
 
 
 
 

Board of Governors of the Federal Reserve System 
 
 

International Finance Discussion Papers 
 

Number 962 
 

December 2008 
(revised: September 2009) 

 
 
 
 
 
 
 
 

Uncertainty over Models and Data: The Rise and Fall of American Inflation 
 
 
 
 

Seth Pruitt 
 
 
 
 
 
 
 
 
 
 

 
NOTE: International Finance Discussion Papers are preliminary materials circulated to stimulate 
discussion and critical comment. References in publications to International Finance Discussion 
Papers (other than an acknowledgement that the writer has had access to unpublished material) 
should be cleared with the author or authors. Recent IFDPs are available on the Web at 
www.federalreserve.gov/pubs/ifdp/ . This paper can be downloaded without charge from Social 
Science Research Network electronic library at www.ssrn.com 
 

http://www.federalreserve.gov/pubs/ifdp/�


Uncertainty over Models and Data: The Rise and Fall of American

Inflation∗

Seth Pruitt†

Federal Reserve
Board of Governors

September 2009

Abstract

An economic agent who is uncertain of her economic model learns, and this learning is sensi-
tive to the presence of data measurement error. I investigate this idea in an existing framework
that describes the Federal Reserve’s role in U.S. inflation. This framework successfully fits the
observed inflation to optimal policy, but fails to motivate the optimal policy by the perceived
Philips curve trade-off between inflation and unemployment. I modify the framework to account
for data uncertainty calibrated to the actual size of data revisions. The modified framework
ameliorates the existing problems by adding sluggishness to the Federal Reserve’s learning: the
key point is that data uncertainty is amplified by the nonlinearity induced by learning. Conse-
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the perceived Philips curve trade-off.
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1 Introduction

A great deal of research has gone towards identifying the causes of the large swings in inflation in

the United States between 1970 and 1985. One strand of literature advances the view that evolving

government behavior had an important role in these events. Clarida, Gali, and Gertler (2000) and

Boivin (2006), among others, provides evidence of time-varying U.S. monetary policy responses

over different parts of the postwar era. Romer and Romer (1990) and Owyang and Ramey (2004)

suggest that the changing response might be explained by changing Federal Reserve objectives.

Alternatively, Sargent (1999) suggests that evolving Federal Reserve beliefs about the economic

environment can explain the rise and fall of inflation.1

This last explanation relies on the idea that agents learn about their economic environment, as

advocated by Evans and Honkapohja (2001). In such a framework, agents’ prediction errors update

their beliefs, represented as the parameters to their own economic model. These prediction errors

are based on the data actually observed, which may contain measurement error. The point of this

paper is that agents’ data uncertainty, engendered by measurement errors, affects the evolution

of their beliefs. Similar to Brainard (1967), we see that this uncertainty tempers policy-makers’

behavior: their learning is made more sluggish by data uncertainty.

To investigate the importance of this observation in practice, I modify the framework in Sar-

gent, Williams, and Zha (2006) that itself extends Sargent (1999). The Federal Reserve optimally

controls inflation in light of constant unemployment and inflation targets, but is unconvinced that

its economic model is correct and hence changes its beliefs in response to new data. Thus the great

American inflation is explained as optimal policy given changing estimates of the Federal Reserve’s

economic model, the Philips curve. However, those existing results suffer from three key problems.

One, the Federal Reserve’s unemployment rate forecasts, the basis for setting inflation, are very

inaccurate, much more so than the Greenbook forecasts they should mimic. Second, the amount

of estimated model uncertainty is very large, which undermines the plausibility that the Federal

Reserve believed in its estimated Philips curve enough to use it as the basis for policy. Third, the

framework explains the rise in inflation between 1973 and 1975, but does not give a good reason for

the drastic fall in inflation between 1980 and 1984. The recent Carboni and Ellison (forthcoming)
1Orphanides and Williams (2006) and Sims (2006) also argue that policy is sensitive to model uncertainty, and

Nason and Smith (forthcoming) finds instability in the Philips curve relationship since the 1950s.
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modifies Sargent, Williams, and Zha’s (2006) optimal control problem to target actual Greenbook

forecasts, which successfully addresses the first two problems.2 However, an explanation for the

rise and fall of inflation remains missing. The results here address all three problems.

I modify the optimal control framework by assuming the Federal Reserve recognizes that data

may be measured with error, the size of which I calibrate to existing evidence. In line with this,

and following the general suggestion of Orphanides (2001), I differ from Sargent, Williams, and

Zha (2006) and Carboni and Ellison (forthcoming) by fitting the model to real-time data. Since

at least as far back as Zellner (1958) – who admonished readers to be “careful” with “provisional”

data – the reality of data uncertainty has been clearly recognized.3 What has been less clear is

the impact this data uncertainty may hold for the purposes of economic research, and this paper

suggests that data uncertainty can have a sizeable effect in frameworks where agents are learning.4

Data uncertainty introduces sluggishness into Federal Reserve’s learning process, and the ensuing

framework is able to avoid the aforementioned problems. The Federal Reserve’s model uncertainty

drop significantly and the framework predicts unemployment forecasts that resemble Greenbook

forecasts. Importantly, the results show a sharp drop in the perceived Philips trade-off between

1980 and 1984 that explains the concomitant fall of inflation.

The paper is organized as follows. Section 2 introduces the theory of the paper: Section 2.1

briefly analyzes the interaction of model uncertainty and data uncertainty, and Section 2.2 describes

and extends Sargent, Williams, and Zha’s (2006) framework. Section 3 presents the estimation

results both without- and including data uncertainty, and discusses how data uncertainty matters

to this exercise. Section 4 concludes.

2 Theory

I briefly discuss the meanings of the terms data uncertainty and model uncertainty, and explain

how they may be related. Then I introduce a basic optimal control framework following Sargent,

Williams, and Zha (2006) that is meant to describe Federal Reserve behavior during the 1970s-1980s.
2In contrast, this paper produces unemployment forecasts that are statistically indistinguishable from the Green-

book forecasts without using those Greenbook forecasts as data.
3In fact, data uncertainty was recognized by Burns and Mitchell, who revised their business cycle indicators as

data revisions came in, and considered many macroeconomic variables for that reason.
4Recent related work is in Aruoba (2004) who analyzes the welfare effects of more accurate data collection, and

Aruoba (2005) who analyzed the statistical features of data revision processes.
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Finally, I modify the framework to explicitly account for the Federal Reserve’s data uncertainty.

2.1 Why Data Uncertainty Matters

Generally speaking, the simple point made in this section is that the estimated size of modeled

random shocks is positively biased by other sources of variation that are unmodeled. Moreover,

the agent’s learning process is nonlinear in the latent variables (that is, latent parameters multiply

latent economic variables), which amplifies bias.

Suppose an agent forms a forecast of an economic quantity y. The agent’s model maps data

and parameters into this prediction. Model uncertainty is the situation where past predictions and

realized data might change the agent’s parameter vector going forward. Data uncertainty is the

situation where data is measured with error, maybe but not necessarily observed after the fact.

The main question here is, if the agent is uncertain both of the model and the data, what is the

impact of the researcher ignoring the agent’s data uncertainty?

The intuition is straightforward that when the agent’s forecast is correct there is nothing to

change about her beliefs (her model).5 When such is the case, the agent has nothing to learn

since her model’s performance cannot be improved. When the forecast error is nonzero, suppose

the agent has an incentive to evaluate her model and learn from the error. At this point, the

agent needs to understand why the forecast error is nonzero: to answer this, let us consider the

forecast error decomposition, which is the machinery that answers the question why. In the case of

linear forecasters, the forecast error decomposition is a function of the modeled errors’ variances.

To sketch out why the ignored data uncertainty biases up the researcher’s estimate of the agent’s

model uncertainty, we turn to a simple example.

Let ε be a normal error associated with the agent-predicted parameter vector b, ε be a normal

error associated with the agent-predicted data vector x, υ be a normal error, all errors be mean

zero, and each error be uncorrelated with the others.6 Suppose that the true data generating

process is y = (x+ε)′(b+ε)+υ. The agent knows this specification of the data generating process

and makes a linear forecast ŷ = x′b. Finally, the agent knows that Var (y − ŷ) is given by

σ2 + 2x′Px+ b′Qb+ c

5This naturally follows from usual assumptions: the agent has an economic loss function, the agent’s prediction is
rational with respect to that loss function, and the loss function is minimized when the prediction error is zero. See
Elliott, Komunjer, and Timmermann (2005) for more extensive discussion.

6That is E(εε′) = 0, etc.

3



where E(εε′) = P , E(εε′) = Q, and c > 0, and these three quantities are known to the agent.7

However the researcher ignores the agent’s data uncertainty, which means he assumes that

ε = 0. So the researcher decomposes the forecast error variance as σ̃2 + 2x′P̃ x. But

σ̃2 + x′P̃ x = σ2 + x′Px+ b′Qb+ c,

and it becomes clear that there will be a positive bias to his estimates due to the presence of the

ignored Q and c.

A function relating Var (y − ŷ) to σ,P , and Q requires some knowledge about how these quan-

tities are related. Writing the matrix
(
P 0
0 σ2

)
= δD, assume that the researcher knows the

true D (determining the correlation structure and relative proportions of the variances), but must

estimate the scalar δ (determining the scale of the variances). It is easy to see the researcher’s

estimate is related to the truth by

δ̃ = δ + b′Qb+ c.

This algebra is directly related to frameworks that specify that economic agents are learning,

and thus involve filtering. At each point in time the filter delivers conditional means (the data and

parameter predictions) and conditional covariance matrices (the errors’ covariance structure). The

forecast is a function of the means, and the forecast error is decomposed by a gain matrix that is a

function of the covariance matrices. Obviously, the gain matrix can only decompose the observed

forecast error to sources that are modeled, and so those sources are inferred to have taken on a

larger realization than they actually did.

The key idea is that this bias is a nonlinear function of the covariance matrix of the data

errors, and so amplification of small (in terms of variance) data uncertainty is possible. It is a

different matter to say whether or not this amplification happens in practice, and to investigate

that possibility we turn to the next section.

2.2 The Federal Reserve’s Optimal Control Problem

Why did inflation rise and fall so dramatically in the United States between 1973 and 1984?

Sargent, Williams, and Zha (2006) reverse engineer Federal Reserve Philips curve beliefs that

explain inflation as an optimal policy. The Federal Reserve’s model evolves because we assume
7The value c is the sum of expectations of fourth-order products of the elements of ε and ε. Kan’s (2008)

Proposition 1 ensures that this c is positive, as well as that expectation of the terms involving υ drop out.
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the Federal Reserve is learning about the Philips curve. In light of the previous section, it is

worth asking if the exclusion of data uncertainty significantly affects the framework’s predictions.

We will see in Section 3 that the answer to this question is, yes. But first we describe Sargent,

Williams, and Zha (2006) framework, and then modify it to explicitly account for Federal Reserve

data uncertainty.

The Federal Reserve has a dual mandate to keep both the unemployment rate and the inflation

rate at target. Directly following Sargent, Williams, and Zha (2006), the Federal Reserve’s objective

function is written

min
{xt−1+j}∞j=0

Et
∞∑
j=0

0.9936j
(

(πt+j − 2)2 + (ut+j − 1)2
)
. (2.1)

Setting the inflation and unemployment targets to Sargent, Williams, and Zha’s (2006) values

delivers the attractive message that the Federal Reserve has always tried to lower inflation and

unemployment while retaining the tractable quadratic objective function. The important message

of this equation is that the Federal Reserve has always had the same inflation and unemployment

targets.

To achieve this objective, the Federal Reserve controls the rate of inflation up to an exogenous

shock. Therefore the annualized inflation rate πt is

πt = xt−1 + ζ1ε1t (2.2)

where xt−1 is the part of inflation controllable by the Federal Reserve using information through

time t− 1, and ε1t ∼ iid(0, 1) is an exogenous shock.

In order to understand the relationship between inflation (which can be somewhat directly

controlled) and the unemployment rate (which cannot be directly controlled), the Federal Reserve

uses a Philips curve model. However, at any point in time the Federal Reserve is uncertain that

its estimated model is correct, and so is constantly learning and updating its model estimate.

We accomplish this by assuming the parameters follow a random walk, which introduces model
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uncertainty (and a motivation for learning) following the basic idea of Cooley and Prescott (1976):

ut = α′t−1



πt
πt−1

ut−1

πt−2

ut−2

1

+ ζ2ε2t ≡ α′t−1Φt + ζ2ε2t (2.3)

αt = αt−1 +Z−
1
2 ε3t (2.4)

Because the parameters follow a random walk whose steps are independent of everything else,

the Federal Reserve’s estimate of αt−1 is also its estimate of αt+j , ∀j ≥ 0; thus we solve the problem

for each period t using “anticipated utility”, following Sargent (1999) and Sargent, Williams, and

Zha (2006). Hence, the time t solution to the dynamic programming problem is found by using

the Philips curve estimate αt−1|t−1 as the law of motion for all j ≥ 0; the time t + 1 plugs in the

estimate αt|t; and so forth.

Without Data Uncertainty If we assume the Federal Reserve ignores data measurement

error, and therefore has no data uncertainty, then the Federal Reserve’s Philips curve estimates are

the solution to a linear filtering problem:8

at+1|t = at|t−1 +
P t|t−1Φt(ũt −Φ′tat|t−1)

ζ2
2 + Φ′tP t|t−1Φt

(2.5)

P t+1|t = P t|t−1 −
P t|t−1ΦtΦ′tP t|t−1

ζ2
2 + Φ′tP t|t−1Φt

+Z (2.6)

where (ε2t, ε′3t)
′ ∼ iid(0, I). The information actually available to the Federal Reserve at time t is

{ũt, ĩt, ũt−1, ĩt−1, . . .}, which are the available real-time data on inflation and unemployment rates

(cf. ?). When the Federal Reserve ignores measurement error, it assumes that the real-time data

are the true values of the economic variables; that is, ũt = ut and ĩt = it.

Including Data Uncertainty On the other hand, there is evidence that data, particularly

real-time, is subject to measurement error. Macroeconomic data get revised (cf. Croushore and

Stark (2001)), and data collection agencies document and publicly analyze collection errors. It is

reasonable to suppose a well-informed policy-maker, such as the Federal Reserve, associates some

uncertainty to the observed real-time data.
8Given initial conditions a1|0 and P 1|0.
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This modification makes latent both the true values of economic variables and the true values

of economic model parameters. Therefore the state-space will be nonlinear in the state variables

due to the Philips curve, where latent data multiply latent parameters. This nonlinearity in the

transition equation for the optimal control problem spreads also to the optimal policy rule equation

delivering the Federal Reserve’s inflation control variable xt−1 (which, due to the unpredictability

of ε1t, is also the forecast of πt). I choose to put both of these nonlinear equations in the state

equation and leave the observation equation linear.9 The interesting state equations are

πt = xt−1(αt−1, πt−1, ut−1, πt−2, ut−2) + ζ1ε1t (2.7)

ut = α′t−1Φt + ζ2ε2t (2.8)

αt = αt−1 +Z−
1
2 ε3t. (2.9)

(2.7), (2.8), and (2.9) repeat (2.2), (2.3), and (2.4), respectively, and xt−1 is written explicitly as

the optimal policy function depending on latent state variables.

Turning to the observation equations, we have

π̃t = πt + ζ4ε4t (2.10)

ũt = ut + ζ5ε5t. (2.11)

where
(
ε4t
ε5t

)
∼ iid

([
µ4

µ5

]
,

[
ζ2
4 0

0 ζ2
5

])
, a distribution that is calibrated to evidence presented

in Section 3.3.

3 Empirical Results

In this section we estimate the two frameworks described above. The results without data uncer-

tainty in Section 3.2 are similar to the Sargent, Williams, and Zha’s (2006) results. I describe three

problems that emerge from these results and propose to address them by modifying the model so

as to allow the Federal Reserve to explicitly account for data measurement error. Then Section 3.3

calibrates the amount of data uncertainty to existing evidence and presents estimated results that

ameliorates the three fore mentioned problems. The final section discusses how the problems were

ameliorated.
9One could rewrite the state space in other equivalent ways.
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3.1 Estimation

The Extended Kalman filter approximates the state space model using a Taylor-expansion about the

linear prediction of the state, as suggested by Anderson and Moore (1979) and following Tanizaki

(1996). I have found little difference in practice between the first-order and second-order expansions

and use the former to computational simplicity. In the interest of exposition, discussion of the

Extended Kalman filter and the likelihood is put in Appendix A.I.

The parameter estimated is

Ψ ≡
(
ζ−1
1 , ζ−1

2 , vech (Chol (Z))′ , vech
(
Chol

(
P 1|0

))′
,
)′

where Chol(·) is the Cholesky factor of positive definite matrix.10 Because of Ψ’s large dimension,

I follow Sargent, Williams, and Zha (2006) and use a Bayesian empirical method discussed in

Appendix A.III: a Markov-Chain Monte Carlo algorithm using the Metropolis-Hastings algorithm

with random walk proposals to draw from the posterior distribution11

p(Ψ|YT ) ∝ L(YT |Ψ)p(Ψ) (3.1)

where p(Ψ) is the prior and L(YT |Ψ) is the likelihood (in Appendix A.I). From the simulated

posterior distribution I report medians as my point estimates and quantiles as probability intervals

for the parameters. Following Sargent, Williams, and Zha (2006), a1|0 is set to a regression estimate

from presample data.

Here we must note a distinction between the framework with and without data uncertainty.

Without data uncertainty, the parameters ζ2,Z, and P 1|0 can be scaled together with no effect

on the likelihood – there is an unidentification problem. Sargent, Williams, and Zha (2006) note

this problem and overcome it by assuming that ζ2 is one-tenth the size of the standard deviation

of a structural equation for the unemployment rate that they additionally estimate.12 Because

this structural equation has nothing to do with the Federal Reserve’s belief-generating mechanism,

I refrain from specifying it at all, just as Carboni and Ellison (forthcoming) refrain during the

analysis of their third and fourth sections.
10I estimate the reciprocals of ζ1, ζ2 because it is easy to draw them as normals and avoid nonnegativity constraints.
11I must use a accept/reject simulation technique because, due to the effects of Ψ on the whole sequence of forecasts,

the form of (3.1) is not known. Further details are in Appendix A.III.
12This has the effect of lowering the estimated values for Z and P 1|0. We will see later that high values of Z imply

a difficult economic story (namely that the Federal Reserve’s model of the economy was extremely unstable), and so
to some extent the calibration of ζ2 to one-tenth (as opposed to, say, one-half or two times) is an assumption that
drives favorable results for Sargent, Williams, and Zha (2006).
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Table 1: Parameter Estimates, without Data Uncertainty

ζ1: 0.21 (0.20,0.22)
ζ2: 0.23 –

Z: standard deviations and correlations
0.2959 –0.9854 0.1539 0.8839 –0.1088 –0.2848

0.2796 –0.0762 –0.8792 0.1675 0.3918
0.1611 0.3821 0.8009 0.7949

0.1901 0.2922 –0.0387
0.3224 0.7471

5.0793

Notes: median of posterior distribution. ζ1 is the standard deviation of ε1t, the additive shock to the Federal
Reserve’s inflation control; ζ2 is the standard deviation of the additive shock in the Federal Reserve’s Philips curve,
and is imposed as the value estimated in the model including data uncertainty (Table 2). 95% probability intervals in
parentheses. The bottom array is comprised as follows: the main diagonal are the square roots of the main diagonal
of Z; the off-diagonal elements are the correlations derived from Z; Z is the covariance matrix of the ε3t shock to
the time-varying Philips curve parameters αt. The vector Φt = (πt, πt−1, ut−1, πt−2, ut−2, 1)′ multiplies αt.

Instead, we note that in the framework including data uncertainty ζ2 is separately identified

from Z and P 1|0. This identification follows from the fact that changes in Z and P 1|0 affect the

optimal control policy rule while changes in ζ2 have no such effect. The inflation equation (2.7) will

therefore respond differently to Z and P 1|0 than to ζ2, and therefore the likelihood will respond

differently, and thus Z and P 1|0 are separately identified. Of course, since the effect of P 1|0 dies

out rapidly, the evolution of beliefs is almost solely directed by the estimate of Z, which allows

for identification between P 1|0 and Z. Therefore, I impose that the value for ζ2 in the framework

without data uncertainty is equal to the estimate from the framework including data uncertainty.

Moreover, I place the estimates of P 1|0 in Appendix A.I because this parameter is far less important

to the story and point of the paper than are V , ζ1, and ζ2.

3.2 Without Data Uncertainty

Data on inflation and the civilian unemployment rate for ages 16 and older comes from the AL-

FRED, a real-time data archive established by the St. Louis Federal Reserve Bank. Table 1 displays

the estimates for the framework without data uncertainty as the posterior median of 700,000 MCMC

iterations from two separate runs of 400,000 with different initial conditions where the first 50,000

of each run is burned.13 The estimates in Table 1, and the following figures, are qualitatively similar
13Sargent, Williams, and Zha’s (2006) results come from a sequence of 50,000 draws with an unspecified burn-in

interval.
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Figure 1: Real-Time Inflation vs. Federal Reserve Control, without Data Uncer-
tainty

Notes: Real-time inflation and model predicted Federal Reserve inflation control. NBER recessions shaded.

to those of Sargent, Williams, and Zha (2006). However, they are not identical since I use real-time

data and calibrate ζ2 to a different value.

Figure 1 shows the predicted inflation control choices. Figure 1 shows the Federal Reserve

choosing to set inflation high in the two high-inflation episodes of the mid 1970s and early 1980s.

With ζ1 estimated at about 1
5 the Federal Reserve believes that it has rather tight control of

inflation.

The Philips curve beliefs at−1|t−1 are used to forecast the next month’s unemployment rate for

any inflation control setting. According to the model, the Federal Reserve sets inflation with this

forecast in mind. Therefore an important aspect of the model-predicted Federal Reserve beliefs

are what they deliver in terms of unemployment forecasts: these are plotted in Figure 2. These

forecasts have a bias of −2.13 percentage points and a root mean squared error of 2.71 percentage

points. Both the bias and the volatility are due to the estimated Philips curve parameters. A

volatile estimated evolution for the natural rate of unemployment, plotted in Figure 3, accounts

for the large fluctuations.14 Meanwhile, the bias is due to a persistent and large estimated Philips
14The natural rate at time t is the steady-state rate of unemployment with inflation set at target, defined

as
(
α

(6)

t−1|t−1 + 2[α
(1)

t−1|t−1 + α
(2)

t−1|t−1 + α
(4)

t−1|t−1]
)
/

(
1− α(3)

t−1|t−1 − α
(5)

t−1|t−1

)
, following Sargent, Williams, and Zha
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Figure 2: Real-time Unemployment vs. Federal Reserve Forecasts, without Data
Uncertainty

Notes: Step-ahead unemployment forecasts come from the Philips curve (2.3) using the Federal Reserve’s inflation
setting and real-time unemployment and inflation data. NBER recessions shaded.
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Figure 3: Natural Rate of Unemployment, without Data Uncertainty

Notes: Estimated natural rate of unemployment from the Philips curve (2.3) using the Federal Reserve’s inflation
setting and real-time unemployment and inflation data. NBER recessions shaded.

(2006) and Carboni and Ellison (forthcoming). The natural rate essentially follows the estimated constant parameter:
a plot of the constant parameter time series is available from the author upon request.
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curve trade-off, a point to which I return in Section 3.4.15

These unemployment rate forecasts should explain actual Federal Reserve unemployment rate

forecasts because this framework explains high inflation as Federal Reserve policy that attempts to

bring down unemployment. Therefore, it is informative to compare the predicted forecasts to actual

Greenbook forecasts over this time span.16 A simple test of similarity between these forecasts is

Diebold and Mariano’s (1995). Their statistic S1 is a two-sided test of the null hypothesis that the

predicted unemployment forecasts have accuracy equal to the Greenbook forecasts and S1 has an

asymptotic standard normal distribution. Here |Ŝ1| = 2.7834, so we can reject the null of equal

forecasting accuracy at the 99% level. This suggests that the predicted forecasts are unlike the

Greenbook forecasts they should mimic.

The large unemployment forecast errors drive up the estimated standard deviation of the time-

varying Philips curve. Notice that the estimated Z(6,6) implies that the Federal Reserve believes

that every month the constant parameter is very volatile. Since this parameter drives the natural

rate of unemployment, this result can be interpreted as saying the Federal Reserve believed there

was on any given month about a 30% chance that the natural rate of unemployment would jump by

5 percentage points!17 This is borne out in the volatility of the Federal Reserve’s estimated natural

rate of inflation plotted in Figure 3. In addition, the estimated natural rate of unemployment

shoots up to unreasonable values during the early 1970s as inflation rose, the Federal Reserve tried

to exploit a large perceived Philips trade-off, but unemployment continued to rise. In other words,

the Federal Reserve has several reasons to disbelieve this Philips curve model.

These results cast doubt on the economic story that the Federal Reserve’s Philips curve beliefs

motivated high inflation. The estimates imply the Federal Reserve perceived its Philips curve model

as unstable, and the model delivers implausible estimates of the natural rate of unemployment and

poor forecasts. Given the large estimate of Z and ζ2 and the poor forecasting performance, it

seems implausible that the Federal Reserve would have tried to exploit a Philips curve trade-off

by letting inflation achieve the heights it did. Moreover, even if the Federal Reserve did believe its

estimated Philips curve enough to use it as a basis for policy, we will see below that this framework’s
15See Figure 7.
16Appendix A.II discusses these forecasts and provides more details on the test statistic.
17The probability that a normal random variable is at least one standard deviation away from its mean is around

30%.
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estimated Philips curve trade-off does not explain inflation’s rise and fall.

3.3 Including Data Uncertainty

I propose to modify the framework by allowing the Federal Reserve to explicitly account for mea-

surement error in the data it observes, and argue that so doing is natural for two reasons. First

and most importantly, we have data on measurement errors. Much macroeconomic data is revised

and this issue is common knowledge in policy and forecasting discussions (e.g. Cunningham, Jef-

fery, Kapetanios, and Labhard (2007), Pesaran and Timmermann (2005). Secondly, Section 2.1’s

analysis suggested that unmodeled data uncertainty could increase the estimated volatility of an

agent’s beliefs, which apparently is a problem for the optimal control framework as it now stands.

I introduce data uncertainty through the measurement errors (ε4t, ε5t)′ in (2.10)-(2.11) whose

distribution I calibrate. To do this, I look at the revision between the first-reported value of the

data and the recent vintage (circa 2008). Making the assumption – ubiquitous in macroeconomics

– that the recent data vintage is more accurate than the real-time data, I define the measurement

error as the observed revision. These revisions’ statistical properties (c.f. Aruoba (2005) calibrate

the measurement error stochastic process:(
µ4

µ5

)
=
(

0.005
0

)
,

(
ζ2
4 0

0 ζ2
5

)
=
(

0.1062 0
0 0.1122

)
.

Obviously, the amount of data uncertainty is small.

Table 2 reports estimates for the framework including data uncertainty from the posterior me-

dian of 700,000 MCMC iterations from two separate runs of 400,000 with different initial conditions

where the first 50,000 of each run is burned. Figure 4 shows that the Federal Reserve’s inflation

control explains the rise and fall of American inflation. Once again the estimate of ζ1 implies the

Federal Reserve believes its inflation control is quite good. Turning now to the Federal Reserve’s

unemployment rate forecasts in Figure 5, we find a far different picture than in the framework

without data uncertainty. The Federal Reserve’s forecasts are considerably more accurate than

before, with insignificant bias and a RMSE of 0.30 percentage points.18

Again, seeing as the model forecasts are intended to predict the Federal Reserve’s actual fore-

casts, we can directly compare them to Greenbook unemployment rate forecasts. Again using

Diebold and Mariano’s (1995) test we find |Ŝ1| = 0.4858 and we accept the hypothesis that the
18The other measurement equation forecasts are pictured in Appendix A.III.
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Table 2: Parameter Estimates, including Data Uncertainty

ζ1: 0.22 (0.20,0.25)
ζ2: 0.23 (0.21,0.26)

Z: standard deviations and correlations
0.0106 0.9665 –0.9746 –0.8234 0.9520 –0.1226

0.0211 –0.9894 –0.9395 0.9541 0.0005
0.0566 0.8950 –0.9870 0.1251

0.0128 –0.8334 –0.2346
0.0475 –0.2685

0.2351

Notes: median of posterior distribution. ζ1 is the standard deviation of ε1t, the additive shock to the Federal Reserve’s
inflation control; ζ2 is the standard deviation of the additive shock in the Federal Reserve’s Philips curve. 95%
probability intervals in parentheses. The bottom array is comprised as follows: the main diagonal are the square roots
of the main diagonal of Z; the off-diagonal elements are the correlations derived from Z; Z is the covariance matrix
of the ε3t shock to the time-varying Philips curve parameters αt. The vector Φt = (πt, πt−1, ut−1, πt−2, ut−2, 1)′

multiplies αt.
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Figure 4: Real-time CPI Inflation vs. Federal Reserve Control, including Data
Uncertainty

Notes: Real-time CPI inflation and model predicted Federal Reserve inflation control. NBER recessions shaded.

model forecasts and Greenbook forecasts are equally accurate: by this measure the predicted un-

employment rate forecasts are statistically indistinguishable from actual Greenbook forecasts.

The estimate of Z in Table 2 is much smaller than before. For instance, the estimated Z(6,6)

implies that the Philips curve’s intercept has a monthly shock with a standard deviation of about 20
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Figure 5: Real-time Unemployment vs. Federal Reserve Forecast, including Data
Uncertainty

Notes: Step-ahead unemployment forecasts come from the Philips curve (2.3) using the Federal Reserve’s inflation
setting and real-time unemployment and inflation data. NBER recessions shaded.
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Figure 6: Natural Rate of Unemployment, including Data Uncertainty

Notes: Estimated natural rate of unemployment from the Philips curve (2.3) using the Federal Reserve’s inflation
setting and estimated values of past values of the unemployment and inflation rates. NBER recessions shaded.
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Figure 7: Evolution of the Philips Curve Trade-Off

Notes: Top panel: From framework without data uncertainty, sum of Philips curve inflation coefficient estimates.
Bottom panel: From framework including data uncertainty, sum of Philips curve inflation coefficient estimates.
NBER recessions are shaded.

unemployment rate basis points as opposed to the 500 basis points we saw before. Roughly speaking,

the shocks are smaller by a factor of 8 for inflation parameters, a factor of 5 for unemployment

parameters, and a factor of 20 for the constant parameter. Now the estimated natural rate of

unemployment, plotted in Figure 6, is much less volatile and does not shoot off to the ethereal

levels it attain before, although still it elevates implausibly high.

Let us turn now to the predicted evolution of the Federal Reserve’s beliefs about the Philips

curve trade-off, which is the sum of the coefficients on inflation in the Philips curve. As seen in the

top panel of Figure 7, the trade-off in the framework without data uncertainty experiences a large
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jump between 1973 and 1975 which explains the great rise in inflation over those years. Thereafter

the trade-off stays high, with no sharp activity around the disinflation of the early 1980s. But

this does not bear out the main story, which is that the evolution of the Philips curve trade-off

led to the rise and fall of inflation. In the framework without data uncertainty, the dramatic fall

of inflation from 14.4% to 2.2% between 1980 and 1984 occurs without any sharp change in the

Federal Reserve’s beliefs.19

On the other hand, consider the trade-off in the framework including data uncertainty, depicted

in the bottom panel of Figure 7. Here the we predict a drastic drop in the Philips curve trade-off

starting around 1980. As this perceived trade-off diminishes, inflation falls by than 80% off its

peak going into 1984.20 Thus, the framework including data uncertainty describes a consistent

connection between the Federal Reserve’s inflation control and the Federal Reserve’s beliefs about

the Philips curve trade-off.

3.4 Discussion

How can such a small amount of data uncertainty change the results? There are two parts to the

answer. Firstly, introducing measurement error into the learning framework creates a nonlinearity

(recall Section 2.1) that amplifies the modest amount of data uncertainty into a largely biased

estimate of model uncertainty. Secondly, the evident data uncertainty is actually a fair bit larger

than the Federal Reserve’s model uncertainty (particularly the variances of the parameters on

inflation and unemployment in the Philips curve) to begin with.

By ignoring the Federal Reserve’s data uncertainty, we overestimate the size of the shocks to

the Philips curve coefficients on inflation and unemployment. Therefore, these parameters shift

a lot from period to period in response to the large unemployment rate forecast errors; hence,

there are shifts in the optimal policy rule’s dependence on past inflation and unemployment. But

inflation over this period is rather persistent: so each period ceteris paribus the current optimal

policy should be somewhat near last period’s policy in order to fit the data. So the constant in

the Philips curve adjusts to offset the change in the policy rule engendered by the shifting Philips
19Sargent, Williams, and Zha’s (2006) and Carboni and Ellison’s (forthcoming) estimated trade-offs are similar to

each other but a little different from the one here. Theirs’ experiences the large jump between 1973 and 1975, but
no sharp fall between 1980 and 1984.

20One manner of seeing this is to compute the coherence between the Philips curve trade-off and inflation at low-
frequencies. This coherence is −0.75 for fluctuations with a period between 1 and 10 years. For the model without
uncertainty this coherence is −0.10.
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curve coefficients on inflation and unemployment.

These measurement errors work differently than do the shocks ε1t, ε2t appearing in the inflation

control and Philips curve equation: they make the values of past inflation and unemployment

latent. Therefore, their presence helps to explain forecast errors for several periods because past

(true) values of inflation and unemployment enter the forecast rule. Therefore the Federal Reserve

is more sluggish to change its Philips curve estimate on the basis of the observed forecast errors,

inferring that some of this forecast error may be due to measurement error in past values of inflation

and unemployment on which the forecast is based. The important characteristic of data uncertainty

is that these past economic variables remain latent to the agent for some time.

These results highlight two main points in favor of explicitly including data uncertainty in eco-

nomic frameworks that specify agents’ model uncertainty. Firstly, the nonlinearity of a framework

with learning amplifies small amounts of data uncertainty. By explicitly accounting for the data

uncertainty, we obtain an intuitive message that is similar to Brainard’s (1967) point that a policy-

maker’s model uncertainty leads to an optimal “dampening” of her policies: here the point is that a

policy-maker’s data uncertainty leads to an optimal “dampening” of her learning. As we have just

seen, an economic researcher may make substantially different inferences depending on whether or

not data uncertainty is accounted for, even if the amount of uncertainty they would ignore is small.

Second and perhaps more importantly, we are able to discipline this “dampening” with the

facts. We have evidence, one form of which are data revisions, to point to when discussing data

uncertainty and ascertaining how large it may be. The role of data uncertainty can be disciplined

by observables, and this makes it a potentially constructive part of learning frameworks. In fact,

this quality positively distinguishes the concept of data uncertainty from the concept of model

uncertainty, which has little if any such evidence to discipline its role.21

4 Conclusion

This paper analyzes the effects of data uncertainty in frameworks with agents who learn. Ignoring

data uncertainty can bias estimates of agents’ model uncertainty. I investigate the importance of

this point by extending the framework of Sargent, Williams, and Zha (2006) and showing that the
21This last point is disputable. Research on disagreement between policy-makers, and related evidence, may be

useful in this regard (c.f. Romer (2009)).
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explicit modeling of data uncertainty remedies some well-known issues with that paper’s results.

The mechanism by which data uncertainty matters is through introducing sluggishness into the

Federal Reserve’s learning. Once this is the case, the framework predicts that the inflation of the

1970s and 1980s can be explained by evolving beliefs about the Philips curve trade-off between

inflation and unemployment.
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A Appendix

Sargent, Williams, and Zha (2006).

A.I Extended Kalman Filter and Likelihood

Extended Kalman Filter We first discuss the state space model more generally, and then
relate this algebra to the notation used in the paper. Let E(βt|Ys) ≡ bt|s and Var (βt|Ys) ≡ Σt|s
for Ys ≡ σ(ys,ys−1, . . .). The expansion of (??) about (βt, εt) = (bt|t−1, 0) is exact:

ht(βt, εt) = Hbt|t−1 +H(βt − bt|t−1) + εt (A.1)

The expansion of (??) about (βt−1,ηt) = (bt−1|t−1, 0) is approximate:

gt(βt−1,ηt) ≈ gt|t−1 + T t|t−1(βt − bt−1|t−1) +Rt|t−1ηt (A.2)

where

gt|t−1 = gt(bt−1|t−1, 0)

T t|t−1 =
∂gt(βt−1,ηt)

∂β′t−1

∣∣∣∣
(bt−1|t−1,0)

Rt|t−1 =
∂gt(βt−1,ηt)

∂η′t

∣∣∣∣
(bt−1|t−1,0)

I motivate the derivation of optimal prediction and updating for the approximating system
(A.1) and (A.2) by assuming Gaussian shocks, as in Howrey (1978), Watson and Engle (1983), and
Harvey (1989).22 In this case, the relevant conditional expectations have the known forms given
below. In particular, I assume

ηt ∼ iidN (0,Q), εt ∼ iidN (0,N), ηt⊥ετ ,∀t, τ

The Extended Kalman Filtering equations are

bt|t−1 = gt|t−1

Σt|t−1 = T t|t−1Σt−1|t−1T
′
t|t−1 +Rt|t−1QR

′
t|t−1

yt|t−1 = Hbt|t−1

F t|t−1 = HΣt|t−1H
′ +N (A.3)

M t|t−1 = HΣt|t−1

Kt = M ′
t|t−1F

−1
t|t−1

Σt|t = Σt|t−1 −KtF t|t−1K
′
t

bt|t = bt|t−1 +Kt(yt − yt|t−1)

Conditional on the data YT , parameters {G,H,Q,N}, and initial conditions {b1|0,Σ1|0}, the
sequences of left hand side variables (A.3)-(A.4) are found by matrix multiplication.

22Technically, I must assume that the vector ηt appearing in (A.2) is Gaussian; assuming a Gaussian ηt for the
general nonlinear case (??) does not assure that the shock in the first-order expansion would be Gaussian.
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Table A.1: Remaining Parameter Estimates

framework without data uncertainty
P 1|0: standard deviations and correlations

0.3273 0.9875 0.9187 –0.9953 -0.6626 –0.9959
0.4412 0.9237 –0.9978 –0.6624 –0.9972

0.0748 –0.9182 –0.9134 –0.9191
0.7743 0.6545 0.9996

0.0424 0.6515
0.3111

framework including data uncertainty
P 1|0: standard deviations and correlations

1.573 –0.2426 –0.3637 –0.2986 –0.4698 0.3426
0.4379 –0.6326 –0.8529 0.6846 –0.1535

0.7839 0.8357 –0.5750 0.0095
0.4790 –0.4403 –0.0264

0.5759 -0.5757
0.2482

Notes: The arrays are comprised as follows: the main diagonal is the square roots of the main diagonal of P 1|0;
the off-diagonal elements are the correlations derived from P 1|0; P 1|0 is the Federal Reserve’s initial step-ahead
uncertainty over the initial Philips curve parameter estimate a1|0.

Referring back to the paper’s notation,

βt = (α′t−1, πt, ut, πt−1, ut−1)′

Σt = blkdiag(P t, ζ4, ζ5, ζ4, ζ5)
Q = blkdiag(V , ζ1, ζ2, 0, 0)
N = blkdiag(ζ4, ζ5)

Likelihood The likelihood is

L(YT |Ψ) =
T∏
t=1

∣∣F t|t−1

∣∣−1/2 exp
{
−1

2
(yt − yt|t−1)′F−1

t|t−1(yt − yt|t−1)
}

where the F t|t−1 come from (A.3).
The estimates of P 1|0 from both models are displayed in Table A.1.

A.II Greenbook Forecasts

The main issue with comparing the model predicted unemployment forecasts to Greenbook forecasts
is the difference in the frequency of observation. The model forecasts the monthly unemployment
rate one month into the future. The Greenbook forecasts quarterly unemployment rates and are
released without rigid frequency. For example, there are Greenbook forecasts published monthly
through the 1970s, but into the 1980s and 1990s these forecasts are published almost at a bimonthly
frequency. I take the following steps to make the comparison.

First, I form a quarterly unemployment rate series as the average of unemployment rate for the
three underlying months. It is against these series that the forecasts produce forecast errors.

Second, I form a quarterly model-forecast series as the average of the step-ahead forecasts for
the three underlying months. That is, the model’s quarterly unemployment forecast for quarter q
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composed of months m1,m2,m3 is

1
3

(um1|m1−1 + um2|m1
+ um3|m2

)

where uj|j−1 is the forecast made at time j − 1 pertaining to time j
Third, I form the quarterly Greenbook-forecast series as an average of all the forecasts made

the month before or anytime during a quarter. That is, the Greenbook quarterly forecast for q
composed of months m1,m2,m3 and immediately preceded by month m0 is

1
nobs

(gbm0 + gbm1 + gbm2 + gbm3)

where gbj is the Greenbook forecast for quarter q published in month j. It should be noted that all
four of these forecasts do not exist for every quarter, in which case only those observed are summed
and nobs adjusts to however many forecasts are observed.

The Diebold and Mariano (1995) statistic S1 takes forecast error series {eit} and {ejt}

S1 =
d√

2πf̂d(0)
T

where

d =
1
T

T∑
t=1

(eit − ejt)

and I take f̂d(0) to be Andrews (1991) quadratic-spectral HAC estimator. The errors under con-
sideration run from 1970 through 1995 so that T = 104.

A.III MCMC Implementation and Robustness

Priors The prior for Ψ is multivariate normal with a non-zero mean and a diagonal covariance
matrix – so equivalently, the priors for each parameter are independent normals. The exact speci-
fications are listed below where ϕ ≡

(
vech (Chol (Z))′ , vech

(
Chol

(
P 1|0

)))′ following the notation
of Sargent, Williams, and Zha (2006):

• ζ−1
1 , ζ−1

2 : N (5, 2)

• Chol(V ),Chol(P 1|0): Follows Sargent, Williams, and Zha (2006). For each element on the
diagonal of Chol (Z) or Chol

(
P 1|0

)
the prior is N

(
0, 52 × 0.5

)
; for those elements off the

diagonal, it is N
(
0, 2.52 × 0.5

)
Convergence of the MCMC To address the convergence of the MCMC algorithm to its

posterior distribution, I computed the number of iterations required to estimate the 0.025 quantile
with a precision of 0.02 and probability level of 0.950 using the method of Raftery and Lewis
(1992). For each chain (with different initial conditions) the max of these across Ψ was below the
3.5E5 iterations taken from each chain, suggesting that mixing the two chains (after burn-in) yields
satisfactory precision.
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Metropolis Algorithm An important part of the MCMC algorithm sampling from the pos-
terior in a reasonable number of iterations is the covariance matrix of the proposal random step in
the Metropolis algorithm. The Metropolis algorithm is

1. Given Ψprevious, propose a new value

Ψproposal = Ψprevious + ξ

where ξ is normal with mean zero and covariance matrix cΣξ

2. Compute

q = min

{
p
(
Ψproposal|YT

)
p
(
Ψprevious|YT

) , 1}

3. Randomly draw w ∼ U(0, 1)

4. If w ≤ q, accept Ψproposal as current draw; otherwise, set Ψprevious as the current draw

Given the manner in which all parameters affect the optimal policy, I arrived at this proposal
covariance matrix Σξ by doing the following. Using the covariance matrix for ϕ numerically solved
for as described in Sargent, Williams, and Zha (2006)’s Appendix D and the prior covariance terms
for all other elements of Ψ given above, the MCMC was started. For tens of thousands of iterations
based on one initial condition, I considered only elements of the MCMC chain where a proposal
had been accepted. From these chain elements I calculated the sample covariance matrix of the
successful proposal shocks and set Σξ equal to this. I tried different initial conditions and took
the weighted average of the Cholesky factors of these sample covariance matrices. The tuning
parameter c was adjusted to achieve an acceptance rate of around 25-35% during the first 20,000
iterations: after this, it was unadjusted, as continual chain-dependent adjustment of Metropolis
step-size can negate the ergodicity upon which MCMC methods are based (see Robert and Casella
(2004)).
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