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Abstract

We study empirical mean-variance optimization when the portfolio weights are restricted

to be direct functions of underlying stock characteristics such as value and momentum. The

closed-form solution to the portfolio weights estimator shows that the portfolio problem in this

case reduces to a mean-variance analysis of assets with returns given by single-characteristic

strategies (e.g., momentum or value). In an empirical application to international stock return

indexes, we show that the direct approach to estimating portfolio weights clearly beats a naive

regression-based approach that models the conditional mean. However, a portfolio based on equal

weights of the single-characteristic strategies performs about as well, and sometimes better, than

the direct estimation approach, highlighting again the di¢ culties in beating the equal-weighted

case in mean-variance analysis. The empirical results also highlight the potential for �stock-

picking�in international indexes, using characteristics such as value and momentum, with the

characteristic-based portfolios obtaining Sharpe ratios approximately three times larger than the

world market.
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1 Introduction

The theoretical portfolio choice literature provides seemingly clear prescriptions for asset alloca-

tions, subject to preferences and return distributions. However, given the di¢ culties of estimating

either conditional or unconditional moments of asset returns, the practical applicability of modern

portfolio choice theory has typically been limited to simple and small-dimensional cases. Perhaps

the strongest case in point is the di¢ culty of practically implementing the traditional mean-variance

analysis of Markowitz (1952), where it is very challenging to obtain useful estimates of the variance-

covariance matrix for any sizeable number of assets. Although the focus in the mean-variance

literature has typically been on the di¢ culties in estimating the covariance matrix1, the vast em-

pirical literature on the cross-section of stock returns also shows that conditional expected returns

are likely to vary across stocks (e.g. Fama and French (1992, 1996, 1998)). Explicitly taking into

account these cross-sectional di¤erences in expected returns adds extra complexity to the problem.

In order to avoid the di¢ culties in estimating the conditional moments of the return distribution,

some recent studies have suggested methods for directly estimating the portfolio weights, which

are the ultimate object of interest (e.g. Brandt (1999), Aït-Sahalia and Brandt (2001), Brandt

and Santa-Clara (2006), and Brandt et al. (Forthcoming)). Brandt et al. (BSCV, hereafter), in

particular, study large-scale portfolio choice problems where asset returns are functions of individual

stock characteristics such as value, momentum, and size. Assuming that the portfolio weights are

(linear) functions of the portfolio characteristics, they show how the weights can be estimated for

arbitrary utility functions. This leads to a tightly parameterized problem, where the parameter

space only increases with the number of stock characteristics, rather than the number of assets.

This paper builds upon the idea of directly modeling portfolio weights. We �rst show how the

weights in a mean-variance optimization problem can be directly estimated as functions of the un-

derlying stock characteristics, such as value and momentum. The mean-variance formulation o¤ers

a closed-form solution to the portfolio weights estimator and thus permits a deeper understanding

of the mechanics of the portfolio weights estimator. This is in contrast to BSCV, who work with

general utility functions, rather than a mean-variance setup, and express their weight estimators as

extremum estimators without closed-form solutions, which makes it harder to fully comprehend the

1For recent work on this topic, see, for instance, DeMiguel, Garlappi, and Uppal (2007), and DeMiguel, Garlappi,
Nogales, and Uppal (2007).
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properties of these estimators.

The closed-form solution shows how the direct parameterization of the weights reduces the

original mean-variance problem with n assets to a much smaller k�dimensional mean-variance

problem, where k is the number of stock characteristics. Speci�cally, the direct estimator of the

portfolio weights, expressed in terms of the stock characteristics, turns out to be the sample-e¢ cient

solution to a di¤erent, and much smaller, mean-variance problem where the new set of �assets�is

made up of portfolios of the original assets with weights that are proportional to the (standardized)

values of a given single stock characteristic (e.g. momentum). This is an interesting �nding since

the original motivation for parameterizing and directly estimating portfolio weights is to avoid the

poor (out-of-sample) properties of sample-e¢ cient solutions. However, by drastically reducing the

dimension of the problem, the primary drawbacks of the sample-e¢ cient mean-variance solution

are avoided. By specifying a simple conditional CAPM framework for the returns process, we also

compare the directly parameterized portfolio weights estimator to a naive weight estimator based

solely on the conditional expected returns, and show that the former reduces to the latter if one

imposes the assumption that the covariance matrix of the idiosyncratic innovations to returns is

diagonal and homoskedastic.

We consider an empirical application to international stock index returns. In particular, we

analyze the monthly returns on MSCI indexes for 18 developed markets, and use three di¤erent

characteristics: the book-to-market value, the dividend-price ratio, and momentum. We focus on

international index returns since the cross-section of these has been studied relatively less than

for individual stock returns. In addition, it is interesting to see how powerful these methods of

cross-sectional stock picking are when applied to a fairly small number of indexes rather than a vast

number of individual stocks, where the scope for cross-sectional variation in the stock characteristics

is obviously much greater.

The empirical analysis shows that the approach of directly parameterizing the portfolio weights

as functions of the stock characteristics delivers clearly superior results compared to the simple

baseline strategy, which only uses a prediction of the conditional mean in the portfolio choice. The

portfolio with directly estimated weights also performs extremely well in absolute terms, delivering

Sharpe ratios around one, which is almost three times greater than that of the market portfolio,

and with a world CAPM beta that is indistinguishable from zero. These results hold in out-of-
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sample exercises, and the in-sample and out-of-sample results are, in fact, very close. There is thus

ample scope for characteristic-based �stock-picking�in international return indexes, even though the

cross-section is only made up of 18 assets.

Since the direct parameterization of the weights reduces the portfolio problem to a mean-variance

analysis of single-characteristic strategies (e.g. pure value and momentum portfolios), the equal-

weighted portfolio of these single-characteristic strategies provides another natural comparison to

the directly-estimated portfolio. Our empirical analysis shows that the results for the portfolio with

directly-estimated weights are very close to those of this equal-weighted portfolio. This �nding

appears to partly re�ect the fact that the optimal weights on these single-characteristic portfolios

are sometimes close to the equal-weighted case, but also partly the fact that it is di¢ cult, even in

small-dimensional settings, to beat the equal-weighted portfolio. This result also relates to recent

work by Asness et al. (2009), who show the bene�ts of combining momentum and value strategies

in a simple equal-weighted manner; as seen in the current paper, the optimal combination is, in

fact, very close to the equal-weighted one.

The rest of the paper is organized as follows. Section 2 outlines the basic CAPM framework in

which the portfolio choice estimators are analyzed, and derives the direct estimator of the portfolio

weights. Section 3 presents the empirical results, and Section 4 concludes.

2 Modeling framework

In this section, we specify the returns process and detail the speci�cation and estimation of the

investor�s portfolio choice problem. The direct estimation of portfolio weights, based on stock

characteristics, avoids the need to explicitly model the returns process. However, an explicit returns

speci�cation allows for the derivation of the theoretically optimal portfolio weights, and hence a

better understanding of the functioning and (dis-) advantages of the empirical portfolio weight

estimators. In addition, the returns equation will form the basis for a naive �plug-in�regression-

based approach to portfolio choice, which will serve as a useful comparison to the directly estimated

strategies. The returns speci�cation is kept deliberately simple in order to facilitate the subsequent

analytics; the purpose of the paper is not to validate this model, but rather, use it as a basic

framework for understanding and motivating our estimation procedures.
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2.1 The returns generating process

It is assumed that the returns satisfy a conditional CAPM model, which, given the subsequent

empirical application, will be interpreted as an international world CAPM. Let ri;t+1; i = 1; :::; n,

t = 1; :::; T , be the excess returns on asset, or country index, i, from period t to t + 1; and let

xi;t be the corresponding k � 1 vector of predictor variables, such as value and momentum. The

(world) market excess returns are denoted rmt+1 and the individual excess returns ri;t+1 are assumed

to satisfy,

ri;t+1 = �ir
m
t+1 + �

0xi;t + ui;t+1: (1)

That is, the returns on asset i are a function of both the contemporaneous market factor and the

lagged predictor variable xi;t. Thus, �i represents the CAPM beta for asset i, after controlling

for the idiosyncratic predictability in the returns. The innovations ui;t are assumed to be iid and

normally distributed with mean zero and variance-covariance matrix �. Throughout the study, we

will focus on the case where xi;t is mean zero in the cross-section, and thus represents deviations

from a cross-sectional mean.

This returns speci�cation captures the stylized facts that the market-based CAPM model will

explain a signi�cant proportion of the cross-section of expected stock-returns, and that conditioning

variables such as value and momentum have cross-sectional predictive power for future returns. For

the data used in the current paper, country-by-country estimates of the unconditional version of

the CAPM (see Table 1), with xi;t excluded but with intercepts included, show that the individual

intercepts in these regressions tend not to be statistically signi�cantly di¤erent from zero, and that

the R2 of the regressions typically range from 30 to 50 percent, providing some validation of the

CAPM model.

A common slope coe¢ cient �, across all i, for the predictive part of the model is imposed.

Although this may be hard to defend from a theoretical view point, from a modeling parsimony

aspect it is quite natural and frequently done (see Hjalmarsson (Forthcoming) for an extensive

discussion on this pooling assumption). Equation (1) is estimated by pooling the data across i and

using least squares.
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In the subsequent analysis, it will be useful to write the returns model in matrix form, as follows,

rt+1 = �r
m
t+1 + xt� + ut+1; (2)

where rt+1 is the n � 1 vector of country returns at time t, � is the n � 1 vector of CAPM betas,

and xt is the n� k matrix of asset characteristics. The expected returns, conditional on xt, at time

t are thus

�t = �Et
�
rmt+1

�
+ xt�: (3)

2.2 Portfolio choice

2.2.1 The investor�s problem and the benchmark portfolio weights

We consider a mean-variance investor who pursues zero-cost strategies. The zero-cost restriction

is imposed because it is natural to think of the return characteristics as deviations from a cross-

sectional average, where an above (below) average ranking indicates an above (below) average

expected return. In addition, it will also be assumed that the portfolios are market neutral in the

sense that !0� = 0, where ! is the n � 1 vector of portfolio weights. This restriction is imposed

in order to eliminate the e¤ects of the expected market returns, Et
�
rmt+1

�
, in the portfolio choice,

and thus avoid explicitly modeling this conditional mean. Since the CAPM betas are all fairly

similar, as seen in the application below, we will not attempt to actually enforce this constraint in

the empirical portfolios, but take it as given. That is, it is assumed that the zero-cost constraint

!01 = 0, where 1 is an n� 1 vector of ones, implies that the market-neutral constraint !0� = 0 is

satis�ed. This would obviously hold if �i � � for all i, but will also be approximately satis�ed in

most situations where the �is do not exhibit too much cross-sectional variation.
2

2The general case where the �is di¤er across i, and the constraint !
0� = 0 is explicitly imposed, can easily be

solved for and implemented using estimates of the �is obtained from estimating equation (1). However, empirical
results not presented in the paper clearly show that the subsequent portfolio weights often tend to di¤er substantially
from the ones that do not impose the zero-beta constraint, even though the unconstrained solution typically has a
beta that is very close to zero empirically. This follows because in order to exactly satisfy the zero-beta constraint
in-sample, the weights might have to shift substantially. Since correlations and betas move over time, and there is
thus no guarantee that the out-of-sample portfolio will have a beta closer to zero if the constraint is imposed, there
seems little point in pursuing this constraint.
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Thus, the mean-variance investor maximizes expected utility according to

max
!t

!0t�t �



2
!0t�!t; s.t. !

0
t1 = 0, (4)

where 
 can be interpreted as the coe¢ cient of relative risk aversion and !t=(!1;t; :::; !n;t) are

the portfolio weights. The solution to the investor�s problem, assuming that �i � �, follows from

straightforward calculations and is given by

!t=

�1��1

�
xt � 1

10��1xt
10��11

�
�: (5)

In the special case that � =�2I, and provided that xt is cross-sectionally demeaned (i.e., 10xt = 0),

the weights simplify to

!t=

�1��2xt�: (6)

Equation (6) thus provides the solution to the investor�s problem when only the mean aspects of

the returns are taken into account and the covariance structure is completely ignored. Estimating

equation (1) gives an estimate of � and the pooled sample standard deviation of the residuals from

equation (1) provides an estimate of �. Given the di¢ culties of estimating large scale covariance

matrices, we restrict our empirical attention to this special case with � = �2I, and the weights

!̂t=

�1�̂�2xt�̂ will serve as the benchmark strategy against which the direct estimation approach,

described below, is compared.

2.2.2 Direct estimation of the portfolio weights

As shown above, in the special case with � = �2I, and assuming that xt is cross-sectionally

demeaned, the portfolio weights, up to a multiplicative constant, are given by xt�. In the spirit of

BSCV, we can therefore consider a procedure that directly estimates the weights, or rather estimates

�, from a portfolio choice perspective, rather than a pure return predictability perspective. That

is, consider the following sample analogue of the investor�s problem:

max
!t

1

T

TX
t=1

�
!0trt+1 �




2

�
!0trt+1

�2�
; (7)
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Substitute in the weights !t = xt�, and we get the following estimation problem,

max
�

1

T

TX
t=1

�
�0~rt+1 �




2

�
�0~rt+1

�2�
; (8)

where ~rt+1 � x0trt+1. The �rst order conditions are given by

1

T

TX
t=1

�
~rt+1 � 


�
�0~rt+1

�
~rt+1

�
= 0; (9)

and the estimator of � is given by,

~� =
1




 
1

T

TX
t=1

~rt+1~r
0
t+1

!�1 
1

T

TX
t=1

~rt+1

!
: (10)

Several features of ~� are worth pointing out. First, ~� is proportional to the OLS regression

coe¢ cient in a regression of ones on ~rt and the variance-covariance matrix of ~� is therefore given

by the standard formula for OLS regressions (see also Britten-Jones (1999)).3,4 Second, note that

within the framework of the current simple conditional CAPM, the optimal weights are generally

proportional to ��1
�
xt � 11

0��1xt
10��11

�
�, rather than xt�. Thus, by restricting the weights to be

proportional to xt�, the optimal weights will in general not lie in the range of the weights obtained

via ~�. That is, even though the above procedure for choosing the weights should dominate the

naive regression-based approach, it will in general not be able to recover the theoretically optimal

weights.

Further, and most interestingly, from the above derivations and the results in Britten-Jones

(1999) it follows that the estimator ~� is proportional to the sample mean-variance e¢ cient portfolio

weights for the k assets with return vector ~rt+1. This makes good intuitive sense. The estimated

weights are equal to ~!t=xt~� = ~�1xt;1+:::+~�kxt;k, with weight i given by ~!t;i = ~�1xi;t;1+:::+~�kxi;t;k.

The return on this portfolio is ~!0trt+1=~�1x
0
t;1rt+1+ :::+

~�kx
0
t;krt+1=

~�1~rt+1;1+ :::+~�k~rt+1;k, and the

components of ~� thus provide the portfolio weights on the �assets�in the vector ~rt. Thus, by forcing

the estimated weights to be of the form xt�, and directly solving for the optimal value of �, the

3Alternatively, by noting that ~� is an extremum estimator, the asymptotic covariance matrix could be derived in
the ususal fashion (c.f. Newey and Mcfadden (1994)).

4Note that the relative size of the components in ~� is not a¤ected by whether the demeaned or non-demeaned
squared returns are used as penalty in equation (7), as discussed in Britten-Jones (1999).
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general mean-variance problem described by equation (4) is reduced to the problem of �nding the

sample e¢ cient solution for the assets with returns ~rt+1 = (~rt+1;1; :::; ~rt+1;k), where asset j = 1; :::; k

represents a portfolio of the underlying assets with weights given by the characteristic xj;t.

It is also interesting to compare ~� to the regression-based estimate �̂. Assuming that �i = � for

all i, the pooled OLS estimate of � in equation (1) is given by

�̂ =

 
1

T

TX
t=1

x0tM1rmt+1
xt

!�1 
1

T

TX
t=1

x0tM1rmt+1
rt+1

!
(11)

=

 
1

T

TX
t=1

x0txt

!�1 
1

T

TX
t=1

x0trt+1

!
; (12)

where

x0tM1rmt+1
= x0t

�
In �

�
1rmt+1

� ��
1rmt+1

�0 �
1rmt+1

�� �
1rmt+1

�0�
= x0t; (13)

provided that xt is cross-sectionally demeaned. That is, if one imposes a common beta, and xt is

cross-sectionally demeaned, the e¤ects of the market factor disappear. Write the estimator ~� as,

~� =

 
1

T

TX
t=1

x0trt+1r
0
t+1xt

!�1 
1

T

TX
t=1

x0trt+1

!
; (14)

and it is easy to see that �̂, up to a constant of scale, is a special case of ~� where one has imposed

the assumption that the returns rt+1 are homoskedastic with a diagonal covariance matrix and

independent of xt. The regression-based estimate �̂ therefore only takes into account the covariance

structure in xt, but ignores the one in rt+1.

These derivations shed some additional light on the work by BSCV, by explicitly deriving the

closed form solutions for the directly estimated weights. BSCV, who work with general utility func-

tions rather than a mean-variance setup, express their weight estimators as extremum estimators

without closed-form solutions, which makes it harder to fully comprehend the properties of these

estimators. In particular, the formulas above, which obviously are restricted to the mean-variance

case, highlight the fact that by adopting the approach of parameterizing the weights as (linear)

functions of the stock characteristics, the portfolio problem is reduced to a mean-variance analy-

sis of assets with returns given by the single-characteristic strategies. This result also highlights

the possibility for further improving upon the approach by using techniques developed for making
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mean-variance analysis both more robust or more �exible, such as estimating the covariance ma-

trix (i.e., the denominator in ~�) using a shrinkage estimator, or allowing for time-variation in the

covariance matrix by �tting, for instance, a multivariate GARCH model. With the availability of

high-frequency data, and the low dimension of the problem, one might also consider using realized

covariance matrices that allow for more timely estimates of the variance-covariance structure of the

relevant returns. In the current study, we do not pursue these extensions, however, but �nd that

also in the basic setup the procedure tends to work very well.

3 Empirical results for international portfolio choice

3.1 Data and preliminary results

3.1.1 Data description

The data are obtained from the MSCI database and consist of total returns for stock market

indexes in 18 developed markets. In addition, the MSCI world index is used as a proxy for the

world market return.5 The data are on a monthly frequency and span the period December 1974

through December 2008. All returns are expressed in U.S. dollars as excess returns over the 1-

month U.S. T-bill rate. In order to form the initial parameter estimates, the earliest starting date

for measuring portfolio performance is January 1980, and portfolio results for the periods 1980-2008

and 1999-2008 are provided, where the latter period is used to evaluate the more recent performance

of the strategies over the last ten years.

Three separate characteristics are considered: the book-to-market value (BM), the dividend-

price ratio (DP), and the cumulative returns over the past t� 12 to t� 1 months (MOM). The �rst

two variables obviously represent measures of value and the last one is a measure of momentum, or

auto-correlation, in returns. For individual stocks, momentum is often captured by the cumulative

returns over the past t � 12 to t � 2 months, excluding the most recent month�s return, since

short-term return reversals in individual stocks are recorded at the monthly level (e.g. Lo and

MacKinlay (1990), Jegadeesh (1990), and Jegadeesh and Titman (1995)). Since there are no such

return reversals evident in index returns (e.g. Patro and Wu (2004)), we use the above de�nition

5The MSCI world index is a market capitalization weighted index intended to capture the equity market perfor-
mance of developed markets, which makes it a suitable benchmark for the analysis here. As of June 2007, the MSCI
world index consisted of the 18 country indexes in Table 1, plus Finland, Greece, Ireland, New Zealand, and Portugal.
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of momentum.

The list of countries is shown in Table 1, along with country-by-country OLS estimates from an

unconditional world CAPM model, where the individual country (excess) returns are regressed on

the world market index. As is seen, the CAPM betas are all fairly similar and none of the intercepts

are statistically signi�cantly di¤erent from zero at the �ve percent level. The basic assumptions

underlying the model of the paper thus seem to be reasonably satis�ed. It should be stressed again,

however, that equation (1) merely serves as a simple framework for the analysis of characteristic-

based portfolio policies; the aim of the paper is not to examine whether equation (1) is, in fact, an

adequate representation of international stock returns.

For each cross-section, i.e., each time-period t, the characteristics are demeaned and rank-

standardized. In particular, at each time t, the cross-section of each stock characteristic takes on

equidistant values between �1 and 1, where, for instance, the standardized characteristic for the

stock with the lowest book-to-market value is assigned �1 and the stock with highest value +1. The

cross-section demeaning is performed since we are interested in ranking stocks in the cross-section,

rather than in the time-series, and the zero-cost strategies naturally leads to this demeaning in any

case. The rank-standardization is performed to avoid outliers leading to large positions in single

assets; Asness et al. (2009) pursue a similar approach.

3.1.2 Single-characteristic portfolios

As pointed out previously in the paper, the portfolio strategies analyzed here can be thought of as

weighted combinations of simple strategies that use portfolio weights identical to the values of a

given single standardized characteristic. That is, these simple strategies represent, for instance, the

pure value strategy using the standardized values of the book-to-market variable as portfolio weights

in each period. Although the primary interest of the current study is on the optimal combination of

such simple portfolios, it is nevertheless interesting to �rst study the return characteristics of these

underlying building blocks for the composite strategies. Since there are no parameters to estimate

in order to implement these strategies, the results are comparable to the out-of-sample results for

the combined strategies below. In order to set the scale for these zero-cost strategies, it is simply

assumed that one dollar is allocated to the short part of the portfolio and one dollar to the long

part; the rank-standardization leads to a permutation of the same values for the characteristics in
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each cross-section, so this merely sets the scale of the portfolio and does not lead to any �timing�of

the portfolio.

Table 2 shows the statistics for the single-characteristic strategies for the full examination period

1980-2008, as well as for the more recent 1999-2008 sub-sample, along with the statistics for the

world market portfolio. Starting with the results for the 1980-2008 sample, it appears that all three

characteristics, momentum, book-to-market value, and the dividend-price ratio, contain information

on the cross-section of expected returns. The long-short portfolios based on these characteristics

all deliver returns that are virtually uncorrelated with the world market (the world CAPM beta

is never signi�cant) and with positive CAPM alphas that are all statistically signi�cant at the 10

percent level. However, only the portfolio strategy based on momentum delivers a Sharpe ratio

that is markedly greater (0:60) than that of the world market portfolio (0:35). The Sharpe ratio

for the book-to-market strategy is somewhat smaller (0:31) than the market�s and the Sharpe ratio

for the dividend-price ratio strategy is virtually identical to the market�s (0:36). Apart from the

leptokurtosis in momentum, the characteristic-based portfolios have less left-skewness and thinner

tails than the market. The bottom rows of Panel A also show the correlation between the returns

on the various strategies. As might be expected, momentum is fairly strongly negatively correlated

with the two value measures, which are positively correlated with each other.

In the more recent sub-sample from 1999-2008, which spans a very di¢ cult time period for stock

investments, the market portfolio delivered an average negative return of about two percent. The

momentum and dividend-price ratio strategies both resulted in Sharpe ratios of around 0.2, and

only the book-to-market strategy delivered a somewhat sizeable Sharpe ratio of about 0:5.

3.2 Empirical results

3.2.1 Empirical implementation

We analyze the empirical performance of the zero-cost characteristic-based strategies outlined pre-

viously in the paper. That is, if xt = [x1t � � � xkt] denote the n � k matrix of standardized stock

characteristics at time t, the portfolio weights !t are proportional to xt�, for some �. In particular,

we consider three di¤erent �estimates�of the parameter �: (i) the regression-based estimate, denoted

�̂, which is obtained from the estimation of equation (1) and e¤ectively ignores the covariance struc-
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ture of the returns and focuses only on the conditional mean; (ii) the estimate of � resulting from

the direct estimation of the weights in equation (10), denoted ~�, which solves the sample analogue

of the investor�s problem subject to the restriction of a portfolio policy linear in the characteristics;

and (iii) a scheme that sets all components in � equal, which can be seen as a portfolio strategy

that takes equal positions in each of the single-characteristic portfolios. The equal weighted scheme

thus provides a benchmark for the two data driven approaches and can be seen as an analogue to

the usual equal-weighted portfolio that is typically used to evaluate the success of mean-variance

analysis (e.g., DeMiguel, Garlappi, and Uppal (2007))

For the regression-based �̂, the �nal weights are given by !t = 
�1�̂�2xt�̂, where �̂ is the pooled

sample standard deviation of the residuals from the regression equation (1), and 
 is formally the

coe¢ cient of relative risk aversion. For the directly-estimated ~�, 
 is already part of the estimator

and the weights are simply given by !t = xt~�. In order to �x the scale in the equal-weighted

portfolio, we set each of the individual components of � equal to the average of the components of

~� in the full-sample estimate. Since this merely sets the scale of the weights, using the full-sample

estimate does not lead to any look-ahead bias in the portfolio evaluation, but provides results that

are easy to compare.

Changing 
 merely scales up or down the mean and volatility of the returns on the portfolio,

but leaves the Sharpe ratio una¤ected. For the purposes here, choosing 
 is therefore primarily a

matter of choosing a convenient scale in which to express the results. We set 
 = 5, which is in line

with many previous studies.

Given that the portfolio weights can be scaled up or down arbitrarily (as long as the scaling

constant is identical in all periods), it is the relative size of the components in � that is of primary

interest. In the result tables, we therefore report estimates of � that have been standardized such

that the sum of the components in � add up to unity. Each component of � can therefore be

interpreted as the relative weight given to the corresponding stock characteristic.

We present both �in-sample�and �out-of-sample�results for the portfolio strategies. That is, the

estimates of � used to calculate the portfolio weights are either obtained using the full sample or are

recursively updated using only information available at the time of the portfolio formation. From

a practical portfolio management perspective, the latter approach is clearly the relevant one, but

comparison with the in-sample results show how much the performance of the portfolio strategies
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deteriorates due to poor estimates in a real-time setting. In order to form the initial estimates of

�, the earliest starting date for measuring portfolio performance is January 1980.

We consider two di¤erent combinations of characteristics: (i) momentum and book-to-market

value, and (ii) momentum, book-to-market value, and the dividend-price ratio. In general, book-

to-market is considered a better measure of value than the dividend-price ratio (although this is

only weakly supported by the results in Table 2), and the combination with both value measures

included can be seen as a test of whether the dividend-price ratio contributes any extra information

over and above that of the book-to-market value.

BSCV provide an in-depth analysis of transaction costs in their related setup and show that

their portfolio results and conclusions remain fairly unchanged when transaction costs are taken into

account. Since there is little reason to believe that these �ndings would not apply to the current

analysis as well, we keep the empirical application simple and omit the e¤ects of transaction costs.

3.2.2 Portfolio results

Table 3 shows the results for the multi-characteristic portfolio choice strategies, for the full 1980-

2008 period (Panel A), and the recent 1999-2008 sub-sample (Panel B). Summary statistics for

the portfolio returns for the di¤erent combinations of characteristics and estimation approaches are

shown, for both out-of-sample and in-sample exercises. In addition, the estimates of the parameters

determining the portfolio choices are also provided. The out-of-sample results are formed by using

parameter estimates for the portfolio choice that are recursively updated, based on all available

data up till that period. In the tables, the average estimates over the evaluation period are shown.

The �in-sample�estimates that are shown, and used to form the in-sample portfolios, are de�ned as

follows. For the 1980-2008 evaluation period (Panel A), the in-sample estimates are obtained from

using the entire data set from 1974-2008. For the 1999-2008 sub-sample (Panel B), the in-sample

estimates represent the estimates using data only from the actual portfolio formation period; i.e.

from 1999 to 2008. We adopt this approach to make the most use of the data in the long sample and

to investigate whether the parameters have changed much over time by using a shorter in-sample

period in the recent sub-sample. t�statistics for the full-sample estimates are shown in parentheses

below the point estimates.

Starting with the full 1980-2008 sample in Table 3, Panel A, several interesting results stand out.
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First, during this sample period, the multi-characteristic portfolios always outperform the single-

characteristic portfolios, regardless of the way the weights are obtained; the virtues of diversi�cation

are thus clearly present also in zero-cost characteristic-based portfolios. This is true both for the out-

of-sample and in-sample exercises. In general, the Sharpe ratios are upwards of one in value, which

is almost three times the market Sharpe ratio. Second, the portfolios based on the direct-weight-

estimation approach (denoted Dir. in the tables) substantially outperform the portfolios using naive

regression-based weights (denoted Reg.), with Sharpe ratios that are about 25 percent larger. Third,

the equal-weighted portfolios (denoted EW) always perform better than the regression-based ones

in terms of Sharpe ratios, and very similarly to the portfolios with directly estimated weights. One

interpretation is thus that even with as few as two or three e¤ective assets over which to choose,

it is di¢ cult to beat an equal weighted portfolio in a mean-variance setup. This need not only be

due to poor estimates of the variance-covariance matrix and mean parameters as such, which is

typically the case in large-scale mean-variance analysis, but likely also re�ects changes over time

in these parameters. However, the strong performance of the equal-weighted portfolio also partly

re�ects the fact that, at least in the portfolios based on just momentum and book-to-market value,

the equal-weighting scheme is in fact very close to the optimal in-sample scheme. This result also

helps explain the strong �ndings by Asness et al. (2009), who explicitly analyze the bene�ts of

combining momentum and value portfolios and always consider the equal-weighted case. As seen

here, the equal weighting is, in fact, very close to the in-sample optimal weights.

In terms of higher moments, the equal-weigthed portfolios have the thinnest tails, and the

regression-based ones by far the heaviest. The regression-based weights also lead to more left-

skewness than the two other approaches. Further, for all strategies the CAPM betas are very

close to zero in absolute value and none of the t�statistics are signi�cant, whereas the CAPM

alphas are all highly statistically signi�cant. Finally, the in-sample and out-of-sample results are

very similar for the direct-estimation approach, highlighting the robustness of the method. The

regression-based approach does surprisingly well in-sample, suggesting that part of the gains from

the direct-estimation approach are due to stable estimates over time. This is con�rmed by Figure 1,

which shows the recursive estimates of �, from both the regression-based approach and the direct-

estimation approach. The estimates are standardized to add up to one in each period, and it is

clear that the directly-estimated parameters remain much more stable over the sample period than
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the regression-based ones.

The estimates of the parameters governing the portfolio choice are also of interest and reveal

the di¤erences between the regression-based and direct-optimization approaches. The regression-

based weights always put a very large weight on momentum (around 60 to 70 percent), which is the

strategy that delivers by far the highest mean in Panel A, Table 2, and subsequently smaller weights

on the other characteristic(s). This is not surprising since the regression weights e¤ectively only take

into account the expected returns. The direct-optimization weights, on the other hand, put a much

larger weight on the valuation characteristics, since the returns on the portfolios formed on the book-

to-market or the dividend-price ratio are negatively correlated with the momentum returns and thus

reduce the variance in the combined portfolio. As seen from the full-sample weight estimates, the

characteristics typically enter with statistically signi�cant coe¢ cients into the portfolio choice. The

only exception is the dividend-price ratio in the regression-based three-characteristic portfolio; all

other estimates are signi�cant at the 10 percent level, and the momentum and book-to-market value

are always highly signi�cant. Although the dividend-price ratio shows up as statistically signi�cant

in the directly-estimated portfolio weights, its impact on the performance characteristics is slightly

negative out-of-sample. Adding the dividend-price ratio to the equal-weighted portfolio does reduce

the kurtosis and increase the right-skewness somewhat, without much e¤ect on the Sharpe ratio.

Panel B of Table 3 reports the portfolio results for the most recent 10-year episode from 1999

to 2008, which covers both the extremely tumultuous times in international stock markets due to

the recent credit crisis as well as the sharp decline in stock markets at the start of the millennium.

Qualitatively, the results are very similar to those for the full sample, with the direct-optimization

approach clearly outperforming the regression-based approach in terms of Sharpe ratios. The overall

performances of all the strategies are much weaker than in the full sample, re�ecting the weak results

seen in Table 2 for the single-characteristic strategies. Compared to the performance of the market

index, however, the characteristic-based strategies perform very well: The equal-weighted strategy

in all three characteristics delivers an annual mean return of 11% with a 16% annual volatility,

whereas the market returned an average of �2% during the same period with a similar volatility.

The out-of-sample and in-sample results are again fairly similar for the directly-estimated

weights, which is somewhat striking given that the in-sample results only use data from 1999-

2008, whereas the out-of-sample results use data recursively all the way back to 1974. Given the
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short sample period, it is not surprising that many of the estimated parameters are not statisti-

cally signi�cant. The equal weighted portfolio again performs very well and, in fact, dominates

the directly estimated portfolio strategy along all dimensions in the out-of-sample results. During

this sample period, adding the dividend-price ratio to the portfolios also substantially reduces the

kurtosis, while marginally increasing the Sharpe ratio.

4 Conclusion

We study the empirical implementation of mean-variance portfolio choice when the distribution

of the cross-section of returns can, at least partially, be described by characteristics such as value

and momentum. Following the work of Brandt et al. (Forthcoming), we analyze a method that

directly parameterizes the portfolio weights as a function of these underlying characteristics. In the

mean-variance case, this allows for a closed form solution of the parameters governing the portfolio

choice, which provides for additional insights into the mechanics of this approach for obtaining

portfolio weights. In particular, it turns out that the direct estimator of the portfolio weights is

the sample-e¢ cient solution to the mean-variance problem where the set of assets is made up of

portfolios based on individual stock characteristics, which is typically of a much smaller dimension.

In an empirical application, we study long-short portfolio choice in international MSCI indexes

for 18 developed markets, using three di¤erent characteristics: book-to-market, the dividend price-

ratio, and momentum. The results for the directly-estimated portfolio weights are compared to a

naive regression-based approach, which e¤ectively only considers the conditional mean returns when

assigning weights, as well as to an equal-weighted scheme in the characteristic-based portfolios.

The empirical results highlight several important �ndings. First, the bene�ts from combining

several characteristics are clear, and the improvement in portfolio performance is substantial com-

pared to the single-characteristic strategies. Second, using the direct-estimation approach generally

outperforms the naive regression-based approach by a wide margin. Third, there is also evidence

that a simple equal-weigthed characteristic-based portfolio does almost as well, and sometimes

better, than the direct-estimation approach.

The paper highlights the strong and robust performance that is achieved by parameterizing

portfolio weights directly as functions of underlying characteristics, as opposed to methods where
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the distribution of returns is modelled and estimated in an intermediate step. However, the results

of the paper also suggest that much of the strong performance that is seen derives simply from the

diversi�cation bene�ts of combining several strategies, such as value and momentum, rather than

the optimal choice of the weights put on each strategy.
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Table 1: Estimates of the unconditional CAPM for individual countries. This table reports country-
by-country estimates from regressing individual country excess returns on the world market excess
returns and a constant. The �rst two columns report the estimate and t�statistic for the intercept,
respectively, and the following two columns report the estimated CAPM beta and corresponding
t�statistic. The �nal column shows the R2 of the regression. The sample spans the period from
December 1974 to December 2008, for a total of 409 monthly observations.

Country �i t�i �i t�i R2i

Australia 2.74 0.85 0.97 15.45 0.37
Austria 0.39 0.11 0.71 10.18 0.20
Belgium 1.32 0.49 0.98 18.73 0.46
Canada 0.48 0.21 1.01 22.44 0.55
Denmark 3.66 1.40 0.80 15.54 0.37
France 2.38 0.87 1.10 20.52 0.51
Germany 1.40 0.51 1.02 18.83 0.47
Hong Kong 7.23 1.61 1.14 12.85 0.29
Italy 0.16 0.04 0.94 13.04 0.29
Japan -0.67 -0.25 1.05 19.40 0.48
Netherlands 3.77 1.91 1.04 26.76 0.64
Norway 0.39 0.11 1.17 16.31 0.40
Singapore 1.80 0.47 1.15 15.35 0.37
Spain 0.21 0.07 0.97 15.50 0.37
Sweden 3.91 1.24 1.14 18.48 0.46
Switzerland 3.16 1.42 0.87 19.86 0.49
U.K. 3.42 1.28 1.09 20.63 0.51
U.S.A. 1.10 0.82 0.89 33.96 0.74
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Figure 1: Recursive estimates of �. The �gure shows the standardized recursive estimates of � from
either the estimation of the regression equation (1), denoted �RegMOM and �RegBM , or from the direct
estimation of the weights in equation (10), denoted �DirMOM and �DirBM . Data from December 1974 up
till the date in the graph are used to form each estimate.
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