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Abstract

The Newey and West (1987) estimator has become the standard way to estimate a het-
eroskedasticity and autocorrelation consistent (HAC) covariance matrix, but it does not im-
mediately apply to time series with missing observations. We demonstrate that the intuitive
approach to estimate the true spectrum of the underlying process using only the observed
data leads to incorrect inference. Instead, we propose two simple consistent HAC estimators
for time series with missing data. First, we develop the Amplitude Modulated estimator
by applying the Newey-West estimator and treating the missing observations as non-serially
correlated. Secondly, we develop the Equal Spacing estimator by applying the Newey-West
estimator to the series formed by treating the data as equally spaced. We show asymptotic
consistency of both estimators for inference purposes and discuss finite sample variance and
bias tradeoff. In Monte Carlo simulations, we demonstrate that the Equal Spacing estimator
is preferred in most cases due to its lower bias, while the Amplitude Modulated estimator is
preferred for small sample size and low autocorrelation due to its lower variance.
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1 Introduction

While use of the Newey and West (1987) estimator and its Andrews (1991) implementation

have become standard practice for heteroskedasticity and autocorrelation (HAC) robust

inference, analogous methods for series with missing observations are far from standardized.

When data are missing, the Newey-West formulas do not immediately apply, and the formula

for calculating the lagged autocorrelations that are required terms in conventional HAC

formulas must be adjusted.

Current practices for working with missing data include treating the missing observa-

tions as non-serially correlated, or imputing or ignoring the missing observations. To our

knowledge, there has not been formal justification of HAC estimation for robust inference in

these contexts, and the effect of employing these work-around methods on the resulting infer-

ences is generally unexplored in applied work. In this paper, we provide formal justification

for two methods of HAC estimation, and we compare these two methods to other existing

methods. We demonstrate that treating the data as equally spaced is preferred under very

general conditions, and that treating the missing observations as non-serially correlated may

be preferred in instances with small sample sizes or low autocorrelation. In general, we find

that our two newly formalized methods are preferred to imputation.

Especially when our aim is to adjust inferences for serial correlation, it seems counterin-

tuitive that we can either treat the data as equally spaced or treat the missing observations

as non-serially correlated, since these procedures require us to depart from the original time

structure or autocorrelation structure of the data. However, we show that these procedures

both provide consistent estimators of the long-run variance of the observed series with miss-

ing data. Though many have suggested that we infer the spectrum of the underlying data

from the observed data using the Parzen estimator, we show that the Parzen estimator is

not the correct object for inference testing. Rather, we show that our Amplitude Modulated

estimator (which treats the missing as non-serially correlated) and Equal Spacing estimator
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(which treats the observed as equally spaced) are extremely simple to implement and can be

used to generate asymptotically valid inferences.

These insights are particularly valuable given the ad hoc approaches widely found in

the applied literature. For example, researchers often use imputation procedures to fill in

the missing data. Imputation seems to expand the set of observations used for analysis,

or at least prevents us from dropping data when some covariates are unobserved. However,

because imputed data series are often smoothed versions of the underlying unobserved series,

they will often lead to asymptotically valid but extremely poor finite sample performance.

Furthermore, researchers using these methods rarely adjust their inferences for this induced

serial correlation.

Additional evidence of the confusion in the literature stems from the implementation of

the Newey-West HAC estimator in the popular statistical package, Stata. The newey2 com-

mand implements Newey-West to obtain the standard error of the coefficient in a regression

using time series or panel data. When observations are missing, the option “force” can be

applied. This option will apply our Equal Spacing estimator to time series data and apply

our Amplitude Modulated estimator to panel data. However, it should be possible to im-

plement either the Equal Spacing estimator or the Amplitude Modulated estimator for time

series data. Furthermore, the program will not apply the Amplitude Modulated estimator

at all when some lags are unobserved. This condition is likely an artifact of the literature

on estimating the long-run variance of the underlying series, which develops estimators that

generally require all lags to be observed (Clinger and Van Ness, 1976; Parzen, 1963). Yet for

robust inference, we show that the Amplitude Modulated and Equal Spacing estimators do

not require all the lags to be observed.

A primary goal of this paper is to help researchers select the correct estimation procedure

in applied work. To that end, we follow the style of Petersen (2009), which provides guidance

for selecting standard errors in finance panel data sets. We formally present the Amplitude

Modulated and Equal Spacing estimators of the long-run variance of the observed series,
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and we review their asymptotic properties. We contrast these estimators with the Parzen

estimator of the long-run variance of the underlying series. After presenting these theoretical

contributions, we offer intuition for why the estimators work and how they are related to

each other. To generate guidance for choosing the correct estimator, we conduct Monte

Carlo simulation results for various sample sizes, correlation structures, and fractions of

observations that are missing. In addition to testing our estimators using randomly missing

data, we demonstrate the applicability of these estimators to a deterministic cyclical missing

structure, as with daily financial data, which usually cover 5 of 7 days of the week. Finally, we

discuss an empirical application using recursive regressions for commodities futures returns

to demonstrate how the choice of estimator can affect the conclusion of empirical tests.

As a preview, our results demonstrate that the Amplitude Modulated and Equal Spac-

ing estimators are both consistent under random and deterministic missing structures. In

finite samples, we find that for the same fixed bandwidth, the Equal Spacing estimator is

generally less biased than the Amplitude Modulated estimator, but has larger variances.

Consequently, the Equal Spacing estimator is preferred when autocorrelation is high, as the

bias will dominate the mean squared error in these cases. Conversely, when autocorrelation

is low, variance dominates the mean squared error, and the Amplitude Modulated estimator

is preferred. The precise cutoff between these cases depends on the sample size, and whether

automatic bandwidth selection procedures are implemented.1

The remainder of the paper is structured as follows. Section 1.1 discusses some examples

of missing data problems for which imputation and equal spacing methods have been applied,

and provides a brief review of some of the related econometrics literature. Section 2 provides

an overview of our estimators by applying them in a simple setting with missing observations.

Section 3 formally defines the estimators and discusses their asymptotic and finite sample
1To make it easier for researchers to apply these estimators, we have posted Matlab code for both

estimators on our websites. We also have posted a basic simulation code that reports empirical rejection
rates, size-adjusted power, bias, and variance for the Equal Spacing, Amplitude Modulated, Impuation, and
(full sample) Newey-West estimators. Researchers can use the simulation code to evaluate the performance
of the estimators under customized sample size, autocorrelation, and missing structure before choosing which
estimator to implement.
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properties. Section 4 presents the application of these estimators to inference in a regression

setting with missing observations. Section 5 describes the Monte Carlo simulations based on

these estimators and the results. Section 6 presents an empirical application of the estimators

using data on commodities returns. Finally, Section 7 concludes.

1.1 Relation to the Literature

This paper extends the HAC covariance literature to applications with missing observations.

In general, the most commonly used HAC covariance matrix is the one proposed by Newey

and West (1987) and further developed by Andrews (1991). The Newey-West estimator

equals a weighted sum of lagged autocovariance matrices, in which the weights are calculated

using the Bartlett kernel. Newey and West (1987) show that this estimator is positive semi-

definite and heteroskedasticity and autocorrelation consistent. Andrews (1991) and Newey

and West (1994) investigate the finite sample properties of these estimators and propose

data-dependent bandwidths. Though some papers have proposed variants of the estimators

discussed in these seminal papers, the estimators applied in most of the current literature

remain largely unchanged from their original form.

There have been earlier attempts to estimate HAC covariance matrices when some ob-

servations are missing. The Parzen (1963) paper on spectral analysis for data series with

missing observations focuses on estimating the autocovariances of the underlying process

in the presence of missing observations, based on a specific cyclical structure of missing

data. We contribute to this literature by pointing out that for robust inference, we gen-

erally require an estimate of the long-run variance of the observed series rather than the

underlying. We differentiate between the Amplitude Modulated estimator and the Parzen

estimator. Following Parzen (1963), both of these estimators involve recasting the observed

series as an amplitude modulated series in which the value of the underlying series is set to

zero when observations are missing. The observed time structure of the data is respected,

and the lagged autocovariances are estimated using only the lagged pairs which are fully
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observed. We show that while the Amplitude Modulated estimator is a consistent estimator

of the long-run variance of the observed series, the Parzen estimator is a consistent estimator

of the long-run variance of the underlying series. Along with these theoretical results, we

provide simulation results that demonstrate consistency of the t-statistic constructed using

the Amplitude Modulated estimator.

We also argue to extend the set of missing data structures to which these estimators

can be applied. Other researchers have attempted to apply Parzen’s work to a variety of

missing data structures, including the Bernoulli structure of randomly missing variables and

more general cyclical patterns of missing observations (Scheinok, 1965; Bloomfield, 1970;

Clinger and Van Ness, 1976; Dunsmuir and Robinson, 1981a,b). While the literature has

moved beyond Parzen’s original application, it still is focused on applications with randomly

missing observations. Yet, many common applications of missing data techniques are for data

that have a deterministic missing structure. Our theoretical results and simulation exercise

demonstrate that as long the missing data structure satisfies our independence assumption,

we can apply the Amplitude Modulated and Equal Spacing estimators to settings in which

the pattern of missing observations is deterministic instead of random. This extends the set

of possible applications to include business daily data, for example, in which weekends could

be considered missing data.

More recently, Kim and Sun (2011) construct a HAC estimator for the two-dimensional

case robust to spatial heteroskedasticity and autocorrelation. The focus of the paper is not

on missing data, and they do not distinguish the difference between the spatial spectrum of

the underlying versus the observed process. However, they discuss the applicability of their

method to irregularly observed spatial data. Reducing the spatial HAC on the irregular

lattice to one-dimensional time series produces an estimator very similar to our Amplitude

Modulated estimator. We clarify the subtlety between the underlying and observed spectrum

and develop the Amplitude Modulated estimator in the context of time series with missing

data.
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Setting the theory aside, many researchers use imputation techniques when faced with

missing observations in practice. For example, one common use of imputation is to tempo-

rally disaggregate data to generate quarterly data from annual series, or monthly data from

quarterly series. The Denton method of imputation smooths data when generating these

series by minimizing first-differences or second-differences (Denton, 1971). Relatedly, the

Chow-Lin method uses a related indicator series that can be used to interpolate, distribute,

or extrapolate data (Chow and Lin, 1971, 1976). When this method is used, some proper-

ties of the indicator series, including serial correlation, will be transferred to the imputed

series. Even the simplest method of imputing data by naive linear interpolation will induce

autocorrelation in the imputed series. Studies based on Monte Carlo simulations suggest

that even for reasonably large sample sizes, inference methods based on Newey-West HAC

covariance estimators result in significant overrejection when the serial correlation is high

(den Haan and Levin, 1997). In an imputed series, the induced high autocorrelation exac-

erbates this distortion. Yet, researchers using these methods rarely adjust their inferences

for this induced serial correlation (for two such examples, see Eaton, Kortum, Neiman, and

Romalis (2011) and Forni, Monteforte, and Sessa (2009)). We show in our Monte Carlo

simulations and our empirical application that our estimators are simple alternatives that

avoid the problems associated with imputation.

To avoid the complication of adjusting HAC estimators for the method and extent of

imputation, some researchers simply ignore the missing observations. Formally, this method

amounts to relabeling the time index and treating observations as though they are equally

spaced in time. While this method has no previous formal justification to our knowledge,

it has been widely applied. For example, observations of daily financial data are generally

treated as equally spaced consecutive observations, irrespective of their actual spacing in time

(examples include Acharya and Johnson (2007), Beber, Brandt, and Kavajecz (2009), Jorion

and Zhang (2007), Pan and Singleton (2008), and Zhang, Zhou, and Zhu (2009)). Yet, for

prices that are affected by developments in global markets with different business weeks or
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national holidays, the lack of price data on weekends and holidays could be treated as missing

observations. In this paper, we formalize this Equal Spacing estimator and demonstrate its

asymptotic consistency and finite sample performance.

In light of the existing confusion in the literature on HAC estimation with missing data,

we provide our Equal Spacing and Amplitude Modulated estimators as alternatives. We dis-

cuss the finite sample properties of these estimators and provide simulation results that offer

insight into the bias and variance tradeoffs between the two estimators, so that practitioners

can make an informed choice before applying either one.

2 A simple example

To fix ideas, in this section we introduce each of our estimators in the context of a simple

example using three weeks of daily gasoline prices. We reserve for the next section a more

detailed discussion of the asymptotic and finite sample properties of the estimators and the

practical considerations involved in choosing among them. Suppose we have gasoline price

data {zt} for the first three weeks of the month:

Mon Tues Weds Thurs Fri Sat Sun

z1 z2 z3 z4 z5 z6 z7

z8 z9 z10 z11 z12 z13 z14

z15 z16 z17 z18 z19 z20 z21

For clarity of exposition, suppose these data have already been demeaned, so that we have

E(zt) = 0. To estimate the long-run variance of the series {zt}, we can apply the standard

Newey-West estimator:

Ω̂NW = γ̂(0) + 2
m∑
j=1

w(j,m)γ̂(j),
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where the Bartlett kernel, w(j,m) = 1 − [j/(m + 1)] if j ≤ m and w(j,m) = 0 if j > m, is

used to weight the sample autocorrelations at each lag j:

γ̂(j) =
1

T

T∑
t=j+1

zt−jzt,

In our example, we can estimate the first lagged autocorrelation for the gasoline price series

as:

γ̂(1) =
1

21
[z1z2 + z2z3 + ...+ z20z21].

Similarly, we estimate the third lagged autocorrelation as:

γ̂(3) =
1

21
[z1z4 + z2z5 + ...+ z18z21].

Note that the denominator in both cases is the total number of observations, T , rather than

the number of observed lags, T − j.

Now suppose we have only business daily data, with missing data on weekends:

Mon Tues Weds Thurs Fri Sat Sun

z1 z2 z3 z4 z5 . .

z8 z9 z10 z11 z12 . .

z15 z16 z17 z18 z19 . .

When some data points are missing, we have a few choices for how we estimate the lagged

autocovariances, γ̂(j), that are components of the long-run variance, Ω̂. Especially in the

context of business daily data, one very common procedure is to ignore the missing data. In

this case, we would treat the observed prices as equally spaced in time. When estimating

the first lagged autocovariance for our Equal Spacing estimator, we would treat the jump

from Friday to Monday (e.g. day 5 to day 8) as a one day lag:

γ̂ES(1) =
1

15
[z1z2 + z2z3 + z3z4 + z4z5 + z5z8 + z8z9 + z9z10 + ...+ z18z19].
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Similarly, the third autocovariance would be estimated as:

γ̂ES(3) =
1

15
[z1z4 + z2z5 + z3z8 + z4z9 + z5z10 + z8z11 + z9z12 + z10z15 + ...+ z16z19].

Since we have effectively reduced the sample size by ignoring the missing days, the denomi-

nator for each estimated lagged autocovariance is the total number of observed data points,

or 15 in our example.

Alternatively, we could estimate the lagged autocovariances using only the instances in

which we observe data with the right spacing. We call this the Amplitude Modulated estima-

tor, because we are effectively modulating, or setting to 0, the value (or amplitude) of the

series on the missing days. Using this estimator, to estimate the first lagged autocovariance

in our example, we would use the lag from day 4 to day 5 and then skip to the lag from day

8 to day 9:

γ̂AM(1) =
1

15
[z1z2 + z2z3 + z3z4 + z4z5 + z8z9 + z9z10 + ...+ z18z19].

The third autocovariance would be estimated using all observed three day lags, including

the three day lags between Friday and Monday:

γ̂AM(3) =
1

15
[z1z4 + z2z5 + z5z8 + z8z11 + z9z12 + z12z15 + z15z18 + z16z19].

In this method, the denominator for each lag is again the total number of observed data

points, as in the the Equal Spacing estimator.

While we focus on these two estimators throughout most of the paper, for comparison, our

simulations will also implement two alternatives that are not preferred. The first alternative

is the Parzen estimator, after Parzen (1963). It is constructed like the Amplitude Modulated

estimator, except that we adjust the denominator to equal the number of times we observe

9



data with the right spacing:

γ̂PZ(1) =
1

12
[z1z2 + z2z3 + z3z4 + z4z5 + z8z9 + z9z10 + ...+ z18z19].

The third autocovariance would be estimated as:

γ̂PZ(3) =
1

8
[z1z4 + z2z5 + z5z8 + z8z11 + z9z12 + z12z15 + z15z18 + z16z19].

Finally, we will implement our Imputation estimator, which is the Newey-West estimator

applied to the filled series, {zIt }, constructed by linearly imputing the missing data. In our

example with business daily gasoline prices, the first and third lagged autocorrelations can

be estimated as:

γ̂IM(1) =
1

21
[z1z2 + ...+ z4z5 + z5z

I
6 + zI6z

I
7 + zI7z8 + z8z9 + ...+ z18z19 + z19z

I
20 + zI20z

I
21]

γ̂IM(3) =
1

21
[z1z4+z2z5+z3z

I
6 +z4z

I
7 +z5z8+zI6z9+zI7z10+z8z11+ ...+z16z19+z17z

I
20+z18z

I
21].

3 Long-Run Variance of Time Series with Missing Ob-

servations

In this section, we formalize our main estimators and describe their asymptotic and finite

sample properties.

3.1 Missing Data Structure

Consider a second-order stationary time series {zt}∞t=1 with
∑∞

j=0 |γz(j)| <∞ and E(zt) = µ

and an indicator series {gt}∞t=1 such that gt = 1 if zt is observed and gt = 0 if zt is missing.

Throughout the paper, we maintain the assumptions on the missing data structure:
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Assumption 1. Independence: We assume that the underlying series {zt} is independent of

the series {gt}. In other words, for any positive integer n <∞ and any sequence t1, ..., tn, the

random variable z ≡ (zt1 , ..., ztn) and g ≡ (gt1 , ..., gtn) satisfy the condition that Pr(z−1(A) ∩

g−1(B)) = Pr(z−1(A))Pr(g−1(B)) for any two n-dimensional Borel sets A, B j Rn.

Assumption 2. Existence: limT→∞(S/T ) = α and limT→∞[1/S]
∑T

t=j+1 gtgt−j = κ(j) both

exist.

Assumption 1 requires that the missing process is independent of the underlying data, so

that missing data do not induce bias in the parameter estimates. Assumption 2 requires that

the fractions of observed converges in probability, and the asymptotic ratio of the number

of observed lag j to total number of observations exists. Under these assumptions, we allow

very general stochastic or deterministic missing data processes. We give two commonly

observed missing data structures as follows:

Example 1. Bernoulli missing: The series {gt}∞t=1 has an i.i.d. Bernoulli distribution, in

which each gt takes value 0 with probability p and value 1 with probability 1− p.

Example 2. Cyclically missing: Given a series {zt}∞t=1 , we can divide the series into cycles

which are each of length h > 2. In the first cycle of length h, we have k missing observations

for some integer k < h. Define the set of time indexes of these missing observations, S =

{s1, ..., sk}, where the integers sk ∈ [1, h] for all k. For t ≤ h, gt = 0 if and only if t ∈ S. In

a cyclically missing structure, for t > h, we have gsk+hl = 0 for all integers l = 1, 2, ...,∞,

and gt = 1 otherwise.

The indicator series {gt} is stochastic for Bernoulli missing and deterministic for cyclical

missing once the missing pattern is known for any h consecutive elements.

3.2 Newey-West Estimator

First, we review the standard Newey-West estimator that applies to time series without

missing observations. Suppose that zt is continuously observed at t = 1, ..., T with E(zt) = µ.
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We let γz(j) = E[(zt − µ)(zt−j − µ)] denote the j-th lagged autocovariance. Under the

standard assumption that zt is second-order stationary with
∑∞

j=0 |γz(j)| < ∞, we have

the standard results that 1√
T

∑T
t=1(zt − µ)

d→ N(0,Ω), where the long-run variance of the

underlying process zt is equal to

Ω =
∞∑

j=−∞

γz(j). (1)

The Newey-West HAC estimator for Ω is given by

Ω̂NW = γ̂z(0) + 2
m∑
j=1

w(j,m)γ̂z(j),

where γ̂z(j) = 1
T

∑T
t=j+1(zt − z̄T )(zt−j − z̄T ) and z̄T = (1/T )

∑T
t=1 zt. In the Newey-West

formula, the lagged autocovariances, γ̂z(j), are weighted by the Bartlett kernel, w(j,m) =

1 − [j/(m + 1)] for j ≤ m and w(j,m) = 0 otherwise, to ensure a positive semi-definite

covariance matrix. Under fairly general technical assumptions, as long as limT→∞m(T ) =∞

and limT→∞
[
m(T )/T 1/4

]
= 0, we have Ω̂NW p→ Ω (Newey and West, 1987). The choice of

optimal bandwidth m is given by Andrews (1991) and Newey and West (1994) who further

explore the properties of alternative choices for the bandwidth and kernel and the finite

sample properties of these estimators.

3.3 Long-Run Variance of the Underlying Process - Parzen Esti-

mator

In the presence of missing observations, we follow Parzen (1963) and recast the series as

an amplitude modulated version of some underlying full series. We define the amplitude

modulated series, {z∗}, as z∗t = gtzt. Using the amplitude modulated series {z∗t }, Parzen

(1963) suggests the following estimator for the autocovariance of the underlying series {zt}:

γ̂PZz (j) =

∑T
t=j+1(z

∗
t − gtz̄∗T )(z∗t−j − gt−j z̄∗T )∑T

t=j+1 gtgt−j
,
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if ΣT
t=j+1gtgt−j > 0. Dunsmuir and Robinson (1981a) establishes γ̂PZz (j)

p→ γz(j) provided

that z∗t is asymptotically stationary.

Under the special case that limT→∞
∑T

t=j+1 gtgt−j > 0 for all j, we can use the observed

data to construct our Parzen estimator, which is a Newey-West type consistent estimator of

the long-run variance of the underlying process zt:

Ω̂PZ = γ̂PZz (j) + 2
m∑
j=1

w(j,m)γ̂PZz (j)
p→ Ω

While this object may be useful in some instances, it is incorrect for inference testing. First,

Dunsmuir and Robinson (1981b) study the case in which w(j,m) = 1, and point out that

Ω̂PZ may not be positive semi-definite.2 Secondly, as we further demonstrate, the long-run

variance of the underlying process differs from the long-run variance of the observed process.

Though the Parzen estimator is formed using observed data only, it is a consistent estimator

of the variance of the underlying process. Consequently, inference on the observed data will

be invalid if we use the Parzen estimate of the variance.

3.4 Long-Run Variance of the Observed Process

Let S =
∑T

t=1 gt be the total number of the observed. The sample mean is given by z̄∗T =

1
S

∑T
t=1 z

∗
t . Asymptotic mean and variance of z̄∗T is given by the following proposition.

Proposition 1. z̄∗T
p→ µ and Ω∗ ≡ limT→∞ S · E(z̄∗T − µ)2 =

∑∞
j=−∞ κ(j)γz(j).

Proof. Given E(gt) = limT→∞(S/T ) = α and gt is independent of zt, we have E(z∗t ) =

E(gt)E(zt) = αµ.We can rewrite limT→∞ z̄
∗
T = limT→∞

1
S

∑T
t=1 z

∗
t = limT→∞

T
S

1
T

∑T
t=1 z

∗
t .We

know that limT→∞(S/T ) = α. By the law of large numbers, we have limT→∞
1
T

∑T
t=1 z

∗
t = αµ.

2In our simulations, we implement the estimator using Bartlett kernel weights to maintain comparability
with results for ES and AM. However, this does not guarantee that the estimator will be positive semi-definite.

13



Therefore, limT→∞ z̄
∗
T = µ. We also have

S · E(z̄∗T − µ)2 = [1/S]E

[
T∑
t=1

gt(zt − µ)

]2

= [1/S]E

[
T∑
t=1

(zt − µ)2g2t + 2
T−1∑
j=1

T∑
t=j+1

(zt − µ)(zt−j − µ)gtgt−j

]

= [T/S)]

[
γz(0)E

(
1

T

T∑
t=1

g2t

)
+ 2

T−1∑
j=1

γz(j)E

(
1

T

T∑
t=j+1

gtgt−j

)]
.

Define κ(j) ≡ limT→∞[1/S]
∑T

t=j+1E(gtgt−j), the share of times lag j is observed. Given

limT→∞(T/S) = 1/α and E
[
(1/T )

∑T
t=j+1 gtgt−j

]
= limT→∞(1/T )

∑T
t=j+1 gtgt−j = ακ(j),

we have

Ω∗ = lim
T→∞

S · E(z̄∗T − µ)2 =
∞∑

j=−∞

κ(j)γz(j). (2)

Therefore, the long-run variance of the observed amplitude modulated process, i.e., Ω∗,

is a weighted sum of the original autocovariances, with the weights being the asymptotic

ratio of the number of the observed lags to the total number of the observed, S. Comparing

equations (1) and (2), when zt is observed at all t, i.e., gt = 1 for all t, then Ω∗ = Ω. In the

presence of missing observations, if all autocovariances are positive, we have κ(j) ≤ 1. Then

the long-run variance of the amplitude modulated process is always weakly smaller than the

long-run variance of the underlying process, Ω∗ ≤ Ω.

3.4.1 Amplitude Modulated Estimator

To estimate Ω∗ in finite samples with S observed, a natural candidate is given by the following

proposition.
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Proposition 2. A consistent estimator of Ω∗ is given by

Ω̂∗ = γ̂z∗(0) + 2
T−1∑
j=1

γ̂z∗(j)

where γ̂z∗(j) = [1/S]
∑T

t=j+1(z
∗
t − gtz̄∗T )(z∗t−j − gt−j z̄∗T ).

Proof. We note that

γ̂z∗(j) = [1/S]
T∑

t=j+1

(z∗t − gtz̄∗T )(z∗t−j − gt−j z̄∗T )

=
T

S

1

T

T∑
t=j+1

(zt − z̄∗T )(zt−j − z̄∗T )gtgt−j

Since limT→∞ T/S = 1/α, limT→∞E(zt − z̄∗T )(zt−j − z̄∗T ) = γz(j) and limT→∞E(gtgt−j) =

ακ(j) we have

γ̂z∗(j)
p→ κ(j)γ(j).

Therefore, Ω̂∗
p→ Ω∗.

However, Ω̂∗ is not guaranteed to be positive semi-definite, which is not desirable for

inference. We can use a kernel-based method to ensure the covariance estimator is positive

semi-definite:

Ω̂AM = γ̂z∗(0) + 2
m∑
j=1

w(j,m)γ̂z∗(j).

We follow Newey and West (1987) and illustrate with the most commonly used kernel, the

Bartlett kernel.

Proposition 3. Using the Bartlett kernel, w(j,m) = 1 − [j/(m + 1)] if j ≤ m and

w(j,m) = 0 if j > m, suppose (i) the bandwidth m satisfies limT→∞m(T ) = +∞ and

limT→∞[m(T )/T 1/4] = 0. Then Ω̂AM is positive semi-definite and Ω̂AM p→ Ω∗.
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Proof. We follow proofs of Theorems 1 and 2 in Newey and West (1987) by defining ht ≡

z∗t − gtµ , ĥt ≡ z∗t − gtz̄∗T and replace all T in the denominator in Newey and West (1987)

with S.

Our estimator Ω̂AM is almost equivalent to applying the Newey-West estimator to the

amplitude modulated series. However, we make two minor modifications to the components

γ̂z∗(j) = [1/S]
∑T

t=j+1(z
∗
t − gtz̄

∗
T )(z∗t−j − gt−j z̄

∗
T ). First, we subtract z∗t by gtz̄

∗
T instead of

E(gt)z̄
∗
T , so that the difference (z∗t − gtz̄∗T ) equals zero for unobserved data. In the case of a

mean-zero series, this modification would not be required. Secondly, since we want to use

Ω̂AM to make inferences about the mean of the observed process z̄∗T , we divide the sum by

S instead of T so that our inference procedure remains consistent.

3.4.2 Equal Spacing Estimator

Instead of casting the time series with missing observations as an amplitude modulated

process, an alternative method is to ignore the missing observations and treat the data as

equally spaced over time. We define the function ι(t) as the mapping from time index t

to the new equal spacing time domain s: ι(t) =
∑t

`=1 g`. We use this mapping to relabel

the time indices of the observed values from the series {zt} to create the series {zESs } for

s = 1, ..., ι(T ), in the equal spacing time domain. The sample mean of the observed series is

given by z̄EST = 1
S

∑S
s=1 z

ES
s .

Proposition 4. z̄EST
p→ µ and ΩES ≡ limT→∞ S · E(z̄EST − µ)2 = Ω∗.

Proof. We let ∆jES

s ≡ ι−1(s) − ι−1(s − jES) be a function that maps the time gap (jES)

between zs and zs−jES in the equal spacing domain to the time gap (j) in the time do-

main of the underlying process {zt}. Using the indicator function I(·), we define λjES
(j) =

limT→∞
1
S

∑S
s=1 I(∆

jES

s = j), which equals the frequency that the observed lag jES maps to

lag j in the original time domain. Then we can rewrite the Equal Spacing autocovariance in
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terms of the autocovariance of the underlying process:

γzES(jES) = lim
T→∞

E(zs − z̄EST )(zs−jES − z̄EST )

=
∞∑

j=−∞

λj
ES

(j)γz(j)

Applying the same standard results as in Equation 1 to the equal spacing series, we have:

ΩES =
∞∑

jES=−∞

γzES(jES)

=
∞∑

jES=−∞

∞∑
j=−∞

λj
ES

(j)γz(j)

=
∞∑

j=−∞

 ∞∑
jES=−∞

λj
ES

(j)

 γz(j)

=
∞∑

j=−∞

κ(j)γz(j) = Ω∗.

The second to last equation holds because

∞∑
jES=−∞

lim
T→∞

1

S

S∑
s=1

I(∆jES

s = j) = lim
T→∞

1

S

T∑
t=1

gtgt−j.

To estimate Ω∗ using the equally spaced series in finite samples, we can use

Ω̂ES = γ̂zES(0) + 2
m∑
j=1

w(jES,m)γ̂zES(jES)

where

γ̂zES(jES) =
1

S

S−1∑
j=1

(zESs − z̄EST )(zESs−j − z̄EST ).

Proposition 5. Ω̂ES is PSD and Ω̂ES p→ Ω∗.

17



Proof. Positive semi-definiteness of Ω̂ES can be established using same argument in the proof

of Theorem 1 in Newey and West (1987). Using their notation, we let ĥs = zESs − z̄EST . To

prove consistency, since

γ̂zES(0) + 2

s(T )−1∑
jES=1

γ̂zES(jES) = γ̂z∗(0) + 2
T−1∑
j=1

γ̂z∗(j)

and w(j,m)
p→ 1 for all j, Ω̂ES and Ω̂AM estimators are asymptotically equivalent. We know

Ω̂AM p→ Ω∗ by proposition 3, and hence, Ω̂ES p→ Ω∗.

The Equal Spacing estimator is particularly simple to implement, because it only requires

relabeling the time index of a series with missing observations to ignore the gaps and treat the

data as equally spaced over time. Once this is done, the Equal Spacing estimator amounts

to applying the standard Newey-West estimator to the equally spaced series.

3.5 Finite Samples

Although Ω̂AM and Ω̂ES are both asymptotically consistent, finite sample performance might

differ due to different weighting on autocovariance estimators. We use the standard mean

squared error (MSE) criterion to to evaluate the performance of the estimator Ω̂i where

i ∈ {AM,ES}.

MSE(Ω̂i) = Bias2(Ω̂i) + V ar(Ω̂i)

=
[
E(Ω̂i − Ω∗)

]2
+ E[(Ω̂i − Ω̄i)2]

where Ω̄i = E(Ω̂i). Consider the case that mAM = mES ≡ m. The lag length in the

original time domain is weakly greater than that in the equal spacing domain: j = ι−1(s)−

ι−1(s − jES) ≥ jES. Under the same fixed bandwidth m, there are two main differences

between Ω̂AM and Ω̂ES. First, since the kernel weight is decreasing in the lag length for the

Newey-West estimator, Ω̂ES assigns weakly higher weight on all autocovariance estimators
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compared to Ω̂AM . To see this more explicitly,

Ω̂ES =
m∑

jES=1

w(jES,m)

S

S∑
s=jES+1

(zs − z̄∗T )(zs−jES − z̄∗T )

To write it in the original time domain, we have

Ω̂ES =
m∑

jES=1

w(jES,m)

S

T∑
t=j+1

(zt − z̄∗T )(zt−j − z̄∗T )

where t = ι−1(s) and j = ι−1(s)− ι−1(s− jES) ≥ jES. We compare Ω̂ES with Ω̂AM ,

Ω̂AM =
m∑
j=1

w(j,m)

S

T∑
t=j+1

(zt − z̄∗T )(zt−j − z̄∗T )gtgt−j.

When gtgt−j = 1, we have w(jES,m) ≥ w(j,m) since the weighting function decreases in lag

length and j ≥ jES. Therefore, given the same bandwidth, Ω̂ES puts weakly more weight

than Ω̂AM on each observed pairwise product (zt− z̄∗T )(zt−j− z̄∗T ). Second, for the same fixed

bandwidth m, Ω̂AM only estimates autocovariance with lag length up to m in the original

time domain, while Ω̂ES also includes observations for lags greater than m the original time

domain. These two differences have different implications on the relative variance and bias

of the two estimators.

As discussed in den Haan and Levin (1997), Newey-West type kernel-based estimators

suffer from three sources of finite sample bias. First, the summation in the autocovariance

estimator is divided by the sample size, instead of the actual number of observed lags. We

expect this source of bias to be more severe for Ω̂ES because Ω̂ES includes higher-order

lags that are not included in Ω̂AM and puts more weight on these high-order biased lagged

autocovariance estimators. However, this bias decreases rapidly as the sample size increases.

Second, the kernel-based method assigns zero weights to lags with orders greater than T .

This source of bias is the same for Ω̂ES and Ω̂AM .
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The third and most significant source of bias is driven by the fact that kernel-based esti-

mators under-weight the autocovariance estimators. They assign weights to autocovariance

estimators that are less than unity and are declining toward zero with increasing lag order

j. Compared with the long-run variance of the amplitude modulated series, Ω∗, the bias of

Ω̂AM arising from this source is given by

Bias(Ω̂AM) =
T−1∑

j=−(T−1)

[1− w(j,m)] γz∗(j).

For a fixed bandwidth, the higher the serial correlation, the more severe the bias. The

estimator Ω̂ES can reduce this kernel-based bias because Ω̂ES always assigns weakly higher

(or closer to unitary) weight to all autocovariance estimators as compared to Ω̂AM .

For variance of the estimators, we always have V ar(Ω̂ES) > V ar(Ω̂AM) because Ω̂ES

includes more high-order lags that are relatively poorly estimated. Therefore, the tradeoff

between variance and bias determines the relative finite sample performance of Ω̂AM and

Ω̂ES. The previous discussion uses a fixed bandwidth. Andrews (1991) and Newey and

West (1994) propose data-dependent choice of the bandwidth that aims to optimize the

mean-variance tradeoff. We apply the automatic bandwidth selection procedure proposed

by Newey and West (1994) to the AM and ES processes. As we will demonstrate using

Monte-Carlo simulations, under both fixed and automatic bandwidth selection, for small

sample size and low autocorrelation, MSE(Ω̂ES) > MSE(Ω̂AM). For moderate sample size

or high autocorrelation, we always have MSE(Ω̂AM) > MSE(Ω̂ES).

4 Regression Model with Missing Observations

We can apply asymptotic theory developed in the previous section to a regression model with

missing observations. Suppose we have the time series regression, where yt and ut are scalars,

xt is a k × 1 vector of regressors, and β is a k × 1 vector of unknown parameters. Suppose
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further that
(

1
T

∑T
t=1 xtx

′
t

)−1 p→ Σ−1xx and E(ut|xt) = 0, but the ut’s have conditional het-

eroskedasticity and are possibly serially correlated. In the presence of missing observations,

we let gt = 1 if yt and all components of xt are observed and gt = 0 if yt or any component

of xt is missing. Then we can re-express the regression in terms of amplitude modulated

processes,

y∗t = x∗tβ + u∗t , t = 1, . . . , T,

where y∗t = gtyt, x∗t = gtxt and u∗t = gtut. We require the orthogonality condition, E(u∗t |x∗t ) =

0. The standard result for the OLS estimator is given by

β̂AM − β =

(
T∑
t=1

x∗tx
∗′
t

)−1( T∑
t=1

x∗tu
∗
t

)
. (3)

Alternatively, without recasting the series as an amplitude modulated process, we ignore all

observations for which gt = 0 and assume all observed values are equally spaced in time.

Therefore, the estimated regression becomes

yESs = xESs β + uESs , s = 1, . . . , S

and

β̂ES − β =

(
S∑
s=1

xESs xES
′

s

)−1( S∑
s=1

xESs uESs

)
. (4)

Comparing equations 3 and 4, we can easily see that AM and ES give the same coefficient

estimates:

β̂AM = β̂ES ≡ β̂.

We normalize β̂ using the number of observed data, S, and then we have

√
S(β̂ − β) =

(
1

S

T∑
t=1

x∗tx
∗′
t

)−1(
1√
S

T∑
t=1

x∗tu
∗
t

)
.
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Given that
(

1
T

∑T
t=1 xtx

′
t

)−1 p→ Σ−1xx in the absence of missing observations and xt and gt are

independent,
(

1
S

∑T
t=1 x

∗
tx
∗′
t

)−1
also converges in probability. We let

(
1
S

∑T
t=1 x

∗
tx
∗′
t

)−1 p→

Σ−1x∗x∗ . Using the notation from the previous section, we define zt ≡ xtut and let z∗t ≡ gtzt

denote the amplitude modulated series and zESs denote the ES series. Then we have

z̄∗T ≡
1

S

T∑
t=1

z∗t =
1

S

S∑
t=1

zESs .

We know E(zt) = E(z̄∗T ) = 0 using the orthogonality condition.

Proposition 6. The asymptotic distribution of the OLS estimator is given by

√
S(β̂ − β)

d→ N(0,Σ−1x∗x∗Ω
∗Σ−1x∗x∗),

where Ω∗ =
∑∞

j=−∞ κ(j)γz(j) and κ(j) = limS→∞
1
S

∑T
t=j+1E(gtgt−j).

To estimate
∑−1

x∗x∗ , we can use

Σ̂−1x∗x∗ =

(
1

S

T∑
t=1

x∗tx
∗′
t

)−1
=

(
1

S

S∑
s=1

xESs xES
′

s

)−1
p→ Σ−1x∗x∗ .

Proposition 7. We define

Ω̂AM = Γ̂AM0 +
m∑
j=1

w(j,m)[Γ̂AMj + Γ̂AM ′j ],

where Γ̂AMj = (1/S)
∑T

t=1 z
∗
sz
∗′
s−j,

Ω̂ES = Γ̂ES0 +
m∑
j=1

w(j,m)[Γ̂ESj + Γ̂ES′j ],

where Γ̂ESj = (1/S)
∑S

s=1 z
ES
s zES

′
s−j . Then we have Ω̂AM p→ Ω∗ and Ω̂ES p→ Ω∗. For inferences,

the t-statistic based on Ω̂AM is given by
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tAMk =
β̂k − β0√

V̂ AM
kk /(S − k)

d→ N(0, 1),

where V̂ AM
kk is the (k, k)-th element of V̂ AM = Σ̂−1x∗x∗Ω̂

AM Σ̂−1x∗x∗. Alternatively, the t-statistic

based on Ω̂ES is given by

tESk =
β̂k − β0√

V̂ ES
kk /(S − k)

d→ N(0, 1),

where V̂ ES
kk is the (k, k)-th element of V̂ ES = Σ̂−1x∗x∗Ω̂

ESΣ̂−1x∗x∗.

5 Simulation

In the Monte Carlo simulations that follow, we study the properties of our Amplitude Mod-

ulated and Equal Spacing estimators using a simple location model. To evaluate these

estimators under a variety of circumstances, we generate data with various levels of auto-

correlation and for a range of sample sizes. We test our estimators under the two missing

structures described in Section 3.1, the Bernoulli missing structure and the deterministic

cyclically missing structure. We implement the estimators using a standard fixed bandwidth

for our benchmark results, and also provide results that implement the automatic band-

width selection procedure proposed by Newey and West (1994). Our primary evaluation

criteria are the empirical rejection probability of the test, and the power of the test against

an appropriate alternative.
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5.1 Data Structure

The inference procedures are tested on a simulated data series {yt} that is generated using

a simple location model:

yt = β + εt

εt = φεt−1 + ηt

where ηt i.i.d. ∼ N (0, 1) and ε0 = 0

For each of N = 100, 000 iterations, we use β = 0 and generate a data series {y1, ..., yTmax}

with a sample size of Tmax = 24, 000. Since we run tests over a range of sample sizes for

each estimator, we use the first T observations in each iteration for T ∈ {120, 360, 1200,

4800, 12000, 24000}. To test these methods for a range of autocorrelation parameters, φ,

we generate data separately for φ ∈{0, 0.3, 0.5, 0.7, 0.9}. The regressor in this model is a

constant 1, and we conduct simulation exercises under different missing structures for the

dependent variable {yt}, which are described below. For each iteration, we generate a series

{gt}, which indicates for each t whether yt is observed. Finally, we generate the series {y∗t },

where y∗t = gtyt.

Given this data, we estimate the parameter of interest, βi, and the estimator for the

covariance matrix, Ω̂i, for each estimator i ∈ {NW,ES,AM}. We also perform simulations

for two additional methods. First, we implement the imputation method, in which the

missing yt are linearly imputed before the standard Newey-West estimator is applied to the

filled series {yIt }. Secondly, we implement the Parzen estimator from Section 3.3. Since the

estimator Ω̂PZ is not positive semi-definite, we calculate the rejection rate using the number

of rejections divided by the number of simulations in which Ω̂PZ > 0.

We use these estimators to calculate the t-statistic, tiβ, used for a test of the null hy-

pothesis H0 : β = 0 against the two-sided alternative, Ha : β 6= 0. We choose a 5% level of

significance and reject the null hypothesis when |tiβ| > 1.96. For the standard estimations,
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we use a fixed bandwidth of m = 4(T/100)(2/9). We also apply the automatic bandwidth se-

lection procedure of Newey and West (1994) to the Newey-West, Equal Spacing, Amplitude

Modulating, and Imputation methods.

Results are reported for simulation exercises under a variety of sampling schemes. Our

benchmark sampling scheme is one with a Bernoulli missing structure as described in Exam-

ple 1 of Section 3.1. For these simulations, the series {gt} has an i.i.d. Bernoulli distribution

with fixed probability of missing, p = 6/12. For comparison, we also provide two variants in

which the probability of missing is set to 4/12 and 8/12.

We also simulate data under four data structures with cyclically missing observations, as

described in Example 2 of Section 3.1. For these, we choose a cycle length of 12, with 6 or

8 observations missing each cycle. In these simulations, the missing structure is cyclical in

that we generate a single pattern of missing observations for the first cycle, and apply this

same pattern to every cycle of 12 observations. Additionally, the pattern is deterministic in

the sense that we apply the same pattern of missing observations for all iterations in the

simulation. This sampling structure reflects the potential application of these methods to

monthly data with missing observations. For example, because commodities futures contracts

expire only some months of the year, the data on monthly commodities returns will have the

same missing pattern each year. Another common application is for daily financial data, in

which the same 2 weekend days are missing in each cycle of 7 days.

Under a deterministic cyclical missing structure, it is possible to have cases for which

certain lagged autocovariances in the original time series domain are never observed. As we

noted in the introduction, the popular statistical software Stata forbids implementation of the

Amplitude Modulated estimator under this case, even when using the “force” command. Yet,

our theoretical results do not require all the lags to be observed to generate asymptotically

correct inference using the ES and AM estimators. Consequently, we perform simulations

for deterministic cyclical missing structures under both cases: all lags are observed at least

once, or some lags are never observed. We show that the finite sample performance does not
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differ much between these two cases, and neither case differs much from the results under

the Bernoulli missing structure.

In our first two cyclical missing structures, we set the cyclical pattern of observed data

such that each lagged autocovariance can be estimated from the observed data. In our

cyclical structure with 6 of 12 missing, we observe {z3, z6, z8, z9, z10, z11}, and then observe

the same pattern of observations for each cycle of length 12. In our next cyclical structure, we

have 8 of 12 missing. We observe {z3, z4, z7, z9} in the first cycle, and the same pattern for

each cycle after that. For our final two cyclical missing structures, we require the observed

data to be spaced within the cycle such that at least one lag is never observed. In our

structure with 6 of 12 missing, we observe {z1, z3, z5, z8, z10, z12} in the first cycle. Under

this structure, the sixth lag is never observed. For our cyclical structure with 8 of 12 missing,

we observe {z2, z3, z6, z12}, so that the fifth lag is never observed.

5.2 Evaluation Criteria

The primary evaluation criteria for these estimators is the empirical rejection probability of

the tests. The empirical rejection probability measures the likelihood that null hypothesis is

rejected when it is in fact true (Type I error). Each iteration of the Monte Carlo simulation

represents one hypothesis test, and the reported rejection probability reflects the fraction of

iterations for which the t-statistic was large enough in magnitude to reject the null hypothesis.

We also provide measures of the power of the test, as well as measures of the bias

and variance of the estimators. The power of the test measures the probability that the

null hypothesis is rejected when the alternative hypothesis is true. Since we find empirical

rejection probabilities that can be much higher than the 0.05 benchmark, we calculate the

size-adjusted power for ease of comparability. Following Ibragimov and Müller (2010), we

set the alternative hypothesis to Ha : βa = 4/
√
T (1− φ2). To calculate the power, we first

calculate tiβa , which is analogous to tiβ for each i, except that we subtract βa instead of β0 in
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the numerator. For example,

tNWβa =
β̂NW − βa√
V̂ NW
kk /T

.

Next, we calculate an adjusted critical value, tcrit0.05, which is the t-statistic at the 5th percentile

of our simulations. This value is equal to the critical value for which the empirical rejection

probability would have been exactly 0.05 under our simulation procedure. To calculate the

size-adjusted power, we calculate tiβa under the alternative hypothesis above and reject when

|tiβa| > tcrit0.05.

Finally, in order to understand the finite sample performance, we study the empirical

mean squared error of our estimators by decomposing it into the empirical variance and

bias. Under the benchmark Bernoulli case, we first calculate the value of Ω∗ under our data

generating process as:

Ω∗ = lim
T→∞

(T/S)
∞∑

j=−∞

γjE(gtgt−j)

= (1/p)

(
p+ 2

∞∑
j=1

p2φj

)
V ar(εt)

=

(
1 +

2pφ

1− φ

)(
1

1− φ2

)

where p is the probability of being observed. The second equation follows because (1)

limT→∞ T/S = 1/p; (2) E(gtgt−j) = p if j = 0 and E(gtgt−j) = p2 if j ≥ 1. The third

equation holds because V ar(εt) = 1/(1 − φ2). Returning to the MSE decomposition, we

have:

M̂SE = B̂ias
2

+ ̂V ariance

=
(

ˆ̄Ωi − Ω∗
)2

+
1

N

N∑
c=1

(
Ω̂i
c − ˆ̄Ωi

)2
,
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where ˆ̄Ωi = (1/N)
∑N

c=1 Ω̂i
c is the sample mean of all the covariance estimators and c indexes

the N = 100, 000 iterations. Note that for i = NW , we have p = 1. We use these measures

to study the finite sample properties of our estimators, especially to compare the AM and

ES estimators.

The primary findings are reported in Tables 2 through 7.3

5.3 Results

Table 2 provides the rejection probabilities for our two main estimators, the Equal Spacing

estimator and the Amplitude Modulated estimator. We provide results under a fixed band-

width and automatic bandwidth selection for each estimator, and for comparison purposes,

present results for the application of the Newey-West estimator applied to the full series

without missing observations. Our benchmark missing data structure is the Bernoulli miss-

ing structure in which observations are missing with probability p = 1/2. We focus on the

results for the simulation with T = 360, and also provide results for a large and very large

sample size (T = 1200 or 24000).

Our simulation results provide evidence that the ES and AM estimators perform well in

finite samples. As is well known in the HAC literature, we find that the empirical rejection

probability can be a bit higher than 5.0 for small samples, even when there is no autocor-

relation. In addition, when the autocorrelation parameter is high, there can be quite a bit

of overrejection even for very large sample sizes (T = 24000). However, we do find that the

rejection probability is falling towards 5.0 as the sample size increases.

We also find evidence that our ES and AM estimators are well-behaved under deter-

ministic cyclically missing structures. In Table 3, we see little difference in the rejection

rates under each of our three data structures: randomly missing under a Bernoulli structure,

deterministic cyclical missing when all lags are observed, and deterministic cyclical missing

when some lags are unobserved.
3Full simulation results are available upon request.
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Table 2 also provides the empirical rejection probabilities for the Parzen and Imputation

estimators for T = 360 and T = 24000. As expected, the higher serial correlation induced

by the imputation procedure results in extremely high rejection rates as compared to the ES

and AM estimators. We can also see in Table 2 that the results for the Parzen estimator

substantiate our argument that this estimator cannot be used for robust inference for series

with missing observations. In our simulation with φ = 0 and T = 360, we found 20 instances

(out of 100,000) in which the non-PSD Parzen estimator returned a negative estimate of the

variance. Additionally, we find that the rejection probability is generally decreasing in the

sample size but is U-shaped with respect to the autocorrelation, and often underrejects for

low levels of autocorrelation.4

Next we turn to a comparison of the finite sample properties of the ES and AM estimators.

In the results for the fixed bandwidth estimators in Table 4, we find that for T = 360, the

AM estimator is preferred for autocorrelation parameters φ ≤ 0.3, while the ES estimator

is preferred for series with higher autocorrelation. For larger samples, the ES estimator is

preferred for a larger range of φ, so that for T = 24000, we have that the ES estimator is

preferred for all the simulations with nonzero autocorrelations.

To better understand these results, we turn to Table 5, which reports the empirical

bias and variance for these two estimators under our benchmark simulations. As expected,

when using the same fixed bandwidth, the ES estimator has a higher variance than the

AM estimator for each sample size and autocorrelation. As discussed in Section 3.5, this

is because compared to Ω̂AM , the Ω̂ES estimator includes more high-order lags that are

relatively poorly estimated.

With regard to the bias, the ES estimator has better performance for higher autocorre-

lation parameters, though this effect is mitigated and sometimes reversed in small samples.

The poor small sample performance is driven by the first source of bias discussed in Section
4Interestingly, the test using the PZ estimator is well-behaved when the autocorrelation is 0. This is

consistent with our theoretical results, because when there is no autocorrelation, we have that the long-run
variance of the underlying and observed series are asymptotically equivalent. Consequently, we have that
when there is no autocorrelation, Ω̂PZ and Ω̂AM are asymptotically equivalent as well.
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3.5, that the summation in the autocovariance estimator is divided by the sample size rather

than the actual number of observed lags. This bias declines rapidly as the sample size in-

creases. In contrast, the bias behind the overrejection for high autocorrelations is driven by

the underweighting of high-order lagged autocovariances. Since the ES estimator places a

higher weight on high-order autocovariances, it has lower bias than the AM estimator when

the autocorrelation is high. As the sample size grows and the first source of bias becomes

less important, the ES estimator is preferred for a larger range of autocovariance parameters.

This bias and variance tradeoff changes when we implement automatic bandwidth selec-

tion. The results in Table 4 indicate that under this procedure, the AM estimator has a

lower rejection probability and is thus preferred at all but the highest level of autocorrela-

tion, for every sample size. To provide further context for this result, Table 6 reports the

average selected bandwidth for each simulation. We know from den Haan and Levin (1997)

that using a higher bandwidth will increase the variance of the estimator while decreasing

the bias. Given that the AM estimator has a lower variance than the ES estimator when

using a fixed bandwidth, it is not surprising that the automatic bandwidth selection typ-

ically chooses a higher bandwidth for the AM estimator than for the ES estimator. The

incremental improvement in the bias between the fixed and automatic bandwidth selection

is larger for the AM estimator than for the ES estimator. Consequently, under automatic

bandwidth selection, the ES estimator is only preferred for extremely high autocorrelation,

when the bias of the AM estimator is much higher than that of the ES estimator.

Turning to the size-adjusted power, we find in table Table 4 that the power of the two

estimators is roughly equivalent. Comparing our two main estimators, we have that the

power of the AM estimator is generally stronger than that of the ES estimator. Just as for

the Newey-West results, we have that the power falls as the autocorrelation increases, and

that the size-adjusted power does not vary as the sample size increases. Unsurprisingly, we

can see that the power of the test under the missing structure is weaker than for the full series,

due to the smaller observed sample size. This effect is mitigated at high autocorrelation,
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however, and we can see that under very high autocorrelation, the power is roughly equal for

the Newey-West application to the full series and for the application of our two estimators

to the series with missing observations.

Finally, Table 7 presents results for varying fractions of missing observations. At low

autocorrelation, the rejection rate increases as the fraction of missing observations increases.

This is likely driven by the first source of finite sample bias discussed in Section 3.5, which gets

worse as the fraction of missing observations increases. In contrast, at high autocorrelation,

the rejection rate falls as the fraction of missing observations increases. This effect is likely

due to the fact that when a higher fraction of observations is missing, the observed process

is less persistent, and the estimators are better able to overcome the underweighting of

the higher order autocovariances. Putting these two effects together, we have that the AM

estimator is preferred for a larger range of autocorrelation parameters when a higher fraction

of data is missing. This is consistent with our previous finding, that the AM estimator is

preferred when the serial correlation is low.

Overall, these simulation results are consistent with our theoretical findings. We show

that the ES and AM estimators both are well-behaved for random and deterministic missing

structures. In general, the ES and AM estimators are preferred to imputation methods,

which may induce serial correlation in the imputed series, resulting in more severe bias and

overrejection. In finite samples, we find that for the same fixed bandwidth, the ES estimator

is generally less biased than the AM estimator, but has larger variance. Consequently, the

ES estimator is preferred when autocorrelation is high, as the bias will dominate the mean

squared error in these cases. Conversely, when autocorrelation is low, variance dominates

the mean squared error, and the AM estimator is preferred.
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6 Empirical Application: Recursive Tests for a Positive

Sample Mean

In this section, we present an application of our estimators to test for positive returns to

investing in commodities futures contracts. While commodities tend to have positive returns

on average, they also have extremely high volatility. We apply our methods to construct

the sample mean and standard error of the returns series, and test whether the returns are

statistically distinguishable from zero. Due to the structure of commodities futures contracts,

the time series of returns have missing observations, and are therefore a natural application

for our estimators.

Commodities futures contracts specify the quantity and price of a commodity to be traded

on a predetermined expiration date at some point in the future. While some commodities

have contracts expiring every month, many have contract months that are irregularly spaced

throughout the year. For example, copper futures contracts were available for only March,

May, July, September, and December until full monthly coverage began in 1989. Conse-

quently, if we want to calculate the monthly return to investing in commodities futures over

a long sample period, our monthly returns data will either reflect a fluctuating time-to-

maturity, or will be an incomplete series with irregularly spaced missing observations.

For each commodity, we calculate the return as the percentage change in the price of the

contract over the three months prior to the contract’s expiration. For instance, we calculate

the return to the December contract as the change in price from the last trading day in

August to the last trading day in November. Since we want our returns series to reflect the

change in the price over the same time-to-maturity, we are only able to calculate this return in

the months immediately preceding contract expiration. For copper, this means we will have

only five observations each year.5 The existence of irregularly spaced commodities futures

contracts results in a deterministic cyclical pattern of missing observations in the constant-
5We restrict the full sample for copper to the period with missing contract months, 1960-1989.
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maturity returns series. Contract availability and spacing differs across commodities, but

tends to remain constant year to year for each commodity.

In this application, we calculate the sample mean for three representative commodities:

copper, soybean oil, and lean hogs.6 We apply our Equal Spacing, Amplitude Modulated,

and Imputation estimators to calculate the HAC standard error of the sample mean, and

test the hypothesis that the sample mean is significantly different from zero at the five

percent level of significance. Under the Imputation method, the missing observations are

linearly imputed, while the Equal Spacing and Amplitude Modulated estimators use only

the observed data to calculate the mean and standard error. Because it does not provide

robust results, we do not provide inference results using the Parzen estimator.

In addition to performing the t-test for the full sample, we use a recursive method to

compare our three methods across various sample sizes. For each commodity, we first cal-

culate the sample mean and standard error over the first twelve months of the sample, and

perform a t-test of the mean for just this sample window. We then recursively perform the

same test for an expanding sample window, adding one month at a time until the full sample

is covered. Lastly, we also perform the same type of recursive tests starting with the last

twelve months of the full sample. In this backwards recursive test, we use an earlier starting

month in each iteration until the sample window again covers the full sample. Having the

forward and backwards recursive results allows us to note any structural shifts that may have

occurred over time. Figures 2 and 3 depicts the results, and Table 8 provides an overview of

rejection rates over the full set of recursive results.

Figure 2 shows the sample mean and 95% confidence intervals constructed using the

Imputation and Equal Spacing methods. (The Amplitude Modulated estimator is omitted

from the figure for clarity.) The means are very similar across the two methods for most

sample windows. The primary difference is that as expected, the Imputation method estimate
6We selected one representative commodity from each of the major commodity types (metals, animal, and

agricultural). We omit the energy commodities, as these commodity contracts do not have missing contract
months.
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of the standard error is generally smaller than the Equal Spacing and Amplitude Modulated

estimates, resulting in a higher rejection rate for Imputation. In the figure, we have shaded

the samples for which the hypothesis is rejected under the Imputation method but not

rejected under Equal Spacing. The fraction of shaded iterations ranges from 3.2% for lean

hogs to 18.2% for copper in the forward recursive results. In the backwards recursive results,

the fraction of shaded iterations ranges from 0% for soybean oil to 18.4% for copper.

It is unsurprising that the Imputation method results in a higher rejection rate relative

to the Equal Spacing and Amplitude Modulated methods. While in many cases naive impu-

tation is likely to bias the parameter of interest, we have tried to construct an example with

little to no bias. However, since the imputed observations are constructed using the observed

data rather than drawn from the underlying distribution of data, we note that the standard

error of the imputed series is likely lower than the standard error of the observed series.

Additionally, the induced high serial correlation of the imputed series will make it likely that

the standard error of the imputed series will be underestimated by the Newey-West estima-

tor. For all of these reasons, it is likely that we will have overrejection in hypothesis testing.

Without knowing the true mean of the series, in this application we cannot know which

method gives us the “right” conclusion for a larger fraction of the tests. Yet, the examples

illustrate that the Imputation and Equal Spacing methods can lead to different conclusions

in a number of cases, depending on the available data.

7 Conclusion

This paper provides two simple solutions to the common problem of conducting heteroskedas-

ticity and autocorrelation (HAC) robust inference when some observations are missing. Our

definitions of the Amplitude Modulated and Equal Spacing estimators are simply formal

descriptions of ad hoc practices that are already in use. Yet, by formalizing these proce-

dures, we are able to provide theoretical results that clear up some of the existing confusion

34



in the literature. By studying the estimators and their properties, we provide justification

for their past application to daily business data and through common statistical software

packages such as Stata. We also justify their application under a wide variety of missing

data structures, including deterministic and cyclical missing structures.

Our theoretical discussion of the estimators highlights a few main conclusions. After es-

tablishing the difference between the long-run variance of the underlying and observed series,

we demonstrate that our Amplitude Modulated and Equal Spacing estimators both are con-

sistent for the long-run variance of the observed series. This distinction is important, as we

also show that we require the long-run variance of the observed series to construct t-statistics

for inference, such as in a regression setting. In addition to discussing the asymptotic proper-

ties of the estimators, we provide some discussion of their finite sample properties, based on

our previous understanding of the finite sample properties of HAC estimators more generally.

We also provide simulation results and apply our estimators to a real world problem

involving missing data in commodities futures returns. These results provide further evidence

supporting our description of the asymptotic and finite sample behavior of the estimators. In

addition, the results of these exercises are used to draw conclusions that can provide guidance

to practitioners who need to decide between the estimators for applied work. Though this

paper focuses on applying the estimators in a time series setting, they can also be naturally

extended for application in a panel setting. We leave this extension for future work.
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Figure 1: Time Series of Returns
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Table 2: Benchmark Results

Empirical Rejection Rate
Autocorrelation (φ): 0.0 0.3 0.5 0.7 0.9
Sample Size T=360

ES, fixed bw 6.0 7.0 8.0 10.7 23.1
AM, fixed bw 5.6 6.7 8.3 12.6 30.9
Parzen, fixed bw 6.6 4.6 4.5 6.1 19.2
Imputation, fixed bw 8.9 9.7 11.2 15.5 34.4
NW, fixed bw 5.6 7.2 9.1 14.2 33.7

Sample Size T=1200
ES, fixed bw 5.3 6.0 6.8 8.7 18.8
AM, fixed bw 5.2 6.0 7.2 10.6 26.7
Parzen, fixed bw 5.5 3.6 3.3 4.4 14.9
Imputation, fixed bw 8.1 8.5 9.6 13.1 29.9
NW, fixed bw 5.2 6.4 7.9 11.9 29.4

Sample Size T=24000
ES, fixed bw 5.1 5.4 5.8 6.6 11.0
AM, fixed bw 5.1 5.4 6.1 7.5 16.5
Parzen, fixed bw 5.1 3.0 2.3 2.2 6.3
Imputation, fixed bw 6.3 6.5 7.0 8.4 17.9
NW, fixed bw 5.1 5.6 6.3 7.9 17.5

Notes: Table reports for a range of sample sizes and autocorrelation parameters the empirical
rejection rate as defined in Section 5.2. Data follow our benchmark missing structure, the
Bernoulli structure with probability of missing 6/12. The Newey-West estimation provided
for comparison uses the full series of simulated data without any missing observations. See
Sections 3 and 4 for details on the estimators and the regression context, and Section 5.1 for
details on the simulation parameters.
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Table 3: Varying Missing Structure

Empirical Rejection Rate
Autocorrelation (φ): 0.0 0.3 0.5 0.7 0.9
Randomly missing, Bernoulli structure

ES, fixed bw 6.0 7.0 8.0 10.7 23.1
AM, fixed bw 5.6 6.7 8.3 12.6 30.9

Deterministic cyclically missing, All lags observed
ES, fixed bw 5.9 6.9 7.9 10.1 22.2
AM, fixed bw 5.4 6.5 8.0 11.9 30.1

Deterministic cyclically missing, Some lags unobserved
ES, fixed bw 6.0 6.5 7.5 9.8 22.1
AM, fixed bw 5.5 6.3 8.1 12.8 32.0

Full sample benchmark
NW, fixed bw 5.6 7.2 9.1 14.2 33.7

Notes: Table reports for a range of autocorrelation parameters the empirical rejection rate
for a sample size of T = 360 under varying missing structures as described in Section 5.1:
the Bernoulli missing structure, the deterministic cyclical missing structure in which all
lags are observed, and the deterministic cyclical missing structure in which some lags are
never observed. The probability of missing is 6/12 for the Bernoulli structure, while the
cyclical structures have exactly 6 of 12 observations missing in each cycle. The Newey-West
estimation provided for comparison uses the full series of simulated data without any missing
observations. See Sections 3 and 4 for details on the estimators and the regression context,
and Section 5.1 for details on the simulation parameters.
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Table 4: Finite Samples: Fixed and Automatic Bandwidth Selection

Empirical Rejection Rate Size-Adjusted Power
Autocorrelation (φ): 0.0 0.3 0.5 0.7 0.9 0.0 0.3 0.5 0.7 0.9
Sample Size T=360

ES, fixed bw 6.0 7.0 8.0 10.7 23.1 78.9 63.5 49.2 32.7 14.0
AM, fixed bw 5.6 6.7 8.3 12.6 30.9 79.4 64.1 50.0 33.0 14.2

ES, auto bw 6.8 7.7 8.7 10.1 16.8 77.8 62.4 48.2 31.7 13.6
AM, auto bw 6.0 7.0 8.0 9.9 19.7 79.0 63.7 49.1 32.4 13.8

NW, fixed bw 5.6 7.2 9.1 14.2 33.7 97.6 82.3 62.2 38.1 14.7
NW, auto bw 5.9 7.4 8.1 10.0 19.8 97.5 81.5 61.2 37.2 14.4

Sample Size T=1200
ES, fixed bw 5.3 6.0 6.8 8.7 18.8 80.2 65.2 51.4 34.1 14.5
AM, fixed bw 5.2 6.0 7.2 10.6 26.7 80.4 65.5 51.5 34.3 14.6

ES, auto bw 5.5 6.3 6.9 7.4 10.8 79.9 64.9 50.5 33.5 14.2
AM, auto bw 5.3 6.1 6.4 7.4 12.6 80.2 65.2 51.0 33.9 14.4

NW, fixed bw 5.2 6.4 7.9 11.9 29.4 97.8 83.0 63.0 38.6 15.0
NW, auto bw 5.3 6.3 6.6 7.5 12.6 97.8 82.6 62.7 38.1 14.8

Sample Size T=24000
ES, fixed bw 5.1 5.4 5.8 6.6 11.0 80.2 65.4 51.0 33.8 14.4
AM, fixed bw 5.1 5.4 6.1 7.5 16.5 80.3 65.4 51.1 33.7 14.4

ES, auto bw 5.1 5.4 5.7 5.7 6.2 80.2 65.3 50.9 33.6 14.4
AM, auto bw 5.1 5.4 5.5 5.7 6.4 80.3 65.4 51.0 33.7 14.3

NW, fixed bw 5.1 5.6 6.3 7.9 17.5 97.8 83.1 63.0 38.6 14.9
NW, auto bw 5.1 5.4 5.5 5.6 6.4 97.8 83.1 63.1 38.7 14.9

Notes: Table reports for a range of sample sizes and autocorrelation parameters the empirical
rejection rate and size-adjusted power as defined in Section 5.2. Data follow our benchmark
missing structure, the Bernoulli structure with probability of missing 6/12. The Newey-West
estimation provided for comparison uses the full series of simulated data without any missing
observations. See Sections 3 and 4 for details on the estimators and the regression context,
and Section 5.1 for details on the simulation parameters.
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Table 6: Automatically Selected Bandwidths

6 of 12 missing
Autocorrelation (φ): 0.0 0.3 0.5 0.7 0.9
T=360, Fixed bandwidth: m(T)=5

ES, auto bw 5.9 5.1 5.0 6.4 10.0
AM, auto bw 5.4 5.0 6.4 9.8 13.0
NW, auto bw 5.4 5.4 8.0 11.4 14.1

T=1200, Fixed bandwidth: m(T)=6
ES, auto bw 6.4 6.0 7.0 10.8 17.2
AM, auto bw 6.2 6.7 10.5 16.5 22.2
NW, auto bw 6.2 8.1 13.2 18.8 23.9

T=24000, Fixed bandwidth: m(T)=12
ES, auto bw 13.2 14.6 20.2 33.3 65.2
AM, auto bw 13.2 18.0 31.8 55.7 94.0
NW, auto bw 13.2 23.5 39.0 62.3 98.3

Notes: Table reports for a range of autocorrelation parameters and sample sizes the mean
of the bandwidth selected by the Newey and West (1994) procedure described in Section
5.1. Data follow our benchmark missing structure as described in the Bernoulli structure
with probability of missing 6/12. The Newey-West estimation provided for comparison uses
the full series of simulated data without any missing observations. See Sections 3 and 4
for details on the estimators and the regression context, and Section 5.1 for details on the
simulation parameters.
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Table 7: Varying Fraction of Missings

Empirical Rejection Rate Size-Adjusted Power
Autocorrelation (φ): 0.0 0.3 0.5 0.7 0.9 0.0 0.3 0.5 0.7 0.9
4 of 12 missing

ES, fixed bw 5.9 7.0 8.2 11.3 26.6 89.2 72.7 56.2 35.8 14.5
AM, fixed bw 5.6 6.9 8.6 13.1 32.4 89.4 73.2 56.6 36.2 14.6

ES, auto bw 6.4 7.5 8.5 9.7 17.4 88.7 72.0 55.0 34.9 14.0
AM, auto bw 5.9 7.2 8.0 9.8 19.8 89.2 72.5 55.6 35.5 14.2

6 of 12 missing
ES, fixed bw 6.0 7.0 8.0 10.7 23.1 78.9 63.5 49.2 32.7 14.0
AM, fixed bw 5.6 6.7 8.3 12.6 30.9 79.4 64.1 50.0 33.0 14.2

ES, auto bw 6.8 7.7 8.7 10.1 16.8 77.8 62.4 48.2 31.7 13.6
AM, auto bw 6.0 7.0 8.0 9.9 19.7 79.0 63.7 49.1 32.4 13.8

8 of 12 missing
ES, fixed bw 6.4 7.1 7.8 9.6 18.7 61.0 50.5 41.2 29.1 13.6
AM, fixed bw 5.6 6.4 7.6 11.2 28.3 62.5 51.9 42.5 29.9 13.9

ES, auto bw 7.8 8.4 9.1 10.5 15.7 57.6 48.2 39.6 27.7 13.1
AM, auto bw 5.9 6.6 7.6 9.5 19.4 61.9 51.4 41.8 29.2 13.6

Full sample benchmark
NW, fixed bw 5.6 7.2 9.1 14.2 33.7 97.6 82.3 62.2 38.1 14.7
NW, auto bw 5.9 7.4 8.1 10.0 19.8 97.5 81.5 61.2 37.2 14.4

Notes: Table reports for a range of autocorrelation parameters the empirical rejection rate
and size-adjusted power for a sample size of T = 360 under varying probability of missing
observation. Data follow our benchmark missing structure as described in Section 5.1, the
Bernoulli structure with probability of missing 4/12, 6/12, or 8/12. The Newey-West esti-
mation provided for comparison uses the full series of simulated data without any missing
observations. See Sections 3 and 4 for details on the estimators and the regression context,
and Section 5.1 for details on the simulation parameters.
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Table 8: Rejection Rates for Recursive Tests
Panel A: 5% significance level

Copper Soybean Oil Lean Hogs
Forward Backward Forward Backward Forward Backward

Imputation 64.8 28.2 25.3 0.0 93.7 18.3
Amplitude Modulated 59.7 26.5 18.1 0.0 91.4 8.8
Equal Spacing 46.7 9.8 12.4 0.0 90.7 8.4
AM rejects, IM does not 0.0 1.2 0.0 0.0 0.2 0.0
ES rejects, IM does not 0.0 0.0 0.0 0.0 0.2 0.0
IM rejects, AM does not 5.2 2.9 7.2 0.0 2.4 9.5
IM rejects, ES does not 18.2 18.4 12.9 0.0 3.2 9.9

Panel B: 10% significance level
Copper Soybean Oil Lean Hogs

Forward Backward Forward Backward Forward Backward
Imputation 77.2 34.6 63.5 22.2 96.1 26.1
Amplitude Modulated 72.9 34.0 29.7 0.0 94.6 15.1
Equal Spacing 65.4 31.4 24.8 0.0 93.5 15.1
AM rejects, IM does not 0.0 0.0 0.0 0.0 0.0 0.0
ES rejects, IM does not 0.0 0.0 0.0 0.0 0.0 0.0
IM rejects, AM does not 4.3 0.6 33.8 22.2 1.5 11.0
IM rejects, ES does not 11.8 3.2 38.7 22.2 2.6 11.0

Notes: Table reports the rejection rate for the test of the hypothesis that the recursive sample
mean is equal to zero. The final row of the first panel corresponds to the shaded areas in
Figures 2 and 3.
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Figure 2: Recursive Test Results - Sample Mean and Error Bands
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Note: Figure plots the recursive sample mean and 95% confidence intervals for the imputation
and equal spacing methods. The recursive sample mean is calculated as the mean of returns
over the period from the start of the sample to sample end date (plotted on the x-axis).
Shaded areas indicate recursive samples for which the imputation method finds statistical
significance while the equal spacing method finds none.
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Figure 3: Backwards Recursive Test Results - Sample Mean and Error Bands

−50

0

50

100

150

1960197019801990
Sample Start Date

Imputation
Equal Spacing

Copper Returns (% p.a.)

−50

0

50

100

196019701980199020002010
Sample Start Date

Soybean Oil Returns (% p.a.)

−40

−20

0

20

40

60

19701980199020002010
Sample Start Date

Lean Hogs Returns (% p.a.)

Note: Figure plots the backwards recursive sample mean and 95% confidence intervals for the
imputation and equal spacing methods. The backwards recursive sample mean is calculated
as the mean of returns over the period from the end of the sample to sample start date
(plotted on the x-axis). Note that the sample size is increasing with earlier start dates,
moving left to right on the plot. Shaded areas indicate recursive samples for which the
imputation method finds statistical significance while the equal spacing method finds none.
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