c. The graph shows the average rejection rates under the null hypothesis of
no cointegration for the Engle and Granger test of cointegration, i.e. the standard AEG test evaluated
under the assumption that c = 0, for different true values of c. The sample size is equal to either
T = 100 or 500, and the number of regressors equal to either n = 1 or 3. The true persistence in the
data is equal to C = diag (c, ..., c), where c varies between 0 and −30. The results are based on 10, 000
repetitions.
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Figure 3: Size properties of the Bonferroni AEG test when the variables all have equal persistence.
The graphs show the average rejection rates for the Bonferroni AEG test, under the null hypothesis
of no cointegration, for α1 = 0.75, 0.50, and 0.25. The sample size is equal to either T = 100 or 500,
and the number of regressors is equal to either n = 1 or 3. The true persistence in the data is equal
to C = diag (c, ..., c), where c varies between 0 and −30. The results are based on 10, 000 repetitions.
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Figure 4: Estimates of the lower bounds of c. The graphs show the density of the estimates of the
lower bounds of c, with confidence levels of 75, 50, and 25 percent, based on inversion of the DF-GLS
statistic. The results are obtained from 10, 000 simulations of a univariate local-to-unity process, with
local-to-unity parameter c, iid normal innovations and sample size T = 500.
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Figure 5: Size properties of the Bonferroni AEG test when ci is not identical for all i. The graphs show
the average rejection rates for the Bonferroni AEG test, under the null hypothesis of no cointegration,
for α1 = 0.75, 0.50, and 0.25. The sample size is equal to either T = 100 or 500, and the number
of regressors is equal to either n = 2 or 3. For n = 2, the true persistence in the data is equal to
C = diag (c1,−10,−20), and for n = 3, C = diag (c1, 0,−10,−20) , where c1 varies between 0 and
−30. The results are based on 10, 000 repetitions.
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Figure 6: Power properties of the Bonferroni AEG test. The graphs show the average rejection rates
of the Bonferroni AEG test, for α1 = 0.50, under the alternative of cointegration. The power is plotted
as a function of ρ, the AR (1) persistence parameter in the cointegrating residuals. The sample size
is set equal to either T = 100 or 500. The left column gives results for the case of one regressor with
persistence C2 = −2,−10, or −20. The right column gives the results for the case with three regressors
and C2 = diag (0,−10,−20). The results are based on 10, 000 repetitions.


