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Abstract

This paper analyzes predictive regressions in a panel data setting. The standard �xed e¤ects estimator

su¤ers from a small sample bias, which is the analogue of the Stambaugh bias in time-series predictive

regressions. Monte Carlo evidence shows that the bias and resulting size distortions can be severe. A

new bias-corrected estimator is proposed, which is shown to work well in �nite samples and to lead to

approximately normally distributed t-statistics. Overall, the results show that the econometric issues

associated with predictive regressions when using time-series data to a large extent also carry over to the

panel case. The results are illustrated with an application to predictability in international stock indices.
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1 Introduction

Predictive regressions are important tools for evaluating and testing economic models. Although tests of

stock return predictability, and the related market e¢ ciency hypothesis, are probably the most common

application, many rational expectations models can be tested in a similar manner (Mankiw and Shapiro,

1986). Traditionally, forecasting regressions have been evaluated in time-series frameworks. However, with

the increased availability of data, in particular international �nancial and macroeconomic data, it becomes

natural to extend the single time-series framework to a panel data setting; for instance, Cohen et al. (2003)

and Polk et al. (2006) rely on predictive panel data regressions in some of their analyses.

It is well known that the apparently simple linear regression model most often used for evaluating pre-

dictability in fact raises some very tough econometric issues. The high degree of persistence found in many

predictor variables, such as the earnings- or dividend-price ratios in the prototypical stock return forecasting

regression, is at the root of most econometric problems associated with predictive regressions. The near

persistence of the regressors, coupled with a strong contemporaneous correlation between the innovations

in the regressor and the regressand, causes standard OLS estimates to su¤er from a small sample bias and

normal t�tests to have the wrong size; this is the so-called Stambaugh (1999) bias in predictive regressions.

In the panel case, with pooled regressions, it turns out that as long as no �xed e¤ects are included,

the pooled estimator is unbiased. However, once one allows for �xed e¤ects in the pooled regression, an

analogue of the Stambaugh bias is also present in the panel case. This result can be understood in light of

the representation of the bias in predictive regressions derived by Stambaugh. Under the assumption that the

predictor variable follows an auto-regressive process, he shows that the bias in the OLS estimate of the slope

coe¢ cient in the predictive regression is a function of the bias of the OLS estimate of the auto-regressive

coe¢ cient in the predictor variable. It is well known that the bias in the OLS estimator of auto-regressive

coe¢ cients is more severe if an intercept is included in the regression equation. Therefore, in the time-

series case, the Stambaugh bias is less severe if no intercept is included in the predictive regression. This

is, of course, mostly of theoretical interest since in almost all empirical applications an intercept is required.

The same idea holds in the panel case; but, rather than di¤erentiating between the case of intercept or no

intercept, the relevant cases are now a common intercept or individual intercepts, i.e. �xed e¤ects.

In this paper, I propose a simple bias correction to the �xed e¤ects estimator in pooled predictive regres-

sions. An analogue representation of the time-series Stambaugh bias is also derived. It is shown that the

asymptotic bias in the �xed e¤ects estimator in the predictive regression can be expressed as a function of

the bias in the pooled �xed e¤ects estimator of the auto-regressive coe¢ cient in the predictor variable. The

results in this paper complement those of Hjalmarsson (2007), which also studies the bias in the �xed e¤ects
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estimator but does not explicitly analyze the connection with the Stambaugh bias in time-series regressions

or the direct bias correction procedure suggested here.

The bias-corrected estimator is straightforward to implement. The key parameter on which the bias

depends is the auto-regressive root in the regressor variable. The practical implementation of the bias-

corrected �xed e¤ects estimator is therefore facilitated by the fact that even though the �xed e¤ects estimator

of the auto-regressive coe¢ cient is biased, an alternative unbiased and consistent estimator is readily available.

Since the bias-corrected estimator is approximately asymptotically normal, it becomes trivial to perform

inference on the slope parameter.

Simulation results show that the bias-corrected estimator works well in �nite samples. These simulations

also show the importance of controlling for the bias in the panel case. The average rejection rates for the

t�test corresponding to the standard �xed e¤ects estimator exceed 75 percent in some cases, under the null

hypothesis of no predictability, and for a nominal �ve percent test.

As an illustration of the methods derived in this paper, I test for stock return predictability in an inter-

national panel of returns from 18 di¤erent stock indices using the corresponding dividend- and earnings-price

ratios, as well as the book-to-market values, as predictors. The empirical results clearly illustrate the theo-

retical results in the paper. Based on the results from the standard �xed e¤ects estimator, the evidence in

favour of return predictability is very strong, using either of the three predictor variables. However, when

using the robust methods developed here, the evidence disappears almost completely. Thus, both the simu-

lation results and the empirical results clearly show that the Stambaugh bias is at least as important in panel

regressions as it is in time-series regressions.

The rest of the paper is organized as follows. Section 2 outlines the panel model and shows the Stambaugh

bias in panel predictive regressions. Section 3 describes the bias-corrected estimator and Section 4 illustrates

the small sample properties of this estimator, as well as those of the pooled estimator without �xed e¤ects.

Section 5 shows the results from the empirical application to stock return predictability and o¤ers a brief

conclusion. The Appendix outlines the derivations of the main results.

2 The Stambaugh bias

2.1 Model and assumptions

Consider a panel model with dependent variable yi;t, i = 1; :::; n, t = 1; :::; T , and corresponding regressor,

xi;t. Here, i represents the cross-sectional dimension (e.g. �rm or country) and t represents the time-series
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dimension. The behavior of yi;t and xi;t are modelled as follows,

yi;t = �i + �xi;t�1 + ui;t; (1)

xi;t = i + �xi;t�1 + vi;t; (2)

where � = 1 + c=T . The auto-regressive root of the regressor is parameterized as being local-to-unity, which

captures the near unit-root behavior of many predictor variables but is less restrictive than a pure unit-

root assumption (e.g. Cavanagh et al. 1995, and Campbell and Yogo, 2006). The model can be seen as a

panel analogue of the time-series models studied by Mankiw and Shapiro (1986), Cavanagh et al. (1995),

Stambaugh (1999), Lewellen (2004), and Campbell and Yogo (2006), among others.

The innovation processes are assumed to satisfy martingale di¤erence sequences with �nite fourth order

moments and the regressor xi;t is generally endogenous in the sense that ui;t and vi;t are contemporaneously

correlated. That is, let wi;t = (ui;t; vi;t)
0 and Ft = fwi;sj s � t; i = 1; :::; ng be the �ltration generated by

the innovation processes. Then, for all i = 1; :::; n, and t = 1; :::; T , E [witj Ft�1] = 0, E
�
wi;tw

0
i;t

��Ft�1� =

i = [(!11i; !12i) ; (!12i; !22i)]

0 and 
 = limn!1
1
n

Pn
i=1 
i. Finally, it is assumed that the innovations are

cross-sectionally independent.1

Let Ji (r) denote the limiting process of the scaled regressor xi;t. That is, as T ! 1, xi;t=[Tr]p
T

) Ji (r),

where Ji (r), de�ned in the Appendix, is the standard asymptotic process for a near unit-root variable. Also,

let J i = Ji �
R 1
0
Ji be the demeaned version of Ji and let 
xx � E

hR 1
0
J2i

i
, and 
xx � E

hR 1
0
J2i

i
.

Following the work of Phillips and Moon (1999), results for the panel estimators are derived using sequen-

tial limits, which implies �rst keeping n �xed and letting T go to in�nity, and then letting n go to in�nity.

Such sequential convergence is denoted (T; n!1)seq.2

2.2 The bias in the �xed e¤ects estimator

Let ~yi;t = yi;t � 1
nT

Pn
i=1

PT
t=1 yi;t denote the overall demeaned data and let yi;t = yi;t �

1
T

PT
t=1 yi;t denote

the time-series demeaned data. De�ne ~xi;t and xi;t analogously. The pooled estimator of � when there are

no individual e¤ects, i.e. when �i � � for all i, is given by

�̂Pool =

 
nX
i=1

TX
t=1

~x2i;t�1

!�1 nX
i=1

TX
t=1

~yi;t~xi;t�1

!
: (3)

1 In order to highlight the e¤ects of the Stambaugh bias in panel regressions, the e¤ects of cross-sectional dependence are
not considered. In certain applications it may be desirable to allow for clustering of the errors either across time for a given
individual i, or across individuals (i.e. cross-sectional correlation). As shown by Thompson (2006), it is straightforward to
construct standard error estimators that control for such clustering across both time and individuals. His framework could
easily be used in the current context and the details are omitted.

2Subject to potential rate restrictions, such as n=T ! 0, these results can generally be shown to hold as n and T go to
in�nity jointly; technical proofs of such joint convergence is not pursued in the current study, however.
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The �xed e¤ects estimator, allowing for individual e¤ects is given by

�̂FE =

 
nX
i=1

TX
t=1

x2i;t�1

!�1 nX
i=1

TX
t=1

y
i;t
xi;t�1

!
: (4)

As shown by Hjalmarsson (2007), and outlined in the Appendix, as (T; n!1)seq,

p
nT
�
�̂Pool � �

�
) N

�
0; !11


�1
xx

�
; (5)

under the assumption that �i � � for all i, whereas

T
�
�̂FE � �

�
!p �!12

�Z 1

0

Z r

0

e(r�s)cdsdr

�

�1xx ; (6)

whenever !12 6= 0.3 Thus, the estimator without individual e¤ects is asymptotically unbiased and normally

distributed; summing up over the cross-section in the pooled estimator eliminates the usual near unit-root

asymptotic distributions found in the time-series case. The �xed e¤ects estimator, on the other hand, su¤ers

from a second order bias; in practice, this means that the estimator will exhibit a small sample bias and test

statistics will not have standard distributions.

The intuition behind these results is that when pooling the data, independent cross-sectional information

dilutes the endogeneity e¤ects and thus potentially alleviates the bias e¤ects seen in the time-series case;

persistent regressors that are exogenous do not cause any inferential issues. This intuition holds when no

individual intercepts are allowed in the speci�cation. The bias in the �xed e¤ects estimation arises because

the time-series demeaning induces a correlation between the innovation processes ui;t and the demeaned

regressors xi;t�1; intuitively, this happens because information available after time t � 1 is used in the

demeaning of xi;t�1.4

2.3 An alternative representation of the �xed e¤ects bias

In the case of a predictive time-series regression, Stambaugh (1999) shows that the bias in the OLS estimator

of the slope coe¢ cient � in equation (1) is a function of the bias in the OLS estimator of the AR�coe¢ cient

� in equation (2). Here we derive an analogue result for the �xed e¤ects estimator in the panel case.

Note that �
R 1
0

�R r
0
e(r�s)cds

�
dr = � (ec � c� 1)/ c2 and let � (c) � � (ec � c� 1)/ c2. The limiting bias

3 In the special case of !12 = 0, it follows easily that �̂FE is also asymptotically normally distributed with convergence ratep
nT .
4Polk et al. (2006) make the same conjecture regarding inference in pooled predictive regressions, namely that independent

cross-sectional information dilutes the endogeneity e¤ects, but do not recognize that this intuition fails in the presence of �xed
e¤ects. Their regressor is nearly exogenous however, and their empirical conclusions should therefore still be fairly accurate.
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of �̂FE is thus given by T
�1 (!12� (c)/
xx) . Let the �xed e¤ects estimator of � be given by

�̂FE =

 
nX
i=1

TX
t=1

x2i;t�1

!�1 nX
i=1

TX
t=1

xi;txi;t�1

!
: (7)

As shown in Moon and Phillips (2000), the bias in �̂FE is in fact equal to T
�1 (!22� (c)/
xx). Thus, the

limiting bias in the pooled �xed e¤ects estimator of � can be written as a function of the limiting bias in the

�xed e¤ects estimator of the auto-regressive parameter �. That is,

p- lim
(T;n!1)seq

T
�
�̂FE � �

�
= p- lim

(T;n!1)seq

!12
!22

T (�̂FE � �) : (8)

This is the analogue of the expression for the bias in the time-series estimator of � given by Stambaugh

(1999). The Stambaugh bias thus carries over directly to pooled regressions, once �xed e¤ects are included.

In the time-series case, it is well known that standard least squares estimates of auto-regressive coe¢ cients

close to unity are much more biased when there is an intercept included in the regression. These e¤ects also

carry over to a predictive regression with persistent regressors; if no intercept is included in the regression, the

Stambaugh bias will be much smaller. Of course, an intercept is required in almost all time-series applications.

The panel data therefore gets us halfway: if only a common intercept is included in the pooled regression,

the resulting estimator is well behaved, but once individual intercepts are included the bias shows up in the

panel case as well.

3 A bias-corrected estimator

3.1 The infeasible estimator

For a known c, a bias-corrected �xed e¤ects estimator is given by

�̂
+

FE =

 
nX
i=1

TX
t=1

x2i;t�1

!�1 nX
i=1

TX
t=1

y
i;t
xi;t�1 � nT!12� (c)

!
: (9)

As shown in the Appendix, as (T; n!1)seq,

p
nT
�
�̂
+

FE � �
�
) N

�
0; !11


�1
xx � (!12� (c))

2

�2xx

�
: (10)

Thus, the bias-corrected estimator �̂
+

FE is asymptotically normally distributed and converges at the same
p
nT�rate as the standard pooled estimator.
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3.2 The feasible estimator

In order to implement �̂
+

FE in practice, estimates of c and !12 are required. The parameter !12 is the average

covariance between the error terms ui;t and vi;t and can be estimated by averaging the estimates of the

individual covariances !12i; estimates of !12i can be formed using �tted residuals from either the pooled

or time-series estimates of equations (1) and (2).5 In practice, the implementation of �̂
+

FE will not be very

sensitive to the exact way of estimating !12. Rather, the crucial parameter is c, which is more di¢ cult to

estimate consistently.

In the time-series case, consistent estimation of c is not possible. That is, � can be estimated consistently,

but not with enough precision to identify c = T (�� 1). This is also the reason why the Stambaugh bias is

di¢ cult to correct in practice in time-series regressions; for instance, given the lack of precise knowledge of

�; Lewellen (2004) suggests a bias correction that leads to conservative tests by imposing a maximum value

on the bias under the assumption that � � 1. In the panel data case, it is possible to estimate c consistently.

As discussed previously, the pooled estimate of � is biased when including �xed e¤ects. This bias naturally

carries over to the estimator of c = T (�� 1) as well. However, as discussed in Moon and Phillips (2000),

even when there are �xed e¤ects in equation (2), a consistent estimator of c is obtained by simply using the

plain pooled estimator without any demeaning of the variables. The estimator of � with �xed e¤ects is biased

for reasons similar to those of the �xed e¤ects estimator of �; by not demeaning the data, the bias is no

longer present. Intuitively, the �xed e¤ects, or intercepts, in equation (2) can be ignored in the estimation of

� because when the root � = 1 + c=T is close to unity, there is enough variation in xi;t that these intercepts

are of negligible importance. Therefore, let �̂Pool be the plain pooled estimator of �,

�̂Pool =

 
nX
i=1

TX
t=1

x2i;t�1

!�1 nX
i=1

TX
t=1

xi;txi;t�1

!
; (11)

and de�ne the corresponding estimator of c as ĉ = T (�̂Pool � 1) : Moon and Phillips (2000) show that this

estimator of c is consistent; again, observe that the data used in estimating c is not time-series demeaned and

that demeaning the data in the time-series dimension will lead to a bias in the estimator. A feasible version

of �̂
+

FE is thus given by substituting !12� (c)with !̂12� (ĉ) in equation (9).

Formally, the asymptotic normality of �̂
+

FE is shown only for the infeasible version of the estimator, which

is based on the true (unknown) value of c. Although it is outside the scope of this paper to derive the exact

limiting distribution of the feasible version of the estimator, the simulation results below show that inference

based on the assumption of normality works well also in this case.

5Recall that although both the time-series and pooled �xed e¤ects estimators of � and � are generally biased in �nite samples,
they are still consistent estimators. Estimators of the covariance !12i based on the �tted residuals will therefore be consistent.
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3.3 Practical inference

Finally, in order to perform feasible inference using either �̂Pool or �̂
+

FE , one only needs estimates of 
xx,


xx, and !11. Natural estimators of 
xx and 
xx are given by 
̂xx =
1
n

Pn
i=1

1
T 2

PT
t=1 ~x

2
i;t�1 and 
̂xx =

1
n

Pn
i=1

1
T 2

PT
t=1 x

2
i;t�1, respectively. Let ûi;t be the �tted residuals and !̂11 =

1
n

Pn
i=1

1
T

PT
t=1 û

2
i;t.

6 An

estimate of the variance of �̂Pool is thus given by !̂11
̂
�1
xx .

Similarly, the natural estimator of �ux is given by �̂
+

ux = !̂11
̂xx � (!̂12� (ĉ))
2. However, this estimator

of �ux su¤ers from the drawback that it is not necessarily positive. Furthermore, subtracting o¤ the term

coming from the bias correction of the estimator, without controlling for the possibility that the feasible bias

correction induces additional variance in the estimator of � through the sampling error in ĉ, may lead to too

low an estimate of the variance of the feasible version of �̂
+

FE . That is, as mentioned above, the exact limiting

distribution of the feasible estimator is unknown, and it therefore seems reasonable to use an estimator that

is more robust. Thus, I propose to use the estimator �̂ux = !̂11
̂xx, and estimate the variance of �̂
+

FE by

!̂11
̂
�1
xx ; this will result in a more conservative, i.e. larger, estimate of the variance. In both the pooled and

�xed e¤ects cases, therefore, standard estimators can be used to estimate the variance of the estimators.

Since the distributions of �̂Pool and �̂
+

FE are (approximately) asymptotically normal, implementing tests

on the slope coe¢ cient becomes trivial. The t�statistic for the estimator �̂Pool, for instance, will satisfy

tPool =
�̂Pool � �0r
!̂11
̂

�1
xx

.
(nT 2)

) N (0; 1) : (12)

The t�statistic t+FE corresponding to �̂
+

FE is constructed in an analogous manner using 
̂xx instead of


̂xx. In the simulations and empirical illustrations below, we also consider the properties of the t�statistic

corresponding to the standard �xed e¤ects estimator, tFE , which again is identical to tPool with 
̂xx replaced

by 
̂xx; given the above discussion, tFE will not be standard normally distributed unless !12 = 0. However,

inference using �̂FE and tFE under the normality assumption provides a useful illustration of the biases that

occur if one ignores the issues resulting from the endogeneity and persistence of the regressor.

4 Simulation evidence

To evaluate the small sample properties of the panel data estimators proposed in this paper, a Monte Carlo

study is performed. In the �rst experiment, the properties of the point estimates are considered. Equations

(1) and (2) are simulated for the case with a single regressor. The innovations (ui;t; vi;t) are drawn from

6Alternatively, the estimator of !11 could be replaced by a robust variance estimator to allow for heteroskedasticity in the
error terms.
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normal distributions with mean zero, unit variance, and correlations � = 0;�0:4;�0:7; and �0:95. The slope

parameter � is set equal to 0:05 and the local-to-unity parameter c is set to �5. The sample size is given by

T = 100; n = 20. The small value of � is chosen in order to re�ect the fact that most forecasting regressions

are used to test a null of � = 0, and any plausible alternative is often close to zero. The intercepts �i are all

set equal to zero. All results are based on 10,000 repetitions.

Three di¤erent estimators are considered: the pooled estimator with no �xed e¤ects, �̂Pool, the �xed

e¤ects estimator, �̂FE , and the bias-corrected �xed e¤ects estimator, �̂
+

FE . The bias-correction term in the

estimator �̂
+

FE is estimated by !̂12� (ĉ), where ĉ is the panel estimate of the local-to-unity parameter and !̂12

is estimated as n�1
Pn

i=1 !̂12i with !̂12i the covariance between the residuals from a time-series estimation

of equation (1) and the residuals from the pooled estimation of equation (2).7

The results are shown in Figure 1. �̂Pool and �̂
+

FE are virtually unbiased whereas �̂FE exhibits a rather

substantial bias when the absolute value of the correlation � is large. The bias-corrected estimator, �̂
+

FE , has

a slightly less peaked distribution than the standard pooled estimator, �̂Pool, but overall the bias correction

appears to produce good point estimates.

The second part of the Monte Carlo study concerns the size and power of the pooled t�tests. The same

setup as above is used, but, in order to calculate the power of the tests, the slope coe¢ cient � now varies

between �0:05 and 0:05. The tests are evaluated under the assumption that the limiting distributions are

standard normal; i.e. the null is rejected for absolute test values greater than 1:96. Panel A in Table 1 shows

the average sizes of the nominal �ve percent tests under the null hypothesis of � = 0 for the two sided t�tests

corresponding to the three di¤erent estimators considered above. Figure 2 shows the average rejection rates

of the �ve percent two-sided t�tests, evaluating a null of � = 0 for di¤erent values of the true �; that is, the

power curves of the tests. Again, the results are based on 10,000 repetitions.

Apart from the test based on the standard �xed e¤ects estimator, the other two tests perform very well

in terms of size, with actual rejection rates very close to �ve percent in the nominal �ve percent test. Table 1

and the power curves in Figure 2 clearly show the e¤ects of the second order bias in the �xed e¤ects estimator.

The test based on the bias-corrected �xed e¤ects estimator has similar power properties to the test based on

the standard pooled estimator.

In practice, the assumption that � is identical for all i, i.e. that the regressors all have the same persistence,

may seem restrictive. I therefore brie�y analyze the robustness of the bias-correction method proposed here

to deviations from this assumption. In particular, identical size simulations as those reported in Panel

A of Table 1 are shown in Panel B when the individual local-to-unity parameters, ci, are drawn from a

uniform distribution with support [�20;�2]. As is seen, the results are very similar, and the bias correction

7As mentioned before, the exact estimation procedure for the !12is does not play a crucial role in the properties of �̂
+
FE .
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appears fairly robust to this generalization. The standard pooled estimator should not be a¤ected, since the

assumption of a common parameter c is not needed in deriving its asymptotic result.

In summary, the simulation evidence shows the importance of controlling for the bias arising from �tting

individual intercepts in the pooled regression. The bias correction of the �xed e¤ects estimator appears

to work well, producing nearly unbiased results and correctly sized tests with good power. In cases where

individual e¤ects are not present, the pooled estimator performs well also when the regressors are highly

endogenous, as the theory would predict.

5 Empirical illustration and conclusion

To illustrate the methods developed in this paper, I consider the question of stock return predictability in an

international data set. The data are obtained from the MSCI database and consist of a panel of total returns

for stock markets in 18 di¤erent countries and three corresponding forecasting variables: the dividend- and

earnings-price ratios as well as the book-to-market values. With varying success, all three of these variables

have been used extensively in tests of stock return predictability for U.S. data (e.g. Lewellen, 2004, and

Campbell and Yogo, 2006), and to a lesser degree in international data (e.g. Ang and Bekaert, 2007). All three

of these forecasting variables are highly persistent, and since they are all valuation ratios, their innovations

are likely to be highly correlated with the innovations to the returns process. The data are on a monthly

basis and the returns data span the period 1970.1 to 2002.12, though not all forecasting variables or all

countries are available for this whole time-period. In particular, I have data for stock indices in the following

countries: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, the

Netherlands, Norway, Singapore, Spain, Sweden, Switzerland, the UK, and the USA.8 The dividend price

ratio (d� p) is available for all countries except Hong Kong and for the entire sample period from 1970.1

onwards. The earnings price ratio (e� p) is available for all countries except Italy and Switzerland, from

1974.12 onwards. The book-to-market value (b� p) is available for all countries from 1974.12 onwards. All

returns are expressed in U.S. dollars, and the dependent variable in the predictive regressions is given by the

excess return over the 1-month U.S. T-bill rate. Finally, all data are log-transformed.

The results from the pooled forecasting regressions are shown in Table 2. The estimates of c and the

correlation between the innovations in the returns and predictor processes show that the forecasting variables

are clearly near unit-root processes and highly endogenous. The standard pooled �xed e¤ects estimator,

�̂FE , delivers highly signi�cant estimates and clearly rejects the null-hypothesis of no predictability. Given

the high persistence and endogeneity found in the data, however, these results are likely to be upward biased.

8Hong Kong is, of course, not a country.
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As seen from the estimates based on the bias-corrected �xed e¤ects estimator, �̂
+

FE , signi�cance disappears

when controlling for the bias induced by the time-series demeaning in the �xed e¤ects estimator; �̂
+

FE is

implemented in a manner identical to that described in the simulation section above. Overall, the case for

stock return predictability in this international data set, using either of the three predictor variables, must

be considered very weak.

These results are in line with the extensive study of stock return predictability in international data

by Hjalmarsson (2007), which suggests that the predictive power of valuation ratios is typically weak in

international data. Ang and Bekaert (2007) also �nd in a smaller international sample, covering France,

Germany, the UK and the USA over a similar sample period, that the predictive ability of the dividend-price

ratio is very weak in all four of these countries.9

The empirical results illustrate well the di¢ culties of performing inference in regressions with persistent

and endogenous variables, and that these di¢ culties also prevail when a panel of data, rather than a single

time-series, is available. Indeed, judging by the vast di¤erence between the estimates and test statistics

resulting from the standard �xed e¤ects estimator and those from the robust estimators, it is clear that the

bias e¤ects can be as large in panel estimations as in time-series regressions.

A The asymptotic properties of �̂Pool, �̂FE, and �̂
+

FE

Hjalmarsson (2007) derives the asymptotic properties of �̂Pool and �̂FE in a similar setting to the one

considered here, although he does not consider the bias-corrected estimator �̂
+

FE . The following derivations

therefore primarily recollect those found in Hjalmarsson (2007).

Given the conditions on ui;t and vi;t, as T ! 1, 1p
T

P[Tr]
t=1 wi;t ) Bi (r) = BM (
i) (r), where Bi (�) =

(B1i (�) ; B2i (�))0 denotes a two-dimensional Brownian motion. As T !1, xi;t=[Tr]p
T

) Ji (r), where Ji (r) =R r
0
e(r�s)cdB2;i (s). Analogous results hold for the time-series demeaned data, xi;t, with Ji replaced by J i:

First note that ~xi;t=[Tr]p
T

=
xi;tp
T
+ Op

�
1p
n

�
) Ji (r) ; so that the overall demeaning has no asymptotic

e¤ects. By standard results as T ! 1, 1
T

PT
t=1 ui;t~xi;t�1 )

R 1
0
dB1;iJi and 1

T 2

PT
t=1 ~x

2
i;t�1 )

R 1
0
J2i . Since

B1;i and Ji are iid across i and E
hR 1
0
dB1;iJi

i
= 0, it follows that as n ! 1, 1

n

Pn
i=1

R 1
0
J2i !p 
xx

and 1p
n

Pn
i=1

R 1
0
dB1;iJi ) N (0;�ux) where �ux � E

��R 1
0
dB1;iJi

�2�
, by the weak law of large numbers

and the central limit theorem, respectively. Thus, as (T; n!1)seq ; 1
n

Pn
i=1

1
T 2

PT
t=1 ~x

2
i;t�1 !p 
xx and

1p
n

Pn
i=1

1
T

PT
t=1 ui;t~xi;t�1 ) N (0;�ux). It follows that

p
nT
�
�̂Pool � �

�
) N

�
0;�ux


�2
xx

�
. By the Itô

isometry, �ux = !11E
hR 1
0
J2i

i
= !11
xx and thus �ux
�2xx = !11


�1
xx :

9Ang and Bekaert (2007) do argue that the dividend-price ratio has some predictive ability when considered jointly with the
short interest rate.
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Similarly, 1
n

Pn
i=1

1
T 2

PT
t=1 x

2
i;t�1 !p 
xx, as (T; n!1)seq. However, simple calculations yield that

E
hR 1
0
dB1;iJ i

i
= �!12

�R 1
0

R r
0
e(r�s)Cdsdr

�
6= 0, and it follows that 1n

Pn
i=1

1
T

PT
t=1 ui;txi;t�1 !p �!12

�R 1
0

R r
0
e(r�s)Cdsdr

�
;

as (T; n!1)seq. Thus, T
�
�̂FE � �

�
!p �!12

�R 1
0

R r
0
e(r�s)cdsdr

�

�1xx as (T; n!1)seq.

By removing the mean of the term
R 1
0
dB1;iJ i in the bias-corrected estimator �̂

+

FE , the central limit

theorem once more applies and, by the same arguments as for �̂Pool,
p
nT
�
�̂
+

FE � �
�
) N

�
0;�ux


�2
xx

�
where �ux = E

��R 1
0
dB1;iJ i � E

hR 1
0
dB1;iJ i

i�2�
= E

��R 1
0
dB1;iJ i � !12� (c)

�2�
. By the Itô isometry, it

follows that �ux = !11
xx � (!12� (c))
2 and �ux


�2
xx = !11


�1
xx � (!12� (c))

2

�2xx .
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Table 1: Size results from the Monte Carlo study. The table shows the average rejection rates under the null
of � = 0, for the two-sided t�tests corresponding to the respective estimators; the nominal size of the tests
are 5 percent. The di¤ering values of � are given in the top row of the table and the results are based on
10; 000 repetitions. The sample size used is T = 100 and n = 20. In Panel A, the local-to-unity parameter,
c, is set equal to �5. In Panel B, separate local-to-unity parameters ci are drawn for each i from a uniform
distribution with support [-20,-2].

Estimator � = 0:0 � = �0:4 � = �0:7 � = �0:95
Panel A: c = �5

�̂POOL 0.050 0.051 0.054 0.050
�̂FE 0.052 0.211 0.546 0.807

�̂
+

FE 0.054 0.052 0.056 0.054

Panel B: ci � U [�20;�2]
�̂POOL 0.053 0.051 0.053 0.053
�̂FE 0.056 0.150 0.362 0.584

�̂
+

FE 0.056 0.054 0.059 0.064
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Table 2: Results from the empirical regressions. The table shows the point estimates and corresponding
t�statistics (in parentheses) from the pooled regressions of excess stock returns onto either the dividend
price ratio (d � p), the earnings price ratio (e � p), or the book-to-market value (b � p). The �rst column
indicates which of the three forecasting variables is used and the second and third columns give the size of the
panel used in the regression. The next two columns give the results for the standard �xed e¤ects estimator
and the bias-corrected �xed e¤ects estimator, respectively. The �nal two columns give the estimate of the
local-to-unity parameter in the regressors and the average correlation between the innovations to the returns
and the regressors, respectively.

Variable n T �̂FE �̂
+

FE ĉpool �̂
d� p 17 396 0:007

(3:840)
�0:002
(�1:254)

�0:004 �0:771

e� p 16 337 0:011
(4:924)

0:000
(�0:089)

0:091 �0:697

b� p 18 337 0:008
(4:016)

0:002
(0:948)

�1:538 �0:835
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Figure 1: Estimation results from the Monte Carlo study. The graphs show the kernel density estimates of
the estimated slope coe¢ cients, for samples with T = 100 and n = 20. The solid lines, labeled Pooled in
the legend, show the results for the standard pooled estimator without individual intercepts, �̂Pool; the long
dashed lines, labeled Fixed E¤ects, show the results for the standard �xed e¤ects estimator, �̂FE ; the dotted

lines, labeled Bias Corrected FE, show the results for the bias-corrected �xed e¤ects estimator, �̂
+

FE . All
results are based on 10; 000 repetitions.
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Figure 2: Power results from the Monte Carlo study. The graphs show the average rejection rates for a
two-sided 5 percent t�test of the null hypothesis of � = 0; for samples with T = 100, and n = 20. The
x�axis shows the true value of the parameter �, and the y�axis indicates the average rejection rate. The
solid lines, labeled Pooled, give the results for the t�test corresponding to the standard pooled estimator
without individual intercepts, �Pool; the long dashed lines, labeled Fixed E¤ects, show the results for the
t�test corresponding to the standard �xed e¤ects estimator, �̂FE ; the dotted lines, labeled Bias Corrected
FE, show the results for the t�test corresponding to the bias-corrected �xed e¤ects estimator, �̂

+

FE . The �at
lines indicate the 5% rejection rate. All results are based on 10; 000 repetitions.
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