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Abstract

Exchange rate movements are difficult to predict but there appear to be discernible

patterns in how currencies jointly appreciate or depreciate against the dollar. In this paper,

we study the dependence structure of a number of exchange rate pairs against the dollar. We

employ a conditional copula approach to recover the joint distributions for pairs of exchange

rates and study both the correlation and the upper and lower tail dependence of these

distributions. We analyze changes in dependence measures over time, and we investigate

whether these measures are affected by the business cycle or interest rate differentials. Our

results show that dependencies are indeed time-varying. We find that foreign and U.S.

recessions affect the joint dependence structure and that currencies with higher interest rate

differentials tend to move less closely together, not only on average (correlation), but also

when extreme events occur (tails).
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1 Introduction

The common view in the literature is that exchange rate movements are difficult, if not impossi-

ble, to predict. In this paper, instead of trying to explain exchange rate returns per se, we look

at the dependence structure between exchange rate pairs. In other words, we do not focus on

first moments, but we instead look at how exchange rates (co)move together. We investigate

whether there are asymmetries in the way currencies jointly appreciate and depreciate against

the U.S. dollar, and we analyze whether business cycles and interest rate differentials affect how

exchange rates dependence varies over time. The analysis of exchange rate dependence and its

potential asymmetry is important in many fields. First, large swings in exchange rates may

matter for the real economy and for inflation to the extent that movements in exchange rates

affect prices of imported goods and the competitiveness of the export industry. Information

about how the dollar jointly moves against foreign currencies can shed light on how U.S. com-

petitiveness and aggregate import prices would change in response. Knowing, for example, that

a severe appreciation of the dollar against the Canadian dollar is likely to occur jointly with

an appreciation of the dollar against the euro, gives important information on how much U.S.

import prices and the competitiveness of the United States against the euro-area will be affected

whenever there is a change in the competitiveness of the United States against Canada. Second,

central banks benefit from knowing how exchange rates move together, especially in the presence

of currency interventions, as central banks might attempt to achieve a certain level of appreci-

ation/depreciation against more than one foreign currency. Last but not least, exchange rate

correlation and tail dependence are essential in the valuation of derivatives such as multivariate

currency options, which are used to hedge against exposure to several currencies. The price of

these assets may be miscalculated if potential asymmetric dependence is not acknowledged (see

Salmon and Schleicher, 2006).

This paper analyses exchange rates co-movements looking at the dependence structure asso-

ciated with a bivariate distribution. We look at different measures of exchange rate dependence:

correlation and tail dependence. The drawback of a simple correlation coefficient is that, al-
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though it fully defines the dependence structure of a bivariate normal distribution, it fails to

fully describe the dependence structure for asymmetric distributions or for distributions with

fat tails. In fact, it seems that when looking at exchange rates it might be more interesting

to look at the two tails of the distribution allowing them to be asymmetric, with the idea that

exchange rates moves might be different during a joint appreciation or depreciation against the

U.S. dollar. Hence, we also look at lower and upper tail dependence. We study both constant

and time-varying dependence (correlation, upper and lower tail parameters).

Following Patton (2006b), we employ a conditional copula approach to recover the joint ex-

change rate distribution for pairs of exchange rates. Patton (2006b) examines the asymmetry

in the constant and dynamic dependence between the Deutsche mark and the Yen. We extend

his work by adding four other currencies to our study, and more importantly we add exogenous

variables, namely business cycles and interest rate differentials, to explain changes in the de-

pendence structure over time. We consider all the possible combinations of the following six

bilateral exchange rates all against the U.S. dollar (USD): Australian dollar (AUD), Canadian

dollar (CAD), Swiss franc (CHF), euro (EUR), British pound (GBP), and Japanese yen (YEN).

The sample spans the period January 2, 1980 to November 15, 2007. All the exchange rates

are quoted as foreign currency per USD so that if the exchange rate increases (decreases), the

foreign currency is depreciating (appreciating) against the USD. This means that when looking

at tails, the larger is the lower (upper) tail dependence parameter, the higher is the probability

that the USD jointly depreciates (appreciates) against two foreign currencies.

The results show that our dependence measures are not constant over time. Therefore,

within the time-varying framework, we investigate whether the changes in dependence over

time are explained by U.S. and international expansions and recessions, or by interest rate

differentials. We first look at foreign recessions and find that a recession in a country tends to

increase the dependence between currency pairs. Notable exceptions are Japanese recessions,

which tend to de-couple the yen from the other currencies. Subsequently, we find that U.S.

recessions never affect the time variation in the upper tail dependence between currency pairs,

but they sometimes do increase the lower tail dependence. In other words, if there is a recession
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in the United States, some currencies are more likely to experience a joint steep appreciation

against the dollar than during other periods. Finally, we find that at times currencies with higher

interest rate differentials tend to move less closely together, not only on average (correlation), but

also when extreme events occur (tails). In the ten-year rate models, the upper tail dependence

is more frequently affected significantly by the interest rate differentials than the lower tail.

The copula approach has been used extensively in the literature. Other work in this area

includes Dias and Embrechts (2003), who also look at the dynamic dependence between the

Deutsche mark and the Yen. They look at data at different frequencies (two, four, eight, twelve

hour and one day periods). They find that the dependence structure is not constant over time in

all these time aggregation frequencies. Jondeau and Rockinger (2006) use an exogenous variable

to explain changes in the dependence structure between stock markets over time. They find

that an increase in volatility in the U.S. stock market usually increases the correlation between

U.S. and a number of European stock markets. They also find that the dependency between

European stock markets increased significantly between 1980 and 1999, while it did not change

significantly between European and U.S. stock markets. Okimoto (2008) uses a copula approach

to analyze the presence of two regimes in the U.K. and U.S. stock markets: a high dependence

regime with low and volatile returns and a low dependence regime with high and stable returns.

Our choice of a copula in this paper limits our estimation of the dependence between the

currency pairs to joint appreciation against the dollar and joint depreciation against the dollar.

This does exclude the two other tails where one of the currencies is appreciating as the other is

depreciating against the dollar. The choice of this copula is due in part to results in a paper

by Breymann, Dias and Embrechts (2003), where they find that there is a clustering of extreme

returns in these two tails (joint appreciation tail and joint depreciation tail). We only look

at bivariate dependency structures. The Sklar (1959) theorem about copulas is not limited to

bivariate distributions, but in reality extensions to multivariate copulas is both computationally

and theoretically difficult. In addition, an extension to multivariate copulas generally means

loss of information about dependence structures. Just as the copula in this paper only gives the

dependence in two out of the four tails, any extension to a multivariate copula would only give
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a limited number of dependence estimates. Zimmer and Trivedi (2006) use trivariate copulas

to model family health care demand. They limit themselves to general correlations in the

joint distribution, which theoretically are three (for a -variate copula, (− 1)2 correlation
parameters exist), but their methodology only gives two dependence estimators, which is not

limiting in their framework.

The paper proceeds as follows. In section 2, we present the theoretical framework for the

copula model, both for a baseline normal copula and for a symmetrized Joe-Clayton copula. In

section 3, we discuss the data we use. Section 4 is about the marginal models for each of the

bilateral exchange rates, and tests for the validity of these models. In section 5, we present the

results for the estimations of the copula models. Section 6 concludes.

2 Theoretical Framework

In general, if you know two marginal distributions, you cannot derive the joint distribution.

However, when marginal distributions are continuous, a joint distribution can be recovered from

the marginal distributions with the use of a copula. According to Sklar’s (1959) theorem, the

copula enables the construction of bivariate (multivariate) densities that are consistent with the

univariate marginal densities. This allows for a separation of the specification of the dependence

structure and the univariate marginal distributions.

Let  be the joint distribution of  and  ,  the marginal distribution of  and 

the marginal distribution of  . Then

 ( ) = (()  ()) (1)

where  indicates the copula, i.e. the dependence structure that puts together the marginal

information contained in  and  . Similarly

( ) = () · () · (()  ()) (2)
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where  and  represent the marginal densities of  and  , respectively,  is the second-order

derivative of the copula w.r.t. the marginals, and  is the joint density of  and 

As derived in Patton (2006b), the conditional copula of ( )| can be obtained given just

the unconditional copula of ( ) and the marginal density of  , so that the conditional

copula becomes

 | ( |) = (| (|)  | (|)|) (3)

However, in order for  | to be the joint conditional distribution function and for Sklar’s

theorem to hold for the conditional copula, the conditioning variables included in  must be

the same for both marginal distributions and the copula . The only exception is if a part of

 = (12), say 1, only affects the conditional distribution of one variable but not the

other.

As shown in Patton (2006b) the density function to be used for maximum likelihood estima-

tion is easily obtained provided that | and  | are differentiable and  | and  are

twice differentiable:

 | ( |) ≡
2 | ( |)


=

| (|)


·  | (|)


·
2(| (|)  | (|)|)


(4)

 | ( |) ≡ | (|) ·  | (|) · ( |) ∀(  ) ∈ R×R×W (5)

so

L = L + L + L (6)

where  ≡ | (|) and  ≡  | (|), L ≡ log  | ( |) L ≡ log | (|)
L ≡ log  | (|) and L ≡ log ( |). This shows that we can evaluate each piece of the
likelihood separately. Estimates will be consistent, but could be inefficient. However, given our

very long data set this will not be an issue.
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Therefore, in our set up, what we need is a model for the marginal distributions of the various

exchange rate returns and a functional form for the copula. Following most of the exchange

rate literature, we model exchange rate returns using a − specification. It is important

that the marginal densities are well specified. The use of a mis-specified model for the marginal

distributions leads to probability integral transforms which will not be (0 1), and so

any copula model will automatically be mis-specified. More details on this are provided in

Section 4.

In terms of choice of the copula functions, we use two specifications: the Normal copula and

the symmetrized Joe-Clayton copula (SJC), both with constant and time-varying parameters.

The Normal copula will give us the correlation, the traditional dependency measure, while the

Joe-Clayton copula will give us the tail dependencies, which are the ones we are interested in

here. Breymann, Dias and Embrechts (2003) show there exist clustering of extreme returns in

the odd quadrants, so that positive (negative) returns for one currency tend to be associated

with positive (negative) returns for the other currency. These are the two quadrants that the

Joe-Clayton copula studies.

The Normal copula is

( |) =

Z Φ−1()

−∞

Z Φ−1()

−∞

1

2
p
(1− 2)

exp

½−(2 − 2+ 2

2(1− 2)

¾
 (7)

−1    1 (8)

where Φ−1 is the inverse of the standard normal c.d.f, while the symmetrized Joe-Clayton Copula

is

( |  ) = 05

⎛⎜⎝ ( |  )
+(1−  1− |  ) + +  − 1

⎞⎟⎠ (9)

where  is Joe Clayton copula. The  is a weighted average of the Joe Clayton copula
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and the survival Joe Clayton copula. The Joe Clayton copula is

( |  ) = 1− (1− {[1− (1− )]−

+[1− (1− )]− − 1}−1)1 (10)

 = 12(2−  ) (11)

 = −12() (12)

 ∈ (0 1)  ∈ (0 1) (13)

Parameters of interest in the study of exchange rates dependence are the correlation () in

the normal copula, and the upper tail dependence ( ) and the lower tail dependence () in

the symmetrized Joe-Clayton copula. It is well known how the normal distribution varies with

: with  = 0 the contours of the distribution look very much like concentric circles, and as

 increases the contours stretch out along the 45 degree line. The interpretation of  and

 is a little bit trickier.  and  govern the upper and the lower tails of the distribution,

respectively. When  = , the distribution is symmetric, as the panels on the main diagonal

of Figure 1 show. When   , the contours of the distribution become thinner in the upper

tail, meaning that if you get a realization for  ( ) in the upper tail, the probability of getting

a realization of  ( ) in the upper tail is high. Similarly, when   , the contours of the

distribution become thinner in the lower tail, meaning a higher probability of joint realization of

 and  in the lower tail. The off-diagonal panels in Figure 1 illustrate these concepts. In our

framework, when the difference between the upper and lower tail parameters is zero, the bivariate

distribution is symmetric; when the difference between the upper and lower tail parameters is

negative, there is a greater probability that the dollar will depreciate jointly versus two foreign

currencies. This can be seen as the contours get thinner in the lower tail. Vice-versa, when the

difference is positive, there is a greater probability that the dollar will appreciate jointly versus

two foreign currencies.

The ,  , and  parameters in equations 8 and 13 are fixed across time. However, they can
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be made time varying. Here we consider the following evolution equations for the dependence

parameters:

 = eΛ
⎛⎝ + −1 + 

1

20

20X
=1

Φ−1(−)Φ−1(−)

⎞⎠ (14)

eΛ() =
¡
1− −

¢ ¡
1 + −

¢
= tanh(2)

 = Λ

⎛⎝ + 

−1 + 

1

20

20X
=1

|− − − |
⎞⎠ (15)

 = Λ

⎛⎝ + 

−1 + 

1

20

20X
=1

|− − − |
⎞⎠ (16)

Λ() =
¡
1 + −

¢−1


Equations (14) and (16) imply that the dependence parameters follow a kind of an ARMA(1,20)

process. The AR regressor is present to capture the persistence in the dependence or the tail

dependence of the parameter. We also include a mean-reverting forcing variable in the tail

dependence evolution equations, and for compatibility the last term in the evolution equation

for the correlation will capture variations in the dependence over the last twenty days. To keep

 within (−1 1), and  and  within the (0 1) bounds, the ARMA equations are transformed
with eΛ in the normal case and Λ in the symmetrized Joe-Clayton case.1
3 Data

The data set is composed of daily returns of the six main bilateral exchange rates against

the U.S. dollar: Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), euro

1For robustness we tested different lag structure for the forcing parameter which did not alter the main results.

We tested 10 and 40 lags.
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(EUR), British pound (GBP), and Japanese yen (YEN). It spans the period January 2, 1980

to November 15, 2007. All the exchange rates are quoted as foreign currency per USD so that

if the exchange rate increases (decreases), the foreign currency is depreciating (appreciating)

against the USD. We construct the euro returns series by concatenating Deutsche Mark (DM)

returns before January 1, 1999 and euro returns from 1999 onward. We delete dates for which

at least one of the markets was closed, and January 4, 1999, because there is no observation for

the EUR return series due to the switch from DM to EUR. We also delete dates for which the

absolute return of one of the series was greater than 5 percent: AUD returns are greater than 5

percent on three dates: March 3, 1983; February 19, 1985; and February 21, 1985. YEN returns

are greater than 5 percent on October 7, 1998.2

Table 1 depicts the summary statistics for the returns series of the six bilateral exchange rates

analyzed in the paper. Mean and median are always approximately zero, while the standard

deviation ranges from 36 for the Canadian dollar to 76 for the Swiss franc. CHF , EUR and

YEN exhibit negative skewness, AUD and CAD reveal positive skewness, and GBP displays

small but positive skewness. All series exhibit excess kurtosis, and the Jarque-Bera test of

normality of the unconditional distribution rejects unconditional normality for all series at the

1 percent level. Figure 2 displays the exchange rate returns series. The Canadian dollar is less

volatile than the other series, especially in the first part of the sample.

Unconditional pairwise correlation coefficients, as shown in Table 2, range from 0.11 to 0.93.

The lowest and highest correlations characterize the pairs Yen - Canadian dollar and Swiss franc

- euro, respectively. A higher degree of unconditional linear correlation is exhibited between

2The March 8, 1983 big move in the Australian dollar follows the March 5 (Saturday) Australian leg-

islative election, when the ALP, with Bob Hawke as leader, wins with one of the biggest parliamen-

tary majorities in Australian political history (http://en.wikipedia.org/wiki/1983_in_Australia). February

19 and 21, 1985 is the so called “Australian Defense Crisis” when the Prime Minister withdraws from

a firm commitment for Australia to help the United States in monitoring intercontinental ballistic missile

tests (http://www.unisa.edu.au/hawkecentre/library/anniversary/1985.asp). On December 9, 1983 (Tuesday),

the Australian Dollar is floated, by Federal treasurer Paul Keating. Under the old flexible peg system,

the Reserve Bank bought and sold all Australian dollars and cleared the market at the end of the day

(http://en.wikipedia.org/wiki/1983). Although there was no big exchange rate change on that date, we in-

troduce a dummy in the conditional mean and variance (equal to 1 until December 8, 1983 and 0 afterward) to

catch this regime shift.

We are also deleting 9/14/81, 10/8/82, 2/13/91,11/19/92, which are dates for which Swedisk krona absolute

returns were greater than 5 percent. The krona was used in an earlier version of the paper.
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the European currencies than between the other currency pairs.

The data set also includes business cycle dummies, see Table 3, which are equal to 1 during

expansions (from trough to peak) and zero otherwise.3 These dummies will be used to asses

whether and how pairwise dependence between currency pairs is affected by business cycles.

In order to look at the effects of interest rate differentials on the dependence structures over

time, we collect three-month Libor rates and ten-year sovereign bond yields. Based on data

availability, the biggest common sample we use with interest rate data spans the period October

24, 1994 to November 15, 2007.

We use a dummy, equal to 1 from the beginning of 1999, for the Canadian and the Australian

dollars. Although there is no major event, we observed an increased volatility of the returns,

especially in Canada, in the second part of the sample, and we therefore try to correct for such a

change by including a dummy in the marginal estimation. A dummy is also included to account

for the switch from Deutsche mark to euro.

4 Models for the marginal distributions

We model the marginal distributions of the exchange rates using a (),  − ( )

specification:


 =  + 1


−1 + 


− +  (17)

2 =  + 2−1 + 2−1 (18)s


2

( − 2)

·  ∼  


(19)

where  =     are the exchange rate returns,−1 
−

are lagged returns, and  is the degrees of freedom parameter.

The model for the conditional copula requires the conditioning information set to be the same

3Source: NBER for U.S. business cyle dates, and ECRI for international business cycle dates.
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in both marginal models employed in the copula and in the copula itself, hence any variable

that we want to include in the copula models has to be included in the marginals as well (unless

these variables turn out to be not significant statistically in the marginals). Because of this, we

have five sets of marginal models to be estimated:

(a) marginal distributions with no other explanatory variables other than lagged endogenous

variables (“Plain” model),

(b) marginal distributions with lagged endogenous variables and foreign dummy recessions

(“Foreign recession” model),

(c) marginal distributions with lagged endogenous variables and U.S. dummy recession (“US

recession” model),

(d) marginal distributions with lagged endogenous variables and three-month interest rate

data (“Three-month rates” model),

(e) marginal distributions with lagged endogenous variables and ten year interest rate data

(“Ten-year rates” model).

Within each model, we actually have 15 marginal distributions to be estimated (all the

possible currency pair combinations). Each marginal distribution for the same exchange rate

might differ across models (a) through (e) due to the fact that different explanatory variables

are used in each one of these models.

So for example, for model (a), the “plain” model, we start by estimating marginal distrib-

utions where exchange rate returns are regressed only on their own lagged values in the mean

equation. We choose the best specification according to SIC, AIC, residuals and squared resid-

uals tests. Table 4 reports parameter estimates and standard errors for the best specifications.

The selected marginal models are: (1 2 3 4)  − (2 1), with inclusion of the regime

dummy both in the mean and in the variance equations, for the Australian dollar; (1 4)

 −(2 1), with dummy in mean and variance equations, for the Canadian dollar; (4)

−(1 1) for the Swiss franc; (1 4) −(1 1), with dummy in the mean equation,
for the euro; (1) −(1 1) for sterling; (9 11) −(1 1) for the Japanese yen.4

4To conserve space we do not report the estimates of all the specifications considered in the horse-race, but
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However, as already pointed out, the model for the conditional copula requires the conditioning

information set to be the same for both marginal models employed in the copula. We need

therefore under model (a) to test for the significance of lags of other exchange rate returns both

in the mean and in the variance equations.5 Some other lagged exchange rate returns turn out

to be significant in the mean equation, and therefore those need to be included in the model

specification to obtain the marginal distributions that we can use to retrieve the copula. In

contrast, no lags of other exchange rate returns are significant in the variance equations. We

therefore update the marginal distribution with cross exchange rate lags.

Similar steps are taken to estimate the marginal distributions for models (b)-(e). To conserve

space we do not report these results. A few remarks, however, are in order. In model (b), when

looking at currency pairs of the type foreign-currency-1/USD and foreign-currency-2/USD, we

need to include recession cycles for both country 1 and country 2. That means, we include in

the marginal regression for each exchange rate both its own country’s recession dummy, and also

country 2’s recession dummy.6 In model (c), the U.S. dummy variables are not significant, and

therefore the marginals are identical to the marginals in the plain model. Interest rate models

(d) and (e) include three-month and ten-year interest rate differentials (country 1’s rate minus

country 2’s rate) in the marginal distributions.7

4.1 Testing the Marginal Models

It is very important that the models for the marginal distributions are indistinguishable from the

true marginal distributions. Mis-specified models for the marginal distributions will result in mis-

specified copula models. The probability integral transforms of the residuals from the marginal

they are available upon request from the authors.
5Following Patton (2005), each mean equation test is performed by regressing the residuals of the marginal

models presented in table 4 on the autoregressive lags that are significant in the other marginal models, that is,

 is regressed on 

−1  


− for  6= , and by testing that all coefficients are zero. We use a 005 significance

level to discriminate between plausible and questionable models.

The test for the variance equations is performed by regressing the standardized squared residuals of one exchange

rate on the lagged squared residuals of the other exchange rates, and by testing that all the coefficients are zero.
6Or better, the part of recession dummy 2 which is orthogonal to recession dummy 1, given the high correlation

among recessions
7 In the copula, for ease of interpretation, we will use the absolute difference.
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models   =  and   , have to be  (0 1)

We employ simple tests of  (0 1) such as the Kolmogorov-Smirnov test and the

Cramer-von Mises test. We also test formally for the independence of the first four moments of

the transformed series by regressing ( − )
 on 40 lags of ( − )

 where  = 1 2 3 4 and

 =AUD, CAD, CHF, EUR, GBP and Yen. In addition, similar to what Diebold, Gunther and

Tay (1998) recommended, we use graphical methods to supplement these more formal tests (see

Appendix 2). Table 5 shows the test for model (a), the “plain” model.8 The null hypothesis

that the marginal models are correctly specified can almost never be rejected. The p-values for

the LM test and the Kolmogorov-Smirnov test are always equal to or greater than ten percent,

while the Cramer-von Mises test is rejected at the five percent level for the yen. Since the LM

test is not rejected for the yen we continue our analysis without changing the marginal model

further.

We also tested formally for the independence of the first four moments of the transformed

series by regressing ( − )
 on 40 lags of itself and one other currency ( − )

 where

 = 1 2 3 4 and  =  and   . This is a bivariate version of

the LM test. For the plain models, only 6 out of the 120 p-values are below the five percent

critical value, with no apparent pattern to which currencies are involved.9

5 Models for the copula

Maximum likelihood is used to estimate the bivariate normal copula models and the bivariate

symmetrized Joe-Clayton models. This procedure, which separates the estimation of the mar-

ginals from the estimation of the copulas, was proposed by Patton (2006b) and is appropriate

for large samples. For each copula model, 14 pairs are estimated.10 Under standard conditions

the estimates obtained are consistent and asymptotically normal.

8The same steps were taken to test all the marginal models and those results are available up on request.
9 1st moment EUR on CAD and YEN on EUR. 2nd moment CAD on YEN and YEN on GBP. 3rd moment

GBP on AUD. 4th moment CAD on YEN
10We estimated 15 copula models from the six exchange rates, which made 15 different pairs. Due to very high

collinearity we had to discard the estimates for the Swiss franc (CHF) - euro pair, so from here on we only report

estimates from 14 pairs of copulas.
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5.1 Exchange Rates Dependence — “Plain Models”

We start by estimating the copulas using probability integral transforms of the residuals from

the “plain” models, which only included lagged endogenous explanatory variables. In line with

the marginal models, the resulting copulas will be referred to as the plain normal copula and

the plain SJC-copula.

Constant Copula Results

The estimates for the plain constant normal copula and the plain constant SJC-copula (equa-

tions 7 and 9) are presented in Table 6. As would be expected, the estimates for  in the normal

copula are very close to linear pairwise correlations in Table 2.

We are, however, interested in knowing if estimating the tail dependence gives us any ad-

ditional information about the dependence structure over and above the simple linear pairwise

correlations. In seven of the fourteen copulas, the difference between the upper and lower tail

dependence is significant, confirming that the dependence structure is not symmetric. The SJC

copula is therefore picking up deviations from symmetry, which would be lost with the use of

either normal or Student’s t distribution assumptions. With no exogenous dependent variable

 is significantly greater than  in five instances, while it is significantly smaller only twice.

 greater than  means that the pairs are more likely to experience joint steep appreciation

against the dollar, rather than joint steep depreciation. If we turn that around, this result

suggests that the dollar takes the escalator down when it depreciates against foreign currencies

while it takes the stairs up when it appreciates against foreign currencies. It is interesting to

note that exceptions to this occurs in pairs that include the Japanese yen, where in two copu-

las  is significantly higher than . Michelis and Ning (2008), within a framework similar

to ours, also find asymmetric static and dynamic tail dependence between the Canadian stock

market and the US/Canada real exchange rate. This suggests that asymmetric dependence is

important non only in foreign exchange markets, but also across markets.

Time-Varying Copula Results

The results for the time-varying normal copulas (equation 14) are presented in the first three
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columns of Table 7. The parameter estimates are mostly significant at the five percent level.

As can be seen in the second column in Table 7,  is always significantly positive, meaning that

the time-varying normal copulas exhibit a positive autocorrelation for the correlation between

all of the currency pairs. , the third column, is positive everywhere but once, meaning that

high average variation in the dependency between currency movements in the last twenty trading

days implies high correlation between them in the current period. Figure 3 plots the conditional

correlation for the time-varying normal copula. It is apparent that the euro and the Swiss franc

move very closely over the period analyzed, substantiating our decision to disregard these pairs

in our estimation. It may also be worth exploring why the time-varying correlation between

the Canadian dollar and the other currencies, most notably euro and Swiss franc, seems to go

down in the early 90’s and then slowly up again.

Table 7 also exhibits the results for the estimations of the time-varying SJC copulas (equa-

tions 15 and 16). The tail dependence exhibits negative autocorrelation, that is  and  are

negative, indicating that extreme co-movements do not happen in clusters. The forcing para-

meters  and  are also negative. The time-varying lower tail dependence and the upper tail

dependence are presented in Figures 4 and 5. The tail dependence is varies greatly over time

for the currency pairs. This can be seen as the movements of the time-varying estimates are

very frequently well outside the 95 percent confidence interval around the constant estimates of

the dependency parameters.

5.2 Exchange Rates Dependence and Business Cycles

The outcome of the plain copula models affirms our hypothesis that fitting a symmetric bivariate

distribution to exchange rate co-movements would, in most cases, not be sufficient. Moreover,

it is also apparent that there is a lot of variation over time both in the correlation and in the tail

parameters. Hence, we go a step further here and add exogenous variables to the models, first

and foremost to see if these exogenous variables affect the time-varying dependence structures,

but also to see if their inclusion changes the outcome of the constant copulas. First we would

like to see if the business cycle influences the estimated dependence structures, and then we will
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look at the effects of interest rate differentials.

5.2.1 Business Cycles Results

We estimate the copulas using probability integral transforms of the residuals from i) foreign

recession marginal models and ii) U.S. recessions marginal models.

Foreign Recessions

Constant Copula

The result for the constant foreign recession SJC-copulas are presented in the upper half

of Table 8.11 There is a significant difference between the upper and lower tail dependence

in seven out of the 14 copulas, so conditioning on the business cycle in the marginal models

does not eliminate the asymmetry in the bivariate distributions. When conditioning on foreign

recessions the lower tail is significantly higher than the upper tail in five SJC-copulas, which is

very similar to the outcome in the constant plain SJC copulas. Exceptions to this include the

pairs Japanese yen - Swiss franc and Japanese yen - euro. Yen and Swiss franc are currencies

that are frequently mentioned as potential “carry trade” currencies.

Time-Varying Copula Results

The equations for the estimation of the time-varying copulas have to be modified slightly to

include the exogenous variables we are including in the marginals. For the time-varying foreign

recession normal copula, a term is added to include the dummies for recessions. The new time

evolution equation becomes:

 =
eΛ
⎛⎝ + −1 +

X
∈{1,2}

 + 
1

20

20X
=1

Φ−1(−)Φ−1(−)

⎞⎠ (20)

where  = {1 2} = {first country recession, second country recession}, and the dummy 

is 0 during a recession and 1 otherwise so that if   0 (  0) the correlation () is higher

(lower) during recessions in country .

11The results for the constant normal copula are very similar to before and are available upon request from the

authors.
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The modified equations for the time-varying foreign recession SJC copulas also include the

new parameters,  and , with the same interpretation as the new term in the time-varying

normal copula.

The results of the estimation of the time-varying foreign recession normal copula and the

time-varying foreign recession SJC copula are presented in the first six columns of Table 9. For

abbreviation, we only report outcomes for the exogenous recession parameters, that is  and

  

 for  = {1 2}.12 For the time-varying foreign recession normal copula (columns one and

two) the country recessions are often not significant: out of 28 parameter estimations, only 7 are

significant. However, there seems to be some pattern to this, as a recession in Japan seems to

lower the correlation between currency pairs (that is    0) and significantly so in four out

of five cases. More specifically, a recession in Japan lowers the correlation between the yen and

the Australian dollar, the Swiss franc, the Euro, and sterling. Any other significant parameter

has the opposite effect (see bold numbers in first column of Table 9), that is, a recession in

Australia increases the correlation between the Australian dollar and Swiss franc, a recession in

Canada increases the correlation between the Canadian dollar and sterling, and a recession in

Switzerland increases the correlation between the Swiss franc and sterling.

Similar patterns can be seen for the effect of foreign recessions on the lower and upper

tail dependence, although there are a few exceptions here. In most cases, when significant, a

recession in a country increases the lower and upper tail dependence between currency pairs

(that is   0), while notable exceptions are recessions in Japan. During a recession in

Japan, upper and lower tail dependence between the yen and the Canadian dollar, the yen and

the Euro, and the yen Sterling decline; the lower tail dependence also decreases between the yen

and the Australian dollar.

U.S. Recessions

Constant Copula

For the constant U.S. recession SJC-copulas (lower half of Table 8) the results are the same

12Full results are available from authors upon request.
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as for the constant plain SJC copulas, as the U.S. recession was not significant in any of the

marginals. Even though business cycles in the U.S. do not affect individual currency marginals,

we are still very interested in exploring if they affect the time-varying dependence structure

between the currencies.

Time-Varying Copula Results

The model definitions for the time-varying U.S. recession copula models are similar to those

for the foreign recession models. The time evolution equation for the normal copula, equation

(20), changes so that  = {1} = {US recession}. Similar changes are made to the time-varying
SJC copula. Only 7 out of 42 estimates are significant (see the last three columns in Table 9)

for the correlation, the upper and lower tail dependence. A recession in the U.S. increases the

correlation between the Canadian dollar and the Swiss franc, and also between the Swiss franc

and Sterling. These are the only two currency pairs where the U.S. business cycle affects the

time-varying Gaussian correlation. The U.S. business cycle never affects the time-varying upper

tail dependence between currency pairs, while interestingly it increases the lower tail dependence

(  0 significant at the 5 percent level) for 5 out of 14 currency pairs (AUD/GBP, CAD/GBP,

EUR/GBP, EUR/YEN and GBP/YEN).13 This means that if there is a recession in the US,

these currencies are more likely to experience a joint steep appreciation against the dollar, than

during other periods. This would mean that the dollar takes an even faster escalator down

when there is a recession in the U.S. than during other periods.

This result does indicate that the time-varying Gaussian correlation between currency pairs

is rarely affected by U.S. recessions. On the contrary, there seems to be some evidence that the

U.S. recession affects the lower tail of the bivariate distribution. This means that just looking

at the time-varying Gaussian correlation would potentially be misleading.

5.3 Exchange Rates Dependence and Interest Rate Differentials

It is widely recognized that interest rate differentials are not good predictors of nominal exchange

rate movement. This point was established first by Meese and Rogoff in a seminal paper

13This is significant for 5 out of 14 copula estimations, but it is negative for 13/14 copula estimates.
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in 1983 and has since been emphasized by numerous other papers. Some papers can find

some predictability for nominal exchange rate movement over a long horizon, such as Mark

(1995), who, however, did not use interest rate differentials as one of the explanatory variables.

Cheung et. al. (2005) even find that different structural models perform differently for different

currencies, but they do declare the interest rate parity model as the winner for long horizon

dollar-yen exchange rate predictions. Given this literature, we were interested in exploring

whether interest rate differentials affect even the short run changes in the dependence structure

between currency pairs. We estimate the copulas using probability integral transforms of

the residuals from i) three-month rate marginal models and ii) ten-year rate marginal models.

Many of the results presented above change when interest rate differentials are used as dependent

variables in the marginals and in the time varying copulas.

5.3.1 Three-month Interest Rates

Constant Copula

For the constant three-month rate SJC copulas, there is a significant difference between the

upper and lower tail dependence in only 4 out of the 14 copulas, as apposed to 7 or 8 before,

see Table 10. This does indicate that interest rate differentials explain some of the asymmetry

we have observed in the constant dependence structures above.

Time-Varying Copula Results

How interest rate differentials affect the evolution of the dependence between the currencies

is of more interest to us. The model definitions for the time-varying three-month rate copulas

are similar to those for the foreign recession model; see equation (20). We will now have

 = {1} = {absolute difference between three-month rates}, and we will estimate the parameters,
3  3  and 3 .

The results for the time-varying three-month rate normal copula and the time-varying three-

month rate SJC copula are presented in the first three columns of Table 11. The absolute

difference in the three-month Libor rates between the countries has a significant effect on the

correlation between the exchange rate movements in 9 out of 14 of the normal copulas; see
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column one. Six of these are negative (3  0), indicating that the higher the interest rate

differential between the countries, the less these currencies tend to co-move. All three exceptions

to this include the Australian dollar. For the upper and lower tail dependence, 10 out of the

24 estimates are significant (column 2 and 3). Of these ten, eight are negative (3  0 or

3  0), implying that higher interest rate differentials decreases the tail dependency between

the currency pairs. Again the exceptions to this include the Australian dollar.

5.3.2 Ten-year Interest Rates

Constant Copula

The results for the ten-year rates and the three-month rates are very similar for the constant

copulas: there is a significant difference between the upper and the lower tail in only 4 out of the

14 constant SJC copulas. These are exactly the currency pairs for which we get a significant

difference between upper and lower tails in the three-month rate model, that is CHF-CAD,

EUR-CAD, GBP-EUR and YEN-CHF.

Time-Varying Copula Results

The model definitions for the time-varying ten-year rate copulas are similar to those for the

three-month rate model above. We will now have  = {1} = {absolute difference between
ten-year rates} and we will estimate the parameters, 10  10  10 . The outcome of the

estimation is in columns four through six in Table 11. The absolute difference in the 10-year

bond yields between the countries has a significant effect on the correlation, as well as on upper

and lower tail dependence between the exchange rate movements in 16 out of 42 cases. All of

these estimates are negative, that is 10 , 10 , and 10  0 This means that currencies that

have a higher difference in long term interest rates tend to move less closely together, not only

on average but also when extreme events occur.

When the interest rate differentials affect the tail dependence, they also affect the correlation

in the same direction (see the AUD/YEN pair and the CAD/CHF pair). However, this does

not eliminate the importance of looking separately at the lower and upper tail dependence, as

the upper tail dependence is much more frequently significantly affected by the interest rate
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differentials than the lower tail (7 vs. 2 times). This means that as the long term interest rate

differentials increase there is a lower probability of joint extreme depreciations against the U.S.

dollar. Knowing about these kind of asymmetries can be especially important for any kind of

risk analysis, where extreme co-movements are more important than small normal day-to-day

co-fluctuations in the exchange rates.

6 Conclusions

In this paper, we studied the dependence structure of exchange rate pairs in the form of corre-

lation and tail dependence. The correlation gives information about how two currencies move

together “on average” across the distribution. However, the correlation imposes symmetry in

the way exchange rates co-move in the two tails of the distribution. With the view that this

might be too big of a restriction when analyzing exchange rates, and following Patton (2006b),

we studied the dependence/co-movement between exchange rate pairs also in the form of up-

per and lower tail dependence. Moreover, we analyzed the evolution of the correlation, upper

and lower tail dependence parameters over time, and investigated whether these parameters are

affected by business cycles and interest rate differentials.

Our results show that:

(i) In the constant copula models, the difference between the upper and the lower tail pa-

rameters tends to be negative (when significant) in the plain model and in the models with

recessions, except when the yen is involved. A negative difference between the upper and the

lower tail parameters means that the U.S. dollar is more likely to depreciate than appreciate

jointly against the other currencies.

(ii) In the time-varying models, the dependence parameters fluctuate heavily over time and

are well outside the 95 percent confidence bands of the constant estimates.

(iii) In the foreign recession model, in many cases when significant, a recession in a country

tends to increase the dependence (correlation, upper and lower tail) between currency pairs.

Notable exceptions are Japanese recessions, which tend to de-couple the yen from the other
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currencies.

(iv) The U.S. business cycle never affects the time variation in the upper tail dependence

between currency pairs, but it increases the lower tail dependence for 5 out of 14 currency pairs,

meaning that if there is a recession in the United States, some currencies are more likely to

experience a joint steep appreciation against the dollar than during other periods.

(v) When significant, the effects of a higher interest rate differential are almost always neg-

ative, meaning that currencies with higher interest rate differentials tend to move less closely

together, not only on average (correlation), but also when extreme events occur (tails). In the

ten-year rate models, the upper tail dependence is much more frequently affected significantly

by the interest rate differentials than the lower tail.

7 Appendix 1: Tail Dependence

If the limit

lim
→0

Pr[ ≤ | ≤ ] = lim
→0

Pr[ ≤ | ≤ ] = lim
→0

( )


= 

exists, then the copula  exhibits lower tail dependence if  ∈ (0 1] and no lower tail depen-
dence if  = 0 Similarly, if the limit

lim
→1

Pr[  |  ] = lim
→1

Pr[  |  ] = lim
→1

(1− 2 + ( ))

(1− )
= 

exists, then the copula  exhibits upper tail dependence if  ∈ (0 1] and no upper tail depen-
dence if  = 0

8 Appendix 2: Testing Marginal Distributions

Here we present graphical methods to test if the probability integral transforms are (0 1)

and i.i.d. Diebold, Gunther and Tay (1998) argue that if the more formal tests applied above

are rejected, then it is hard to know what prompted the rejection, a violation of i.i.d. or of un-
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conditional uniformity. For unconditional uniformity we will look at simple histograms of the

integral transforms, . While sample autocorrelation figures will be used to evaluate the i.i.d.

hypothesis. We look at the dependence structure in the conditional mean ( − ), conditional

variance (−)2, conditional skewness (−)3, and conditional kurtosis (−)4. In 6-8 we see
that the histogram for the euro is slightly non-uniform in the range from 0.6 to 0.7, and the Swiss

franc and the Australian dollar both have one bin noticeably outside the confidence interval.

Apart from this the distributions do not seem noticeably non-uniform. The correlograms do

not seem to find major flaws in the marginal models; we have slight problems in the variance

and the kurtosis, most notably in the euro and the Canadian dollar.

Finally we also test formally for the independence of the first four moments of the transformed

series by regressing ( − )
 on 40 lags of itself and one other currency ( − )

 where

 = 1 2 3 4and  =  and   . This is a bivariate version of

the LM test in section 4.1. Table 22 presents the p values for the LM test of the hypothesis

that the marginal models are correctly specified. The test rejects the null for the conditional

variance of the sterling, with respect to its own lags and the lags of the conditional variance

of the euro. The test also rejects the null for the conditional kurtosis of the Australian dollar

regressed on its own lags and the lags of the euro, sterling and yen. The other 56 p-values are

above the 5% critical value.
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9 Figures and Tables

Figure 1: The 25 panels show how the contours of the symmetrized Joe-Clayton copula change

with tau.
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Figure 2: Exchange rate returns for the six bilateral exchange rates analized in the paper. All

rates are against the U.S. dollar. The sample period is January 2, 1980 to Novemberr 15, 2007.
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Figure 3: Time path of the correlation for the normal copula
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Figure 4: Time path of the time-varying lower tail dependence in the symmetrised Joe-Clayton

copula
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Figure 5: Time path of the time-varying upper tail dependence in the symmetrised Joe-Clayton
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Figure 6: The two upper panels are histograms of  with 20 bins, with a 90% confidence interval

under the null hypothesis of (0 1). The bottom panels are the sample autocorrelations

for the conditional mean (1), conditional variance (2), conditional skewness (3), and conditional

kurtosis (4).
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Figure 7: The two upper panels are histograms of  with 20 bins, with a 90% confidence interval

under the null hypothesis of (0 1). The bottom panels are the sample autocorrelations

for the conditional mean (1), conditional variance (2), conditional skewness (3), and conditional

kurtosis (4).
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Figure 8: The two upper panels are histograms of  with 20 bins, with a 90% confidence interval

under the null hypothesis of (0 1). The bottom panels are the sample autocorrelations

for the conditional mean (1), conditional variance (2), conditional skewness (3), and conditional

kurtosis (4).
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Summary Statistics

AUD CAD CHF EUR GBP YEN

Mean 0.15 -0.27 -0.37 -0.28 0.15 -0.95

Median -1.74 0.00 1.66 1.22 0.00 0.68

Std. Dev. 63.81 36.12 75.86 69.11 64.58 70.28

Skewness 0.57 0.18 -0.19 -0.13 0.08 -0.41

Kurtosis 7.50 6.97 4.57 5.32 6.58 6.35

Jarque-Bera 5644.36∗ 4168.94∗ 681.97∗ 1435.15∗ 3370.82∗ 3127.21∗

Nobs 6301 6301 6301 6301 6301 6301

Table 1: The table shows summary statistics of the daily returns of AUD, CAD, CHF, EUR,

GBP, and YEN expressed in basis points. The EUR series is constructed by concatenating DM

returns and EUR returns. The sample period runs from January 2, 1980 to November 15, 2007,

yielding 6301 observations. The asterisk (*) indicates rejection of the null hypotesys at the 0.01

percent level.

Linear Pairwise Correlations

AUD CAD CHF EUR GBP YEN

AUD 1

CAD 0.33 1

CHF 0.25 0.21 1

EUR 0.28 0.22 0.93 1

GBP 0.29 0.22 0.70 0.73 1

YEN 0.20 0.11 0.56 0.54 0.43 1

Table 2: The table exhibits pairwise unconditional linear correlation for all the currency pairs

analyzed in the paper. The highest degree of correlation is displayed between the European

currencies, while the lowest correlation characterizes the CAD-CHF pair.
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International Business Cycle Dates

Australia Canada Switzerland Euro Area
United

Kingdom
Japan

United

States

Period
Peak

Trough

1979-1980



180

180

780

1981-1983



682

481

1182

981

1182 1082 581

781

1182

1984-1986


 583

1987-1991




690

1291
390 390 191 590

790

391

1992-1994


 392 993 494 392

492

294

1995-1996




1294

996

1997-1999




397

799

2000-2003




301

303

101

803

800

403

301

1101

2004-2007

Table 3: The table displays business cycle dates for all the six countries considered in the paper,

and for the United States, given that all bilateral exchange rates that we analyze are against

the U.S. dollar. Data are not available for the period 2004-2007.
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Results for the Marginal Distributions

AUD CAD CHF EUR GBP YEN

Conditional Mean

Constant −29688
(07615)

01671
(03384)

09025
(08500)

14453
(09262)

−08828
(06674)

12042
(07331)

Dummy 40958
(10477)

−16651
(09655)

−30710
(15350)

AR(1) 00344
(00130)

00303
(00132)

00128
(00127)

00117
(00124)

AR(2) −00216
(00123)

AR(3) −00233
(00120)

AR(4) −00207
(00118)

−00118
(00123)

00242
(00125)

00266
(00125)

AR(9) 00198
(00119)

AR(11) 00247
(00118)

Conditional Variance

Constant 723575
(164061)

57357
(16364)

689072
(182638)

557528
(132902)

316380
(83503)

658027
(163669)

Resid(-1)^2 01187
(00187)

01152
(00186)

00419
(00052)

00527
(00058)

00445
(00050)

00411
(00052)

Resid(-2)^2 −00657
(00190)

−00540
(00195)

Variance(-1) 09342
(00083)

09331
(00069)

09471
(00068)

09375
(00068)

09490
(00056)

09475
(00067)

Dummy −588002
(141808)

256272
(67459)

Degrees of freedom 49711
(03324)

63578
(04131)

72451
(06799)

65880
(05657)

62881
(05097)

47153
(03043)

Table 4: The table reports maximum likelihood estimates for the AR t-Garch models of the

marginal distributions. Only autoregressive lags that were selected in at least one specification

are reported. Standard errors are in parenthesis. AR(m) refers to the autoregressive lag of the

dependent variable; dummy indicates each country’s own dummy.
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Testing of the Marginal Distribution Models

AUD CAD CHF EUR GBP YEN

First moment LM test 0.382 0.422 0.692 0.266 0.861 0.704

Second moment LM test 0.171 0.379 0.663 0.569 0.122 0.158

Third moment LM test 0.119 0.614 0.765 0.134 0.972 0.554

Forth moment LM test 0.303 0.544 0.348 0.600 0.195 0.156

K-S test 0.258 0.589 0.844 0.468 0.734 0.100

Cramer-von Mises 0.100 0.411 0.756 0.086 0.481 0.034

Table 5: The table reports p-values from LM tests of serial independence of the first four

moments of the probabilitiy integral transforms of the residual terms of the marginal model.

More specificly, for each probability transforamtion of the residual term from the marginal model

for currencies ( where i=AUD, CAD, CHF, EUR, GBP and YEN), the test is preformed by

regressing ( − ̄)
 for n=1,2,3,4 onto forty lags of ∀i. For a p value less than 0.05 the null

hypotheses that the marginal model is well-specified is rejected. Here we also report the p-value

for Kolmogorov-Smirnov (KS) tests and the Cramer-vonMises tests for the uniform distribution

of the probability integral transforms of the residual terms.

Constant Normal Copula () and Constant SJC copula (  )- Plain

AUD  −  CAD  −  CHF  −  EUR  −  GBP  − 

CAD  0.3080

 0.1152

 0.1566 -0.0414

CHF  0.3079 0.2152

 0.1404 0.0801

 0.1537 -0.0133 0.0600 0.0201

EUR  0.3345 0.2311

 0.1527 0.0816

 0.1906 -0.0379 0.100 -0.0184

GBP  0.3417 0.2228 0.6861 0.7107

 0.1419 0.0542 0.4869 0.503

 0.194 -0.0521 0.0839 -0.0297 0.5150 -0.0281 0.5561 -0.0531

YEN  0.2683 0.1420 0.5725 0.5578 0.4372

 0.1199 0.0247 0.4218 0.3976 0.2633

 0.1271 -0.0072 0.0256 -0.0009 0.3358 0.0860 0.3388 0.0588 0.2539 0.0094

Table 6: The table shows the maximum likelihood estimates of the parameters of the constant

normal and constant symmetrised-Joe-Clayton copula. All the estimates are highly significant

at the 5 percent level. The italic numbers are the upper tail dependence minus the lower tail

dependence, and they are bold if the difference is significant at the 10 percent level.
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Time-varying normal copula and SJC copula - Plain

        

AUD/CAD 0.014 0.111 1.938 2.835 -17.509 -3.265 4.215 -21.039 -3.405

(0.007) (0.023) (0.043) (0.737) (2.729) (1.340) (0.592) (2.263) (0.671)

AUD/CHF 0.055 0.425 1.527 4.982 -26.266 -3.063 4.336 -22.461 -3.309

(0.031) (0.131) (0.226) (0.555) (2.426) (0.616) (0.505) (2.143) (0.546)

AUD/EUR 0.086 0.568 1.338 4.612 -24.529 -3.004 4.617 -22.501 -3.260

(0.037) (0.144) (0.246) (0.546) (2.476) (0.524) (0.399) (1.761) (0.382)

AUD/GBP 0.158 0.518 1.146 2.602 -17.478 -1.215 3.587 -18.927 -2.074

(0.077) (0.178) (0.396) (0.849) (3.187) (1.039) (0.965) (3.298) (1.073)

AUD/YEN 0.082 0.707 1.107 4.470 -24.627 -2.260 5.550 -28.999 -3.917

(0.043) (0.239) (0.396) (0.647) (2.630) (0.605) (0.406) (2.269) (0.216)

CAD/CHF 0.002 0.070 2.000 4.507 -25.334 -3.843 4.930 -28.199 -2.220

(0.001) (0.011) (0.012) (0.749) (3.547) (0.716) (1.041) (4.336) (1.090)

CAD/EUR 0.004 0.086 1.988 4.366 -23.996 -3.682 5.366 -28.730 -3.256

(0.002) (0.016) (0.019) (0.615) (2.746) (0.732) (0.832) (3.482) (0.886)

CAD/GBP 0.419 1.378 -1.240 4.039 -24.726 -4.091 5.232 -27.666 -2.956

(0.084) (0.211) (0.504) (0.957) (3.413) (1.356) (0.705) (2.396) (0.840)

CAD/YEN 0.003 0.068 1.961 6.844 -37.286 -4.469 4.542 -28.455 -2.857

(0.002) (0.015) (0.021) (0.968) (4.609) (0.249) (1.228) (5.278) (1.373)

CHF/GBP -0.088 0.326 2.307 1.812 -10.290 -0.304 1.752 -10.202 -0.005

(0.012) (0.021) (0.036) (0.008) (0.091) (0.014) (0.026) (0.040) (0.020)

CHF/YEN 0.046 0.410 1.864 -0.464 -4.417 2.438 2.241 -13.727 -0.680

(0.015) (0.044) (0.060) (0.289) (0.918) (0.300) (0.153) (1.229) (0.261)

EUR/GBP 0.075 0.502 1.951 1.124 -8.511 0.515 1.294 -8.840 0.614

(0.029) (0.043) (0.074) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000)

EUR/YEN 0.127 0.601 1.528 1.263 -9.564 0.653 1.523 -11.206 -0.016

(0.041) (0.075) (0.135) (0.332) (0.978) (0.383) (0.748) (2.370) (0.906)

GBP/YEN 0.232 0.857 0.855 2.913 -16.251 -1.364 4.406 -20.824 -3.477

(0.095) (0.175) (0.376) (0.715) (2.525) (0.827) (0.437) (2.030) (0.382)

Table 7: The table shows the maximum likelihood estimates of the parameters of the time-

varying normal and time-varying symmetrised-Joe-Clayton copula. The numbers in the paran-

thesis are the asymptotic standard errors. Bold numbers indicate values for which we cannot

reject the null hypothesis of a zero coefficient at the 5 percent level.
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Constant SJC copula - Foreign countries recessions and U.S. recessions

Foreign recession copulas

AUD  −  CAD  −  CHF  −  EUR  −  GBP  − 

CAD  0.1141

 0.1586 -0.0445

CHF  0.1395 0.0794

 0.1559 -0.0164 0.0608 0.0186

EUR  0.1527 0.0914

 0.1912 -0.0385 0.0761 0.0055

GBP  0.1419 0.0548 0.4878 0.5025

 0.1936 -0.0517 0.0836 -0.0288 0.5147 -0.0269 0.557 -0.0545

YEN  0.1211 0.026 0.4216 0.3973 0.2633

 0.1263 -0.0052 0.0246 0.0014 0.3363 0.0853 0.3391 0.0582 0.2539 0.0094

U.S. recession copulas

AUD  −  CAD  −  CHF  −  EUR  −  GBP  − 

CAD  0.1152

 0.1566 -0.0414

CHF  0.1404 0.0801

 0.1537 -0.0133 0.06 0.0201

EUR  0.1527 0.0816

 0.1906 -0.0379 0.1 -0.0184

GBP  0.1419 0.0542 0.4869 0.5030

 0.194 -0.0521 0.0839 -0.0297 0.515 -0.0281 0.5561 -0.0531

YEN  0.1199 0.0247 0.4218 0.3976 0.2633

 0.1271 -0.0072 0.0256 -0.0009 0.3358 0.086 0.3388 0.0588 0.2539 0.0094

Table 8: The table shows the maximum likelihood estimates of the parameters of the constant

normal and constant symmetrised-Joe-Clayton copula for the foreign recession model and the

U.S. recession model. All the estimates are highly significant at the 5 percent level. The italic

numbers are the upper tail dependence minus the lower tail dependence, and they are bold if

the difference is significant at the 10 percent level.
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Time-varying Normal and SJC Copulas - Foreign country Recession and U.S. Recession

Foreign recessions copulas U.S. recession copulas

1 2 1 1 2 2   
AUD/CAD -0.008 -0.009 3.446 -1.092 -0.524 -0.399 -0.018 -0.680 0.300

(0.012) (0.013) (2.720) (0.372) (0.483) (0.421) (0.010) (0.432) (0.456)

AUD/CHF -0.059 0.043 -0.807 1.190 0.704 0.351 -0.037 -0.377 -0.131

(0.029) (0.023) (0.424) (0.707) (0.373) (0.324) (0.028) (0.319) (0.308)

AUD/EUR -0.010 -0.012 -0.281 1.566 0.262 -0.337 -0.046 -0.134 -0.392

(0.040) (0.024) (0.350) (0.674) (0.266) (0.174) (0.032) (0.351) (0.328)

AUD/GBP 0.055 -0.070 -0.609 1.378 1.507 -0.817 -0.043 0.438 -0.617

(0.065) (0.055) (0.453) (0.489) (0.874) (0.289) (0.067) (0.358) (0.290)

AUD/YEN -0.023 0.117 0.156 -0.164 0.340 1.506 -0.059 0.310 -0.340

(0.061) (0.053) (0.327) (0.368) (0.341) (0.635) (0.051) (0.292) (0.340)

CAD/CHF -0.012 0.003 -1.292 -0.643 1.289 0.205 -0.017 -0.253 -0.327

(0.008) (0.003) (0.441) (0.414) (0.549) (0.417) (0.008) (0.398) (0.496)

CAD/EUR -0.009 -0.002 -0.590 -0.454 -0.276 0.321 -0.015 -0.396 -0.497

(0.007) (0.003) (0.530) (0.499) (0.378) (0.407) (0.009) (0.432) (0.391)

CAD/GBP -0.261 -0.024 0.572 -0.848 -0.961 0.524 -0.012 0.100 -0.851

(0.105) (0.117) (0.327) (0.376) (0.320) (0.450) (0.010) (0.724) (0.393)

CAD/YEN -0.007 0.004 -0.133 -0.651 10.139 9.883 -0.008 0.060 -1.084

(0.008) (0.004) (0.685) (1.287) (0.814) (1.205) (0.005) (0.713) (0.582)

CHF/GBP -0.049 -0.050 -0.058 -0.068 0.248 -0.550 -0.044 -0.207 -1.762

(0.020) (0.026) (0.000) (0.106) (0.014) (0.046) (0.000) (0.944) (0.998)

CHF/YEN 0.013 0.194 0.037 -0.045 0.126 0.927 0.037 0.082 -0.207

(0.025) (0.043) (0.054) (0.170) (0.128) (0.289) (0.023) (0.104) (0.171)

EUR/GBP -0.041 -0.052 -0.034 -0.285 -0.211 -0.094 -0.070 0.032 -0.092

(0.024) (0.030) (0.000) (0.029) (0.001) (0.001) (0.038) (0.066) (0.008)

EUR/YEN 0.005 0.243 -0.040 0.144 0.341 1.176 0.034 0.147 -0.470

(0.032) (0.053) (0.120) (0.208) (0.140) (0.286) (0.033) (0.113) (0.101)

GBP/YEN 0.097 0.254 0.579 -0.051 0.799 0.852 0.024 0.236 -0.662

(0.071) (0.079) (0.316) (0.198) (0.274) (0.399) (0.046) (0.270) (0.265)

Table 9: The table shows the maximum likelihood estimates of the parameters of the time-

varying normal and time-varying symmetrised-Joe-Clayton copula. The numbers in the paran-

thesis are the asymptotic standard errors. Bold numbers indicate values for which we cannot

reject the null hypothesis of a zero coefficient at the 5 percent level.
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Constant SJC copula -.Interest rate differentials

Three-month Libor rates

AUD  −  CAD  −  CHF  −  EUR  −  GBP  − 

CAD  0.1749

 0.1839 -0.009

CHF  0.1631 0.0746

 0.1408 0.0223 0.0025 0.0721

EUR  0.2027 0.0923

 0.2007 0.0020 0.0161 0.0762

GBP  0.1821 0.0435 0.4302 0.4374

 0.1554 0.0267 0.0178 0.0257 0.4417 -0.0115 0.4819 -0.0445

YEN  0.0796 0.0066 0.3077 0.2567 0.1481

 0.0828 -0.0032 0.0038 0.0028 0.2364 0.0713 0.2315 0.0252 0.1456 0.0025

Ten-year sovereign bond yields.

AUD  −  CAD  −  CHF  −  EUR  −  GBP  − 

CAD  0.1743

 0.1859 -0.0116

CHF  0.1588 0.0773

 0.1443 0.0145 0.0031 0.0742

EUR  0.2013 0.0935

 0.2088 -0.0061 0.0208 0.0715

GBP  0.1836 0.0442 0.4266 0.4348

 0.1623 0.0213 0.022 0.0222 0.4432 -0.0166 0.4834 -0.0486

YEN  0.075 0.0075 0.3085 0.257 0.1489

 0.0897 -0.0147 0.0046 0.0029 0.2344 0.0741 0.2291 0.0279 0.1462 0.0027

Table 10: The table shows the maximum likelihood estimates of the parameters of the constant

normal and constant symmetrised-Joe-Clayton copula for the interest rate differential models.

All the estimates are highly significant at the 5 percent level. The italic numbers are the upper

tail dependence minus the lower tail dependence, and they are bold if the difference is significant

at the 10 percent level.
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Time-varying normal copula and SJC copula - Interest rate differentials

Three-month rates Ten-year rates

3M 3M 3M 10Year 10Year 10Year
AUD/CAD 0.0002 0.0359 0.3343 0.0025 0.1844 0.0700

(0.00) (0.19) (0.19) (0.00) (0.32) (0.28)

AUD/CHF 0.2104 0.1826 0.6929 -0.0395 -0.3585 -0.5937

(0.06) (0.17) (0.29) (0.02) (0.17) (0.33)

AUD/EUR 0.0388 0.7851 0.1803 0.0012 0.3902 0.1137

(0.02) (0.22) (0.16) (0.02) (0.25) (0.25)

AUD/GBP -0.0245 0.0105 -0.3170 0.0470 0.0807 0.7315

(0.04) (0.19) (0.20) (0.04) (0.55) (0.45)

AUD/YEN -0.0459 0.0111 0.1865 -0.2225 -1.0992 -1.7767

(0.04) (0.27) (0.30) (0.08) (0.26) (0.37)

CAD/CHF 0.0007 -0.5669 -0.3260 -0.0093 -1.9948 -1.2926

(0.00) (0.37) (0.32) (0.00) (0.61) (0.61)

CAD/EUR -0.0037 -0.8782 -1.4389 -0.0106 -1.4511 -1.4078

(0.00) (0.36) (0.55) (0.003) (0.78) (0.73))

CAD/GBP -0.0016 0.0438 0.2129 -0.0116 -3.3229 -1.7687

(0.00) (0.31) (0.39) (0.01) (1.81) (1.43)

CAD/YEN -0.0024 -3.1590 -2.0598 -0.0016 -1.8091 -0.3270

(0.00) (1.04) (0.80) (0.00) (0.77) (0.84)

CHF/GBP -0.2483 -0.1139 0.0073 -0.0510 -0.0041 -0.0426

(0.05) (0.06) (0.01) (0.02) (0.01) (0.03)

CHF/YEN -0.0322 -0.3619 0.2992 -0.1282 -0.6657 -0.0176

(0.01) (0.16) (0.17) (0.04) (0.30) (0.42)

EUR/GBP -0.0770 -0.1396 0.0024 -0.0526 -0.0338 0.0017

(0.02) (0.03) (0.00) (0.00) (0.02) (0.004)

EUR/YEN -0.1093 -0.7591 0.3424 -0.0891 -0.7212 0.5248

(0.04) (0.31) (0.19) (0.04) (0.27) (0.30)

GBP/YEN -0.1017 -0.2876 -0.5888 -0.1286 -0.8483 -0.2238

(0.04) (0.16) (0.28) (0.07) (0.29) (0.39)

Table 11: The table shows the maximum likelihood estimates of the parameters of the time-

varying normal and time-varying symmetrised-Joe-Clayton copula. The numbers in the paran-

thesis are the asymptotic standard errors. Bold numbers indicate values for which we cannot

reject the null hypothesis of a zero coefficient at the 5 percent level. Bold numbers indicate

values for which we cannot reject the null hypothesis of a zero coefficient at the 10 percent level.
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