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Abstract: A common view in the literature is that the effect of energy price shocks on
macroeconomic aggregates is asymmetric in energy price increases and decreases. We show
that widely used asymmetric vector autoregressive models of the transmission of energy price
shocks are misspecified, resulting in inconsistent parameter estimates, and that the implied
impulse responses have been routinely computed incorrectly. As a result, the quantitative
importance of unanticipated energy price increases for the U.S. economy has been exaggerated.
In response to this problem, we develop alternative regression models and methods of
computing responses to energy price shocks that yield consistent estimates regardless of the
degree of asymmetry. We also introduce improved tests of the null hypothesis of symmetry in
the responses to energy price increases and decreases. An empirical study reveals little
evidence against the null hypothesis of symmetry in the responses to energy price shocks. Our
analysis also has direct implications for the theoretical literature on the transmission of energy
price shocks and for the debate about policy responses to energy price shocks.
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1. Introduction

A common view in the literature is that the effects of energy price shocks on macroeconomic
aggregates such as output or employment are asymmetric. In particular, energy price increases
are perceived to have larger effects than energy price decreases. This perception has been
bolstered by empirical evidence that energy price increases (obtained by censoring energy price
changes to exclude all energy price decreases) have seemingly large effects on the macro
economy, whereas uncensored percent changes in energy prices tend to have much smaller
effects. Vector autoregressive (VAR) models relating energy price increases to macroeconomic
aggregates in particular have shaped the discussion of the effects of energy price shocks in
recent decades. In this paper, we demonstrate that the regression models and estimation
methods typically used in that literature produce inconsistent estimates of the true effects of
unanticipated energy price increases and are likely to have exaggerated the impact of energy
price shocks. We show that fundamental changes are needed in how these effects are
estimated in practice. In addition to addressing the problem of how to estimate asymmetric
responses to energy price shocks, we develop improved tests of the null hypothesis of
symmetric responses to energy price increases and decreases. Our empirical evidence suggests
that there is no compelling evidence against the symmetry null. Our analysis also has direct
implications for the theoretical literature on the transmission of energy price shocks and for the

debate about policy responses to energy price shocks.

1.1. Review of the Literature

In the view of many economists, oil price shocks are perhaps the leading alternative to
monetary policy as the determinant of U.S. postwar recessions.' Increases in the price of oil
preceded the recessions of 1973-75, 1980-82, and 1990-91, for example. Given the striking
coincidence of deteriorating macroeconomic outcomes and rising oil prices in the 1970s and
early 1980s, it was natural at the time to suspect a strong link from oil price increases to
recessions. Nevertheless, as discussed in Bernanke, Gertler and Watson (1997), it has proved
surprisingly difficult to find an indicator of oil price shocks that produces the expected

responses of macroeconomic and policy variables in a VAR setting. Finding a measure of oil

! For an early exposition of this idea, see Hamilton (1983).
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price shocks that "works" in a VAR context in practice is not straightforward. Simple measures
of energy price shocks (such as linearly unpredictable changes in energy prices) in particular
sometimes imply “anomalous” effects on macroeconomic outcomes, relative to the
conventional wisdom about the effects of oil price shocks on the economy. They also tend to
have an unstable relationship with macroeconomic outcomes.’

Far from undermining the view that energy price shocks are important, these difficulties
have led researchers to employ increasingly complicated specifications of the "true"
relationship between oil prices and the economy. Today it is widely believed that the most
appropriate specification of oil price shocks involves some measure of oil price increases,
obtained by censoring oil price changes to exclude all oil price decreases. This consensus dates
back to the work of Mork (1989). After the sharp oil price declines of 1985-86 failed to lead to
an economic boom in oil importing economies, Mork (1989) pointed out that the effects of
positive and negative oil price shocks on the economy need not be symmetric. He provided
empirical evidence that positive changes in the real price of oil had far more important effects
on U.S. real GDP than negative changes. This was widely interpreted as evidence that only oil
price increases matter for the U.S. economy (see, e.g., Bernanke, Gertler and Watson 1997, p.
103). Given the a priori belief that oil price shocks have quantitatively important effects on
macroeconomic aggregates and given researchers’ inability to generate such responses from
linear and symmetric models, VAR models of macroeconomic aggregates and oil price increases
became accepted on the grounds that they produced “better looking” impulse responses
(Bernanke, Gertler and Watson 1997, p. 104).3

The initial proposal to focus only on oil price increases has subsequently been refined by

Hamilton (1996, 2003), who introduced the “net oil price increase”. This measure distinguishes

? Kilian (2008a) recently has discussed some of the reasons for the apparent instability of such regressions in small
samples and for the seemingly counterintuitive response estimates occasionally obtained from such regressions.
This finding reinforced results based on measures of oil supply disruptions such as the dummy variable

constructed by Hoover and Perez (1994) and the quantitative dummy variable of Hamilton (1996, 2003). It also
seemed consistent with evidence using an alternative VAR methodology provided in Davis and Haltiwanger (2001,
p. 509), who considered “the evidence for asymmetric responses to oil price ups and downs as well established”.
Related evidence was provided by Mork, Olsen and Mysen (1994), Ferderer (1996), Hooker (1996a,b; 2002),
Hamilton (1996, 2003), Raymond and Rich (1997), Huntington (1998), and Balke, Brown and Yicel (2002), among
others. For a critical perspective on this literature see Edelstein and Kilian (2007a,b).
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between oil price increases that establish new highs relative to recent experience and increases
that simply reverse recent decreases. Specifically, in the context of monthly data, Hamilton's
measure equals the maximum of (a) zero and (b) the difference between the log-level of the
crude oil price for the current month and the maximum value of the logged crude oil price
achieved in the previous 12 (or alternatively 36) months. Hooker (2002), for example, finds that

II'

the net increase measure performs “well”, in the sense of having a relatively stable relationship
with macroeconomic variables, and Hamilton (1996, 2003, 2009a) makes the case that this
measure predicts declines in U.S. real GDP.

The most influential use of the net increase measure has been not for one-step ahead
prediction from single-equation reduced form models, but in constructing estimates of the
response of the economy to energy price shocks based on VAR models. Many of these VAR
estimates have become accepted in academic and policy discussions of the transmission of
energy price shocks (see, e.g., Dotsey and Reid 1992; Davis and Haltiwanger 2002; Lee and Ni
2002; Jones, Leiby, and Paik 2004; Jiménez-Rodriguez and Sanchez 2005; Herrera 2008). The net
increase measure also plays a central role in VAR analyses of the role of monetary policy in

propagating energy price shocks (see, e.g., Bernanke, Gertler and Watson 1997, 2004; Hamilton

and Herrera 2004; Herrera and Pesavento 2007).4

1.2. Outline of the Paper

In this paper, we demonstrate that the estimation methods used in these VAR applications
generate inconsistent estimates of the true effects of unanticipated energy price increases. We
show, for example, that VAR models of the effects of energy price increases on macroeconomic
outcomes will overestimate the true response to energy price increases asymptotically, when
the underlying data generating process (DGP) is symmetric. Since one of the reasons that these
models were adopted was precisely their ability to generate larger responses to energy price
shocks than symmetric VAR models, our finding casts doubt on the results reported in this

literature and, indeed, on the empirical relevance of asymmetric VAR models. Our results apply

Similar econometric issues also arise in studying the transmission of crude oil price shocks to retail energy prices
(see, e.g., Borenstein, Cameron and Gilbert 1997; Bachmeier and Griffin 2003).



with equal force to measures of oil price increases and net oil price increases. More generally,
we show that asymptotic biases in the VAR response estimates may arise whether the
underlying DGP is linear and symmetric or not.

In section 2, we illustrate this point in the context of a stylized static model. We
establish the inconsistency of estimators of conventional asymmetric models analytically, and
we study the determinants of the asymptotic bias of the estimator by simulation. We show
that static censored regressor models will be consistent only in very special and theoretically
implausible cases. In section 3, we strengthen this result by showing that estimates of dynamic
censored VAR models of the type frequently employed in the literature are fundamentally
misspecified and produce inconsistent impulse response estimates regardless of the DGP. We
demonstrate that censored VAR models will distort the quantitative importance of energy price
increases asymptotically, even when energy price decreases have no effect on the economy.
The reason is that such asymmetric DGPs cannot be represented as censored VAR models. We
discuss how alternative, correctly specified asymmetric models may be constructed and
estimated consistently using restricted maximum likelihood estimators.

An important problem in practice is that we may not know whether the DGP is
symmetric or not, and whether energy price decreases should be included in the regression, if
the DGP is asymmetric. In section 4, we propose a regression model that can be estimated
consistently whether the true model is symmetric or not, regardless of the precise form of the
asymmetry. Moreover, this model may be estimated by standard methods such as unrestricted
least squares.

In section 5, we show that in addition to the misspecification of the censored VAR
models used in the literature and the resulting inconsistency of the parameter estimates, the
dynamic responses of macroeconomic aggregates to unanticipated energy price increases have
routinely been computed incorrectly in a way that further exaggerates the quantitative
importance of these shocks. We adapt existing methods of constructing nonlinear impulse
responses to the structural model proposed in section 4 and demonstrate how asymmetric
impulse responses may be estimated consistently. Unlike existing methods of computing

nonlinear impulse responses in the econometric literature, our approach is fully structural and



avoids the ambiguities of defining a shock in nonlinear reduced form models.

Both the regression model proposed in section 4 and the method of computing
responses to energy price shocks developed in section 5 play a crucial role in designing tests of
the symmetry of response functions in energy price increases and decreases. In section 6, we
discuss the problem of testing the null hypothesis that the U.S. economy responds
symmetrically to energy price increases and decreases. First, we show that traditional tests for
asymmetries in the regression slopes of predictive regressions in the spirit of Mork (1989)
exploit only some implications of symmetry. Based on the structural model of section 4, we
propose a modified test of symmetry in the slopes with higher power. Second, we observe that
statistically insignificant departures from symmetry in the slopes may cause statistically
significant asymmetries in the implied impulse response functions, given the nonlinearity of
these functions, while significant departures from symmetry in the slopes need not imply large
asymmetries in the impulse response functions. Moreover, by construction, the extent to which
responses from the linear symmetric model provide a good approximation will depend on the
magnitude of the energy price shock. Thus, traditional slope-based tests, while informative
about the degree of asymmetry in reduced form parameters, do not shed light on the degree of
asymmetry in the impulse response functions. As an alternative, we propose a direct statistical
test of the symmetry of the economy’s response to unanticipated energy price increases and
decreases. That test is shown to have reasonably accurate finite-sample size.

In section 7, we apply these tools in examining the evidence against the symmetry null
in three prominent empirical examples. Specifically, we model the relationship between
quarterly U.S. real GDP and the real price of oil, between monthly U.S. unemployment and the
real price of oil, and between monthly U.S. gasoline consumption and the U.S. real retail price
of gasoline. We find no compelling evidence of asymmetric responses to positive and negative
energy price shocks.

In section 8, we extend the analysis to VAR models involving net energy price increases
motivated by the analysis in Hamilton (1996, 2003). Despite the widespread use of the net oil
price increase measure in VAR models, none of the symmetry test results in the literature

provides a justification for the use of such models. In fact, notwithstanding the evidence for



asymmetries in the predictive relationship between real GDP growth and oil price changes
provided by Hamilton (2003), with the partial exception of Balke, Brown and Yiicel (2002), no
paper has adequately addressed the implications of the net increase model for impulse
response analysis. In this paper, we address this question. We discuss how structural impulse
responses to energy price shocks may be consistently estimated in this context, and we present
two tests of symmetric impulse responses based on the net increase model, one based on the
slope parameters of a modified version of the model proposed in section 4, and the other
based on the impulse response functions implied by that model. Our analysis clarifies, refines,
and extends the earlier analysis in Balke et al., which recognized many of the problems
discussed here but had no apparent impact on the empirical practice in this literature.

The choice of tests makes a difference. Unlike Hamilton (2003) or Balke et al. (2002), we
find little, if any, evidence against the null hypothesis of symmetric responses in our three
empirical examples. In fact, slope-based symmetry tests are shown to be misleading. Our
results suggest that linear impulse response analysis will be adequate for many applications.
This finding also has important implications for the theoretical literature on the transmission of
energy price shocks and for the debate about monetary policy responses to oil price shocks.
Finally, to the extent that there is evidence of asymmetries, our analysis suggests that
important changes are needed in the way these asymmetries are modeled in the VAR literature.

Section 9 contains the concluding remarks.

2. A Stylized Model

In this section, we illustrate the estimation biases induced by censoring regressors in the
simplest possible setting. It is well known that censoring dependent variables causes OLS
estimates of the coefficients of linear models to be biased (see, e.g., Amemiya 1984).
Notwithstanding the existence of a large literature on the effects of censoring the dependent
variable, the problems arising from censoring the explanatory variable that are the focus of our

paper have rarely been analyzed. A notable recent exception is Rigobon and Stoker (2007,

>A partial exception is Herrera (2008), who conducts a sensitivity analysis based on Balke et al.’s methodology in a
not-for-publication appendix. Even Herrera, however, focuses on incorrectly computed impulse responses from
censored VAR models in the body of her paper.



2008), who make the case that researchers encounter censored regressors as often as, or
perhaps more often than, censored dependent variables. Rigobon and Stoker focus on the
problem of censoring regressors in static single equation models used to analyze cross-sections.
Their primary interest is in double censoring, in which a regressor is top and bottom coded, as
might be the case in classifying household income by range, for example.6

In contrast, our focus in this paper is on multivariate time series models with censored
endogenous regressors. The type of censoring of interest in our paper occurs below zero (or,
alternatively, above zero). Moreover, motivated by the literature on the transmission of energy
price increases, our main interest is the effect of censoring on the impulse response estimates
rather than slope parameters. Finally, whereas Rigobon and Stoker study cases in which the
econometrician cannot observe the uncensored data, we study situations in which the
uncensored data are observed but the researcher has chosen to estimate a regression using the

censored data in order to estimate an asymmetric effect.

2.1. Asymptotic Biases from Using Censored Regressors
For expository purposes, consider the following static linear two-equation DGP:
xt = al + gl,t

(1]
Ve =, +x:f + &5

where a,, a,, B are constants, €; ; and &, are mean zero i.i.d. Gaussian random variables with
variances g2 and 022, andt=1, ..,T. Itisstraightforward to show that the OLS estimators of a
and b in the regression model

Ye = a+xb+u, [2]

will be unbiased and consistent estimators of a and . To illustrate the effect of replacing
negative values of x; with zero in this regression, define the variable x{ as

+ _{xtifxt>0
X T 0ifx, <0 [3]

and consider estimating the censored regression model:

® Related work also includes Manski and Tamer's (2002) work on interval data and the statistical literature on data
that are missing at random (see, e.g., Little 1992).



ye=a+xb+u (4]

rather than the unconstrained model (2). Censoring the explanatory variable renders the
estimator of b inconsistent for 8. Figure 1 illustrates the problem. The values of the dependent
variable that are associated with negative values of x; are moved to the y-axis. Given these
points, the estimated intercept is negative and far below its true value of zero. As a result of
the negative intercept, the value of the slope coefficient must be greater than the true value.
This problem is equivalent to the expansion bias discussed by Rigobon and Stoker (2008) in the
context of top-coding of cross-sectional data.

The upward bias in the estimated effect of x; on y; is not a small-sample problem. For
the simple case where a equals zero and where x; has a symmetric distribution with mean zero
and variance 1 and is uncorrelated with &, ;, we can derive the limits for @ and b. Observe
that E(x{) = 0.5y, where pu = E(x|x; > 0). As shown in the appendix, @ and b converge in

probability to the following limits:

. b O.5u
=BT 052 [s]
and
php—t
ST [6]

The proof is a standard application of the Law of Large Numbers to the OLS estimators and is
described in the appendix. If the variable x; has a standard normal distribution, then @
converges to about minus 0.58(3 and b converges to roughly 1.473. Therefore, in this simple

example, the effect of x; on y, is overestimated by almost 50 percent.’

2.2. Further lllustrations of the Asymptotic Bias from Censoring
To illustrate further the effects of censoring and its determinants, we report some simulation

evidence. The first simulation illustrates that the effect of censoring negative values depends on

7 Analogous results would hold if the researcher retained only negative values of x; and censored all positive
values. The only change in the analysis would be to replace u with negative u. In that case, the limit of the
estimated intercept is positive and equals 0.58f in magnitude, but the limit of the slope estimator is the same as in
the baseline case — roughly 50 percent larger than the true slope.



Figure 1: The Effect of Censoring Negative Values of the Explanatory Variable
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the relative frequency with which negative values occur. Table 1 reports the results of

simulating data from model (1) but for different values of ;. As a consequence of varying a4,

the fraction of x;’s that are positive varies. When 90 percent of the observations are positive,

the slope coefficient is still biased upwards, although by less than 10 percent. These simulation

results approximate asymptotic results, as the number of observations per simulated dataset is

100,000 and results are averaged across 2,000 simulated datasets.

The analysis so far has focused on DGPs that are symmetric in x;, but the same problem

may arise even when the true response of y; to x; is asymmetric in positive and negative

values. Consider the following DGP:

xt - al + gl,t

Ve = +xf +x7y + &5y
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where y captures the asymmetric response that is of interest to many economic researchers.
This process allows for both positive and negative values of x; to affect y, , but with different
coefficients. Equivalently, we could have specified the second equation of model (7) as a
regression in x; and x; with potentially different coefficients. Given this DGP, if one estimated
the equation

— +
Ye=a+xib+u, (8]

one would want the value of b to equal B+y in the limit. However, as shown in Table 2, this is
not the case unless f equals zero, implying that only positive x; have an effect on y;. For all
other values of B3, the value of the estimated slope coefficient is biased upwards. Furthermore,
in this example, if the slope for negative x; is at least half of the slope for positive x;, then the
estimate of an increase in x; on y; is less biased when using the full sample than when using
the censored sample.?

Table 2 illustrates that, only when B is known to be zero, will the censored regression
model consistently estimate the effect of an energy price increase in the static model. This
point is important because Mork (1989) merely failed to reject the null hypothesis that energy

Table 1: Asymptotic Bias from Censoring in the Static Symmetric Model
Varying the Fraction of Positive x; Observations

~

P(x;>0) E[x:] a b

a, =0 B=1
0.10 -1.28 -1.41 2.70
0.20 -0.84 -1.08 2.14
0.30 -0.52 -0.87 1.83
0.40 -0.25 -0.72 1.62
0.50 0.00 -0.59 1.47
0.60 0.25 -0.47 1.34
0.70 0.52 -0.36 1.24
0.80 0.84 -0.26 1.15
0.90 1.28 -0.15 1.08

Notes: Symmetric DGP: B =1, a@; = @, = 0, 0; = g, = 1. Average results
for 2,000 samples of 100,000 observations each.

& Additional simulation exercises (not shown to conserve space) confirm that the asymptotic biases reported in
Tables 2 and 3 that arise from the misspecification of the regression model carry over to small samples. Relative to
models with Gaussian errors, small sample biases may increase substantially when the errors are fat-tailed.
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price decreases have no effect on real GDP growth. He did not establish that p=0, and indeed
was careful only to suggest that these coefficients are “perhaps zero”. Nor does economic
theory predict that p=0 (see, e.g., Edelstein and Kilian 2007a, Kilian 2008b). If, in fact, both
energy price increases and decreases matter for real GDP, but to a different extent, as
suggested by economic theory, then the censored regressor model is bound to overestimate
the effect of an energy price increase even in this simplest possible model. The only way to
protect from this inconsistency is to include both energy price increases and decreases in the

regression.

Table 2: Asymptotic Bias from Censoring in the Asymmetric Static Model

Population Slope Parameters Average Estimated Slope b

B Y B+y Standard Model Censored Model
0.00 1 1 0.50 1.00
0.25 0.75 1 0.62 1.12
0.50 0.50 1 0.75 1.23
0.60 0.40 1 0.80 1.28
0.70 0.30 1 0.85 1.32
0.80 0.20 1 0.90 1.37
1.00 0.00 1 1.00 1.47
1.25 -0.25 1 1.12 1.58
1.50 -0.50 1 1.25 1.70

Notes: Asymmetric DGP: a4 = @, = 0, 0; = g, = 1. Average results for 2,000 samples of
100,000 observations each.

The static model is useful for building intuition, but extending the analysis to
dynamic regression models leads to additional insights. In many cases, researchers are
specifically interested in the response of the economy over time to an unexpected energy
price increase:

Iy(h' &1t Qt—1) = E(yt+h |81,t' Qt—l) —E@e4nlQ-1)
where ();_; is the information set at the time of the shock. In the next section, we show
that the censored VAR models routinely employed in the literature will produce inconsistent
impulse response estimates not only in the empirically plausible case of nonzero responses
to both energy price increases and decreases but even when all coefficients on current and

lagged x; are zero in population. In other words, even if oil price decreases had no effect on

12



real GDP growth in population, as postulated in the literature, censored VAR models would

yield invalid impulse response estimates. This result is in sharp contrast to the static model.

3. How Empirically Relevant Is the Asymptotic Bias of VAR Models of Energy Price Increases?
It is common practice in the literature to compute responses to unanticipated energy price
increases from censored VAR models. For example, Bernanke, Gertler and Watson (1997, p.
103) observe that “Knut Mork provided evidence that only positive changes in the relative price
of oil have important effects on output. Accordingly, in our VARs we employ an indicator that
equals the log difference of the relative price of oil when that change is positive and otherwise
is zero.” Similarly, Leduc and Sill (2004, p. 790) state that “to get an empirical estimate of the
output response to positive oil-price shocks, we run a VAR using ... oil-price increases [...]
constructed by taking the first difference of the log of oil prices, then setting negative values to
zero. Thus, only oil-price increases affect the other variables in the system.”

The standard approach used in the literature is based on a recursively identified VAR
model, in which the energy price increase variable is ordered above the macroeconomic
aggregate of interest. The prototypical example is a linear bivariate autoregression for (x; y,)’.
Adding additional macroeconomic variables does not affect the econometric points of interest
in this paper, and, indeed, is not required for consistently estimating the response of y; to an
unanticipated increase in energy prices under the maintained assumption of predetermined (or
contemporaneously exogenous) energy prices (see Kilian 2008b). The identifying assumption of
predetermined energy prices with respect to the macroeconomic aggregate of interest is not
only standard in the literature but is consistent with empirical evidence presented in Kilian and
Vega (2008).

Estimates of this model have been used in constructing responses to a one standard
deviation shock in x; . The construction of impulse responses from nonlinear models such as
the asymmetric models of interest in this paper is not straightforward. Whereas impulse
responses in linear models are independent of the history of the observations, impulse
responses in nonlinear models are dependent on the history of the observations and on the
magnitude of the shock (see, e.g., Gallant Rossi and Tauchan 1993; Koop, Pesaran and Potter

1996). Thus, the construction of impulse responses requires Monte Carlo integration over all

13



possible paths of the data. This point has been routinely ignored in the literature. In practice,
researchers have presented impulse response estimates computed exactly as in linear VAR
models. For now we follow that convention because we wish to illustrate the asymptotic biases
in the results reported in the literature. Moreover, discussing one problem at a time will
facilitate the exposition. We will return to this point in section 5, however, and show how

impulse responses can be computed correctly.

3.1. Linear and Symmetric VAR Data Generating Processes
The points we made in section 2 directly extend to censored VAR models. Consider a linear

symmetric bivariate VAR(p) DGP of the form

p p
Xy = byo + Z byyixe—; + Z bi2iye-i + €1t
i=1 i=1

p p (9]
Ve = by + Z by1ixe—i + Z byyiVi-i + &2t

=0 =1
where x; denotes the percent change in energy prices, y; denotes the percent change in the
macroeconomic aggregate of interest, and &,~(0, %) is uncorrelated white noise. We focus on
three illustrative examples that are representative of models employed in the empirical

literature:

(1) A gquarterly VAR in the percent changes in real crude oil prices and the growth rate of
U.S. real GDP. The sample period is 1973.11-2007.1V. The oil price series is based on an
index of U.S. refiners’ acquisition cost, extrapolated as in Kilian (2008a), and deflated by
the U.S. CPI. The real GDP data are from the BEA.

(2) A monthly VAR in the percent change in crude oil prices and the change in the U.S.
unemployment rate. The sample period is 1973.2-2007.12. The unemployment rate data

are from the BLS.

(3) A monthly VAR in the percent change in real gasoline prices and the percent change
in real U.S. real gasoline consumption, as constructed by the BEA. The sample period is

1973.2-2007.12.
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The lag order p is set to 6 for expository purposes. For each data set, we construct a DGP by
replacing the model parameters by their least-squares estimates obtained from fitting this
model to the data set in question and by treating the structural errors as Gaussian white noise.
For each DGP, we generate a sample of length T, fit a VAR(6) model for (x;" y,)’, and construct
the cumulative response of y;,,, h = 0,1, ... to a unit increase in energy prices. We compare
that response to the response of y;, 5 to a unit increase in energy prices in the DGP. Since we
are interested in evaluating the asymptotic bias of the responses implied by the censored VAR
model, all results in Figure 2 are based on T = 1,000,000.

The left column of Figure 2 quantifies the asymptotic bias induced by censoring energy
price decreases. The impulse response implied by the DGP is shown as the solid line. The
estimated impulse response from the censored VAR model is shown as the dashed line. As
shown in section 2, the censored VAR response tends to overestimate the true response in each
case. For example, the response of real GDP after 6 quarters is overestimated by about one
third. The right column of Figure 2 illustrates the point that our results are not driven by
sampling uncertainty. It shows that the true and the estimated response lie exactly on top of
one another if we fit a linear symmetric VAR model to the same data. The results in Figure 2

suggest strong caution in interpreting the results of censored VAR models.

3.2. Asymmetric Data Generating Processes
Figure 2 showed that censored VAR models will be misleading when the DGP is linear and
symmetric. It is equally interesting to investigate the consistency of the censored VAR model
when the DGP involves asymmetric effects of energy price increases on macroeconomic
aggregates. Here we follow the bulk of the empirical literature on energy price shocks and focus
on the leading example of models in which only energy price increases matter for
macroeconomic aggregates. For expository purposes, first consider the simplest possible
dynamic model, in which energy price decreases have no effect:

Xp =01+ pXe—qy &

[10]
Ve =0+ Xy, + &5

where x; is defined as above. Setting the initial conditions to zero, in this system the impact
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Figure 2: Inconsistency of the Estimated Effect of Energy Price Increases
Symmetric VAR DGP
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response of y; to a positive shock to x; would be y. In the next period, the response would be
pY, provided that p is positive.” If this system is estimated, then, as expected, estimates of
both y and p will be unbiased. If instead a researcher estimated the censored system:

xf =ar+ pxily tey

[11]
Ye = ay + x;—ﬂ/ + &t

the estimate of p would be asymptotically biased and so would be the impulse response
estimate, even though the estimate of y is unbiased.

This example illustrates that the DGP cannot be represented as a bivariate VAR for
(x} y:)’. Infact, a censored VAR DGP with positive probability would generate realizations for
x; that may be negative. It may seem that this contradiction could be avoided by censoring
the realizations much like researchers have censored percent changes in actual energy prices,
but in that case the same asymptotic biases would arise that we already documented for the
linear symmetric model. This point is illustrated in Figure 3. Based on a censored VAR DGP, the
censored VAR run on censored realizations of x; generates responses to energy price increases
that are systematically higher than the pseudo-true response even in the limit.

Figure 3: Inconsistency of the Estimated Effect of Energy Price Increases
Censored VAR DGP with Censored VAR Variable
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Notes: Simulations from censored VAR DGP based on U.S. data. T=1,000,000.

? If p were sufficiently negative that x; being positive implies that x;,,; would be negative, then the response in the
second period would be zero. This result is discussed in more detail in section 5.
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The source of the problem in Figure 3 is that the censored VAR regression model is not a
description of the DGP. This problem can be avoided only by fully specifying the underlying
structural model:

X = A1 X1 T XY q + ot Eqt

[12]
Ve = Pixi + Boxi_q + Baye-q + o+ e

where the structural shocks €;; and ¢€,; are uncorrelated and where for expository purposes we
have omitted the definition of x; as a function of x;. Although the slope parameters of Model
(12) can be estimated consistently by OLS, the resulting residuals will not be uncorrelated. To
impose the latter restriction requires the use of a restricted maximum likelihood estimator.

The DGP in model (12) postulates that percent changes in energy prices evolve in an
unconstrained fashion; only the feedback from energy prices to the macroeconomic aggregates
is constrained. This model is easily recognizable as a generalization of model (7) with § = 0 to
the VAR context. Note that in this model a negative shock to x; may have a nonzero effect on
Vi+n if the negative shock over time induces positive values in x;,,. Also note that model (12)
is not equivalent to the following model:

Xy = A1 Xe—1 T QY1+t Eq

[13]
Yt = ,Bzx;-—1 + B3YVe—1 + o+ BrErr + &

The key difference between models (12) and (13) is that the impact effect of a negative value of
&1¢ is zero in model (13) and is £; in model (12). Furthermore, model (12) is not equivalent to
estimating the model:

Xe = A1 Xp—1 T XY q T+ &t

[14]
Ve = ﬂzx;—1 + B3Ye—1 + o+ Uy

where uy; = f1&1+ + €4, and applying a Cholesky decomposition to the variance covariance
matrix of the two error terms &;; and u,;. The key difference is that the Cholesky
decomposition does not discriminate between positive and negative shocks.

Below we confirm that even when the data are generated from model (12), asymptotic
biases may arise when estimating the response to energy price increases from a censored VAR

model. We focus on the same illustrative examples as in Figure 2, except that we now
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construct the DGPs under the working hypothesis that the data are generated by the
asymmetric model (12) in which there is no effect from current or lagged x; on y;. For each
DGP example, we treat the least-squares estimates of the slope parameters and innovation
variances obtained on the actual data as the population parameters in the simulation and
impose the zero correlation of the innovation variances. All results are based on T = 1,000,000.
Figure 4 shows that even in this case the responses implied by the censored VAR model will be
asymptotically biased. The direction of the bias is ambiguous. Especially for the unemployment
rate, the bias is substantial. After 18 months, the estimated response to an energy price
increase is only about 80 percent of the true response. By the same reasoning as in Section 3,
this result is a consequence of inconsistently estimating the response of the price of energy to
the energy price shock. Figure 5 illustrates this problem by plotting the corresponding
responses of the price of energy. Although there is no problem in consistently estimating the
second equation of the system that includes the censored regressors (and, indeed, the impact
response of y; is correctly estimated in Figure 4), the fact that the censored VAR model
misspecifies the first equation of the system causes both response estimates to be inconsistent
as the energy price shock is propagated over time. The results in Figures 4 and 5 represent the
best possible scenario in that we postulated that only energy price increases matter in the DGP.
Additional asymptotic biases would arise if the asymmetric DGP allowed for nonzero effects

from energy price decreases, and those biases would affect even the impact responses.°

4. Eliminating the Asymptotic Bias: A General Model of the Oil Price-Economy Link

Up until now, we have imposed a strong form of asymmetry in which energy price declines
have no effect on the macro aggregate of interest. In the interest of full generality, we now
relax this assumption by allowing for both energy price increases and decreases to have an
effect, but to a different extent.!* The first equation of the resulting model is identical to the

first equation of a standard linear VAR in x; and y,, but the second equation now includes both

10 Although we focused on bivariate VAR models for (x;/, y,)’, the same impulse response inconsistency problems
would arise when fitting trivariate VAR models for (x;, x;, y.)’. Similar problems also would arise if we were fitting
a VAR model involving (xt JXe | yt).

" Theoretical models of asymmetry do not imply the strong form of asymmetry but allow for nontrivial effects of
both energy price increases and decreases (see Edelstein and Kilian 2007a,b; Kilian 2008b).
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Figure 4: Inconsistency of the Estimated Effect of Energy Price Increases on Outcome Variable
Asymmetric Structural Model DGP
Fitting Censored VAR Model
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Figure 5: Inconsistency of the Estimate of Energy Price Increases on Energy Price
Asymmetric Structural Model DGP
Fitting Censored VAR Model
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x; and x;” and, as such, both energy price increases and decreases affect y;,.
p p
Xt = byo + Z by1,ixe—; + z biziye-i + €1t
i=1 i=1

P P P
Ve = byo + Z by, Xe—; + Z byziye—i + Z G21,iX—; + €
i=0 i=1 i=0

Given estimates of these coefficients, one can calculate the dynamic responses to

(15]

unanticipated positive and negative energy price changes.'? Note that the OLS residuals of
model (15) are uncorrelated, whereas the OLS residuals of model (12) may be correlated. This
means that model (15) may be estimated by standard regression methods.

As illustrated in Figure 6, the key advantage of model (15) is that the dynamic responses
are consistently estimated regardless of whether the true DGP is symmetric or asymmetric. We
focus on the real GDP data to conserve space. Similar results hold for the other data sets. The
response estimates of model (15) are consistent when the DGP is the standard linear VAR (see
Figure 6a). In contrast, as was shown earlier, the response estimates of model (12) and of the
censored VAR model do not converge to the population response in that case. Likewise, when
the DGP is the asymmetric model (12), although response estimates based on the standard VAR
model are asymptotically biased, the response estimates based on model (15) are consistent
(see Figure 6b). Finally, Figure 6¢ illustrates that model (15) allows consistent estimation of the
dynamic response to a negative shock in model (12). In short, the advantage of model (15) is
that it may be used without knowing the nature of the DGP. Its only limitation is that the
response estimates are not efficient asymptotically and that they may be slightly biased in finite

samples because of the nonlinearity of the response function.

5. Computing Reponses to Energy Price Shocks in Nonlinear Models
So far we have followed the convention in the empirical literature on energy price shocks of

computing impulse responses as one would for linear and symmetric VAR models. While this

2f energy prices never declined, this model would suffer from collinearity. But in the data, we observe both
energy price increases and declines.
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Figure 6a: Estimating the Effect of an Energy Price Increase Using the General Model
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Figure 6b: Estimating the Effect of an Energy Price Increase Using the General Model
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Figure 6c: Estimating the Effect of an Energy Price Decline Using the General Model
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approach simplifies the computation of the responses from asymmetric models, it can be
misleading in that the effect of a given shock in asymmetric models depends on the recent
history of the series in question and on the magnitude of the shock. For example, the net effect
of a negative innovation to energy prices on macroeconomic aggregates will depend on the
extent to which the effect of this shock on energy prices is dampened or amplified by the
cumulative effect of previous shocks. Thus, nonlinear impulse responses must be computed for
a given shock as the average of impulse response draws obtained using alternative initial
conditions. This point is well known (see, e.g., Gallant et al. 1993; Koop et al. 1996), but has
been typically ignored in the literature on estimating the effects of energy price increases.

In this section we propose an adaption of methods for computing impulse responses
from nonlinear models specifically designed for model (15)."* Having estimated model (15), we
proceed as follows:

Step 1 Take a block of p consecutive values of x, and y. This defines a history Q'. Note that the
choice of history does not affect the coefficients of the model. For all histories, the model
coefficients are fixed at their estimated values.

Step 2 Given Q!, simulate two time paths for x,,; and y,; fori=0, 1, ..., H. In generating the
first time path, the value of &;; is equal to a pre-specified value §. In generating the other time
path, the value of &;; is drawn from the marginal empirical distribution of &;;. The value of &;;
and the values of all subsequent shocks €;44; and €544;,i =1, ..., H, are drawn from their
respective marginal distributions. Since the structural errors €;; and &,; are by definition
uncorrelated, we treat the draws as independent in practice.

Step 3. Calculate the difference between the time paths for y;,; i=1, ..., H.
Step 4. Average this difference across m=500 repetitions of Steps 2 and 3.

This average is the response of y;.; at horizon i = 0,..., H, to a shock of size § conditional
on Q':

L,(h,8,0". (16]

The unconditional response Iy(h, 0) is defined as the value of Iy(h, 0, Qi) averaged across all
histories:

2 The same algorithm could be applied to model (12) as well, if that model were considered appropriate for
applied work.
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1,,0) = [ 1,(h8,0)dat 7

Depending on the application, both the conditional response Iy(h, 0, Qi) and the
unconditional response could be of potential interest. To determine the general importance of
oil shocks as a source of fluctuations, the unconditional response is of most interest. Likewise,
for the evaluation of DSGE models the unconditional response is the most appropriate object to
match. In contrast, for forecasting and policy purposes, the response conditional on current
history is the more relevant statistic. In the remainder of the paper, we will focus on the
unconditional response (17).

It is important to highlight the difference between the response in (17) and the impulse
response functions typically computed in the literature on the transmission of oil price shocks.
For this purpose, it is useful to introduce two alternative definitions of impulse responses to

energy prices. For example,

Iy(h' S, 9) [18]
refers to the response obtained conditioning on a hypothetical historical path involving
Xe—i = Ye—i = 0 foralli. Another possible definition would be the response

L(h,6,0")
; h h
=E (Yt+h|51,t: =9,Q, {51t+j = O}j=1' {52t+j = O}j=0) (19]
. h h
—FE (yt+h|Ql' {51t+j = 0}j=0: {52t+j = 0}j=0)
Upon integrating out across alternative histories, this expression simplifies to:
L(h,68) = f L(h,6,Q")da! (20]

The response most often reported in the empirical literature on energy price shocks is
I;(h, 0, Q) and may be viewed as a combination of (18) and (20). That response conditions
neither on history nor does it allow for nonzero future shocks.

The time series literature on non-linear impulse responses has favored Iy(h, 0, Qi) over

I;(h, 9, Q) for at least three reasons. First, the process of I;(h, 0, Q) may not accurately
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characterize the true dynamics of a nonlinear system. For example, Koop, Pesaran and Potter
(1996, p. 125) observe that I;(h, 0, Q) may not converge to zero, even when the nonlinear
stochastic DGP is stationary. Second, Potter (2000) observes that the theoretical treatment of
nonlinear impulse responses is facilitated by treating future shocks as random variables rather
than fixed values. Third, there is no intrinsic economic interest in any impulse response that
conditions on 0.

One of the chief drawbacks of nonlinear impulse response analysis of the type
considered by Koop et al. (1996) is that shocks cannot be defined unambiguously in the context
of reduced-form models. The reason is that reduced-form regression errors are inevitably
mutually correlated. In practice, researchers have resorted to presenting responses for
representative draws from the joint distribution of the reduced-form errors (see, e.g., Balke et
al. 2002; Herrera 2008). Such responses may be useful in characterizing the persistence of the
data, but they are devoid of any economic interpretation. An attractive feature of the nonlinear
impulse responses (16) and (17) that we defined above is that in the context of the structural
models (12) and (15) an energy price shock is orthogonal to other shocks and uniquely defined
(up to scale). This fact addresses the chief limitation of nonlinear impulse responses as
discussed in Koop et al.

How the impulse response is computed directly affects the magnitude of the estimated
response. As shown in Figure 7, in the context of our example, Iy(h, &) is much smaller in
absolute value than I;(h, 0, Q). The value of I;(h, 0, Q) is more comparable to the response to
a very large shock in excess of ten standard deviations. In other words, even if the regression
model were correctly specified and hence the parameter estimates were consistent, the use of
traditional impulse response functions would greatly exaggerate the effect of a positive oil price
shock. This finding reinforces our earlier concern with the methods underlying the existing
literature. To help us understand these results, below we provide a more in-depth analysis of
the impact responses. We show that, as § increases, the importance of accounting for the

history Q' and of accounting for the variability of &;; declines. In other words,

1imnﬂ,%(1y(o, n6)) =1;(0,5,0).
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Figure 7: The Response of GDP to a Positive Energy Price Shock by Shock Size
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Impact Response of x;
Because of the linear nature of the first equation in model (15), the impact effect on x; of a

shock of size § will be a constant:

1.(0,6,Q") = 6. 1]
Impact Response of y;
The impact effect of ;, on y, for a given history Q' is
Iy(O, 6, Ql) = b21'0 5 + 921,0 (E(x;'& Ql) - E(x;'Ql)). [22]

The term E(xt+|6, Qi) - E(xHQi) plays a central role in the construction of nonlinear impulse
responses for y,,, h=1, ..., H. Absent uncertainty about the value of ¢, ;, the value of

E(x{r|6, Qi) — E(xt+|Qi) would be easy to calculate. In particular, consider the value of

27



E(xt*|5, Qi) — E(xﬂsl,t =0, Qi) where, for ease of notation, we define

% = E(x|e, = 0,01

(23]
Here %, summarizes the effect of the history Q' on x,. For § > 0, then
E(x{|6,Q") — E(x{ ey, = 0,0) =6 ifx >0
E@H&QD—E@HQI=QQD=2+6 if —5<%<0 (24]
E(x}|6,Q") — E(x{|er, =0,0') =0 ifx < -6

Computing the value of E(x;’|6, Qi) - E(xﬂ()i) is more of a challenge because we
need to account for uncertainty about ¢, ;. With uncertainty, we have that
E(xf|s,Q") =E (max(it +45, 0) |5, Qi) = max(X; + 6, 0) (25]
E(xt+|Qi) =E (max(it + &5 0) |Qi)
The value of E(xt*|Qi) depends on the variance of the shocks. Note that E(xt+|Qi) can be
positive even if X; is negative. In fact, by Jensen’s inequality, E(xZ’|Qi) > X, for all values of Xq.
In particular, if X, equals zero and &;; has a standard normal distribution then E(xt*|Qi) has a

value of 0.4. Hence, when X; = 0 and &;; has a standard normal distribution, we have that

E(xf|6,Q") — E(xf|Q") = E(x{16,% = 0) — E(xf %, = 0)

= §—0.4. [26]
This first result implies that the larger §, the smaller the effect of incorrectly treating &;; as
equal to zero under the counterfactual path, relative to magnitude of the impulse response. In
other words, all else equal, the larger §, the more similar the traditional incorrectly computed
impulse response and the correctly computed unconditional response will be. This point is
important because most energy price innovations measured at the monthly or quarterly
frequency tend to be quite small (e.g. Edelstein and Kilian 2007a). We conclude that traditional,
incorrectly computed impulse responses will tend to exaggerate the effect of an unanticipated
energy price increase.

Figure 8a illustrates this point under the assumption that
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Our second point is that E(xt+|6, Qi) — E(x§“|Qi) becomes less sensitive to X;, as 6
increases. Figure 8b illustrates this relationship. As § increases, the importance of the history X;
declines, and the magnitude of the impulse responses becomes constant across alternative
histories. The reduced importance of the histories can be explained by the following limit

argument:

hm 1 (1 (o, n6)) = y(O 5,,0)

This result relies on three observations. First, note that I;(O, 0, Q) = by10 6 + g21,00. Second,

llm 1(1 (o, nd))— lim 1(f y(O né, Q)dQ)

In addition, observe that

limn_m%(f ,(0,n8,0)dQ") = byy 6 + g210( (E(x |ns, Q') — E(xt+|Qi)) in).

To complete the proof we need to show that

lim = [ (E(xi |6, 0) - E(x¢]a)) datt = 6.

n—)oon
Recall that by definition %; = E(x{ |e. = 0,Q"). Therefore, E(x}|ns, Q') = nd + %, if % >
—nd, and

1 . . .
E ( [ EGetlne.0) ~ EGetler0)a Q‘>

n

11~ 1 r . .
= <5P(>~<t > —nb) + —f %,d Q' — —f E(xf|Q")d o‘) :
n néd nj .

As long as X; does not have too much mass in the left tail and the variance of &; ; is small
enough such that

j )N(tin—f E(xf|Q")d Q'
-né

—o0

remains finite, it follows that

lim = f(E(x{'|n(SQ) E(xg*|Q))dQ‘—5

n—eo N
because the value of P( X > —nd) converges toward one, as n increases, and E( | X, < 0) is

finite.
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We conclude that the impulse response I;(h, 0, Q) can be thought of as the scaled
version of the response to a very large shock of the form Iy(h, noé, Qi)/n. Hence, for sufficiently

large energy price shocks, one would expect that the importance of Q' diminishes such that the
impulse response used in the existing VAR literature becomes a good approximation to the
correctly constructed estimate, as illustrated in Figure 7. For smaller (and more typical) energy
price shocks, however, such as a one standard deviation increase in &; ¢, the interaction of the
innovation in the price of energy with the history Q' will be guantitatively important. That is
why traditional VAR impulse responses may be quite different from the correctly computed

nonlinear responses in practice.

6. Testing Symmetry in Energy Price Increases and Decreases

The preceding sections have shown that the presence of asymmetries considerably complicates
the econometric analysis of the transmission of positive energy price shocks. While model (15)
may be used to sidestep the question of whether the model in question is asymmetric or not,
this involves a cost in terms of asymptotic efficiency. Clearly, a linear symmetric VAR model
would be preferable if we could convince ourselves that the DGP is symmetric. This raises the
guestion of how to test the symmetry null hypothesis. We first discuss the case of testing for
symmetry between energy price increases and decreases before adapting these tests to the

problem of testing models of net energy price increases.

6.1. Slope-Based Tests
If energy price increases and decreases received exactly the same weight in regressions of y; on
lagged y; and current and lagged x; and x;, it would follow immediately that the dynamic
responses to energy price shocks must be symmetric in positive and negative shocks. This line
of reasoning has motivated the development of slope-based tests of symmetry. Such tests are
attractive in that they do not require the complete specification of the system to be estimated
nor do they require the computation of impulse responses.

The traditional approach to testing for symmetry in the transmission of energy price
shocks involves tests on the symmetry of the slope coefficients in regressions of y; on lagged

x; and x; (see, e.g. Mork 1989). This is equivalent to testing
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Hy: 9211 = =9g21p =0
in model (15). This may be accomplished by a Wald test with an asymptotic ;(ﬁ -distribution.
Closer inspection of model (15) reveals that this test does not exploit all restrictions implied by
the null hypothesis of symmetry. Specifically, Mork’s test omits the contemporaneous regressor
because he works with the reduced form. A test of all symmetry restrictions on the slopes
would involve the null hypothesis:

Ho: 9210 =" = 921p =0

Hence, our proposal is that we estimate model (15) and use a Wald Test to determine whether

including {x;"_; ?:0 improves the fit of the model. This test has an asymptotic ;(5+1 -distribution.

It is useful to compare the power properties of Mork’s (1989) test with those of the
modified slope-based test implied by the structural model (15). Tables 3 and 4 summarize the
results from some Monte Carlo experiments. The size results are based on a DGP obtained by
fitting the three empirical models under the assumption of symmetric responses. We simulate
data under the null assumption of symmetry and report the relative frequency at which the
Wald Test rejects the null hypothesis of symmetry. In assessing the power, we follow a similar

strategy. We first estimate the equations

P p
Xt = byo + Z byyixe—i + Z by2,iYe-i + €1
i=1 i=1

P p p
Ye = byo + z by X + Z by iye-i + Z Ja1,X~i + €2
i=0 i=1 i=0

by OLS to obtain the parameter values for the DGP. The artificial data are then generated from

(27]

14 14
Xt = byo + Z b11,i Xe—i + Z b12,i3’t—i + &1t
i=1 i=1

14 14 14 [28]
Yt = by + Z byyixe; + Z by iye-i + KZ ng,ix;-—i + &
i=0 i=1 i=0

where k € {0.25,0.5,1,2,4} controls the degree of asymmetry in the population response. The

larger is k, the more asymmetric is the DGP response. All simulations are based on the
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Table 3: Modified Slope Test: Rejection Rates of the 5 Percent Test for Asymmetric Coefficients

Size Power
K 0.25 0.5 1 2 4
Unemployment 0.07 0.08 0.14 0.43 0.97 1.00
Gas Consumption 0.07 0.09 0.18 0.62 1.00 1.00
Real GDP 0.11 0.14 0.19 0.45 0.96 1.00

Notes: In all cases, the data sets are generated to have the same number of observations as
the original data. Critical Values are from the ;(72 -distribution. The value of k scales g, ;,i =

0, .., p, by a fixed factor and determines the degree of asymmetry of the population response.

Table 4: Mork’s (1989) Test: Rejection Rates of the 5 Percent Test for Asymmetric Coefficients

Size Power
K 0.25 0.5 1 2 4
Unemployment 0.06 0.07 0.09 0.21 0.66 0.99
Gas Consumption 0.07 0.09 0.17 0.57 1.00 1.00
Real GDP 0.10 0.12 0.18 0.42 0.94 1.00

Notes: In all cases, the data sets are generated to have the same number of observations as
the original data. Critical Values are from the y? -distribution. The value of « scales g, ;,i=

0, .., p, by afixed factor and determines the degree of asymmetry of the population response.

assumption of Gaussian innovations.

Table 3 shows that, for the monthly applications, the Wald tests are quite accurate
under the null. For the quarterly application, there is a modest size distortion, reflecting the
smaller quarterly sample size. It is likely that one could reduce these size distortions by using
bootstrap methods. Table 4 shows the corresponding results for Mork’s slope-based test. A
comparison of the results in Tables 3 and 4 suggests that the two tests have similar size but the
fully specified symmetry test tends to have higher power than Mork’s test. The power gains of
the correctly specified test may be substantial. In one case the power more than doubles.

While slope based tests are useful in assessing the symmetry of the slope parameters of

single-equation reduced form models, they are not obviously informative about the degree of
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symmetry of the impulse response function obtained from a fully specified model. There are
two possible outcomes when conducting slope-based tests. If the test rejects symmetry, that is
sufficient for concluding that the impulse responses are asymmetric, but it does not tell us
whether the departures from symmetry are economically or statistically significant. Given that
impulse response functions are highly nonlinear functions of the slope parameters and
innovation variances it is quite conceivable that the degree of asymmetry in the impulse
responses to positive and negative energy price shocks could be quite small, making responses
based on the linear model a good approximation, despite the statistical rejection. Moreover,
the quality of the linear approximation will differ depending on the magnitude of the shock. For
that reason, the applied user will want to plot the point estimates of the impulse response
functions and inspect them.

If the test fails to reject symmetry, on the other hand, we again learn little because
statistically insignificant departures from symmetry in the slopes may cause large and
statistically significant asymmetries in the implied impulse response functions, given the
nonlinearity of these functions. This observation suggests that a more useful approach would
be to test the symmetry of the economy’s dynamic responses to unanticipated energy price
increases and decreases directly based on the impulse response functions (also see Edelstein
and Kilian 2007a,b). This alternative approach to testing symmetry is discussed next.

Note that what is at issue in conducting this impulse-response-based test is not the
existence of asymmetries in the reduced form parameters, but the question of whether
possible asymmetries in the reduced form imply significant asymmetries in the impulse
response function. While any asymmetry in the reduced form representation (whether
statistically significant or not) will imply some degree of asymmetry in the impulse response
function, the question is whether the impulse responses constructed from linear symmetric

VAR models still provide a good approximation.

6.2. Impulse-Response Based Tests
The proposal is that we estimate the unrestricted model (15) and calculate the unconditional
impulse responses to both positive and negative energy price shocks. Then we construct a

Wald test of the joint null hypothesis of symmetric responses to positive and negative energy
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price shocks up to a pre-specified horizon H. Symmetry means that
I,(h,6) = —IL,(h,—6) forh =0,1,2, ..., H
or equivalently
I,(h,6) +1,(h,—6) =0forh=10,1,2,...,H
The variance covariance matrix of the vector sum of response coefficients can be estimated by
bootstrap simulation. Given the asymptotic normality of the parameter estimators of model

(15), the test has an asymptotic y7 , -distribution.

Unlike the slope-based test, this test depends on the magnitude of §, so the evidence
against symmetry will depend on the magnitude of the shock considered. For small shocks, a
symmetric model will provide a better approximation than for large shocks. How accurate and
powerful the impulse-response based test is relative to the slope-based test is an empirical
guestion. Table 5 reports the size properties for tests of the symmetry of the impulse responses.
Table 5 shows that, for our examples, these tests have acceptable size properties, despite a

slight tendency for the test to overreject, as the horizon increases.

7. Empirical Tests of Symmetry in Energy Price Increases and Decreases
In this section, we use the two statistical tests discussed in section 6 to check for asymmetry in
the empirical responses to energy price shocks. Table 6 shows that the evidence for asymmetry
in the slope coefficients is weak. The p-values suggest no evidence against symmetry at the 10%
significance level in monthly U.S. unemployment rates, in quarterly U.S. real GDP, and for U.S.
gasoline. The same qualitative result, but with higher p-values, would be obtained using Mork’s
test. An important question is whether these empirical results are sensitive to the choice of lag
order. Our baseline results rely on six lags. Table 7 shows that only for gasoline consumption
are the p-values sensitive to the lag order. As the lag order of the model exceeds six lags, we
find rejections of the symmetry null hypothesis at the 5% level.

In general, there is a tendency for the p-values to decline with the addition of more lags.
This reflects the fact that the )(gﬂ distribution becomes a less accurate approximation under
the null, as illustrated in Table 8. Table 8 shows that, in the presence of excess lags, the size
systematically increases from 6% to almost 10% for the monthly models and from near 9% to

28% for the quarterly model. These size distortions from overfitting help explain the general
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Table 5: Size of the 5 Percent Test of Hy: Iy(h, 0) = —Iy(h, —-6)forh=0,1,2,...,H

1 Std.
Deviation
Shock

0.06
0.07
0.08
0.09

N 0w - I

Gas Consumption

2 Std.
Deviation
Shock

0.05
0.05
0.05
0.07

1 Std.
Deviation
Shock

0.06
0.07
0.08
0.10

GDP

2 Std.
Deviation
Shock

0.05
0.05
0.06
0.07

Unemployment

1 Std.
Deviation
Shock

0.06
0.07
0.07
0.09

2 Std.
Deviation
Shock

0.05
0.05
0.05
0.07

Notes: The data sets are generated to have the same number of observations as the original
data. All results based on 20,000 simulations from the linear VAR DGP. Impulse responses
based on an average of 90 histories. Significance levels are based on the yZ,; distribution.

Table 6: Empirical Symmetry Tests: Baseline Model

Variable The Modified Test of  Marginal Mork’s Test of Marginal
Symmetric Slope Significance ~ Symmetric Slope Significance
Coefficients Level Coefficients Level

Unemployment 7.7224 0.358 3.1317 0.792

Gas Consumption 11.3755 0.123 9.2366 0.161

Real GDP 10.4722 0.163 9.7565 0.135

Table 7: Marginal Significance Levels for the Modified Slope-Based Symmetry Test

Number of lags 2 4 6 10 12

Unemployment 0.188 0.349 0.534 0.681 0.657 0.359
Gas Consumption 0.191 0.172 0.156 0.008 0.022 0.014
Real GDP 0.523 0.631 0.412 0.258 0.233 0.239

Notes: p-values are from the )(ﬁﬂ distribution. Sample size chosen so that the estimation

period is the same, regardless of the number of lags. The results may differ slightly from Table 6

given the difference in sample periods.
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decline of the p-values with increasing numbers of lags in Table 7 but do not explain the rapid

drop in the p-values for gasoline consumption beyond lag 6.

Table 8: Size of the 5% Test of Hy: I, (h, §) = —1,,(h, —6) for h = 0,1,2, ..., H: DGP with 4 Lags

Number of lags in 4 6 8 10 12

regression model

Unemployment 0.060 0.065 0.074 0.084 0.095
Gas Consumption 0.060 0.065 0.072 0.081 0.094
Real GDP 0.085 0.117 0.157 0.214 0.282

Notes: p-values are from the )(§+1 distribution. Sample size chosen so that the estimation
period is the same, regardless of the number of lags.

Even strong rejections of symmetry based on the slope-based test, however, need not
imply large degrees of asymmetry in the impulse responses of ultimate interest, as discussed
earlier. This point is illustrated in Figure 9. The difference between I,,(h, o) and —I,,(h, —0)
tends to be quite small when 12 lags are included in the regression model. This example
suggests that we can never rely on slope-based symmetry tests alone. This point holds with
equal force if the slope-based symmetry test fails to reject. Even statistically insignificant
departures from symmetry in the slope parameters may imply highly economically and
statistically significant departures from symmetry in the impulse response functions. Thus, it
makes sense to focus on direct tests of the symmetry of these responses.

Table 9 reports the corresponding tests of the symmetry of the impulse response
functions for the baseline model with six lags. Neither for U.S. real GDP nor for unemployment
is there statistically significant evidence against the symmetry of the functions.** For gasoline

consumption, the results are mixed. Whereas there is no evidence against symmetry based on

" These results are qualitatively consistent with the findings in Edelstein and Kilian (2007a,b) based on a
somewhat different methodology.
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Figure 9: The Response of Gas Consumption to a One Standard Deviation Energy Price Shock
Model with 12 Lags

Percent

I
~—- | (h,0)

—e— -1 (h-0) i

= | inear VAR Response

two-standard deviation shocks, based on one standard-deviation shocks the test rejects the null

hypothesis of symmetry at the 5% level at one horizon and at the 10% level at several

additional horizons. The evidence against symmetry appears stronger than that based on the

slope-based test. However, as shown in Figure 10, which reports I,,(h, 6) and —1I,,(h, —0), the

Table 9: Testing the Symmetry of the Response 1,,(h,8) = —I,,(h,—6) forh =0,1,2,...,H

1 Std.
Deviation
Shock

0.45
0.13
0.05
0.09
0.07
0.04
0.06
0.09

N o o b W N R O

Gas Consumption

2 Std.
Deviation
Shock

0.47
0.28
0.15
0.25
0.21
0.15
0.18
0.26

1 Std.
Deviation
Shock

0.40
0.44
0.59
0.56
0.66
0.78
0.48
0.58

GDP

2 Std.
Deviation
Shock

0.47
0.54
0.69
0.68
0.78
0.87
0.59
0.69

Unemployment

1 Std.
Deviation
Shock

0.36
0.65
0.83
0.92
0.97
0.99
1.00
1.00

2 Std.
Deviation
Shock

0.43
0.73
0.88
0.96
0.98
1.00
1.00
1.00

Notes: Based on 20,000 simulations of model (15). p-values are based on the 3, distribution.
actual difference between these two responses seems fairly small, and one would be hard
pressed to make the case for using the asymmetric model on economic grounds.
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Figure 10: The Response of Gas Consumption to a One Standard Deviation Energy Price Shock
Baseline Model with 6 Lags
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actual difference between these two responses seems fairly small, and one would be hard

pressed to make the case for using the asymmetric model on economic grounds.

8. Testing Symmetry Based on Models of Net Energy Price Increases
As noted in the introduction much of the recent empirical work in the transmission of oil price
shocks has focused on the net increase in the price of oil as defined in Hamilton (1996, 2003).
For example, Lee and Ni (2002, p. 834) note that the “oil price variable [in their VAR] is
Hamilton’s (1996) ‘net oil price increase’, defined as the percentage change of oil price over the
maximum value of the preceding year if the price of the current month exceeds the previous
year’s maximum, and zero otherwise.” Likewise, Bernanke et al.’s (1997, p. 104) VAR analysis
relies as the main measure of oil price shocks on Hamilton's measure which “equals the
maximum of (a) zero and (b) the difference between the log-level of the crude oil price for the
current month and the maximum value of the logged crude oil price achieved in the previous
twelve months”. Similar net oil price increase measures have also been used by Davis and
Haltiwanger (2001), Lee and Ni (2002), and Hamilton and Herrera (2004), among others.

Given the widespread use of the net oil price increase measure in applied VAR work, it is
important to assess the empirical support of that model. Hamilton (2003) proposed a formal

test based on the conditional expectation function of the linear symmetric model against the
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alternative of a model in which only net increases matter. Rather than specifying the structural
model of interest, Hamilton focused on single-equation predictive relationships in the data. His
statistical evidence against the null hypothesis of linearity in the one-step-ahead predictive
relationship between real GDP growth and changes in oil prices by construction implies that the
underlying DGP must be asymmetric as well. Hamilton compared several nonlinear predictive
models and concluded that a conditional expectations model based on the three-year net
increase measure had the most predictive power one quarter ahead.

It is important to keep in mind, first, that the model Hamilton investigated differs from
the VAR models estimated in the literature on estimating responses to energy price shocks such
as Bernanke et al. (1997). Even if we take Hamilton’s results about the existence of a nonlinear
reduced-form relationship involving net oil price increases at face value, these results do not

justify the use of censored VAR models of the form

P p
+net __ +,net
Xt = byo + Z bi1;x;2; + Z bi2iYe-i + €1t

p P
net
Ve = by + Z byyiyi-i + Z 921,ix:_7ile t+ag; + &t

i=1 i=1
where a is estimated by the Cholesky factorization of the variance covariance matrix of the
reduced-form residuals. For the reasons discussed earlier, the structural models that would
give rise to such asymmetries in the reduced form cannot be represented as VAR models. Using
the data of the unemployment rate example, the response to a one standard deviation shock
implied by the incorrectly specified net increase VAR model, as estimated in the literature, is
effectively equivalent to a four standard deviation shock in the correctly specified net increase
model. Similar results hold for the other two empirical examples.

Second, Hamilton’s work leaves unanswered the question of how much the response of
real GDP to an exogenous oil price innovation is affected by the nonlinearity of the DGP relative
to the linear case. Even if there is an asymmetry in the slope parameters of the reduced form,
that asymmetry need not have large effects on the implied impulse response function. We will
illustrate that point below. Moreover, the extent to which responses from a linear symmetric
VAR model provide a good approximation will be a function of the size of the energy price
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shock. Answering that question requires a fully specified multivariate structural model.”

In closely related work, Balke, Brown and Yiicel (2002) conducted an alternative test of
the net increase model based on the slope parameters of regressions of real GDP growth on
lagged real GDP growth, lagged oil price changes and lagged net oil price increases. Like
Hamilton, they concluded that the inclusion of net oil price increases improves the predictive
power of this model. Unlike Hamilton, they explicitly recognized the need for a multivariate
structural model in constructing estimates of the impulse response functions and they observed,
consistent with our analysis, that such models do not have a VAR representation. Balke et al.
also recognized the importance of accounting for the nonlinear nature of the model in
constructing impulse responses. While the description of their algorithm is terse and
incomplete, their approach in many ways appears substantively identical with the procedure
that we propose below. The key difference is that they simulate responses to shocks drawn
from the joint distribution of reduced-form errors, as suggested by Koop et al. (1996), whereas
we simulate shocks drawn from the marginal distribution of the structural errors of the model.

Moreover, with the exception of a not-for-publication appendix in Herrera (2008), no
paper in the large empirical VAR literature on the asymmetric transmission of energy price
shocks has adopted their proposal. Applied users have continued to employ incorrectly
specified VAR models and have computed the model impulse responses incorrectly as though
the model were linear. A likely reason is that Balke et al. do not elaborate on the limitations of
commonly used asymmetric VAR models beyond observing that this “specification is not
completely suitable for an examination of asymmetry”. For that reason, we believe that it is
important to restate the basic points made in Balke et al. and to do so more explicitly. Our
proposal refines their approach by focusing attention on the economically more relevant
structural energy price innovations. In addition, we will take their analysis a step further by

proposing an explicit test of the symmetry of the impulse response functions.

> Hamilton (2003, Figure 14) provides an estimate of the impulse response function eight quarters ahead based on
a single-equation nonlinear reduced-form model designed for one-step-ahead prediction (see p. 392). That
estimate suffers from three problems that make it unsuitable for our purposes. First, in constructing the impulse
responses Hamilton imposes that the net energy price increases are strictly exogenous. That assumption is
unnecessarily restrictive and has been shown to be economically and empirically implausible (see Kilian 2008b,c).
Second, Hamilton’s model omits the contemporaneous regressor in constructing the impulse response function.
Third, Hamilton ignores the nonlinear nature of the model in computing the impulse response function.
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As discussed below, our empirical conclusions are somewhat different from Balke et al.
(2002). Whereas Balke et al. found some evidence in favor of asymmetries in output, we do not.
There are several differences between their analysis and ours. First, we focus on the more
relevant measure of net increases in the real price of oil (rather than the nominal price). Second,
we have the advantage of a longer time span of data from the empirically relevant post-1972
period. The key difference, however, is in the econometric analysis. Like us, Balke et al. found
little evidence of asymmetries based on one standard deviation shocks, notwithstanding the
rejection of symmetry in the reduced-form slopes. In the published version of their paper they
concentrated exclusively on two standard deviation shocks which are much rarer in practice
(and hence less precisely estimated). While increasing the shock size indeed increases the
apparent degree of asymmetry in the response functions, for the reasons we discussed earlier,
it also increases the uncertainty surrounding those estimates because there are fewer episodes
of large oil price changes in the data. This makes it essential to conduct a formal joint test of
the symmetry of the impulse response functions of the type proposed below. Based on that
test, we find very little evidence against the linear symmetric model for shocks of typical
magnitude in general and no evidence at all for real GDP. Moreover, our structural impulse

response point estimates appear much more symmetric than their real GDP response estimates.

8.1. Slope-Based Symmetry Tests for the Net Increase Model

In this section, we outline two tests of the net increase model, building on the analysis in
section 4. Rather than testing the null hypothesis of symmetry between net oil price decreases
and net oil price increases, as in Edelstein and Kilian (2007a), we nest the net increase model in
the standard linear symmetric VAR model. In essence, we ask whether there is incremental

explanatory power in including net oil price increases in the baseline model. This results in a

model structure similar to model (15) with x; replaced by x:’net, where
x;""et = max [0,x; — x¢]and x{ is the maximum of x; over the preceding year (or three

years, alternatively), following Hamilton (1996, 2003). We follow Kilian (2008c) in specifying
the net increase in the real price of oil rather than the nominal price as in Hamilton (1996, 2003)
because the real price is the economically relevant measure of the price of oil. This does affect

the time path of the net increase variable, as documented in Kilian (2008c), but is more
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consistent with the recent empirical literature.
The problems with the use of net oil price increase measures in VAR models are
fundamentally the same as with the use of oil price increase measures and can be addressed

along similar lines. By analogy to the discussion in section 4 the structural model

14 14
Xt = byo + Z b11,i Xe—i + Z b12,i3’t—i + &1t
i=1 i=1

P p p [29]
net
Ve = by + Z by, Xe—i + Z by iye—i + Z 921,ix:-_7ile + &t
i=0 i=1 i=0

may be estimated consistently by least squares. Note that model (30) also allows us to compute
impulse response functions taking account of the magnitude and direction of the innovation &;;
as well as the history of observations, whereas the shock in the commonly used censored VAR
model is not well defined.

In assessing the evidence for this structural net increase model, a natural starting point
is the slope-based test:

Ho: 9210 =" = Gg21p =0

based on (30].This test relates to the test conducted in Balke et al. (2002) as the slope-based
test in section 6.1 relates to Mork’s tests of symmetry. The only difference to the analysis in
Balke et al. is the additional inclusion of contemporaneous regressors. In all cases, the null
model is the linear symmetric VAR model. Table 10 suggests that there is no evidence of
asymmetries using the one-year net increase measure, but using the three-year net increase
measure the symmetry test rejects at the 5% level for gasoline consumption and real GDP.
Figure 11 once again illustrates that slope-based tests are of limited use in that they are
not informative about the degree of asymmetry in the impulse response functions. We focus on
the three-year net increase. Results for the one-year net increase are very similar. Figure 11
shows that correctly computed impulse responses from model (30) for one standard deviation

shocks are almost perfectly symmetric in all three models.™® Thus, despite the partial rejection

'8 By construction, a one standard deviation shock is a typical shock in that about two-thirds of energy price shocks
in historical data are no larger than one standard deviation.
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Table 10: Slope-Based Test of the Linear Symmetric VAR Model against the Net Increase VAR
Model: Baseline Model with 6 Lags

Variable 1-Year Net Increase 3-Year Net Increase
Test of Linear Marginal Test of Linear Marginal
Symmetric Significance Symmetric Significance
Model Level Model Level

Unemployment 10.5099 0.162 9.6332 0.210

Gas Consumption 9.8879 0.195 14.5307 0.043

Real GDP 7.2617 0.402 14.2965 0.046

of the hypothesis of symmetric slopes in Table 10, there is no compelling reason to depart from
the linear symmetric model when dealing with shocks of typical magnitude.

Broadly similar results hold for two standard deviation shocks with the glaring exception
of the unemployment rate model. Ironically, the unemployment rate model was the one model
that passed all slope-based tests of symmetry, highlighting the importance of actually
computing the impulse response functions. In contrast, the other point estimates look fairly
symmetric. Although the response of real GDP to a positive two standard deviation shock is
somewhat larger in absolute terms than the response to a negative shock of this magnitude,
both responses are clearly negative and have a similar pattern. In the gasoline consumption

model, the symmetry of the two response functions is even more pronounced.

8.2. An Impulse-Response Based Symmetry Test for the Net Increase Model

It may be tempting to decide the question of symmetry based on the estimates of the impulse
response functions in Figure 11. Figure 11 underscores that there is no reason to question the
symmetry assumption for shocks of typical magnitude. For two standard deviation shocks the
evidence is less clear, however, especially in the unemployment example. Because the point
estimates in Figure 11 are subject to considerable sampling uncertainty, especially when

considering large energy price shocks, it is useful to conduct a formal test of the linear
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Figure 11: Empirical Responses to One and Two Standard Deviation Positive and Negative
Energy Price Shocks in Baseline Model with 6 Lags: 3-Year Net Increase

GDP
One Standard Deviation Shock Two Standard Deviation Shock
0 i
5 .05} |5
[&) (&)
2 o
A —— Iy(h,c) i Al —e— 0.5*Iy(h,2c) i
—— -|y(h,-cs) —— -0.5*|y(h,-20)
-1.5 : : : -1.5 : : :
0 2 4 6 8 0 2 4 6 8
Quarters Quarters
Unemployment
One Standard Deviation Shock Two Standard Deviation Shock
4t . 4 1

Basis Points
L)

Basis Points
§ M

Months Months

Gas Consumption

One Standard Deviation Shock Two Standard Deviation Shock

Percent

?
Percent
&

-10 ' ' ‘ -10 ‘ ' '
0 2 4 6 8 0 2 4 6 8

Months Months

Notes: The responses to negative shocks are shown as mirror images to facilitate the
comparison. Some of the responses in the left panel are nearly invisible because the responses
are almost perfectly symmetric.



symmetric model based on the impulse response functions implied by model (30). As in section
7.1, the test is based on Iy(h, 6) = —Iy(h, —8) forh =0,1,2, ..., H."” Table 11 shows that, as
expected, the p-values decline with the magnitude of the shock. At conventional significance
levels, there is no evidence against the symmetry null hypothesis in any of the three empirical
examples in response to a one standard deviation shock, whether we focus on the one-year or
the three-year net changes. The same results hold in response to a two standard deviation
shock when using the three-year net changes. Similar results also hold for the one-year net
changes with the partial exception of the unemployment rate at very short horizons. We
conclude that there is very little, if any, evidence of asymmetric responses to energy
price increases and decreases. In particular, there is no such evidence for U.S. real GDP.

The evidence in Table 11 is based on a model that rules out responses to net
decreases, but there is no compelling a priori reason that the economy is not
responding to net decreases in energy prices as well, especially since the motivation for
this model is behavioral rather than being grounded in economic theory. We explore
this possibility by augmenting model (30) with lags of net decreases in energy prices.
The corresponding results are not shown to conserve space but can be summarized as
follows: For gasoline consumption there is no evidence against the symmetry null
hypothesis using the three-year window, whether the energy price shock is small or
large. Using the one-year window, the test fails to reject symmetry in response to small
shocks but rejects in response to large shocks. Inspection of the point estimates,
however, suggests that this evidence, while statistically significant, is not economically
significant. The response estimates are very similar in magnitude.

For unemployment, the evidence is mixed. There is no evidence against
symmetry using either window as long as energy price shocks are small. For large

shocks, the symmetry test rejects at one horizon only using the three-year window, but

7 An alternative and asymptotically equivalent approach would have been to test the equality of the impulse
responses obtained from the linear model on the one hand and either the response to an energy price increase or
a decrease on the other. We do not pursue that approach because it is not clear how to use the bootstrap to
evaluate the variance of the Wald test statistic in that case. In contrast, the symmetry test is straightforward to
implement.
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Table 11: p-Values of Test of H: Iy(h, 6) = —Iy(h, —-6)forh=0,1,2,..,H

Gasoline Consumption GDP Unemployment
H 1 Std. 2 Std. 1 Std. 2 Std. 1 Std. 2 Std.

Deviation Deviation Deviation Deviation Deviation Deviation

Shock Shock Shock Shock Shock Shock
a. 1-Year Net Increase
0 0.95 0.82 0.96 0.50 0.99 0.01
1 1.00 0.91 0.96 0.72 0.83 0.03
2 1.00 0.34 0.98 0.58 0.94 0.07
3 0.99 0.11 0.99 0.65 0.98 0.12
4 0.98 0.18 0.99 0.64 0.99 0.20
5 0.98 0.26 0.99 0.74 1.00 0.21
6 0.99 0.34 0.99 0.60 1.00 0.19
7 1.00 0.43 1.00 0.66 1.00 0.24
b. 3-Year Net Increase

0 0.94 0.43 0.98 0.79 0.95 0.13
1 0.98 0.56 0.99 0.30 0.99 0.24
2 1.00 0.66 1.00 0.26 1.00 0.40
3 1.00 0.23 1.00 0.38 1.00 0.57
4 1.00 0.32 1.00 0.41 1.00 0.71
5 1.00 0.44 1.00 0.53 1.00 0.69
6 1.00 0.55 1.00 0.57 1.00 0.69
7 1.00 0.59 1.00 0.67 1.00 0.77

Notes: Based on 20,000 simulations of model (30). p-values are based on the y#,,
distribution.

it rejects systematically using the one-year window. Indeed, the response estimates look fairly
asymmetric in the latter case, suggesting caution in imposing symmetry on unemployment
responses when considering large energy price shocks. In contrast, for real GDP, which is
perhaps the most interesting example from the point of view of macroeconomists, there is not

a single rejection of symmetry for any combination of shock size and window.
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These empirical results are important in light of the consensus view, exemplified by
Davis and Haltiwanger (2001, p. 509), that the evidence for asymmetric responses to oil price
ups and downs is well established. Our analysis suggests that the evidence against the
symmetry hypothesis has been overstated. It is of course possible that impulse-response-based
tests lack the power to detect asymmetries in the data, especially if those asymmetries are
relatively weak for shocks of typical size, but the rejections found in some of our empirical
examples suggest that lack of power is not a concern.

We certainly would not want to rule out the existence of asymmetries in all possible
applications on the basis of our empirical evidence. Part of our objective has been to provide
tools for detecting asymmetries and dealing with asymmetries on a case-by-case basis. What
our empirical evidence does suggest, however, is that asymmetry in the responses to energy
price shocks is clearly not a pervasive and robust feature of the U.S. data. This point is
important, as a large literature has developed aiming to explain the perceived asymmetry of
responses to energy price shocks from a theoretical point of view (see, e.g., Bernanke 1983;
Hamilton 1988; Pindyck 1991). Our evidence casts doubt on the empirical relevance of these

theoretical models.

9. Conclusions

A common view in the literature on the transmission of energy price shocks is that the effect of
energy price shocks on macroeconomic aggregates such as output or employment is
asymmetric in energy price increases and decreases. This perception has been bolstered by
empirical evidence that unanticipated percent changes in energy prices tend to have
comparatively small effects on the U.S. economy, whereas similar regressions on energy price
increases produce much larger effects. Measures of energy price increases in practice are
obtained by censoring energy price changes to exclude all energy price decreases.

The censoring of explanatory variables is known to undermine the validity of regression
estimates. This point has recently been illustrated in the context of cross-sectional models by
Rigobon and Stoker (2007, 2008). As discussed in Rigobon and Stoker (2007), microeconomic
data often are released in censored form, leaving the econometrician with no choice but to use

these data. In contrast, in studying the effects of energy price shocks on the economy,
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censoring is optional. The econometrician observes both the censored and the uncensored time
series data. This paper discussed various pitfalls that arise when working with censored energy
price changes as regressors in dynamic time series models. The dynamic nature of the model
was shown to reinforce the conclusions obtained in the static model in some cases and to
overturn them in others. Allowing for dynamics also introduces econometric complications that
do not arise in cross-sectional models.

We showed that standard methods for estimating the response of macroeconomic
aggregates to energy price increases produce inconsistent estimates that tend to exaggerate
the quantitative importance of these shocks for the U.S. economy. Although it is common to
rely on censored VAR models to analyze the effects of energy price increases on
macroeconomic aggregates, we established that structural models of asymmetric effects of
energy price increases and decreases do not permit a VAR representation. Estimates of these
models are inconsistent. We proposed an alternative structural regression model that allows
consistent estimation of the responses in question whether the underlying DGP is symmetric or
not. We also observed that conventional estimates of asymmetric responses to energy price
shocks are computed as though the model were linear and symmetric. These response
estimates are misleading in that they implicitly condition on initial conditions of zero rather
than integrating over alternative paths and in that they ignore the dependence of the response
on the magnitude of the energy price shock. In practice, they will overstate the importance of
energy price increases, even if the underlying regression model is correctly specified and the
parameter estimates are consistent. We proposed a suitable method for computing consistent
impulse response estimates to positive and negative energy price shocks. We concluded that
fundamental changes are required in the models and methods used by empirical researchers to
guantify the asymmetric transmission of energy price shocks.

The literature has typically interpreted empirical evidence of quantitatively larger
response estimates from censored VAR models of energy price shocks than from linear
symmetric VAR models as persuasive evidence of asymmetries. Our analysis suggests that this
interpretation is invalid, as the responses in question are inconsistent and biased upward by

construction. Formal statistical evidence against the linear symmetric VAR model has been
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limited to tests of the symmetry of slope parameters in dynamic reduced-form regressions (see,
e.g., Mork 1989, Balke et al. 2002, Hamilton 2003). We first proposed a modified slope-based
test with higher power than Mork’s test and showed that slope-based tests of symmetry in the
reduced form parameters can be misleading when it comes to assessing the symmetry of
impulse response functions. We then introduced a direct test of the symmetry of the impulse
response functions, motivated by the practical limitations of slope-based tests. Finally, we
considered versions of these tests designed for models involving net energy price increases.

We applied these tests to representative regression models based on actual U.S. data.
We found very little, if any, evidence of asymmetries in the response of U.S. real GDP,
unemployment, and gasoline consumption to energy price shocks. Even if we had found
evidence of asymmetries, however, such evidence would not have justified the use of standard
censored VAR models of energy price increases or the way responses to energy price shocks
have been routinely computed from these VAR models. One of the central objectives of this
paper has been to alert users to these pitfalls and to develop alternative models and estimation
methods.

Our empirical results have important implications for studies of the transmission of
energy price shocks. First, one reason that researchers had been eager to accept the apparent
finding of asymmetry in the 1990s was that it seemed consistent with theoretical models of the
transmission of energy price shocks that emphasized asymmetries through shifts in uncertainty
or frictions to the reallocation of factors of production within and across sectors (see, e.g.,
Bernanke 1983; Hamilton 1988; Pindyck 1991). The latter models were required to rationalize
large effects from oil price shocks that are difficult to obtain in conventional models based on
cost shocks or aggregate demand shocks. Our evidence provides no support for theoretical
models with built-in asymmetries. If such asymmetric effects exist, they appear to be too weak
to be detected in aggregate data.

Second, in the absence of asymmetries, the responses of the U.S. economy to energy
price shocks appear more modest, which is fully consistent with conventional macroeconomic
models of the transmission of energy price shocks that do not predict large fluctuations in U.S.

output in response to energy price shocks (see, e.g., Kilian 2008b). Thus, the absence of larger
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effects is not a puzzle. We conclude that oil price shocks are only one of many factors
contributing to recessions, not a key determinant. Our findings also lend credence to recent
linear models of how the oil demand and oil supply shocks that drive oil price shocks affect the
U.S. economy (see, e.g., Kilian 2008a).

Third, our analysis calls into question several empirical findings reported in the literature
about the channels of the transmission of energy price shocks. To the extent that these studies
used censored VAR models and/or computed impulse responses to energy price shocks
incorrectly, they are invalid. For example, much of the consensus on how monetary policy
responds to oil price shocks is based on the censored VAR model introduced by Bernanke,
Gertler and Watson (1997). That study and subsequent papers using the same type of model
will have to be reexamined in light of our findings. Similarly, influential studies of sectoral
responses to oil price shocks such as Lee and Ni (2002) or employment responses at the plant

level as in Davis and Haltiwanger (2001) will have to be reexamined.

Appendix: Proof of Inconsistency
Suppose that an i.i.d. series y; can be expressed as a linear combination of x; and &;:

Ve = X+ & [30]
where 3 is a constant and x; and g; are i.i.d. symmetrically distributed variables with mean

zero and finite fourth moments. Consider the regression model:

Vi=a+xb+u 31]

where
+ {xt ifx, >0
Xt T 10ifx, <0
The objective is to show that censoring of the explanatory variable renders b, the OLS estimator
of b, inconsistent for . Recall thatd = S, — bS,+ and b = (Sxty = Sx#Sy)/(Sxrx+ — S,+%),

where Sy = %Zg;l Yo Sx+ = %ZE;IX':—I Sytxt = %Zg;l X’:-Z' SyXJr %Zg;l Vi X':-' and Sey+ =
%Z;Ll ecXy -

Recall that E(x{) = 0.5u where p = E(x¢|x; > 0). Observe that E(X{’z) = 0.5E(x2)
if x; is symmetrically distributed around zero. Because y;, X;, and x{’z all are i.i.d with finite
variances, a standard application of the weak law of large numbers implies that the sample
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averages of these series will converge in probability to their population means. As such we
have that

P
Sy 2> Ey, =0
1
Sytyt 5 E(X;’Z) = EEXt2

p
Sx+ -

N =

U.

Finally, we have that

Syx+ = Sg+ + BSy+yt + Sgyt
where
1 T T
— ) xtx = Z x?
TZ tetTr t
t=1 t=1
and

p
Sex+ — E gixtt = EgExt.

Since g, and x; are independent and &, is mean zero, we have that Eg.Ex{ = 0. Since a equals

P . P
zero, we have that S+ —>§BExt2. Combining these results, as T goes to infinity,

R Ex?
INEA Bz—t
Ex{ — 0.5u2
and
P 0.5uEx?
a-»-—-p————-.
Ex? — 0.5u2
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