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1 Introduction

We are delighted to contribute to this Festschrift in honor of David F. Hendry. As
discussed in Ericsson (2004), David has contributed to numerous areas of econometrics
and economics, including:

• money demand,
• error correction models and cointegration,
• exogeneity,
• model development and design,
• econometric software,
• economic policy,
• consumers’ expenditure,
• Monte Carlo methodology,
• the history of econometrics, and
• the theory of economic forecasting.

We draw on David’s contributions to the first six topics to assess and improve upon
Kamin and Ericsson’s (1993) model of Argentine broad money demand, focusing on
model design and cointegration analysis. Recent developments by David and co-
authors in computer-automated model selection help us obtain a more parsimonious,
empirically constant, data-coherent, error correction model for broad money demand
in Argentina. Cointegration between money, inflation, the interest rate, and exchange
rate depreciation depends on the inclusion of a “ratchet” variable that captures irre-
versible effects of inflation.
To better understand money demand and currency substitution in a hyperinfla-

tionary economy, Kamin and Ericsson (1993) develop an empirical model of broad
money (M3) in Argentina for monthly data over 1978—1993, a period including hy-
perinflation and a subsequent decline in inflation to a rate close to contemporary
U.S. and European levels. Kamin and Ericsson’s underlying economic theory is a
standard money demand model, augmented by short-run nonlinear dynamics and a
ratchet effect from inflation. Their empirical model clarifies the relative importance
of factors determining money demand and currency holdings. Also, the structure of
broad money demand in Argentina does not appear to have changed over the 1980s
and 1990s. Rather, the fall in demand during the late 1980s and into the 1990s is
explained by changes in the determinants of money demand itself.
That said, the analysis in Kamin and Ericsson (1993) has three notable shortcom-

ings. First, their cointegration analysis excludes a trend, which may have affected
inferences. Second, in their single equation modeling of Argentine money demand,
Kamin and Ericsson augment the data from the cointegration analysis with an im-
pulse dummy (for a known asset freeze from the Plan Bonex) and an asymmetric term
in price acceleration. While both variables are stationary in principle, their exclusion
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from the cointegration analysis could have affected the results obtained. Third, an
alternative single equation model might have been obtained if a different model search
path had been followed.
Following the approach in Ericsson (2008, Chapters 9 and 10), the current paper

addresses these issues, as follows. Cointegration is re-analyzed, including the impulse
dummy, the asymmetric inflation term, and a trend. The cointegrating vector in this
expanded framework is similar to the one obtained by Kamin and Ericsson (1993).
Path dependence in model selection is examined by using two model selection algo-
rithms: David Hendry and Hans-Martin Krolzig’s (2001) PcGets, and Jurgen Doornik
and David Hendry’s (2007) Autometrics. Kamin and Ericsson’s (1993) analysis is ro-
bust to multi-path searches by both algorithms; at the same time, Autometrics finds
an even more parsimonious specification. The details of the model improvement high-
light the strengths and the limitations of computer-automated model selection. Our
approach thus illustrates new techniques, which shed light on existing results. And,
re-examination of an existing dataset with new techniques is very much in the spirit
of other work in this area, including Hendry and Mizon (1978), Engle and Hendry
(1993), Doornik, Hendry, and Nielsen (1998), and Hendry (2006).
This paper is organized as follows. Section 2 briefly describes the economic theory

and the data. Section 3 summarizes the cointegration analysis and error correc-
tion model for Argentine money demand in Kamin and Ericsson (1993). Section 4
re-analyzes the long-run properties of Argentine money demand on the expanded
dataset. Section 5 then designs a single equation model of money demand, using the
algorithms for computer-automated model selection in PcGets and Autometrics. De-
pending upon the modeling strategy, pre-search testing, choice of required regressors,
and representation and choice of the initial general model, PcGets and Autometrics
obtain several distinct–albeit similar–final models in their general-to-specific selec-
tion processes. Additional analysis of those models obtains a final specification that
is similar to–but more parsimonious than–the one in Kamin and Ericsson (1993).
That final specification appears well-specified with empirically constant coefficients;
and its economic interpretation is straightforward. Section 6 concludes.
For expositional convenience, two conventions are adopted. First, “domestic”

means Argentine. Second, Argentine currency is always denominated in pesos (the
Argentine currency at the end of the sample) although historically other currencies
were used.

2 Economic Theory and the Data

This section first discusses the theory of money demand (Section 2.1) and then con-
siders the data themselves (Section 2.2).
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2.1 Economic Theory

The standard theory of money demand posits:

Md/P = q(Y,R) , (1)

whereMd is nominal money demanded, P is the price level, Y is a scale variable, and
R (in bold) is a vector of returns on various assets. The function q(·, ·) is increasing
in Y , decreasing in those elements of R associated with assets excluded fromM , and
increasing in those elements of R for assets included in M .
Three assets for Argentine residents are considered: broad money (M3), domestic

goods, and dollars. Their nominal returns are denoted R, ∆p, and ∆e, where E is the
exchange rate (domestic/foreign), variables in lowercase are in logarithms, and ∆ is
the difference operator. This choice of assets and returns seems reasonable. Relatively
few peso instruments outside of M3 were held in significant quantities during most of
the sample period. Also, the interest rate on dollar deposits was small and unvarying
relative to ∆e, so it was excluded in calculating the return on dollar-denominated
assets.
Empirical models below employ (1) in its standard log-linear form, with two

modifications. First, the scale variable is omitted, as in Cagan’s (1956) money de-
mand model for hyperinflationary economies.1 Second, following Enzler, Johnson,
and Paulus (1976), Simpson and Porter (1980), Piterman (1988), Melnick (1990),
Ahumada (1992), and Uribe (1997) inter alia, the money demand equation includes
a ratchet variable, which is the maximum inflation rate to date, denoted ∆pmax.
Higher inflation rates may induce innovations to economize on the use of domestic
money balances. Once inflation subsides, these innovations are unlikely to disappear
immediately (if at all), leading to a long-lived negative effect of inflation on money
demand. Hence, ∆pmax may proxy for financial innovation, be it a shift toward dollar
usage or toward other forms of economizing on domestic money holdings.
With these two modifications, equation (1) has the following form:

m− p = γ0 + γ1R + γ2∆p + γ3∆e + γ4∆pmax . (2)

Anticipated signs of coefficients are γ1 > 0, γ2 < 0, γ3 < 0, and γ4 ≤ 0. Broad money
is composed primarily of interest-bearing deposits, so the interest rate R should exert
a positive effect on money demand. The coefficients on ∆p and ∆e should be nega-
tive: goods and dollars are alternatives to holding money. Because ∆pmax increases
monotonically throughout the sample, a strictly negative γ4 implies irreversible re-
ductions in money demand due to historically higher rates of inflation.

1A preliminary investigation found little role for Y in the cointegration analysis or in error
correction modeling. This is consistent with Ahumada’s (1992) evidence on currency demand, and
may be due to the relatively stationary nature of real GDP in Argentina over the sample period.
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If R, ∆p, and ∆e enter equation (2) only as relative rates of return, then γ2+γ3 =

−γ1, and equation (2) can be rewritten as:

m− p = γ0 − γ2(R−∆p) − γ3(R−∆e) + γ4∆pmax . (3)

Equation (3) links real money demand to two opportunity costs and the ratchet effect.
This representation is particularly useful when interpreting empirical error correction
models in the context of multiple markets influencing money demand.

2.2 The Data

This subsection describes the data available and considers some of their basic prop-
erties. The data are a broad measure of money (M3), as measured by all peso-
denominated currency and domestic bank deposits (M , millions of pesos); the do-
mestic consumer price index (P , 1968 = 1.00); the interest rate on domestic peso-
denominated 30-day fixed-term bank deposits (R, fraction at a monthly rate); and
the free-market exchange rate (E, in pesos per dollar). Also, p is transformed to the
variable max(0,∆2p) [denoted ∆2ppos] to measure the differential effect of positive
(rather than negative) accelerations in prices, as in Ahumada (1992). The variable
∆2ppos is interpretable as allowing asymmetric short-run effects of inflation, similar
to ∆pmax allowing asymmetric long-run effects. All data are monthly and seasonally
unadjusted, over January 1977—January 1993. Allowing for lags and transformations,
estimation is over February 1978—January 1993 (T = 180) unless otherwise noted.
Two dummy variables are also used: B, an impulse dummy for the beginning of the
Plan Bonex (January 1990); and S, the seasonal dummy. Kamin and Ericsson (1993,
Appendix) provide further details on the data.
Figure 1a plots the logarithms of nominal money and prices (m and p), which are

notable by spanning orders of magnitude. Sharp increases in both series are visible
around 1985 and 1989. While M is the variable of central interest in this study,
its evolution is most easily understood in light of the various rates of return. Fig-
ure 1b plots the (monthly) inflation rate∆p, along with the generated ratchet variable
∆pmax. Figure 1c plots ∆p and the interest rate R, which move closely together, al-
beit with inflation being more volatile on a month-to-month basis. Figure 1d graphs
R and the depreciation in the nominal exchange rate ∆e, which also move closely
together, with exchange rate depreciation being highly volatile. That said, real ex
post monthly returns are commonly in excess of (plus-or-minus) two per cent, in large
part owing to the high variability in the inflation rate.
The overall behavior of inflation (and so of R and ∆e) can be characterized by

periods of increasing inflation, followed by government “plans” to reign in inflation.
The acceleration of prices during the early 1980s was sharply reversed in mid-1985 by
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Figure 1: The logarithms of nominal money and prices (m and p), inflation ∆p and
maximal inflation ∆pmax, R and ∆p, and R and ∆e.

1980 1985 1990
0.5

1.0

1.5

2.0

2.5

3.0

(m−p) 
(−Δpmax+2.7) 

Figure 2: The logarithm of real money (m − p) and the negative of the maximal
inflation rate (∆pmax), adjusted for means.
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the Plan Austral, which combined wage, price, and exchange rate freezes with some
fiscal adjustment. Reductions in the fiscal deficit were not sufficient to eliminate
inflationary pressures, which resumed in earnest by 1987. The August 1988 Plan
Primavera (“Spring Plan”) followed, and it aimed to limit the growth of prices and
the official exchange rate to 4 percent per month. While inflation fell temporarily,
the real exchange rate appreciated and the fiscal situation deteriorated. In February
1989, the Central Bank floated the exchange rate for financial transactions, which
promptly depreciated sharply; and inflation rapidly increased to a record 197 percent
per month in July 1989.
Under newly elected President Menem, the authorities announced a new program

similar to the Plan Austral. Initially, inflation fell dramatically; but appreciation
of the real exchange rate forced the Central Bank to float the commercial exchange
rate, which quickly depreciated in value and spurred price inflation. In January
1990, the authorities attempted to restrain inflation by freezing most domestic peso-
denominated bank time deposits and converting them to 10-year dollar-denominated
bonds known as Bonex. The so-called Plan Bonex had little immediate effect upon
inflation, but it did further reduce the Argentine public’s faith in their financial
system. By March 1990, when inflation reached 95.5 percent per month, broad money
reached a record low of 3.1 percent of GDP.
Subsequently, inflation declined to single-digit levels due to a reduction in mon-

etary emission made possible by concerted efforts to achieve fiscal adjustment. The
fiscal deficit declined from over 20 percent of GDP in 1989 to about 3 percent in 1990
and 2 percent in 1991. In March 1991, the government announced the “Convertibility
Program,” which fixed the exchange rate against the dollar and required the Central
Bank to hold international reserves equivalent to the monetary base. Subsequently,
the inflation rate fell to under 1 percent per month.
Figure 2 graphs the log of real money (m − p) and the negative of the ratchet

variable ∆pmax. Real money initially increases gradually, then falls abruptly by 20%
in 1982. After continuing to fall through 1984, real money increases until the hyper-
inflation in 1989, when it plummets to approximately half its “pre-hyper” level. Even
after very low inflation in subsequent years, real money did not return to its level of
early 1989. Declines in real money are closely correlated with increases in the ratchet
variable, although the stability of a relation between these variables may be an issue,
noting the remaining large deviations between them.2

2For further analytical and empirical discussion of the Argentine economy, see Howard (1987),
the World Bank (1990), Kamin (1991), Kiguel (1991), Manzetti (1991), Beckerman (1992), Kamin
and Ericsson (1993), and Helkie and Howard (1994). See Dominguez and Tesar (2007) for a history
of the post-1990 period.
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3 Previous Results

This section summarizes the model of Argentine money demand developed by Kamin
and Ericsson (1993).
Kamin and Ericsson (1993) test for and find cointegration between real money, the

interest rate, the inflation rate, exchange rate depreciation, and the ratchet variable;
and the ratchet variable is key to finding cointegration. While the interest rate and the
exchange rate do not appear to be weakly exogenous, there are only minor differences
between system estimates of the cointegrating vector and the solved long-run coeffi-
cients from a conditional single-equation autoregressive distributed lag (ADL) model.
So, Kamin and Ericsson (1993) model broad money as a single-equation conditional
error correction model (ECM).
In their single equation modeling, Kamin and Ericsson (1993) start with a seventh-

order ADL that has 63 coefficients and simplify it to a more restricted “intermediate”
ADL with only 30 coefficients. Kamin and Ericsson (1993) then further simplify to
obtain the following 16-coefficient model, which is their equation (6).

d∆(m− p)t = 0.264
(0.028)
[0.035]

∆(m− p)t−1 + 0.091
(0.031)
[0.032]

∆2(m− p)t−5

− 0.740
(0.040)
[0.041]

∆2pt + 0.101
(0.040)
[0.054]

∆2pt−5 − 0.594
(0.078)
[0.089]

∆2ppost

+ 0.059
(0.018)
[0.021]

∆∆6pt + 0.182
(0.022)
[0.018]

∆2Rt + 0.536
(0.044)
[0.045]

(R−∆p)t−1

+ 0.103
(0.022)
[0.022]

− 0.0337
(0.0078)
[0.0080]

(m− p)t−1 − 0.069
(0.017)
[0.019]

∆et−1

− 0.028
(0.010)
[0.010]

∆pmax
t−1 − 0.216

(0.038)
[0.039]

Bt + 0.179
(0.032)
[0.020]

Bt−3

+ 2.45
(0.64)
[0.43]

St−6 + 5.09
(0.62)
[0.74]

St−12 (4)

T = 180 [1978(2)—1993(1)] R2 = 0.9489 σ̂ = 2.192% dw = 2.08

Inn1 : F (47, 117) = 1.47
+ Inn2 : F (14, 150) = 1.46 AR : F (7, 157) = 0.61

ARCH : F (7, 150) = 2.75∗ Normality : χ2(2) = 0.59 RESET : F (1, 163) = 0.43

Hetero : F (26, 137) = 0.99 Form : F (102, 61) = 0.71 Chow : F (33, 131) = 0.76,

where a circumflex ˆ on the dependent variable denotes its fitted value, the subscript t
is the time index, ∆∆6pt = ∆(pt − pt−6), R2 is the squared multiple correlation
coefficient, and σ̂ is the estimated residual standard error. The long-run solution to

7



equation (4) is:

m− p = 3.05 + 15.93 (R−∆p) − 2.04 ∆e − 0.84 ∆pmax . (5)

Kamin and Ericsson (1993) show that equation (4) has a straightforward economic
interpretation and is statistically satisfactory. Economically, the long-run coefficients
in (5) satisfy sign restrictions that are consonant with a money demand function. The
short-run variables and coefficients in (4) are also easily understood. Each short-run
variable enters as a second difference (an acceleration), which is a natural transfor-
mation to stationarity for a potentially I(2) variable. The coefficient on ∆2pt is close
to −1, implying that, in the short run, agents are in essence adjusting nominal (and
not real) money.3 The lag lengths on ∆2(m−p)t−5, ∆2pt−5, and ∆∆6pt are consistent
with agents’ adjustments for seasonality in the data. The variable ∆∆6pt is also con-
sistent with a natural data-based predictor of future (seasonal) inflation, extending
the theoretical and empirical developments on such predictors in Flemming (1976),
Hendry and Ericsson (1991), and Campos and Ericsson (1999). And, the coefficient
on ∆2ppost is very negative and statistically significant, implying stronger reactions to
rising inflation than to falling inflation.
The estimated money demand function also shed lights on the dollarization of

the Argentine economy. Kamin and Ericsson (2003) reinterpret the ratchet effect
in light of data measuring the extent of dollarization. Specifically, the reduction in
peso money demand attributable to the ratchet effect is comparable in magnitude to
the estimated stock of total dollar assets held domestically by Argentine residents,
where those assets are estimated from U.S. Treasury data. This suggests that secular
reductions in the demand for pesos reflect substitution into dollars rather than mere
economizing on peso balances (or other forms of financial innovation). Thus, the
ratchet may proxy for dollar holdings, which relaxes the draconian assumption of
true irreversibility.
Statistically, Kamin and Ericsson (1993) show that equation (4) is parsimonious

and empirically constant and satisfies a variety of diagnostic tests. Equation (4) and
the regressions below report diagnostic statistics for testing against various alterna-
tive hypotheses: residual autocorrelation (dw and AR), skewness and excess kur-
tosis (Normality), autoregressive conditional heteroscedasticity (ARCH), RESET
(RESET ), heteroscedasticity (Hetero and Form), non-innovation errors relative to
a more general model (Inn), and predictive failure (Chow, Chow’s prediction interval
statistic). The asymptotic null distribution is designated by χ2(·) or F (·, ·), where

3Hendry and Ericsson (1991, p. 853) and Baba, Hendry, and Starr (1992) find similar results for
narrow money demand in the United Kingdom and the United States. Also, in keeping with this
observation about ∆2pt, Kamin and Ericsson (1993) simplify the restricted intermediate ADL to
obtain an alternative ECM where that ECM has ∆mt as the dependent variable.
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the degrees of freedom fill the parentheses. Estimated standard errors are in paren-
theses (·), below coefficient estimates; heteroscedasticity-consistent standard errors
are in brackets [·]. See Doornik and Hendry (2007) for details and references.
In spite of the apparent robustness of equation (4), its design has shortcomings.

The associated cointegration analysis excludes ∆2ppos, a linear trend, and an impulse
dummy for the Plan Bonex. And, equation (4) may depend on the path taken for
model selection. The remainder of the current paper addresses these issues.

4 Integration and Cointegration

This section presents unit root tests for the variables of interest (Section 4.1). Then,
Johansen’s maximum likelihood procedure is applied to test for cointegration among
real money, inflation, the interest rate, exchange rate depreciation, ∆2ppos, the ratchet
variable, and a linear trend (Section 4.2). Coefficient restrictions and the adjustment
mechanism are examined in the Johansen framework.

4.1 Integration

Table 1 lists augmented Dickey—Fuller (ADF) statistics and related calculations for
the data. In order to test whether a given series is I(0), I(1), I(2), or I(3), Table 1
calculates unit root tests for the original variables, for their changes, and for the
changes of the changes. This permits testing the order of integration, albeit by testing
adjacent orders of integration in a pairwise fashion. The largest estimated root (ρ̂) is
listed adjacent to each ADF statistic: this root should be approximately unity if the
null hypothesis is correct. The lag length of the reported ADF regression is based on
minimizing the AIC, starting with a maximum of twelve lags.
Nominal money, prices, and the exchange rate appear to be I(2). Real money, the

nominal interest rate, inflation, and the inflation ratchet variable appear to be I(1).
The ex post real interest rate and R−∆e appear stationary.

4.2 Cointegration

Cointegration analysis helps clarify the long-run relationships between integrated vari-
ables. A brief review leads to the current analysis and places the latter in context.
Johansen’s (1988, 1991) procedure is maximum likelihood for finite-order vector

autoregressions (VARs) with variables that are integrated of order one [I(1)], and it
is easily calculated for such systems. Various approaches exist for modeling possibly
cointegrated I(2) variables. Johansen (1992b) proposes and implements a unified
(vector autoregressive) system approach for the entire testing sequence going from
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Table 1: ADF statistics for testing a unit root in various time series.

Variablea,b lag c tADF (c) ρ̂ σ̂ (%) t-prob (%) F -prob (%) AIC

m 8 —2.81 0.988 5.318 2.1 52.1 —5.75
p 12 —2.95 0.984 7.741 17.8 – —4.98
e 8 —3.07 0.970 12.63 0.1 43.7 —4.02
m− p 11 —3.08 0.934 6.912 2.9 47.1 —5.22
R 12 —2.06 0.821 9.208 8.2 – —4.64
∆pmax 10 —1.74 0.983 2.631 5.7 62.9 —7.15
R−∆p 5 —4.64** 0.079 9.300 0.1 12.4 —4.65
R−∆e 1 —9.72** 0.069 10.65 1.4 24.2 —4.40

∆m 8 —2.28 0.849 5.431 15.8 48.6 —5.71
∆p 12 —2.45 0.810 7.905 8.1 – —4.94
∆e 8 —2.76 0.703 12.96 13.7 84.6 —3.97
∆(m− p) 7 —3.95* 0.380 7.118 14.0 67.5 —5.18
∆R 11 —5.46** —1.952 9.334 2.4 43.5 —4.61
∆(∆pmax) 9 —4.27** 0.487 2.657 3.0 76.4 —7.14
∆(R−∆p) 11 —6.16** —5.268 9.670 1.1 81.7 —4.54
∆(R−∆e) 12 —7.49** —7.758 10.71 9.1 – —4.33

∆2m 6 —9.12** —1.348 5.520 1.7 40.8 —5.69
∆2p 10 —4.96** —1.517 8.072 11.7 43.9 —4.91
∆2e 6 —9.36** —2.257 13.26 0.0 66.7 —3.94
∆2(m− p) 9 —7.56** —3.759 7.323 1.2 46.0 —5.11
∆2R 12 —7.87** —11.81 9.888 4.1 – —4.49
∆2(∆pmax) 10 —6.09** —2.108 2.778 11.6 78.5 —7.04
∆2(R−∆p) 11 —7.67** —17.68 10.65 2.3 86.0 —4.35
∆2(R−∆e) 12 —8.49** —19.20 12.19 0.2 – —4.07
∆2ppos 5 —3.17+ 0.643 4.188 0.7 76.7 —6.24

Notes:
a. Twelfth-order ADF regressions were initially estimated, and the final lag length was selected to
minimize the Akaike Information Criterion (AIC). The columns report the name of the variable
examined, the selected lag length c, the ADF statistic on the simplified regression (tADF (c)), the
estimated coefficient on the lagged level that is being tested for a unit value (ρ̂), the regression’s
residual standard error (σ̂, in %), the tail probability of the t-statistic on the longest lag of the
final regression (t-prob, in %), the tail probability of the F -statistic for the lags dropped (F -prob,
in %), and the AIC.
b. All of the ADF regressions include an intercept, monthly dummies, and a linear trend. Mac-
Kinnon’s (1991) approximate finite-sample critical values for the corresponding ADF statistics
are —3.14 (10%), —3.44 (5%), and —4.01 (1%) for T = 177. In this table, and in the other results
reported herein, rejection of the indicated null hypothesis is denoted by +, *, and ** for the 10%,
5%, and 1% levels. Samples sizes are T = 179, T = 178, and T = 177 respectively for the three
null hypotheses.
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I(2) to I(1) to I(0). His empirical application uses data on U.K. narrow money
demand, which appear to have the same orders of integration as the Argentine series
above. For the U.K. data, Johansen (1992b) tests for and finds that nominal money
and prices (which are I(2)) cointegrate with a (+1 : −1) cointegrating vector to give
real money, which is I(1). He then tests for and finds that real money, inflation,
real income, and interest rates (all of which are I(1)) cointegrate. Because the I(2)
Argentine variables m and p appear to cointegrate as the I(1) variable m − p, the
cointegration analysis here begins with the variablesm−p, ∆p, R, ∆pmax, ∆e, ∆2ppos,
and a linear trend.
Empirically, the lag order of the VAR is not known a priori , so some testing of lag

order may be fruitful in order to ensure reasonable power of the Johansen procedure.
Given the number of variables, the number of observations, and the data’s periodicity,
the largest system considered is a seventh-order VAR ofm−p, ∆p, R, ∆pmax, ∆e, and
∆2ppos. In that VAR, the linear trend is restricted to lie in the cointegration space;
and an intercept, seasonal dummies, and the Plan Bonex dummy B (and three of its
lags) enter freely. Empirically, the seventh lag may be statistically insignificant, but
no further lag restrictions appear feasible, so inferences below are for the seventh-order
VAR.
Table 2 reports the standard statistics, 95% critical values (c.v.’s), and estimates

for Johansen’s procedure applied to this seventh-order VAR. The maximal eigenvalue
and trace eigenvalue statistics (λmax and λtrace) strongly reject the null of no cointe-
gration in favor of at least one cointegrating relationship, and likely in favor of two
cointegrating relationships. However, parallel statistics with a degrees-of-freedom ad-
justment (λamax and λatrace) suggest only one cointegrating relationship. Because the
VAR for Table 2 uses a large number of degrees of freedom in estimation, inferences
are based on the adjusted eigenvalue statistics.
Table 2 also reports the standardized eigenvectors and adjustment coefficients,

denoted β0 and α in a common notation. The first row of β0 is the estimated cointe-
grating vector, which can be written in the form of (2):

m− p = intercept − 10.89
(3.72)

∆p + 17.53
(4.48)

R − 1.20
(0.32)

∆pmax

− 6.17
(1.55)

∆e − 62.69
(10.68)

∆2ppos + 0.0028
(0.0020)

t. (6)

All coefficients have their anticipated signs. Also, the trend t appears to be statis-
tically insignificant: χ2(1) = 1.31 [0.252], where the asymptotic p-value is in square
brackets. And, the hypothesis of “relative rates of return” in (3) appears acceptable.
Numerically, the sum of the coefficients on ∆p and ∆e (−17.06) is approximately
equal to minus the coefficient on R (17.53). Statistically, that restriction cannot be
rejected: χ2(1) = 0.04 [0.850]. Jointly, the restrictions on the trend and rates of
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Table 2: A cointegration analysis of the Argentine money demand data.

Rank r r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4 r ≤ 5 r ≤ 6
Log-likelihood 2497.21 2528.69 2551.50 2563.38 2571.45 2576.82 2578.52
Eigenvalue λr — 0.295 0.224 0.124 0.086 0.058 0.019

Null hypothesis
r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4 r ≤ 5

λmax 62.98** 45.61** 23.77 16.13 10.75 3.38
λamax 48.28* 34.97 18.22 12.37 8.24 2.59
95% c.v. 43.97 37.52 31.46 25.54 18.96 12.25

λtrace 162.6** 99.64** 54.03 30.26 14.13 3.38
λatrace 124.7* 76.39 41.42 23.20 10.83 2.59
95% c.v. 114.9 87.31 62.99 42.44 25.32 12.25

Eigenvectors β0

Variable m− p ∆p R ∆pmax ∆e ∆2ppos trend
1 10.89 —17.53 1.20 6.17 62.69 —0.0028
0.08 1 —0.78 0.04 —0.30 0.50 0.0003
—0.25 —2.40 1 —0.29 —0.49 4.66 —0.0002
—0.61 —8.49 47.66 1 —17.90 —5.39 —0.0062
—1.43 15.50 —18.97 —0.38 1 7.94 —0.0092
—0.63 0.34 —2.35 —1.27 0.35 1 0.0058

Variable Adjustment coefficients α
m− p —0.020 0.265 0.083 0.002 0.010 0.010
∆p 0.015 —0.365 0.015 —0.002 —0.013 —0.002
R 0.034 0.085 —0.067 0.002 —0.020 0.015
∆pmax 0.016 —0.137 —0.005 0.002 —0.004 0.002
∆e —0.048 0.877 0.093 0.011 —0.034 —0.012
∆2ppos 0.005 —0.344 —0.052 0.000 —0.009 0.001

Weak exogeneity test statistics
m− p ∆p R ∆pmax ∆e ∆2ppos

χ2(1) 6.57* 3.70+ 9.89** 12.6** 4.58* 0.59

Statistics for testing the significance of a given variable in β0x
m− p ∆p R ∆pmax ∆e ∆2ppos trend

χ2(1) 2.71+ 2.79+ 7.65** 3.89* 7.44** 16.7** 1.31

Multivariate statistics for testing trend stationarity
m− p ∆p R ∆pmax ∆e ∆2ppos

χ2(5) 48.4** 45.7** 43.7** 56.6** 30.6** 24.2**
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Figure 3: The logarithm of real money (m−p), plotted against the maximal inflation
rate (∆pmax) and the real interest rate (R−∆p).

return also appear acceptable: χ2(2) = 1.39 [0.498].
Table 3 reports the estimated values of α and β when estimated unrestrictedly,

and when estimated with a zero coefficient on the trend imposed, with the hypothesis
of “relative rates of return” imposed, and with both of those restrictions imposed.
The similarity of coefficient estimates across the various restrictions points to the
robustness of the results and is partial evidence in favor of those restrictions.
Thus, the nominal interest rate and inflation enter the long-run money demand

function as the ex post real rate, with a semi-elasticity of about eleven, which is
about unity at annual rates. The nominal interest rate relative to the exchange-rate
depreciation has about half that effect on money demand. Money demand is highly
sensitive to the movement of inflation, both through ∆2ppos and through the ratchet
variable ∆pmax. In particular, for each additional percent in the maximal monthly
inflation rate over the relative past, the coefficient on ∆pmax implies approximately
one percent lower money holdings.
Figure 3 plots key aspects of equation (6)–namely, the relationship between the

variables (m−p), ∆pmax, and (R−∆p). Real money holdings fall as ∆pmax increases
and as the return on money relative to goods (R−∆p) declines.
Returning to Table 2, the coefficients in the first column of αmeasure the feedback

effects of the (lagged) disequilibrium in the cointegrating relation on the variables in
the vector autoregression. Specifically, −0.020 is the estimated feedback coefficient
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Table 3: Just-identified and over-identified estimates of β and α, with corresponding
estimated standard errors, from a cointegration analysis of Argentine money demand.

Variable corresponding to an element of β0 or α0

m− p ∆p R ∆pmax ∆e ∆2ppos trend

Estimate of β0 (just-identified)
1 10.89

(3.72)
−17.53
(4.48)

1.20
(0.32)

6.17
(1.55)

62.69
(10.68)

−0.0028
(0.0020)

Estimate of β0 (zero coefficient on trend imposed)
1 10.45

(2.71)
−14.49
(3.27)

0.92
(0.14)

3.51
(1.07)

45.28
(7.75)

0

Estimate of β0 (rates-of-return restriction imposed)
1 10.64

(3.55)
−16.60
(3.87)

1.21
(0.27)

5.96
(1.46)

58.67
(8.14)

−0.0027
(0.0019)

Estimate of β0 (trend and rates-of-return restrictions imposed)
1 10.19

(2.56)
−13.58
(2.76)

0.94
(0.12)

3.38
(1.01)

41.48
(5.51)

0

Estimate of α0 (just-identified)
−0.020
(0.007)

0.015
(0.007)

0.034
(0.012)

0.016
(0.004)

−0.048
(0.021)

0.005
(0.005)

Estimate of α0 (zero coefficient on trend imposed)
−0.024
(0.010)

0.016
(0.009)

0.050
(0.016)

0.020
(0.005)

−0.051
(0.029)

0.003
(0.007)

Estimate of α0 (rates-of-return restriction imposed)
−0.021
(0.008)

0.015
(0.007)

0.036
(0.012)

0.017
(0.004)

−0.050
(0.022)

0.005
(0.005)

Estimate of α0 (trend and rates-of-return restrictions imposed)
−0.026
(0.011)

0.017
(0.010)

0.054
(0.017)

0.022
(0.006)

−0.054
(0.031)

0.004
(0.007)
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for the money equation. The negative coefficient implies that lagged excess money
induces smaller holdings of current money. The coefficient’s numerical value implies
slow adjustment to remaining disequilibrium. The estimated coefficient is numeri-
cally smaller than those for quarterly broad money demand (e.g., −0.26, −0.15, and
−0.20 in Taylor (1986)) and monthly currency demand (e.g., −0.14 for Argentina
in Ahumada (1992)). However, smaller adjustment coefficients are plausible with
high-frequency data for a broad aggregate.
The third block from the bottom of Table 2 reports values of the statistic for

testing weak exogeneity of a given variable for the cointegrating vector. Equivalently,
the statistic tests whether or not the corresponding row of α is zero; see Johansen
(1992a, 1992b). If the row of α is zero, disequilibrium in the cointegrating relationship
does not feed back onto that variable. Surprisingly, inflation (including in its form
∆2ppos) may be weakly exogenous. However, the interest rate, the exchange rate,
and the ratchet variable are not weakly exogenous, justifying a systems approach to
analyzing cointegration.
The penultimate block in Table 2 reports statistics for testing the significance of

individual variables in the cointegrating vector. Each variable is significant, except
the linear trend.
The final block in Table 2 reports values of a multivariate statistic for testing the

trend stationarity of a given variable. Specifically, this statistic tests the restriction
that the cointegrating vector contains all zeros except for a unity corresponding to
the designated variable and an unrestricted coefficient on the trend, with the test
being conditional on the presence of exactly one cointegrating vector; see Johansen
(1995, p. 74). For instance, the null hypothesis of trend-stationary real money implies
that the cointegrating vector is (1 0 0 0 0 0 ∗)0, where “∗” represents an unrestricted
coefficient on the linear trend. Empirically, all of the stationarity tests reject with p-
values less than 0.1%. By being multivariate, these statistics may have higher power
than their univariate counterparts. Also, the null hypothesis is the stationarity of
a given variable rather than the nonstationarity thereof, and stationarity may be a
more appealing null hypothesis. That said, these rejections of stationarity are in line
with the inability in Table 1 to reject the null hypothesis of a unit root in each of
m− p, ∆p, R, ∆pmax, and ∆e.
Because R, ∆pmax, and ∆e are not weakly exogenous for the cointegrating vector,

inferences in a single equation for broad money could be hazardous if the cointegrating
vector is estimated jointly with the equation’s dynamics; see Hendry (1995). One
solution is to model a subsystem. A second solution is to construct an error correction
term from the system estimates and then develop a single equation ECM that uses
that system-based error correction term. A third solution–adopted below–is to
develop a single equation ECM from the single equation ADL, noting that the system
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estimate of the cointegrating relationship is numerically close to the ADL’s long-run
solution. See Hendry and Doornik (1994) and Juselius (1992) for paradigms of the
first two approaches.

5 Computer-automated Model Selection

This section first describes the model selection algorithms in PcGets and Autometrics
(Section 5.1) and then applies these algorithms to an ECM representation of an ADL
for Argentine money demand (Section 5.2).

5.1 The Algorithms in PcGets and Autometrics

Hendry and Krolzig (2001) develop a computer program PcGets, which extends and
improves upon Hoover and Perez’s (1999) automated model-selection algorithm; see
also Hendry and Krolzig (1999, 2003, 2005) and Krolzig and Hendry (2001). Doornik
and Hendry (2007) implement a third-generation algorithm called Autometrics, which
is part of PcGive version 12. PcGets and Autometrics utilize one-step and multi-
step simplifications along multiple paths, diagnostic tests as additional checks on
the simplified models, and encompassing tests to resolve multiple terminal models.
Both analytical and Monte Carlo evidence show that the resulting model selection
is relatively non-distortionary for Type I errors. At an intuitive level, PcGets and
Autometrics function as a series of sieves that aim to retain parsimonious congruent
models while discarding both noncongruent models and over-parameterized congruent
models. This feature of the algorithms is eminently sensible, noting that the data
generation process itself is congruent and is as parsimonious as feasible.
The remainder of the current subsection summarizes PcGets and Autometrics as

automated model-selection algorithms, thereby providing the necessary background
for interpreting their application in Section 5.2. For ease of reference, the algorithm in
PcGets is divided into four “stages”, denoted Stage 0, Stage 1, Stage 2, and Stage 3.
For full details of PcGets’s algorithm, see Hendry and Krolzig (2001, Appendix A1).
Hendry and Krolzig (2003) describe the relationship of the general-to-specific ap-
proach to other modeling approaches in the literature, and Hoover and Perez (2004)
extend the general-to-specific approach to cross-section regressions.

Stage 0: the general model and F pre-search tests. Stage 0 involves two parts: the
estimation and evaluation of the general model, and some pre-search tests aimed at
simplifying the general model before instigating formal multi-path searches.
First, the general model is estimated, and diagnostic statistics are calculated for

it. If any of those diagnostic statistics is unsatisfactory, the modeler must decide what
to do next–whether to “go back to the drawing board” and develop another general
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model, or whether to continue with the simplification procedure, perhaps ignoring
the offending diagnostic statistic or statistics.
Second, PcGets attempts to drop various sets of potentially insignificant vari-

ables. PcGets does so by dropping all variables at a given lag, starting with the
longest lag. PcGets also does so by ordering the variables by the magnitude of their
t-ratios and either dropping a group of individually insignificant variables or (alter-
natively) retaining a group of individually statistically significant variables. In effect,
an F pre-search test for a group of variables is a single test for multiple simplification
paths, a characteristic that helps control the costs of search. If these tests result in a
statistically satisfactory reduction of the general model, then that new model is the
starting point for Stage 1. Otherwise, the general model itself is the starting point
for Stage 1.

Stage 1: a multi-path encompassing search. Stage 1 tries to simplify the model
from Stage 0 by searching along multiple paths, all the while ensuring that the diag-
nostic tests are not rejected. If all variables are individually statistically significant,
then the initial model in Stage 1 is the final model. If some variables are statistically
insignificant, then PcGets tries deleting those variables to obtain a simpler model.
PcGets proceeds down a given simplification path only if the models along that path
have satisfactory diagnostic statistics. If a simplification is rejected or if a diagnostic
statistic fails, PcGets backtracks along that simplification path to the most recent
previous acceptable model and then tries a different simplification path. A terminal
model results if the model’s diagnostic statistics are satisfactory and if no remaining
regressors can be deleted.
If PcGets obtains only one terminal model, then that model is the final model, and

PcGets proceeds to Stage 3. However, because PcGets pursues multiple simplification
paths in Stage 1, PcGets may obtain multiple terminal models. To resolve such a
situation, PcGets creates a union model from those terminal models and tests each
terminal model against that union model. PcGets then creates a new union model,
which nests all of the surviving terminal models; and that union model is passed on
to Stage 2.

Stage 2: another multi-path encompassing search. Stage 2 in effect repeats Stage 1,
applying the simplification procedures from Stage 1 to the union model obtained at
the end of Stage 1. The resulting model is the final model. If Stage 2 obtains more
than one terminal model after applying encompassing tests, then the final model is
selected by using the Akaike, Schwarz, and Hannan—Quinn information criteria. See
Akaike (1973, 1981), Schwarz (1978), and Hannan and Quinn (1979) for the design of
these information criteria, and Atkinson (1981) for the relationships between them.

Stage 3: subsample evaluation. Stage 3 re-estimates the final model over two
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subsamples and reports the results. If a variable is statistically significant in the full
sample and in both subsamples, then the inclusion of that variable in the final model
is regarded as “100% reliable”. If a variable is statistically insignificant in one or both
subsamples or in the full sample, then its measure of reliability is reduced. A variable
that is statistically insignificant in both subsamples and in the full sample is regarded
as being “0% reliable”. The modeler is left to decide what action, if any, to take in
light of the degree of reliability assigned to each of the regressors.

PcGets thus has two components:

1. Estimation and diagnostic testing of the general unrestricted model (Stage 0);
and

2. Selection of the final model by

(a) pre-search simplification of the general unrestricted model (Stage 0),

(b) multi-path (and possibly iterative) selection of the final model (Stages 1
and 2), and

(c) post-search evaluation of the final model (Stage 3).

This subsection’s description of these four stages summarizes the algorithm in PcGets.
Below, Section 5.2 summarizes the actual simplifications found by PcGets in practice,
thereby providing additional insight into PcGets’s algorithm.
PcGets requires the modeler to choose which tests are calculated and to specify

the critical values for those tests. In PcGets, the modeler can choose the test statistics
and their critical values directly, although doing so is tedious because of the number of
statistics involved. To simplify matters, PcGets offers two options with pre-designated
selections of test statistics and critical values. These two options are called “liberal”
and “conservative” model selection strategies. The liberal strategy errs on the side of
keeping some variables, even although theymay not actually matter. The conservative
strategy keeps only variables that are clearly significant statistically, erring in the
direction of excluding some variables, even although those variables may matter.
Which strategy is preferable depends in part on the data themselves and in part on
the objectives of the modeling exercise, although (as below) the two approaches may
generate similar or identical results.
The algorithm in PcGets is general-to-specifc, multi-path, iterative, and encom-

passing, with diagnostic tests providing additional assessments of statistical adequacy,
and with options for pre-search simplification. The algorithm in Autometrics shares
these characteristics with the algorithm in PcGets; hence, many of the remarks above
about PcGets apply directly to Autometrics. However, Autometrics (unlike PcGets)
uses a tree search method, with refinements on pre-search simplification and on the
objective function. See Doornik and Hendry (2007) and Doornik (2008) for details.
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5.2 Modeling of Argentine Money Demand Revisited

Using PcGets and Autometrics, the current subsection assesses the possible path
dependence of equation (4). The initial general model is estimated; and the algorithms
simplify that general model under each of the 24 permutations implied by the list
of choices below. While the algorithms do obtain multiple distinct final models,
equation (4)–or simple variants of it–appears statistically sensible; and one variant
obtained by Autometrics is even more parsimonious than (4). These results bolster
the model design in Kamin and Ericsson (1993) and offer an improvement on it.
The multi-path searches in PcGets and Autometrics allow investigation of equa-

tion (4)’s robustness and examination of the empirical properties of the two algorithms
themselves. In addition, four choices within the model selection process permit fur-
ther insights. In PcGive, these choices concern the following.

1. Model strategy: either liberal (“L”) or conservative (“C”).

2. Pre-search testing (Stage 0): either switched on (“Yes”) or off (“No”).

3. The representation of the initial general ECM (three options): either the rep-
resentation as tabulated, or either of two representations that explicitly nest
equation (4). The latter two representations are distinguished by whether the
variables from (4) are “free” or “fixed”. Fixed variables are forced to always be
included in regression, whereas free variables may be deleted by the algorithm.

4. The choice of the general model: either the unrestricted ADL, or the interme-
diate ADL described in Section 3.

For model strategy (choice #1), the options in Autometrics do not correspond pre-
cisely to PcGets’s liberal and conservative strategies. Instead, Autometrics allows the
user to select a “target size”, which is meant to equal “the proportion of irrelevant
variables that survives the [simplification] process” (Doornik, 2008). In the analysis
below, Autometrics’s target size is either 5% or 1%, which appear to approximate
liberal and conservative strategies in PcGets. For pre-search testing (choice #2), the
selected option in Autometrics is either pre-search for both variable reduction and
lag reduction, or no pre-search for either–in order to match PcGets as closely as
possible. The third choice above is identical for PcGets and Autometrics, as is the
fourth choice.
For both PcGets and Autometrics, the third choice (the representation of the

initial general ECM) can affect the final model selected. In simplifying the initial
model, PcGets and Autometrics impose only “zero restrictions”, i.e., the algorithms
can set coefficients to be equal only to zero. Although a linear model is invariant to
nonsingular linear transformations of its data, the coefficients of that model are not
invariant to such transformations. For example, a model with regressors xt and xt−1
is invariant to including the regressors ∆xt and xt−1 instead; but the deletion of xt−1
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results in two different simplifications, depending on the representation. See Campos
and Ericsson (1999) for additional discussion.
Table 4 lists the estimates and standard errors for the ECM representation of the

unrestricted seventh-order ADL model of m − p, ∆p, R, ∆pmax, ∆e, and ∆2ppos.
The standard diagnostic statistics do not reject. The implied coefficient on the error
correction term appears to be highly significant statistically, with a t-ratio of −3.53.
The intermediate ADL (in ECM representation) is Table 4, but re-estimated with
the “boxed-in” coefficients in Table 4 set to zero. Kamin and Ericsson (1993) show
that the estimated coefficients in this intermediate model are close to those in the
unrestricted ECM in Table 4; and the intermediate ADL is a statistically acceptable
reduction of Table 4, with Inn : F (33, 117) = 1.42 [0.091]. For ease of reference, the
intermediate ADL is denoted Table 4*.
Table 5 summarizes PcGets’s model simplifications under the 24 different scenarios

described above; Table 6 does likewise for Autometrics. In these tables, k1 is the
number of regressors in the general model for multi-path searches, kf is the number of
coefficients in the final specific model for multi-path searches, the “number of paths”
is the number of different simplification paths considered in a multi-path search,
the “number of terminal models” is the number of distinct terminal specifications
after a multi-path search, and σ̂ is the residual standard error of the final specific
model. If multi-path searches are iterated, the table lists values for each iteration,
where appropriate. The “number of models estimated” is the total number of distinct
models estimated in the multi-path search.
Several features of the simplifications in Tables 5 and 6 are notable. First, pre-

search testing typically reduces the number of paths that need to be searched in
Stage 1, and often markedly so. As a consequence, pre-search testing frequently re-
duces the number of multiple terminal models and, in some instances, obtains the
final model. Second, if the initial general model is the intermediate ECM (Table 4*,
rather than the general ECM in Table 4), that choice is in effect a pre-search, albeit
an informal one. That choice also typically obtains a single terminal model on the
initial multi-path search. Third, a conservative strategy generally obtains a more par-
simonious model than a liberal strategy, as expected. Fourth, Kamin and Ericsson’s
(1993) model results from a conservative-like strategy, as is apparent from examin-
ing the specifications of the final models in Tables 5 and 6. Fifth, the 1% and 5%
target sizes in Autometrics appear closely comparable to the liberal and conservative
strategies in PcGets. That said, in several instances, Autometrics dominates PcGets
by obtaining a more parsimonious model with a better fit (in terms of σ̂), whereas
PcGets never dominates Autometrics in that sense. This outcome reflects differences
in the algorithms’ details. Finally, data transformations through the “nesting” ap-
proach permit a final representation that is more highly parsimonious than previously
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Table 4: An unrestricted error correction representation for real money conditional
on inflation, the interest rate, and the change in the exchange rate.

Variablea,b,c Lag j

0 1 2 3 4 5 6 7

∆(m− p)t−j −1
(−)

0.270
(0.088)

0.154
(0.093)

−0.019
(0.094)

0.029
(0.079)

0.204
(0.079)

−0.125
(0.072)

∆pt−j −0.768
(0.101)

0.177
(0.149)

−0.041
(0.140)

0.144
(0.136)

0.121
(0.117)

0.168
(0.119)

−0.275
(0.122)

−0.053
(0.079)

∆Rt−j 0.222
(0.053)

0.031
(0.159)

0.172
(0.149)

0.140
(0.143)

−0.039
(0.128)

0.002
(0.096)

−0.131
(0.090)

∆(∆pmax
t−j ) −0.223

(0.155)
−0.169
(0.184)

0.327
(0.281)

0.599
(0.297)

−0.104
(0.268)

−0.211
(0.264)

0.132
(0.317)

∆2ppost−j −0.406
(0.162)

−0.049
(0.154)

0.180
(0.161)

−0.114
(0.156)

−0.168
(0.133)

0.003
(0.137)

0.181
(0.130)

−0.017
(0.112)

∆et−j −0.004
(0.020)

−0.040
(0.022)

−0.014
(0.023)

0.025
(0.022)

−0.040
(0.022)

0.011
(0.023)

0.032
(0.023)

−0.032
(0.022)

(m− p)t−j −0.053
(0.015)

Rt−j 0.441
(0.158)

∆pmax
t−j −0.055

(0.019)

Bt−j −0.353
(0.139)

0.178
(0.078)

0.058
(0.073)

0.286
(0.084)

St−j 0.160
(0.047)

−1.62
(1.20)

−0.08
(1.21)

0.41
(1.10)

−0.21
(1.16)

2.81
(1.02)

St−j−6 0.06
(0.97)

0.10
(1.03)

−0.55
(1.01)

0.86
(1.03)

0.20
(1.02)

4.35
(1.02)

T = 180 [1978(2)—1993(1)] R2 = 0.968 σ̂ = 2.058%

dw = 2.02 AR : F (7, 110) = 0.67 [0.695] LMp : F (1, 116) = 0.08 [0.773]
d

ARCH : F (7, 103) = 0.92 [0.491] Normality : χ2(2) = 0.77 [0.682]
Hetero : F (109, 7) = 0.08 [1.000] RESET : F (1, 116) = 1.89 [0.171]

Notes:
a. The dependent variable is ∆(m− p)t. Even so, the equation is in levels, not in differences, noting
the inclusion of the regressor (m− p)t−1.
b. The variables {St−i} are the seasonal dummies, except that S0 is the intercept. February is St−2,
March is St−3, etc. For readability, the coefficients and estimated standard errors for the seasonal
dummies have been multiplied by 100.
c. The 33 coefficients that are “boxed in” are set equal to zero in the partially restricted intermediate
error correction representation denoted Table 4*.
d. The statistic LMp is the Lagrange multiplier statistic for testing the imposed restriction of long-run
price homogeneity.
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Table 5: Statistics on computer-automated model selection by PcGets of models for
Argentine money demand, categorized according to model strategy, pre-search testing,
representation of the general model, and choice of general model.

Model
strat-
egy

Pre-
search?

Rep-
resen-
tation?

k1 kf Number
of paths

Number
of terminal
models

σ̂

(%)

The general model is Table 4 or equivalent.

L No Table 4 63, 31 19 55, 7 13, 1 2.132
L No Nested 63, 31, 26 24 56, 18, 9 9, 3, 5 1.952
L No Fixed 63, 25 22 53, 10 6, 3 1.954

L Yes Table 4 26 21 10 3 2.078
L Yes Nested 28 23 11 3 1.989
L Yes Fixed 23 22 6 2 1.986

C No Table 4 63, 32, 31 23 61, 21, 20 10, 5, 4 2.015
C No Nested 63, 31 21 61, 22 9, 5 2.007
C No Fixed 63, 24 21 55, 9 6, 3 1.988

C Yes Table 4 21 21 1 1 2.139
C Yes Nested 22, 21 21 10, 8 2, 1 2.073
C Yes Fixed 24, 18 18 11, 3 1, 1 2.137

The general model is Table 4* or equivalent.

L No Table 4* 30 20 18 1 2.149
L No Nested 30 18 20 1 2.137
L No Fixed 30 18 20 1 2.137

L Yes Table 4* 20 20 1 1 2.149
L Yes Nested 18 18 1 1 2.137
L Yes Fixed 18 18 1 1 2.137

C No Table 4* 30, 20 20 19, 3 1, 1 2.149
C No Nested 30, 18 18 22, 3 2, 1 2.137
C No Fixed 30, 18 18 22, 3 2, 1 2.137

C Yes Table 4* 20, 20 20 3, 3 1, 1 2.149
C Yes Nested 18, 18 18 3, 3 1, 1 2.137
C Yes Fixed 18, 18 18 3, 3 1, 1 2.137
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Table 6: Statistics on computer-automated model selection by Autometrics of models
for Argentine money demand, categorized according to target size, pre-search testing,
representation of the general model, and choice of general model.

Target
size

Pre-
search?

Rep-
resen-
tation?

k1 kf Number
of models
estimated

Number
of terminal
models

σ̂

(%)

The general model is Table 4 or equivalent.

5% No Table 4 63, 41 23 706 10, 17 1.997
5% No Nested 63, 36 21 378 8, 13 1.978
5% No Fixed 63, 31 20 306 6, 7 2.003

5% Yes Table 4 57, 37 22 470 6, 12 2.008
5% Yes Nested 50, 32 22 371 6, 7 1.972
5% Yes Fixed 45, 30 22 255 8, 8 1.986

1% No Table 4 63, 37 19 751 10, 20 2.095
1% No Nested 63, 29 21 501 8, 10 1.978
1% No Fixed 63, 22 18 497 2, 2 2.096

1% Yes Table 4 41, 35 20 677 10, 20 2.072
1% Yes Nested 39, 26 20 394 5, 5 2.014
1% Yes Fixed 30, 23 19 168 4, 4 2.078

The general model is Table 4* or equivalent.

5% No Table 4* 30, 20 20 46 1, 1 2.149
5% No Nested 30, 18 18 65 1, 1 2.137
5% No Fixed 30, 18 18 65 1, 1 2.137

5% Yes Table 4* 25, 20 20 36 1, 1 2.149
5% Yes Nested 23, 18 18 40 1, 1 2.137
5% Yes Fixed 23, 18 18 43 1, 1 2.137

1% No Table 4* 30, 18 18 77 1, 1 2.211
1% No Nested 30, 14 14 139 1, 1 2.236
1% No Fixed 30, 16 16 2 1 2.192

1% Yes Table 4* 21, 20 20 30 1, 1 2.149
1% Yes Nested 19, 17 17 36 1, 1 2.168
1% Yes Fixed 19, 17 17 38 1, 1 2.168
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obtained; see the boxed-in result for Autometrics on Table 6.
The corresponding model, which improves on equation (4), is as follows.

d∆(m− p)t = 0.281
(0.025)
[0.024]

∆(m− p)t−1 − 0.759
(0.041)
[0.040]

∆2pt

− 0.564
(0.078)
[0.090]

∆2ppost + 0.040
(0.017)
[0.022]

∆∆6pt

+ 0.180
(0.022)
[0.019]

∆2Rt + 0.543
(0.044)
[0.041]

(R−∆p)t−1

+ 0.093
(0.022)
[0.025]

− 0.0300
(0.0078)
[0.0088]

(m− p)t−1 − 0.060
(0.018)
[0.019]

∆et−1

− 0.025
(0.010)
[0.011]

∆pmax
t−1 − 0.253

(0.034)
[0.030]

Bt + 0.170
(0.032)
[0.023]

Bt−3

+ 1.97
(0.62)
[0.37]

St−6 + 4.78
(0.62)
[0.74]

St−12 (7)

T = 180 [1978(2)—1993(1)] R2 = 0.9462 σ̂ = 2.236% dw = 2.10

Inn3 : F (49, 117) = 1.61
∗ Inn4 : F (16, 150) = 1.85

∗ AR : F (7, 159) = 1.65

ARCH : F (7, 152) = 2.73∗ Normality : χ2(2) = 0.44 RESET : F (1, 165) = 1.60

Hetero : F (22, 143) = 1.08 Form : F (75, 90) = 0.92 Chow : F (33, 133) = 0.86

The coefficients in equation (7) are little changed from the corresponding ones in
equation (4), except that the coefficients for ∆2(m− p)t−5 and ∆2pt−5 are restricted
to be zero. No tests reject at the 1% level (an implication of choices made in the
algorithm’s parameters), although some do at the 5% level. Equation (7) has virtually
the same economic interpretation as equation (4), and it is more parsimonious than
(4). PcGets and Autometrics thus verify the robustness of equation (4)’s specification,
and Autometrics improves upon that specification.

6 Conclusions

Computer-automated model selection with the software packages PcGets and Auto-
metrics demonstrates the robustness of Kamin and Ericsson’s (1993) final error cor-
rection model and improves on it by using multi-path searches that would be tedious
and prohibitively time-consuming with standard econometrics packages. Long-run
money demand is driven by a negative ratchet effect from inflation, and by the op-
portunity cost of holding peso-denominated financial assets rather than Argentine
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goods or U.S. dollars. Short-run dynamics are consistent with an Ss-type inventory
model that is interpretable as having either real or nominal short-run bounds.
Several general remarks are germane, and each suggests extensions to the current

analysis. First, improvements to the model selection algorithms may and do obtain an
improved model specification. Computer-automated model-selection algorithms are
still in their youth–if not in their infancy–and considerable analytical, Monte Carlo,
and empirical research is ongoing; see Hendry and Krolzig (1999, 2003, 2005), Krolzig
and Hendry (2001), Hoover and Perez (2004), Doornik (2008), Hendry, Johansen, and
Santos (2008), Hoover, Demiralp, and Perez (2008), Hoover, Johansen, and Juselius
(2008), and Johansen and Nielsen (2008).
Second, insights by other researchers may improve the current model in a pro-

gressive research strategy. For example, Nielsen (2004), building on Hendry and
von Ungern-Sternberg (1981), proposes an alternative measure of the opportunity
cost of holding money that may better capture agents’ behavior in a hyperinfla-
tionary environment. Preliminary tests for that alternative measure as an omit-
ted variable in Table 4 do not reveal an improved specification, however. For in-
stance, for a variable X in levels, define ∇Xt as (Xt − Xt−1)/(Xt−1), which is
X’s percentage change, measured as a fraction. Omitted variables tests include
F (8, 109) = 1.23 [0.290] for {∇Pt−i; i = 0, . . . , 7}, F (24, 93) = 1.10 [0.363] for
{∇Pt−i, ∇Pmax

t−i , ∆∇P pos
t−i ; i = 0, . . . , 7}, and F (32, 85) = 1.01 [0.474] for {∇Pt−i,

∇Pmax
t−i , ∆∇P pos

t−i , ∇Et−i; i = 0, . . . , 7}. None of these tests reject at standard levels.
Still, Table 4 is a relatively unrestricted model, so further investigation is merited,
particularly because ∆pt differs substantially from ∇Pt at high inflation rates and
hence the interpretation of ∆pt may be affected.
Third, Kongsted (2005) develops a procedure for testing the nominal-to-real trans-

formation, which is only informally investigated herein for money by using the ADF
statistics. Fourth, in the VAR, the variables ∆pmax and ∆2ppos are transformations of
∆p, so further consideration of their joint distributional properties is desirable. Fifth,
data observations after 1993 may be informative. Even so, mechanistic extensions
of the existing data may not be sufficient, as when data definitions change, the ar-
ray of available assets alters, and underlying economic conditions shift; see Ericsson,
Hendry, and Prestwich (1998).
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